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Latent sector errors (LSEs) refer to the situation where particular sectors on a drive become
inaccessible. LSEs are a critical factor in data reliability, since a single LSE can lead to data
loss when encountered during RAID reconstruction after a disk failure or in systems without
redundancy. LSEs happen at a significant rate in the field [Bairavasundaram et al. 2007], and
are expected to grow more frequent with new drive technologies and increasing drive capacities.
While two approaches, data scrubbing and intra-disk redundancy, have been proposed to reduce
data loss due to LSEs, none of these approaches has been evaluated on real field data.

This article makes two contributions. We provide an extended statistical analysis of latent sector
errors in the field, specifically from the view point of how to protect against LSEs. In addition to
providing interesting insights into LSEs, we hope the results (including parameters for models
we fit to the data) will help researchers and practitioners without access to data in driving their
simulations or analysis of LSEs. Our second contribution is an evaluation of five different scrubbing
policies and five different intra-disk redundancy schemes and their potential in protecting against
LSEs. Our study includes schemes and policies that have been suggested before, but have never
been evaluated on field data, as well as new policies that we propose based on our analysis of LSEs
in the field.
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1. MOTIVATION

Over the past decades many techniques have been proposed to protect against
data loss due to hard disk failures [Blaum et al. 1994; Corbett et al. 2004; Pat-
terson et al. 1988; Plank 2008; Hafner 2006; Hafner 2005; Wylie and Swami-
nathan 2007]. While early work focused on total disk failures, new drive tech-
nologies and increasing capacities have led to new failure modes. A particular
concern are latent sector errors (LSEs), where individual sectors on a drive
become unavailable. LSEs are caused, for example, by write errors (such as
a high-fly write) or by media imperfections, like scratches or smeared soft
particles.

There are several reasons for the recent shift of attention to LSEs as a
critical factor in data reliability. First and most importantly, a single LSE
can cause data loss when encountered during RAID reconstruction after a
disk failure. Second, with multiterabyte drives using perpendicular recording
hitting the markets, the frequency of LSEs is expected to increase, due to higher
areal densities, narrower track widths, lower flying heads, and susceptibility
to scratching by softer particle contaminants [Elerath 2009]. Finally, LSEs are
a particularly insidious failure mode, since these errors are not detected until
the affected sector is accessed.

The mechanism most commonly used to protect against LSEs is a back-
ground scrubber [Schwarz et al. 2004; Baker et al. 2006; Mi et al. 2008; Oprea
and Juels 2010] that continually scans the disk during idle periods in order to
proactively detect LSEs and then correct them using RAID redundancy. Sev-
eral commercial storage systems employ a background scrubber, including, for
example, NetApp systems.

Another mechanism for protection against LSEs is intra-disk redundancy,
that is, an additional level of redundancy inside each disk, in addition to the
inter-disk redundancy provided by RAID. Dholakia et al. [Dholakia et al. 2008;
Iliadis et al. 2008] recently suggested that intra-disk redundancy can make a
system as reliable as a system without LSEs.

Devising effective new protection mechanisms or obtaining a realistic un-
derstanding of the effectiveness of existing mechanisms requires a detailed
understanding of the properties of LSEs. To this point, there exists only one
large-scale field study of LSEs [Bairavasundaram et al. 2007], and no field
data that is publicly available. As a result, existing work typically relies on
hypothetical assumptions, such as LSEs that follow a Poisson process [Iliadis
et al. 2008; Baker et al. 2006; Schwarz et al. 2004; Elerath and Pecht 2007].
None of the approaches described above for protecting against LSEs has been
evaluated on field data.

This article provides two main contributions. The first contribution is an
extended statistical study of the data in Bairavasundaram et al. [2007].
While Bairavasundaram et al. [2007] provides a general analysis of the data,
we focus in our study on a specific set of questions that are relevant from the
point of view of how to protect against data loss due to LSEs. We hope that
this analysis will help practitioners in the field, who operate large-scale stor-
age systems and need to understand LSEs, as well as researchers who want to
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simulate or analyze systems with LSEs and don’t have access to field data. It
will also give us some initial intuition on the real-world potential of different
protection schemes that have been proposed and what other schemes might
work well.

The second contribution is an evaluation of different approaches for pro-
tecting against LSEs, using the field data from Bairavasundaram et al. [2007].
Our study includes several intra-disk redundancy schemes (simple parity check
schemes, interleaved parity [Dholakia et al. 2008; Iliadis et al. 2008], maximum
distance separable erasure codes, and two new policies that we propose) and
several scrubbing policies, including standard sequential scrubbing, the re-
cently proposed staggered scrubbing [Oprea and Juels 2010], and some new
policies.

The article is organized as follows. We provide some background information
on LSEs and the data we are using in Section 2. Section 3 presents a statistical
analysis of the data. Section 4 evaluates the effectiveness of intra-disk redun-
dancy for protecting against LSEs, and Section 5 evaluates the effectiveness of
proactive error detection through scrubbing. We discuss the implications of our
results in Section 6.

2. BACKGROUND AND DATA

For our study, we obtained a subset of the data used by Bairavasundaram
et al. [2007]. While we refer the reader to Bairavasundaram et al. [2007] for a
full description of the data, the systems they come from, and the error handling
mechanisms in those systems, we provide a brief summary below.

Bairavasundaram et al. collected data on disk errors on NetApp production
storage systems installed at customer sites over a period of 32 months. These
systems implement a proprietary software stack consisting of the WAFL filesys-
tem, a RAID layer, and the storage layer. The handling of latent sector errors in
these systems depends on the type of disk request that encounters an erroneous
sector and the type of disk. For enterprise class disks, the storage layer remaps
the disk request to another (spare) sector. For read operations, the RAID layer
needs to reconstruct the data before the storage layer can remap it. For nearline
disks, the process for reads is similar, however the remapping of failed writes
is performed internally by the disk and is transparent, to the storage layer. All
systems periodically scrub their disks to proactively detect LSEs. The scrub is
performed using the SCSI verify command, which validates a sector’s integrity
without transferring data to the storage layer. A typical scrub interval is two
weeks. Bairavasundaram et al. [2007] found that the majority of the LSEs in
their study (more than 60%) were detected by the scrubber, rather than by an
application access.

In total, the collected data covers more than 1.5 million drives and contains
information on three different types of disk errors: latent sector errors, not-
ready-condition-errors, and recovered errors. Bairavasundaram et al. [2007]
find that a significant fraction of drives (3.45%) develops latent sector errors
at some point in their live, and that the fraction of drives affected by LSEs
grows as disk capacity increases. They also study some of the temporal and
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spatial dependencies between errors, and find evidence of correlations between
the three different types of errors.

For our work, we have been able to obtain a subset of the data used
in Bairavasundaram et al. [2007]. This subset is limited to information on
latent sector errors (no information on not-ready-condition-errors and recov-
ered errors) and contains for each drive with LSEs the time when the error
was detected and the logical block number of the sector that was affected. Note
that since LSEs are by definition latent errors, i.e. errors that are unknown to
the system until it tries to access the affected sector, we cannot know for sure
exactly when the error happened. The timestamps in our data refer to the time
when the error was detected, not necessarily when it first happened. We can,
however, narrow down the time of occurrence to a two-week time window: since
the scrub interval in NetApp’s systems is two weeks, any error must have hap-
pened within less than two weeks before the detection time. For applications
in this article, where the timestamp of an error matters, we use three different
methods for approximating timestamps, based on the above observation, in ad-
dition to using the timestamps directly from the trace. We describe the details
in Section 5.1.

We focus in our study on drives that have been in the field for at least 12
months and have experienced at least one LSE. We concentrate on the four
most common nearline drive models (the models referred to as A-1, D-2, E-1,
E-2 in Bairavasundaram et al. [2007]) and the four most common enterprise
drive models (k-2, k-3, n-3, and o-3). In total, the data covers 29,615 nearline
drives and 17,513 enterprise drives.

3. STATISTICAL PROPERTIES OF LSES

We begin with a study of several statistical properties of LSEs. Many baseline
statistics, such as the frequency of LSEs and basic temporal and spatial proper-
ties, have been covered by Bairavasundaram et al. [2007], and we do not repeat
them here. Instead we focus on a specific set of questions that is relevant from
the point of view of how to protect against data loss due to LSEs.

3.1 How Long Are Error Bursts?

When trying to protect against LSEs, it is important to understand the dis-
tribution of the lengths of error bursts. By an error burst we mean a series of
errors that is contiguous in logical block space. The effectiveness of intra-disk
redundancy schemes, for example, depends on the length of bursts, as a large
number of contiguous errors likely affects multiple sectors in the same parity
group, preventing recovery through intra-disk redundancy.

Figure 1(left) shows for each model the cumulative distribution function of
the length of error bursts. We observe that in 90–98% of cases a burst consists
of one single error. For all models, except A-1 and n-3, less than 2.5% of runs
consist of two errors and less than 2.5% have more than two errors.

An interesting question is how to best model the length of an error burst
and the number of good sectors that separate two bursts. The most commonly
used model is a geometric distribution, as it is convenient to use and easy to
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Fig. 1. Distribution of the number of contiguous errors in a burst (left); cumulative distribution
function of the sector distance between errors that occur within same two-week interval (middle);
and the location of errors on the drive (right).

analyze. We experimented with five different distributions (Geometric, Weibull,
Rayleigh, Pareto, and Lognormal), that are commonly used in the context of
system reliability, and evaluated their fit through the total squared differences
between the actual and hypothesized frequencies (χ2 statistic). We found con-
sistently across all models that the geometric distribution is a poor fit, while
the Pareto distribution provides the best fit. For the length of the error bursts,
the deviation of the geometric from the empirical distribution was more than
13 times higher than that of the Pareto (13.50 for nearline and 14.34 for en-
terprise), as measured by the χ2 statistic. For the distance between bursts, the
geometric fit was even worse. The deviation under the geometric distribution
compared to the Pareto distribution is 46 and 110 times higher for nearline and
enterprise disks, respectively. The geometric distribution proved such a poor
fit because it failed to capture the long tail behavior of the data, that is, the
presence of long error bursts and the clustering of errors.

The top two rows in Table I summarize the parameters for the Pareto dis-
tribution that provided the best fit. For the number of good sectors between
error bursts, the parameter in the table is the α parameter of the Pareto
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Table I. Parameters from Distribution Fitting

Variable Dist./Params. A-1 D-2 E-1 E-2 k-2 k-3 n-3 o-2
Error

burst
length

Pareto p, α 0.9, 1.21 0.98, 1.79 0.98, 1.35 0.96, 1.17 0.97, 1.2 0.97, 1.15 0.93, 1.25 0.97, 1.44

Distance
btw.
bursts

Pareto α 0.008 0.022 0.158 0.128 0.017 0.00045 0.077 0.05

#LSEs in 2
weeks

Pareto α 0.73 0.93 0.63 0.82 0.80 0.70 0.45 0.22

#LSEs per
drive

Pareto α 0.58 0.81 0.34 0.44 0.63 0.58 0.31 0.11

distribution. For modeling the burst lengths, we used two parameters. The
first parameter p gives the probability that the burst consists of a single error,
that is, (1 − p) is the probability that an error burst will be longer than one
error. The second parameter is the α parameter of the Pareto distribution that
best fits the number of errors in bursts of length > 1.

3.2 How Far Are Errors Spaced Apart?

Knowing at what distances errors are typically spaced apart is relevant for
both scrubbing and intra-disk redundancy. For example, errors that are close
together in space are likely to affect several sectors in the same parity group of
an intra-disk redundancy scheme. If they also happen close together in time, it
is unlikely that the system has recovered the first error before the second error
happened.

Figure 1 (middle) shows the cumulative distribution function (CDF) of the
distance between an error and the closest neighbor that was detected within
a two-week period (provided that there was another error within two weeks
from the first). We chose a period of two weeks, since this is the typical scrub
interval in NetApp’s filers.

Not surprisingly, we find that very small distances are the most common.
Between 20 to 60% of all errors have a neighbor within a distance of less than
10 sectors in logical sector space. However, we also observe that almost all
models have pronounced “bumps” (parts where the CDF is steeper), indicating
higher probability mass in these areas. For example, model o-2 has bumps at
distances of around 103 and 105 sectors. Interestingly, we also observe that
the regions where bumps occur tend to be consistent for different models of
the same family. For example, the CDFs of models E-1 and E-2 follow a similar
shape, as do the CDFs for models k-2 and k-3. We therefore speculate that some
of these distances with higher probability are related to the disk geometry of a
model, such as the number of sectors on a track.

3.3 Where on the Drive Are Errors Located?

The next question we ask is whether certain parts of the drive are more likely
to develop errors than others. Understanding the answer to this question
might help in devising smarter scrubbing or redundancy schemes that em-
ploy stronger protection mechanisms (e.g., more frequent scrubbing or stronger
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Fig. 2. The probability of seeing an error x two-week periods after the first error (left), the number
of two-week periods in a disk’s life with at least one error (middle), and the distribution of the
number of errors a disk sees in its lifetime (right).

erasure codes) for those parts of the drive that are more likely to develop
errors.

Figure 1 (right) shows the CDF of the logical sector numbers with errors.
Note that the X-axis does not contain absolute sector numbers, since this would
reveal the capacity of the different models, information that is considered con-
fidential. Instead, the X-axis shows percentage of the logical sector space, that
is, the point (x,y) in the graph means that y% of all errors happened in the first
x% of the logical sector space.

We make two interesting observations: The first part of the drive shows a
clearly higher concentration of errors than the remainder of the drive. Depend-
ing on the model, between 20% and 50% of all errors are located in the first
10% of the drive’s logical sector space. Similarly, for some models the end of
the drive has a higher concentration. For models E-2 and k-3, 30% and 20%
of all errors, respectively, are concentrated in the highest 10% of the logical
sector space. The second observation is that some models show three or four
“bumps” in the distribution that are equidistant in logical sector space (that
is, model A-1 has bumps at fractions of around 0.1, 0.4, and 0.7 of the logical
sector space).
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We speculate that the areas of the drive with an increased concentration
of errors might areas with different usage patterns, for example, filesystems
often store metadata at the beginning of the drive.

3.4 What is the Burstiness of Errors in Time?

While Bairavasundaram et al. [2007] provide general evidence of temporal
locality between errors, the specific question we are interested in here is how
quickly, exactly, the probability of seeing another error drops off with time and
how errors are distributed over time. Understanding the conditional probability
of seeing an error in a month, given that there was an error x months ago, is
useful for scrubbing policies that want to adapt the scrubbing rate as a function
of the current probability of seeing an error.

To answer the question above, Figure 2 (left) considers for each drive the time
of the first error and shows for each subsequent two-week period the probability
of seeing an additional error. We chose two-week intervals, since this is the
typical scrubbing interval in NetApp’s systems, and hence the resolution of the
error detection time. We observe that after the first month after the first error
is detected, the probability of seeing additional errors drops off exponentially
(note the log-scale on the Y -axis), dropping close to 1% after only 10 weeks and
below 0.1% after 30 weeks.

Figure 2 (middle) illustrates how errors are distributed over time. We observe
each drive for one year after its first error and count how many two-week scrub
intervals in this time period encounter any errors. We observe that for 55 to
85% of drives, all errors are concentrated in the same two-week period. Only
10 to 15% of drives experience errors in two different two-week periods, and for
most models less than 15% see errors in more than two-week periods.

Summarizing the above observations, we find that the errors a drive expe-
riences occur in a few short bursts, that is, errors are highly concentrated in a
few short time intervals. One might suspect that this bursty behavior is poorly
modeled by a Poisson process, which is often used in modeling LSE arrivals [Il-
iadis et al. 2008; Baker et al. 2006; Schwarz et al. 2004; Elerath and Pecht
2007]. The reason for the common use of Poisson processes in modeling LSEs is
that they are easy to analyze and that so far little data has been available that
allows the creation of more realistic models. We fitted a Poisson distribution to
the number of errors observed in a two-week time interval and to the number
of errors a drive experiences during its lifetime, and found the Poisson distribu-
tion to be a poor fit in both cases. We observe that the empirical distribution has
a significantly longer tail than a Poisson distribution, and find that, instead, a
Pareto distribution is a much better fit. For illustration, Figure 2 (right) shows
for model n-3 the empirical distribution for the number of errors in a disk’s
lifetime and the Poisson and Pareto distributions fitted to it. We provide the
Pareto α parameter for both empirical distributions for all models in Table I.

3.5 What Causes LSEs?

This is obviously a broad question that we cannot hope to answer with the
data we have. Nevertheless, we want to address this question briefly, since our
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(right).

observations in Section 3.3 might lead to hasty conclusions. In particular, a
possible explanation for the concentration of errors in certain parts of the drive
might be that these areas see a higher utilization. While we do not have access
to workload data for NetApp systems, we have been able to obtain two years of
data on workload, environmental factors and LSE rates for five large (> 50, 000
drives each) clusters at Google containing five different drive models. None of
the clusters showed a correlation between either the number of reads or the
number of writes that a drive sees (as reported by the drive’s SMART parame-
ters) and the number of LSEs it develops. We plan a detailed study of workload
and environmental factors and how they impact LSEs as part of future work.

3.6 Does Close in Space Mean Close in Time?

Prior work [Bairavasundaram et al. 2007] and the questions above have focused
on spatial and temporal correlations in isolation. For most error protection
schemes, it is crucial to understand the relationship between temporal and
spatial correlation. For example, for intra-disk redundancy schemes, it does
not only matter how long a burst of errors is (i.e., the number of consecutive
errors in the burst), but also how much time there is between errors in a burst.
More time between errors increases the chance that the first error is detected
and corrected before the second error happens.

Figure 3 (left) shows the distribution of the time an error burst spans, that
is, the time difference between the first and last error, in a burst. We observe
that in more than 90% of the bursts the errors are discovered within the same
two-week scrub interval, and in more than 95% of bursts the errors are detected
within a month from each other. Less than 2% of error bursts span more than
three months. These observations indicate that the errors in most bursts are
likely caused by the same event, and hence occurred at the same time.

Figure 3 (right) shows a more general view of the correlation between spatial
and temporal locality. The graph shows for radii ranging from one sector to
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50GB two bars: the first gives the probability that an error has at least one
neighbor within this radius at some point during the disk’s lifetime; the second
bar gives the probability that an error has at least one neighbor within this
radius within two weeks of time. As the graph shows, for small radii the two
bars are virtually identical, indicating that errors that happened close in space
were likely caused by the same event, and hence happened at nearly the same
time. We also observe that even for larger radii, the two bars are still very close
to each other. The figure shows results for model n-3, but we found results to
be similar for all other models.

4. PROTECTING AGAINST LSES WITH INTRA-DISK REDUNDANCY

While inter-disk redundancy has a long history [Patterson et al. 1988; Blaum
et al. 1994; Corbett et al. 2004; Patterson et al. 1988; Plank 2008; Hafner
2006; Hafner 2005; Wylie and Swaminathan 2007], there are fewer instances
of intra-disk redundancy. Some filesystems [Mckusick et al. 1984] create in-disk
replicas of selected metadata [Mckusick et al. 1984], or provide the option of
replicating both metadata and datablocks [Zhang et al. 2010]. Others propose
adding intra-disk parity blocks. For example, IRON file systems [Prabhakaran
et al. 2005] suggest adding a parity block per file, and other work explores
the possibility of adding one parity block for k filesystem blocks[Gunawi et al.
2007]. Recent work by Dholakia et al. [Dholakia et al. 2008; Iliadis et al. 2008]
introduces a new scheme for laying out intra-disk parity blocks that claims to
increase reliablity over previously proposed schemes.

The motivation behind intra-disk redundancy is to reduce data loss when
LSEs are encountered during RAID reconstruction, or where there is no inter-
disk redundancy available. Dholakia et al. [2008] and Iliadis et al. [2008] pre-
dict that with the use of intra-disk redundancy, a system could achieve essen-
tially the same reliability as that of a system operating without LSEs. Highly
effective intra-disk redundancy might obviate the need for a background scrub-
ber (and its potential impact on foreground traffic); in the best case, they might
also enhance the reliability of a single parity RAID system sufficiently to make
the use of double parity (e.g., RAID-4 or RAID-5) unnecessary, thereby avoiding
the overheads and additional power usage of the second parity disk.

The intra-disk redundancy schemes we consider divide a disk into segments
of k contiguous data sectors followed by m redundant sectors. The m redundant
sectors are typically obtained using XOR-based operations on the data sec-
tors. Different schemes vary in their reliability guarantees and their overhead,
depending on how the parity sectors are computed.

In our work, we evaluate five different intra-disk redundancy schemes. Three
of the schemes (SPC, MDS, IPC) have been proposed previously, but have never
been evaluated on field data. Two of the schemes are new (MDS+SCP and CDP),
which we suggested, based on results from Section 3. All schemes are described
below. We would like to note at this point, that while we do discuss the difference
in overheads introduced by the different schemes, the focus of this section is to
compare the relative degrees of protection they can offer, rather than a detailed
evaluation of their impact on performance.
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Single parity check (SPC): A k + 1 SPC scheme stores for each set of k
contiguous data sectors one parity sector (typically a simple XOR on all data
sectors). We refer to the set of k contiguous data sectors and the corresponding
parity sector as a parity group. SPC schemes can tolerate a single error per
parity group. Recovery from multiple errors in a parity group is only possible
if there’s an additional level of redundancy outside the disk (e.g., RAID). SPC
schemes are simple and have little I/O overhead, since a write to a data sector
requires only one additional write (to update the corresponding parity sector).
However, a common concern is that due to spatial locality among sector errors,
an error event will frequently affect multiple sectors in the same parity group.

Maximum distance separable (MDS) erasure codes: A k + m MDS code con-
sisting of k data sectors and m parity sectors can tolerate the loss of any m
sectors in the segment. A well-known member of this code family are the Reed-
Solomon codes. While MDS codes are stronger than SPC, they also create higher
computational overheads (for example in the case of Reed-Solomon codes in-
volving computations on Galois fields) and higher I/O overheads (for each write
to a data sector, all mparity sectors need to be updated). In most environments,
these overheads make MDS codes impractical for use in intra-disk redundancy.
Nevertheless, MDS codes provide an interesting upper bound on what reliabil-
ity levels one can hope to achieve with intra-disk redundancy.

Interleaved parity check codes (IPC): A scheme proposed by Dholakia et al.
[2008] and Iliadis et al. [2008] is specifically for use in intra-disk redundancy
with lower overheads than MDS, but potentially weaker protection. The key
idea is to ensure that the sectors within a parity group are spaced further
apart than the length m of a typical burst of errors. A k + m IPC achieves this
by dividing k consecutive data sectors into l = k/msegments of size meach, and
imagining the l×msectors s1, ..., sl×m layed out rowwise in an l×mmatrix. Each
one of the mparity sectors is computed as an XOR over one of the columns of this
imaginary matrix, that is, parity sector pi is an XOR of si, si+m, si+2m, ..., si+(l−1)m.
We refer to the data sectors in a column and the corresponding parity sector
as a parity group, and the l × m data sectors and the m parity sectors together
as a parity segment. Observe, that all sectors in the same parity group have a
distance of at least m. IPC can tolerate up to m errors, provided they all affect
different columns (and therefore different parity groups), but IPC can tolerate
only a single error per column.

Hybrid SPC and MDS code (MDS+SPC): This scheme is motivated by Sec-
tion 3.3, where we observed that for many models a disproportionately large
fraction of all errors is concentrated in the first 5 to 15% of the logical block
space. This scheme therefore uses a stronger (MDS) code for this first part of
the drive, and a simple 8 + 1 SPC for the remainder of the drive.

Column diagonal parity (CDP): The motivation here is to provide a code
that can tolerate a more diverse set of error patterns than IPC, but with less
overhead than MDS. Our idea is to adapt the row-diagonal parity algorithm (R-
DP) [Corbett et al. 2004], which was developed to tolerate double disk failures
in RAID, for use in intra-disk redundancy. R-DP uses p + 1 disks, where p is
a prime number, and assigns each data block to one row parity set and one
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Table II. Illustration of How to Adapt RAID R-DP

Data Data Data Data Row Par. Diag. Par.
Disk Disk Disk Disk Disk Disk

0 (s0) 1 (s4) 2 (s8) 3 (s12) 4 (p0) 0 (p4)
1 (s1) 2 (s5) 3 (s9) 4 (s13) 0 (p1) 1 (p5)
2 (s2) 3 (s6) 4 (s10) 0 (s14) 1 (p2) 2 (p6)
3 (s3) 4 (s7) 0 (s11) 1 (s15) 2 (p3) 3 (p7)

Corbett et al. 2004: with p = 5 for use in our intra-disk redundancy
scheme CDP. The number in each block denotes the diagonal parity
group a block belongs to. The parentheses show how an intra-disk
redundancy segment with data sectors s0, ..., s15 and parity sectors
p0, ..., p7 is mapped to the blocks in R-DP.

diagonal parity set. R-DP uses p − 1 disks for data, and two disks for row and
diagonal parity. Table II illustrates R-DP for p = 5. The row disk holds the
parity for each row, and the number in each block denotes the diagonal parity
group that the block belongs to.

We translate an R-DP scheme with parameter p to an intra-disk redundancy
scheme with k = (p − 1)2 data sectors and m = 2(p − 1) parity sectors by
mapping sectors to blocks as follows. We imagine traversing the matrix in
Table II column-wise and assigning the data sectors s0, ..., s15 consecutively
to the blocks in the data disks and the parity sectors p0, ..., p7 to the blocks
in the parity disks. The resulting assignment of sectors to blocks is shown in
parentheses in the table. Observe that without the diagonal parity, this scheme
is identical to IPC: the row-parity of R-DP corresponds to to the parity sectors
that IPC computes over the columns of the (p−1)×(p−1) matrix formed by rows
of the data sectors. We therefore refer to our scheme as the column-diagonal
parity (CDP) scheme.

CDP can tolerate any two error bursts of length p − 1 that remove two
full columns in Table II (corresponding to two total disk failures in the R-DP
scheme). In addition, CDP can tolerate a large number of other error patterns.
Any data sector, whose corresponding column parity group has less than
two errors or whose diagonal parity group has less than two errors, can be
recovered.1 Moreover, in many cases it will be possible to recover sectors where
both the column parity group and the diagonal parity group have multiple
errors, for example, if the other errors in the column parity group can be
recovered using their respective diagonal parity.

Note that for all codes there is a trade-off between the storage efficiency
(i.e., k/(k + m)), the I/O overheads and the degree of protection a code can of-
fer, depending on its parameter settings. Codes with higher storage efficiency
generally have lower reliability guarantees. For a fixed storage efficiency, codes
with larger parity segments provide stronger reliability for correlated errors
that appear in bursts. At the same time, larger parity segments usually imply
higher I/O overheads, since data sectors and the corresponding parity sectors

1Exceptions are sectors in the diagonal parity group p− 1, as R-DP stores no parity for this group.
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Fig. 4. Evaluation of k + 1 SPC for different values of k. (Left) shows the fraction of disks with at
least one uncorrectable error, that is, disks that have at least one parity group with multiple errors;
(middle) shows the fraction of parity groups with multiple (and hence uncorrectable) errors; and
(right) shows the average number of sectors with uncorrectable errors per disk (due to multiple
errors per parity group).

are spaced further apart, requiring more disk-head movement for updating
parity sectors. The various schemes also differ in the flexibility that their pa-
rameters offer in controlling those trade-offs. For example, CDP cannot achieve
any arbitrary combination of storage efficiency and parity segment size, since
its only parameter p controls both the storage efficiency and the segment size.

4.1 Evaluation of Redundancy Schemes

4.1.1 Simple Parity Check (SPC) Schemes. The question we want to an-
swer in this section is what degree of protection simple parity check schemes
can provide. Towards this end, we simulate SPC schemes with varying storage
efficiency, ranging from 1 + 1 to 128 + 1 schemes. While we explore the whole
range of k from 1 to 128, in most applications the low storage efficiency of
codes with values of k below 8 or 9 would probably render them impractical.
Figure 4 shows the fraction of disks with uncorrectable errors (i.e., disks that
have at least one parity group with multiple errors), the fraction of parity
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Fig. 5. Distribution of time between the first and second error in 8 + 1 SPC parity groups with
multiple errors (left); and number of errors within a parity group with multiple errors for the case
of an 8 + 1 SPC (right).

groups that have multiple errors, and the number of sectors per disk that
cannot be recovered with SPC redundancy.

We observe that for values of k in the practically feasible range, a significant
fraction of drives (about a quarter averaged across all models) sees at least one
uncorrectable error (i.e., a parity group with multiple errors). For some models
(E-1, E-2, n-3, o-2) nearly 50% of drives see at least one uncorrectable error.
On average, more than 5 sectors per drive cannot be recovered with intra-disk
redundancy. Even under the 1 + 1 scheme, which sacrifices 50% of disk space
for redundancy, on average 15% of disks have at least one parity group with
multiple errors. It is noteworthy that there seems to be little difference in the
results between enterprise and nearline drives.

The potential impact of multiple errors in a parity group depends on how
close in time these errors occur. If there is ample time between the first and the
second error in a group there is a high chance that either a background scrubber
or an application access will expose and recover the first error, before the second
error occurs. Figure 5 (left) shows the cumulative distribution function of the
detection time between the first and the second errors in parity groups with
multiple errors. We observe that the time between the first two errors is small.
More than 90% of errors are discovered within the same scrub interval (two
weeks, i.e., around 2.4 × 106 seconds). Figure 5 indicates that multiple errors
in a parity group tend to occur at the same time, likely because they have been
caused by the same event.

We are also interested in the distribution of the number of errors in groups
that have multiple errors. If in most cases, most of the sectors in a parity
group are erroneous, even stronger protection schemes would not be able to
recover those errors. On the other hand, if typically only a small number of
sectors (e.g., two sectors) are bad, a slightly stronger code would be sufficient to
recover those errors. Figure 5 (right) shows a histogram of the number of errors
in parity groups with multiple errors for the 8+1 SPC scheme. We observe that
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Fig. 6. Comparison of IPC, MDS, SPC+MDS, and CDP under three different metrics: the fraction
of disks with at least one uncorrectable error (left); the number of sectors with unrecoverable errors
per disk (middle); and the fraction of parity segments that have an unrecoverable error (right). In
the top row, we keep the storage efficiency constant by varying m and adjusting k = 8 × m. In the
bottom row, we vary the p parameter of CDP and adjust all other policies to have the same m and
k values, i.e., k = (p − 1)2 and m = 2(p − 1).

across all models the most common case is that of double errors, with about
50% of groups having two errors.

The preceding observations motivate us to look at stronger schemes in the
next section.

4.1.2 More Complex Schemes. This section provides a comparative evalu-
ation of IPC, MDS, CDP and SPC+MDS for varying segment sizes and varying
degrees of storage efficiency. Larger segments have the potential for stronger
data protection, as they space data and corresponding parity sectors further
apart. At the same time, larger segments lead to higher I/O overhead, as a write
to a data sector requires updating the corresponding parity sector(s), which will
require more head movement if the two are spaced further apart.

For CDP, the segment size and the storage efficiency are both determined
by its parameter p (which has to be a prime number), while the other schemes
are more flexible. Hence in our first experiment we start by varying p and
adjusting the parameters of the other schemes to achieve the same m and k
(i.e., k = (p−1)2 and m = 2(p−1)). The bottom row in Figure 6 shows the results
for p ranging from 5 to 23, corresponding to a range of storage efficiency from
66% to 92%, and segment sizes ranging from 24 to 528 sectors. In our second
experiment, we keep the storage efficiency constant at 87% (i.e., on average
1 parity segment for 8 data segments), and explore different segment sizes
by increasing m and k. The results are shown in the top row of Figure 6.
For both experiments we show three different metrics: the fraction of disks
with uncorrectable errors (graphs in the left column); the average number
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of uncorrectable sectors per drive (middle column); and the fraction of parity
segments with uncorrectable errors (right column).

We observe that all schemes provide clearly superior performance to SPC
(for m = 1, IPC and MDS reduce to SPC). We also observe that MDS consis-
tently provides the best performance, which might not be surprising, as it is the
scheme with the highest computational and I/O overheads. Among the remain-
ing schemes, CDP performs best, with improvements of an order of magnitude
over IPC and SPC+MDS for larger p. SPC+MDS is not as strong, however its
improvements of around 25% over simple SPC are impressive, given that it
applies stronger protection than SPC to only 10% of the total drive.

A surprising result might be the weak performance of IPC compared to MDS
or CDP. The original papers [Dholakia et al. 2008; Iliadis et al. 2008] proposing
the idea of IPC predicted the probability of data loss under IPC to be nearly
identical to that of MDS. In contrast, we find that MDS (and CDP) consistently
outperform IPC. For example, simply moving from an 8 + 1 to a 16 + 2 MDS
scheme reduces nearly all metrics by 50%. Achieving similar results with an
IPC scheme requires at least a 56 + 7 or 64 + 8 scheme. For larger segment
sizes, MDS and CDP outperform IPC by an order of magnitude.

One might ask why IPC does not perform better. Based on our results in
Section 3, we believe there are two reasons. First, the work in Dholakia et al.
[2008] and Iliadis et al. [2008] assumes that the only correlation between er-
rors is that within an error burst and that different bursts are identically and
independently distributed. However, as we saw in Section 3, there are signifi-
cant correlations between errors that go beyond the correlation within a burst.
Second, Dholakia et al. [2008] and Iliadis et al. [2008] assume that the length
of error bursts follows a geometric distribution. Instead we found that the dis-
tribution of the length of error bursts has long tails (recall Figure 1) and is
not well fit by a geometric distribution. As the authors observe in Iliadis et al.
[2008] the IPC scheme is sensitive to long tails in the distribution. The above
observations underline the importance of using real-world data for modeling
errors.

5. PROACTIVE ERROR DETECTION WITH SCRUBBING

Scrubbing has been proposed as a mechanism for enhancing data reliability by
proactively detecting errors [Schwarz et al. 2004; Baker et al. 2006; Mi et al.
2008]. Several commercial systems, including NetApp’s, are making use of a
background scrubber. A scrubber periodically reads the entire disk sequentially
from the beginning to the end and uses inter-disk redundancy (e.g., provided
by RAID) to correct errors. The scrubber runs continuously at a slow rate in
the background so as to limit the impact on foreground traffic, that is, for a
scrubbing interval s and drive capacity c, a drive is being scrubbed at a rate
of c/s. Common scrub intervals are one or two weeks. We refer to a scrubber
that works, as described above, as a standard periodic scrubber. In addition to
standard periodic scrubbing, we investigate four additional policies.

Localized scrubbing: Given the spatial and temporal locality of LSEs, one
idea for improving on standard periodic scrubbing is to take the detection of an
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error during a scrub interval as an indication that there are likely more errors
in the neighborhood of this error. A scrubber could therefore decide upon the
detection of an error to immediately also scrub the r sectors that follow the
erroneous sector. These neighboring sectors are read at an accelerated rate a,
rather than the default rate of c/s.

Accelerated scrubbing: This policy can be viewed as an extreme form of
localized scrubbing: Once a bad sector is detected in a scrubbing interval, the
entire remainder of the drive is scrubbed immediately at an accelerated rate a
(rather than the default rate of c/s).

Staggered scrubbing: This policy has been proposed very recently by Oprea
and Juels [2010] and aims to exploit the fact that errors happen in bursts.
Rather than sequentially reading the disk from the beginning to the end, the
idea is to quickly “probe” different regions of the drive, hoping that if a region
of the drive has a burst of errors, we will find one in the probe and immediately
scrub the entire region. More formally, the drive is divided into r regions, each
of which is divided into segments of size s. In each scrub interval, the scrubber
begins by reading the first segment of each region, then the second segment
of each region, and so on. The policy uses the standard scrub rate of c/s and
depends on two additional parameters, the segment size s and the number of
regions r.

Accelerated staggered scrubbing: A combination of the two previous policies.
We scrub segments in the order given by staggered scrubbing. Once we en-
counter an error in a region, we immediately scrub the entire region at an
increased scrub rate a (instead of the default c/s).

5.1 Evaluation Methodology

Our goal is to evaluate the relative performance of the four different scrubbing
policies described above. Any evaluation of scrubbing policies presents two
difficulties.

First, the performance of a scrub policy will critically depend on the tem-
poral and spatial properties of errors. While our data contain logical sector
numbers and timestamps for each reported LSE, the timestamps correspond to
the time when an error was detected, not necessarily the time when it actually
happened. While we have no way of knowing the exact time when an error
happened, we will use three different methods for approximating this time.
All methods rely on the fact that we know the time window during which an
error must have happened: since the scrub interval on NetApp’s systems is two
weeks, an error can be latent for at most two weeks before it is detected. Hence
an error must have happened within two weeks before the timestamp in the
trace. In addition to running simulations directly on the trace, we use the three
methods below for approximating timestamps:

Method 1. The strong spatial and temporal locality observed in Section 3.6
indicate that errors that are detected within the same scrub period are likely
to be caused by the same error event (e.g., a scratch in the surface or a high-
fly write). Method 1 assumes that all errors that happened within a radius of

ACM Transactions on Storage, Vol. 6, No. 3, Article 9, Publication date: September 2010.



9:18 • B. Schroeder et al.

50MB of each other in the same scrub interval were caused by the same event
and assigns all these errors the same timestamp (the timestamp of the error
that was detected first).

Method 2. This method goes one step further and assumes that all errors
that are reported in the same scrub interval happened at the same time (not
an unlikely assumption, recall Figure 3) and assigns all of them the timestamp
of the first error in the scrub interval.

Method 3. The last method takes an adversary’s stance and makes the (un-
likely) assumption that all errors in a scrub interval happened completely inde-
pendently of each other and assigns each error a timestamp that lies randomly
in the two-week interval before the error was detected.

The second difficulty in evaluating scrubbing policies is that there is a pos-
sibility that the scrubbing frequency itself affects the rate at which errors
happen, that is, the additional workload created by frequent scrubbing might
cause additional errors. After talking to vendors and studying reports [Elerath
and Pecht 2007; Elerath 2009] on the common error modes leading to LSEs, it
seems unlikely that the read frequency in a system (in contrast to the write
frequency) would have a major impact on errors. The majority of reported error
modes are either directly related to writes (such as high-fly writes) or can hap-
pen whenever the disk is spinning, independent of whether data is being read
or written (such as thermal asperities, corrosion, and scratches or smears).
Nevertheless, we are hesitant to assume that the scrub frequency has zero
impact on the error rate. Since the goal of our study is not to determine the
optimal scrub frequency, but rather to evaluate the relative performance of the
different policies, we only compare the performance of different policies under
the same scrub frequency. This way, all policies would be equally affected by an
increase in errors caused by additional reads.

The main metric we use to evaluate the effectiveness of a scrub policy is the
mean time to error detection (MTTED). The MTTED will be a function of the
scrub interval since for all policies more frequent scrubs are expected to lead
to shorter detection times.

5.2 Comparison of Scrub Policies

Figure 7 shows a comparison of the four different scrub policies described in the
beginning of this section. The graphs, from left to right, show the mean time to
error detection (MTTED); the reduction in MTTED (in hours) that each policy
provides over standard periodic scrubbing; and the percentage improvement
in MTTED over standard periodic scrubbing. We vary the scrub interval from
one day to 50 days. The scrub radius in the local policy is set to 128MB. The
accelerated scrub rate, a, for all policies is set to 7000 sectors/sec, which is
two times slower than the read performance2 reported for scrubs in Oprea
and Juels [2010]. For the staggered policies, we chose a region size of 128MB
and a segment size of 1MB (as suggested in Oprea and Juels [2010]). We
later also experimented with other parameter choices for the local and the

2The SCSI verify command used in scrubs is faster than a read operation as no data is transferred,
so this estimate should be conservative.
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Fig. 7. Comparison of all policies for varying scrub intervals (results averaged across all disk
models).

staggered scrub algorithms. When generating the graphs in Figure 7, we took
the timestamps verbatim from the trace. In Section 5.2.4 we will discuss how
the results change when we use one of the three methods for approximating
timestamps, as described in Section 5.1.

5.2.1 Local Scrubbing. The performance of the local scrub policy turns out
to be disappointing, being virtually identical to that of standard scrubbing. We
explain this with the fact that its only potential for improvements lies in getting
faster to errors that are within a 128MB radius of a previously detected error.
However, errors within this close neighborhood will also be detected quickly by
the standard sequential scrubber (as they are in the immediate neighborhood).

To evaluate the broader potential of local scrubbing, we experimented with
different radii, to see whether this yields larger improvements. We find that
only for very large radii (on the order of several GB) are the results significant,
and even then only some of the models show improvements of more than 10%.

5.2.2 Accelerated Scrubbing. Similar to local scrubbing, accelerated scrub-
bing (without staggering) does not yield substantial improvements either. The
reasons are likely the same as those for local scrubbing. Once it encounters
an error, accelerated scrubbing will find subsequent errors quicker. However,
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due to spatial locality, most of the subsequent errors will be in the close neigh-
borhood of the first, and will also be detected soon by standard scrubbing. We
conclude that the main weakness of local and accelerated scrubbing is that
they only try to minimize the time to find additional errors, once the first error
has been found. On the other hand, staggered scrubbing minimizes the time it
takes to determine whether there are any errors, and in which part of the drive
they are.

5.2.3 Staggered Scrubbing. We observe that the two staggered policies
both provide significant improvements over standard scrubbing for all scrub-
bing frequencies. For commonly used intervals in the 7-14 day range, improve-
ments in MTTED for these policies range from 30 to 70 hours, corresponding
to an improvement of 10 to 20%. These improvements increase with larger
scrubbing intervals. We also note that even simple (nonaccelerated) staggered
scrubbing yields significantly better performance than both local or accelerated
scrubbing, without using any accelerated I/Os.

Encouraged by the good performance of staggered scrubbing, we take a closer
look at the impact of the choice of parameters on its effectiveness, in partic-
ular the choice of the segment size, as this parameter can greatly affect the
overheads associated with staggered scrubbing. From the point of view of min-
imizing overhead introduced by the scrubber, one would like to choose the seg-
ments as large as possible, since the sectors in individual segments are read
through fast sequential I/Os, while moving between a large number of small
segments requires slow random I/Os. On the other hand, if the size of segments
becomes extremely large, the effectiveness of staggered scrubbing in detecting
errors early will approach that of standard scrubbing (the extreme case of one
segment per region leads to a policy identical to standard scrubbing.)

We explore the effect of the segment size for several different region sizes.
Interestingly, we find consistently for all region sizes that the segment size
has a relatively small effect on performance. As a rough rule of thumb, we
observe that scrubbing effectiveness is not negatively affected as long as the
segment size is smaller than a quarter to one-half of the size of a region. For
example, for a region size of 128MB, we find the effectiveness of scrubbing to
be identical for segment sizes ranging from 1KB to 32MB. For a segment size of
64MB, the level of improvement that staggered scrubbing offers over standard
scrubbing drops by 50%. Oprea and Juels [2010] report experimental results
showing that for segment sizes of 1MB and up, the I/O overheads of staggered
scrubbing are comparable to that of standard scrubbing. This means there is a
large range of segment sizes that are practically feasible and also effective in
reducing MTTED.

5.2.4 Approximating Timestamps. In our simulation results in Figure 7,
we assume that the timestamps in our traces denote the actual times when
errors happened, rather than the time when they were detected. We also re-
peated all experiments with the three methods for approximating timestamps
described in Section 5.1.

We find that under the two methods that try to make realistic assump-
tions about the time when errors happened, based on the spatio-temporal
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correlations we observed in Section 3, the performance improvements of the
scrub policies compared to standard scrubbing either stays the same or in-
creases. When following method 1 (all errors detected in the same scrub interval
within a 50MB-radius are assigned the same timestamp), the improvements
of staggered accelerated scrubbing increase significantly, for some models as
much as 50%, while the performance of all other policies stays the same. When
following method 2 (all errors within the same scrub interval are assigned the
same timestamp), all methods see a slight increase of around 5% in their gains
compared to standard scrubbing. When making the (unrealistic) worst-case
assumption of method 3 that errors are completely uncorrelated in time, the
performance improvements of all policies compared to standard scrubbing drop
significantly. Local and accelerated scrubbing show no improvements, and the
MTTDE reduction of staggered scrubbing and accelerated staggered scrubbing
drops to 2 to 5%.

6. SUMMARY AND DISCUSSION

The main contributions of this article are a detailed statistical analysis of
field data on latent sector errors and a comparative evaluation of different
approaches for protecting against LSEs, including some new schemes that we
propose based on our data analysis.

The statistical analysis revealed some interesting properties. We observe
that many of the statistical aspects of LSEs are well modeled by power-laws,
including the length of error bursts (i.e., a series of contiguous sectors affected
by LSEs), the number of good sectors that separate error bursts, and the num-
ber of LSEs observed per time. We find that these properties are poorly modeled
by the most commonly used distributions, geometric and Poisson. Instead, we
observe that a Pareto distribution fits the data very well, and report the pa-
rameters that provide the best fit. We hope this data will be useful for other re-
searchers who do not have access to field data. We find no significant difference
in the statistical properties of LSEs in nearline drives versus enterprise-class
drives.

Some of our statistical observations might also hold some clues as to what
mechanisms cause LSEs. For example, we observe that nearly all drives with
LSEs, experience all LSEs in their lifetime within the same two-week period,
indicating that for most drives most errors have been caused by the same event
(e.g., one scratch), rather than a slow and continuous wear-out of the media.

An immediate implication of the above observation is that both approaches
commonly used to model LSEs are unrealistic. The first approach ties LSE
arrivals to the workload process, by assuming a certain bit-error rate, and
assuming that each read or write has the same fixed probability p of causing
an LSE. The second approach models LSEs by a separate arrival process, most
commonly a Poisson process. Both will result in a much smoother process than
the one seen in practice.

In our comparative study of the effectiveness of intra-disk redundancy
schemes, we find that simple parity check (SPC) schemes still leave a sig-
nificant fraction of drives (50% for some models) with errors that cannot be

ACM Transactions on Storage, Vol. 6, No. 3, Article 9, Publication date: September 2010.



9:22 • B. Schroeder et al.

recovered by intra-disk redundancy. An observation in our statistical study
that a large fraction of errors (for some models 40%) is concentrated in a small
area of the drive (the bottom 10% of the logical sector space) leads us to a new
scheme that uses stronger codes for only this part of the drive and reduces the
number of drives with unrecoverable errors by 30% compared to SPC.

We also evaluate the interleaved-parity check (IPC) scheme [Dholakia et al.
2008; Iliadis et al. 2008] that promises reliability close to the powerful maxi-
mum distance separable erasure codes (MDS), with much less overhead. Unfor-
tunately, we find IPC’s reliability to be significantly weaker than that of MDS.
We attribute the discrepancy between our results and those in Dholakia et al.
[2008] and Iliadis et al. [2008] to the difference between the statistical assump-
tions (e.g., geometric distribution of error bursts) in Dholakia et al. [2008] and
Iliadis et al. [2008] and the properties of LSEs in the field (long tails in error
burst distributions). Finally, we present a new scheme, based on adaptations
of the ideas behind row-diagonal parity [Corbett et al. 2004], with significantly
lower overheads than MDS, but very similar reliability.

In our analysis of scrubbing policies, we find that a simple policy, staggered
scrubbing [Oprea and Juels 2010], can improve the mean time to error detection
by up to 40%, compared to standard sequential scrubbing. Staggered scrubbing
achieves these results just by changing the order in which sectors are scrubbed,
without changing the scrub frequency or introducing significant I/O overhead.

Our work opens up a number of avenues for future work. Our long-term
goal is to understand how scrubbing and intra-disk redundancy interact with
the redundancy provided by RAID, how different redundancy layers should be
integrated, and to quantify how different approaches affect the actual mean
time to data loss. Answering these questions will not be easy, as it will require
a complete statistical model that captures spatial and temporal locality, and
total disk failures, as well as LSEs.
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