
A client-side analysis of TLS usage in mobile apps

Abbas Razaghpanah
Stony Brook University

Narseo Vallina-Rodriguez
ICSI

Phillipa Gill
Stony Brook University

1 Introduction

As mobile applications become more pervasive, they
provide us with a variety of online services that range
from social networking to banking and credit card man-
agement. Since many of these services involve commu-
nicating and handling of private user information – and
also due to increasing security demands from users – the
use of TLS connections has become a necessity for to-
day’s mobile applications. However, an improper use of
TLS and failure to adhere to TLS security guidelines by
app developers, exposes users to agents performing TLS
interception thus giving them a false sense of security.
Unfortunately, researchers and users alike lack of infor-
mation and easy-to-deploy mechanisms to analyze how
securely mobile apps implement TLS.

Hence, in order to understand and assess the security
of mobile app communications, it is crucial to study their
use of the TLS protocol. In this poster we present a
method to study the use of TLS in mobile apps using
the data provided by the ICSI Haystack app [2], a mobile
measurement platform that enables on-device analysis of
mobile traffic without requiring root access. The unique
vantage point provided by the Haystack platform enables
a variety of measurements from the edge of the network
with real user workload and the added bonus of having
contextual information on the device to supplement the
data collection.

2 Previous Work
Studies that use instrumented test-beds [1] or use static
analysis usually have smaller scale and lack the organic
user and network-stimuli required to study apps in real-
world situations. Additionally, these approaches do not
cover vendor and carrier-specific apps that are not on the
Play Store. On the other hand, approaches that analyze
ISP traces operate a VPN server outside the device [3]
have larger scale, but lack the contextual information that

can be obtained on the device (e.g., traffic-to-app map-
ping) thanks to information provided by the operating
system.

Previous work has looked at the problem of TLS com-
munications on mobile devices from different angles and
from different vantage points, but there has not been a
comprehensive on-device study conducted at large scale.

3 Methodology
We make use of Haystack, a general-purpose on-device
mobile measurement platform, to study TLS usage by
apps. Haystack doesn’t require root access to monitor
app traffic and is available to download from the Play
Store. Data collected by Haystack is approved by IRB 1

and comes from real users interacting with their apps.
Haystack uses the VPN interface to gain access to apps’
traffic and allows us to capture and analyze TLS usage
by these apps (Figure 1), including pre-installed appli-
cations and others not available on popular app-stores.
Haystack has been downloaded by more than 500 users
and has collected TLS information from around 1,700
apps in the wild. Right now Haystack app focuses on
providing transparency to users about what information
their mobile apps are exfiltrating about them over the
Internet, particularly information leakages to third-party
services, tracking activity, and privacy leaks.

3.1 TLS Proxy
Haystack supports an opt-in TLS proxy to study and an-
alyze TLS traffic. With user’s approval, it injects a self-
signed root certificate on Android’s cert store. Haystack
parses packets before forwarding them to the outbound
Java sockets, packets that look like TLS Client Hello are
parsed to extract relevant information (e.g., SNI field),
uploaded to the server in raw binary format, and for-

1Due to the data anonymization and reduction process taking place
on the handset to avoid collecting personal information, UC Berkeley’s
IRB considered this study as a non-human subject research.



raw_packet Java Sockets

TLS Proxy  
 

TLS interception

TLS stream

Intelligence Service 
!

Off-path traffic Analysis

flowudpflowtcp

decrypted  
flow

Internet

Aho-Corasick Parsers

Location Contacts…

SSLSockets

Forwarder

Non-encrypted Traffic
Encrypted Traffic
Off-path channels

tun Default Gateway

Apps

TLS 
packet

Figure 1: The Haystack architecture, highlighting system components
and data forwarding channels.

warded to the TLS proxy. The TLS proxy will try to con-
nect to the remote server on behalf of the app, and upon
successful handshake with the server, will finish hand-
shake with the client. If the handshake with the server
fails, the exception information is stored and uploaded to
our server for further analysis. Server certificate blobs
are uploaded to our server in the event of a successful
proxy connection.

We use client-side and server-side TLS handshake ex-
ceptions to determine which apps bundle CA certificate
stores, hard-code certificate signatures, or pin certificates
using other methods.

Server-side failures. If a server-side cert can’t be ver-
ified by the proxy, it can be one of the following: either
the certificate is invalid or it is self-signed. When this
type of failure happens, the connection is handed over to
the app and is not proxied. That way we can follow up on
the connection and see if the client accepts the certificate.
If the certificate is accepted, it means that either the client
doesn’t do certificate checking, or that it checks the cer-
tificate using hard-coded information such as a custom
CA cert store or a certificate fingerprint used to pin the
certificate. In case the app doesn’t accept the certificate,
we conclude that the certificate is invalid.

Client-side failures. If the handshake fails on the
client-side of the proxied connection, it could point to
certificates being pinned or CA stores being bundled with
the app. It could also mean that some of the extensions
that were used in the original handshake to the server are
not supported by the on-device TLS proxy server.

3.2 Handshake Message Analysis
Since Haystack uploads Client Hello packets from the
handshake process, we can analyze and fingerprint dif-
ferent aspects of the apps’ TLS usage. Supported cipher
suites and extensions present on the Client Hello can be
utilized to determine which libraries are used for TLS
sockets. Apps that still use older TLS versions, less se-
cure cipher suites, or deprecated parameters can be de-
tected. The certificates that are collected by Haystack

are analyzed to extract information such as key type
and length, validity period, signature and signature al-
gorithm, and the CA.

The data collected in the wild by Haystack so far
(more than 2.6 million TLS flows) shows that while the
vast majority of TLS flows (90.26%) use TLSv1.2, there
are still some that use TLSv1.0 (8.29%) and TLSv1.1
(0.80%), with a smaller percentage using the vulnerable
SSLv3 (0.63%). Moreover, RC4 ciphers that have been
shown [4] to be weak, as well as MD5 hashing algorithm
that is vulnerable to collision, are supported in 76.11%
and 8.08% of the flows studied respectively. This shows
that the majority of the apps that use TLS use Android’s
default library. Therefore, newer versions of Android use
newer versions of the protocol and announce support for
cipher suites that were not known to be unsecure at the
time of OS release; which demonstrates the importance
of upgrading the OS version as apps are dependent on
OS support for TLS security.

4 Future Work

In addition to collecting Client Hello packets from TLS
connections, we plan to extend our data collection pro-
cess to gather Server Hello messages to extract more in-
formation from the server-side of the connection. This
will allow us to identify the final cipher suite chosen for
the connection and other parameters set by the server
which will help us learn more about the server-side of the
TLS connection and get a better picture of how securely
either end of the connection really is. Additionally, we
can use this information to warn the user about vulnera-
ble TLS connections and expired certificates in real-time.
As a way to improve the state of TLS usage, we plan to
create a census of apps with improper TLS usage to en-
courage better and more secure TLS implementation by
app developers.

References
[1] FAHL, S., HARBACH, M., MUDERS, T., SMITH, M.,

BAUMGÄRTNER, L., AND FREISLEBEN, B. Why Eve and Mal-
lory love Android: An analysis of Android SSL (in) security. In
ACM CCS (2012).

[2] RAZAGHPANAH, A., VALLINA-RODRIGUEZ, N., SUNDARE-
SAN, S., KREIBICH, C., GILL, P., ALLMAN, M., AND PAXSON,
V. Haystack: In situ mobile traffic analysis in user space. CoRR
abs/1510.01419 (2015).

[3] REN, J., RAO, A., LINDORFER, M., LEGOUT, A., AND
CHOFFNES, D. ReCon: Revealing and Controlling PII Leaks in
Mobile Network Traffic . In ACM MobiSys (2016).

[4] VANHOEF, M., AND PIESSENS, F. All your biases belong to
us: Breaking rc4 in wpa-tkip and tls. In 24th USENIX Security
Symposium (USENIX Security 15) (Washington, D.C., Aug. 2015),
USENIX Association, pp. 97–112.

2


