
Scalable Streaming for Heterogeneous Clients

Liqi Shi
Dept. Elec. & Comp. Eng.

University of Calgary
Calgary, Canada

lishi@ucalgary.ca

Phillipa Sessini
Dept. Comp. Sci.

University of Calgary
Calgary, Canada

psessini@ucalgary.ca

Anirban Mahanti
Dept. Comp. Sci.

University of Calgary
Calgary, Canada

mahanti@cpsc.ucalgary.ca

Zongpeng Li
Dept. Comp. Sci.

University of Calgary
Calgary, Canada

zongpeng@cpsc.ucalgary.ca

Derek L. Eager
Dept. Comp. Sci.

University of Saskatchewan
Saskatoon, Canada

eager@cs.usask.ca

ABSTRACT
Periodic broadcast protocols enable the efficient streaming
of highly popular media files to large numbers of concurrent
clients. Most previous periodic broadcast protocols, how-
ever, assume that all clients can receive at the same rate, and
also assume that available bandwidth is not time-varying. In
this paper, we first develop a new periodic broadcast proto-
col, Optimized Heterogeneous Periodic Broadcast (OHPB),
that can be optimized for a given population of clients with
heterogeneous reception bandwidths and quality-of-service
requirements. The OHPB protocol utilizes an optimized
segment size progression determined by solving a linear op-
timization model that takes as input the client population
characteristics and an objective function such as mean client
startup delay. We then propose complementary client pro-
tocols employing work-ahead buffering of data during play-
back, so as to enable more uniform playback quality when
the available bandwidth is time-varying.

Categories and Subject Descriptors: C.2.2 [Computer-
Communications Networks]: Network Protocols; C.4 [Com-
puter Systems Organization]: Performance of Systems; I.6.5
[Simulation and Modeling]: Model Development

General Terms: Design, Performance

Keywords: Scalable Streaming, Periodic Broadcasts, Lin-
ear Programming, Quality-of-Service

1. INTRODUCTION
Media-on-Demand systems that utilize periodic broadcast

protocols can concurrently serve large numbers of clients
with low startup delay using fixed server resources. The past
decade saw the development of a number of periodic broad-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’06, October 23–27, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1-59593-447-2/06/0010 ...$5.00.

cast protocols such as Pyramid Broadcasting [28], Harmonic
Broadcasting [13], Skyscraper Broadcasting [11], Quasi Har-
monic Broadcasting [22], Dynamic Skyscraper [4], and more
recently, the Optimized Periodic Broadcast protocol fam-
ily [20]. While the aforementioned protocols achieve differ-
ing tradeoffs, for example between startup delay and server
bandwidth, they all operate within a common framework.
Specifically, these protocols partition a media file into some
number of segments and cyclically multicast these segments
using a fixed number of server channels (e.g., multicast groups),
according to some pre-determined schedule. Clients request-
ing a media file are given a startup delay to begin playback
and a schedule for receiving segments from the server chan-
nels that guarantees all data will be received by the time it
is required for playback. Typically, clients receive multiple
segments concurrently at an aggregate rate that exceeds the
media playback rate, and buffer data that is received ahead
of playback time.

All previous periodic broadcast protocols, with the ex-
ception of the recently proposed Heterogeneous Receiver-
Oriented Broadcasting (HeRO) [12] and BroadCatch [26]
protocols which we discuss later in the paper, assume that
all clients can receive media streams at the same non-time-
varying rate. This homogeneous client bandwidth assump-
tion is unlikely to hold for delivery in the Internet. For
example, many service providers offer users a choice of dif-
ferent levels of broadband Internet connectivity, with each
level providing different last hop outbound/inbound band-
width. Furthermore, in the “best effort” Internet, it is rec-
ommended that UDP-based media streaming applications
share bandwidth fairly with TCP-based applications by us-
ing an appropriate rate control protocol [7]. In stream-
ing media applications, this rate control is typically imple-
mented by modifying the amount of data sent, thus implying
a change in playback quality, in contrast to traditional TCP
applications in which the same amount of data is sent, but
at a slower rate.

One strategy for accommodating heterogeneous client re-
ception rates is to use either a simulcast [3, 14] approach or
a layered media encoding [17, 21] approach. With the simul-
cast approach different versions of the media file are encoded
at different bit rates, and a selected periodic broadcast pro-

tocol may be used to deliver each version. Alternatively,
with a layered media encoding, a periodic broadcast scheme
may be used to deliver each layer. In either case, a pri-

ori knowledge of the average available bandwidth can help
clients determine which layers/version to receive. Using lay-
ering or simulcasting with a periodic broadcast scheme tai-
lored for a single bandwidth only partially addresses the
problem. Specifically, such solutions do not allow efficient
tradeoffs between startup delay and media quality. For ex-
ample, a client with slightly lower (average) bandwidth than
that required to receive a media of desired quality (i.e., layers
or version) requires a relatively large increase in the startup
delay to guarantee continuous playback of the higher qual-
ity content. In addition, time-varying available bandwidth
due to use of a multirate congestion control algorithm [15,
16, 17, 18, 19, 27], for example, further compounds the
problem. For the case of layered media files (or replicated
streams), it is not apparent how layers (or versions) should
be added/dropped (switched), so that overall playback qual-
ity is both relatively uniform and high.

In this paper, we address the challenge of devising ef-
ficient periodic broadcast systems for environments with
both heterogeneity in the average available client reception
bandwidth, and heterogeneity due to time-varying avail-
able bandwidth. First, we develop a new periodic broad-
cast protocol, Optimized Heterogeneous Periodic Broadcast
(OHPB), that can be optimized for a given population of
clients with heterogeneous reception bandwidths and quality-
of-service requirements. Second, for delivery of layered me-
dia files, we develop complementary quality adaptation [23]
mechanisms and policies that allow each client to indepen-
dently determine how to allocate time-varying available band-
width among layers at any instant of time so as to achieve
playback quality that is as uniform and as high as possible.

The crux of the new OHPB protocol is the technique by
which the segment size progression is computed. Different
segment size progressions result in different startup delays
at a client with a certain reception bandwidth. For systems
with homogeneous clients, this delay optimization problem
has been effectively addressed [20]. However, designing an
optimal progression for a population of clients with hetero-
geneous reception bandwidth is a new problem yet to be
investigated. The challenge lies essentially in making good
tradeoffs between startup delays experienced by the differ-
ent clients. In this paper, we model such an optimization
problem as a linear program, and discuss an efficient sub-
gradient algorithm for solving this linear program.

For delivery of layered media files using OHPB systems,
we develop efficient mechanisms and policies to handle time-
varying client reception bandwidth. Note that periodic broad-
cast systems multicast segment transmissions, and therefore,
altering server-side transmission rates owing to conditions at
any one particular client is not feasible. The only option is
to use client-side policies for work-ahead (i.e., buffering data
prior to when it is needed for playback) that are facilitated
by listening on a channel earlier than that required by the
protocol. Such work-ahead is difficult to implement for most
periodic broadcast systems owing to the cyclic nature of seg-
ment transmissions. For example, if a client obtains only a
portion of a media segment during work-ahead and then
drops the channel due to a bandwidth change, this work-
ahead may not prove useful because when the receiver again
begins to listen to the channel, the portion of the segment

being currently transmitted may substantially overlap with
the buffered portion. Our contribution in this context is
the design and evaluation of an efficient quality adaptation
mechanism for layered media files delivered using OHPB
systems. A key element of our solution is to treat the trans-
mission of each segment as a digital fountain [2] to avoid the
aforementioned problems with cyclic segment transmissions.

The remainder of this paper is structured as follows. Sec-
tion 2 presents background on scalable multicast/broadcast
on-demand streaming systems, and on quality adaptation
for streaming media. Section 3 describes the OHPB pro-
tocol for heterogeneous clients, outlining the optimization
technique used to obtain the segment size progression and
the advantages of this scheme with respect to prior propos-
als. Our quality adaptation proposal is presented in Sec-
tion 4. Conclusions are presented in Section 5.

2. BACKGROUND
Content delivery systems that concurrently serve large

numbers of clients may use proxy servers that replicate pop-
ular content at the network edge, use (application or network
layer) multicast, or use a combination of these approaches.
For on-demand streaming of large, popular, media files, use
of scalable multicast streaming protocols is expected ow-
ing to the impressive server and network bandwidth savings
achievable using this approach [6, 9, 29].

Among the scalable multicast streaming protocols, the pe-

riodic broadcast [1, 8, 11, 13, 20, 28] protocols and the stream

merging [5, 6] protocols are the most effective. The band-
width requirements of stream merging protocols grow as a
function of client request rate. This work focuses on periodic
broadcast protocols because their server bandwidth require-
ment is independent of the client request rate, and therefore,
they are better suited for streaming the most popular files.

Section 2.1 reviews the Optimized Periodic Broadcast (Op-
timized PB) protocol [20]. Our work uses this protocol as a
building block because: 1) it can support any client recep-
tion rate, even reception rates that are less than twice the
playback rate; and 2) it can be extended to support efficient
packet loss recovery. Sections 2.2 and 2.3 review two recent
proposals for supporting heterogeneous client bandwidths,
the Broadcatch [26] and the Heterogeneous Receiver-Oriented
Broadcasting (HeRO) [12] protocols, respectively. Section 2.4
reviews prior work on quality adaptation for unicast stream-
ing and discusses the difficulties that arise when considering
similar approaches for multicast streaming.

2.1 Optimized Periodic Broadcast
In the Optimized PB protocol, a media file is divided into

K segments, each of which is repeatedly transmitted on its
own channel at rate r times the media playback rate. Each
client that requests the file immediately begins listening to
the first channel, and commences playback once the first
segment is completely received. Concurrently, the client
listens to the channels delivering the next s − 1 segments.
Once a segment has been completely received on a channel i,
the client immediately begins listening to channel i + s (for
i + s ≤ K). The progression of segment sizes (dependent
on the transmission rate r of each segment and the num-
ber of channels s that each client listens to concurrently)
is such that data is received just-in-time for playout. Fig-
ure 1 shows an example Optimized PB broadcast where each
client listens simultaneously to a total of two channels; pe-

Channel 6

Channel 5

Channel 4

Channel 3

Channel 2

Channel 1

.....

.....

.....

.....

.....

.....

Figure 1: Optimized PB (K = 6, r = 1, s = 2)

riods during which an example client that requests the file
at the time indicated by the arrow listens to each channel
are denoted by the shaded regions.

The Optimized PB protocol uses an optimal (in the sense
of minimizing client startup delay for a given number of
server channels K) segment size progression for any given
value r > 0 and integer s > 1. Thus, as with other previous
periodic broadcast protocols, the segment size progression is
designed (explicitly or implicitly) for some particular achiev-
able client bandwidth. Substantial client heterogeneity is
assumed to be handled using layered media and a scheme
whereby clients match their layer subscription to the avail-
able bandwidth on their path from the server, so that all
clients receiving a layer are able to concurrently listen to
the required number of channels.

2.2 BroadCatch
The BroadCatch protocol divides a media file into 2K−1

equal-sized segments, with a contiguous group of these seg-
ments being transmitted at playback rate (i.e., r = 1) on
K separate channels [26]. The first two channels cyclically
broadcast the entire media file, with the beginning of the
transmission on the second channel offset by L/2 time units
(where L is the media length) with respect to the beginning
of the transmission on the first channel. On any channel i,
3 ≤ i < K, the server cyclically broadcasts the first 2K−i+1

segments, with the first broadcast on this channel offset with
respect to the first broadcast on channel 1 by L

2i−1
time

units. Channel K broadcasts only the first segment, with
the broadcasts coinciding with every alternate broadcast on
channel 1.

Figure 2 shows an example BroadCatch broadcast with
K = 5 channels, and illustrates the sequence of segments
received by a client A that arrives between time 4 and 5,
and has bandwidth to concurrently listen on two channels.
For each segment 1 broadcast on any of the channels, there
is an associated minimum client bandwidth that would be
required for a client to begin playback immediately upon
beginning reception of that broadcast. In Figure 2, these
minimum client bandwidths, as measured by the number of
channels a client must concurrently listen to, are given just
above the row showing the transmission schedule of Channel
1. In our example, client B with bandwidth equal to the
media playback rate that arrives between time 6 and 7 waits
until time 8 to begin playback.

The BroadCatch scheme accommodates clients with band-
widths in the range 1 to (K − 2) times the media playback
rate. Increasing K reduces the segment sizes, and thus re-
duces the startup delay of clients. However, in most cases,
clients can achieve reduced startup delay when increased
server bandwidth is used for delivery of the file (i.e., K in-
creases), only when the client reception rate also increases.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2

1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 3 1 2 2 2 2 2 2 3

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L

L/2

L/4

L/8

L/16

Time

A B

Figure 2: BroadCatch (K = 5, r = 1)

2.3 HeRO
The HeRO protocol is another technique for clients with

heterogeneous bandwidths [12]. This protocol partitions a
media file into K segments with the relative segment sizes
1, 2, 22, · · · , 2K−1. Each segment is broadcast on a separate
channel at the playback rate. To better accommodate het-
erogeneous client bandwidths, each of the last Ks ≥ 0 seg-
ments may be broadcast on two channels rather than one,
with the broadcasts of the segment on the second channel
staggered with respect to those on the first channel by half
the segment length. This increased frequency of broadcast
of the large segments aids in reducing the startup latency of
low bandwidth clients. As illustrated by the numerical re-
sults presented in Section 3.2, HeRO and BroadCatch have
similar performance.

2.4 Quality Adaptation
The most closely related previous work on quality adap-

tation has considered the context of unicast streaming of
layered media files [23]. In this work, a TCP-friendly rate
adaptation policy [24] is utilized to determine the transmis-
sion rate of the server. During periods of high bandwidth,
work-ahead is achieved by transmitting the data for cer-
tain layers (determined by the work-ahead algorithm) at a
rate higher than its consumption rate. This work-ahead
allows the server to reduce the sending rate on layers that
have sufficient work-ahead during periods of low bandwidth.
Thus, the server adds or drops media layers in response to
long-term changes in the available bandwidth, while work-
ahead is used to smooth short-term variations in the avail-
able bandwidth.

With streaming applications that employ multirate con-
gestion control [15, 16, 17, 18, 19, 27], it is not feasible to
change the transmission rate on a channel to accommodate
the needs of an individual client since it may adversely af-
fect other clients listening to the channel. Thus, rate adjust-
ments must be made by the client rather than by the server,
by adding or dropping of multicast channels. The challenge
in the context of periodic broadcasting is to devise protocols
in which clients can make rate adjustments in this manner,
and yet exploit work-ahead to smooth short-term fluctua-
tions in the available bandwidth.

For periodic broadcast protocols such as Harmonic Broad-
casting [13] and its variants [10, 22] in which clients listen
concurrently to all of the server channels that are trans-
mitting segments of the requested file, it is impossible to
work-ahead unless the server somehow transmits additional
streams for this purpose. With Optimized PB, BroadCatch,
HeRO, or any other protocols in which clients listen to a
subset of channels, a client that temporarily has extra band-

Table 1: Notation for the OHPB Protocol
Symbol Definition

K Total number of segments (server channels)

li Playback duration of the ith segment
L Total media playback length
r Segment transmission rate

(in units of media playback rate)
B Server bandwidth

(in units of media playback rate; B = K × r)
N Number of client types
bj Bandwidth of type j clients; bj ≥ r
sj Number of channels a type j client can

concurrently listen on; sj = min(⌊bj/r⌋, K)
τj Deterministic startup delay of type j clients
wj Weight used for clients of type j

width might work ahead by listening to extra channels. How-
ever, if the client has to drop one of these extra channels due
to a temporary decrease in available bandwidth, then when
it later returns to this channel, it may have to wait a con-
siderable length of time before the remaining data that it
needs for that segment is transmitted again.

3. THE OHPB PROTOCOL
Assume that there are N distinct types of clients, where

the clients of type j have reception bandwidth bj . The
problem addressed in the design of the Optimized Hetero-
geneous Periodic Broadcast (OHPB) protocol is that of de-
vising a segment size progression that yields the best pos-
sible performance, according to some given objective func-
tion, for a given population of clients. Initially, it is as-
sumed that the rate at which each client can receive me-
dia data does not change substantially during its session;
this assumption is relaxed in Section 4. Section 3.1 devel-
ops the new OHPB protocol and outlines the OHPB linear
program. This discussion is applicable for the delivery of
a single monolithic media file or a single layer of a layer-
encoded media file. Numerical results illustrating OHPB
performance, and comparisons with HeRO and BroadCatch,
are presented in Section 3.2. Possible tradeoffs between me-
dia quality and startup delay for layered media files are
discussed in Section 3.3. We conclude this section with a
qualitative discussion of OHPB’s salient features. For ease
of reference, Table 1 summarizes the notation used in the
OHPB linear program.

3.1 Design of OHPB
The OHPB protocol adopts the following general frame-

work, similar to a number of other periodic broadcast pro-
tocols:

• The media file, of length L, is partitioned into K seg-
ments; each segment i, 1 ≤ i ≤ K, is of length li
where

P

i
li = L. It is assumed here that the media

file is constant bit rate (although generalizations are
possible).

• Each segment i is repeatedly multicast on server chan-
nel i at r times the media playback rate. Thus, the
total required server bandwidth B is equal to K × r,
in units of the media playback rate.

• On receiving a request for the media file, the server
provides the requesting client with a startup delay and
a schedule for tuning into the channels. The startup
delay τj for clients of type j is deterministic.

• Each segment is completely downloaded prior to com-
mencing its playback. This approach makes OHPB
amenable to the packet loss recovery approach used in
Optimized PB [20], and furthermore, allows design of
flexible quality adaptation techniques as described in
Section 4.

Within this framework, we consider the problem of opti-
mizing the segment size progression for a given population of
clients. For type j clients, let tj(k) denote the time required
to complete downloading the first k segments. Because a
type j client can concurrently listen to sj channels, where
sj = min(⌊bj/r⌋, K), we have the following equations:

tj(k) =
lk
r

, 1 ≤ k ≤ sj , sj ≥ 1, (1)

tj(k) = tj(k − sj) +
lk
r

, sj < k ≤ K, sj ≥ 1. (2)

OHPB requires that each segment k, 1 < k ≤ K, be en-
tirely downloaded by the time segment k − 1 finishes play-
back. Furthermore, the first segment must be available in
the client’s buffer following the startup delay τj . Therefore,
the following relation must be satisfied:

tj(k) ≤ τj +

k−1
X

i=1

li, 1 ≤ k ≤ K. (3)

Many choices of segment sizes satisfy the above constraints.
Our problem is to choose segment sizes that are optimal un-
der some objective function. Initially, we consider an objec-
tive function in which each client type is assigned a weight
wj . This weight could reflect, for example, the fraction of
the total requests for the media file that are generated by
type j clients. The objective function is then chosen as the
weighted average of the startup delays for the N types of
client, yielding the following OHPB linear program (LP):

Minimize M1 =
P

j
wjτj (4)

Subject to:
8

>

>

<

>

>

:

P

i
li = L (5)

tj(k) ≤ τj +
Pk−1

i=1 li ∀j, k (6)

tj(k) = lk
r

∀j, 1 ≤ k ≤ sj , sj ≥ 1 (7)

tj(k) = tj(k − sj) + lk
r

, ∀j, sj < k ≤ K, sj ≥ 1 (8)

li, τj , tj(k) ≥ 0, ∀i, j, k

The inputs to the OHPB LP are K, r, N , sj ’s, wj ’s, and
L. The LP outputs the sequence of segment sizes (li’s), and
the startup delay for each client type (τj). The number of
variables and the number of constraints of the above LP are
both O(NK). We have developed a sub-gradient algorithm
tailored for the OHPB LP. It is a stand-alone algorithm that
can be executed without using a third-party LP solver, and
consists of only combinatorial steps. This algorithm, pre-
sented in the Appendix of the paper, exploits the specific
underlying structure of the OHPB LP and achieves much
higher scalability than general simplex or interior-point al-
gorithms.

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 5 10 15 20 25

S
ta

rt
up

 D
el

ay

 (
fr

ac
tio

n
of

 to
ta

l m
ed

ia
 d

ur
at

io
n)

Server Bandwidth
 (in units of media playback rate)

b=1
b=1.5

b=2
b=2.5

b=3
b=3.5

b=4

Figure 3: Scalability of OHPB
(model 2, r = 0.25)

 0.001

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25 30 35 40

S
iz

e
(%

 o
f t

ot
al

 m
ed

ia
 d

ur
at

io
n)

Segment Number

Optimized PB (b=1)
Optimized PB (b=1.5)

OHPB (model 1)
OHPB (model 2)

Optimized PB (b=4)

Figure 4: Segment Size Progres-
sions (B = 10, r = 0.25)

 1e-04

 0.001

 0.01

 0.1

 1

 1 1.5 2 2.5 3 3.5 4

S
ta

rt
up

 D
el

ay

 (
fr

ac
tio

n
of

 to
ta

l m
ed

ia
 d

ur
at

io
n)

Client Bandwidth
 (in units of media playback rate)

w(b=4)=0.9
w(b=2.5)=0.9

uniform
w(b=1)=0.9

Figure 5: Adaptivity of OHPB
(model 2, B = 10, r = 0.25)

In general, the choice of the objective function depends
on the specific quality-of-service goals of the server provider.
Function M1 is one among the many possible objective func-
tions. For equal weight assignment to each client type, this
function attempts to reduce startup delays for low band-
width clients at the cost of increasing startup delays for
high bandwidth clients. Alternatively, if clients with higher
bandwidth make requests more often, a broadcast scheme
to favour these clients may be designed by assigning these
clients a higher weight in the optimization function. Many
other variations are possible. As one more example, clients
may be divided into types, and weights assigned, in part
according to the level of delivery service purchased, rather
than just the client bandwidth.

We illustrate the power of the proposed technique by con-
sidering another objective function. This second objective
function considers the factor increase in startup delay that
each type of client experiences when OHPB is used, com-
pared to the Optimized PB protocol tailored for that client
type. Specifically, let τ opb

j denote the startup delay using
an Optimized PB protocol tailored to achieve the mini-
mum startup delay for client type j, given server bandwidth
B = K × r. The second objective function is then given as
follows:

Minimize M2 =
P

j
wj

τj

τ
opb
j

. (9)

Note that for fixed sj , r, and K, τ opb
j is a constant, and thus,

M2 is a linear function. In the following sections, the OHPB
linear programs obtained using functions M1 and M2 are
referred to as models 1 and 2, respectively.

3.2 Numerical Results
Previous periodic broadcast protocols have the desirable

property that linear increases in server bandwidth yield ex-

ponential decreases in startup delay [9]. A key question is
whether or not this attractive property holds for OHPB sys-
tems designed to support clients with heterogeneous band-
widths.

Figure 3 shows the required startup delay for specific
client bandwidths as a function of server bandwidth. The
results in the figure are obtained by solving the OHPB LP
(model 2) with client bandwidths [1, 1.5, 2, 2.5, 3, 3.5, 4], with
each client type assigned an equal weight, and segment trans-
mission rate r = 0.25. The results indicate that the afore-
mentioned property largely holds for clients with data rates
greater than the media playback rate (i.e., b > 1). For
clients with bandwidth equal to the media playback rate, in-
creasing server bandwidth has negligible impact on startup

delay since the client must buffer a large fraction of the
media file before playback can begin. Qualitatively simi-
lar results are obtained for OHPB model 1. With OHPB
model 1, however, low bandwidth clients obtain preferen-
tial treatment over high bandwidth clients. This is because
the higher startup delays experienced by the low bandwidth
clients dominate the objective function for model 1.

Examining the OHPB segment size progression provides
further insights. For B = 10 and r = 0.25, Figure 4 shows
the segment size progressions for OHPB models 1 and 2 with
client bandwidths [1, 1.5, 2, 2.5, 3, 3.5, 4] and equal weight as-
signment for each client type. For reference, the figure also
shows the Optimized PB segment size progressions for b = 1,
b = 1.5, and b = 4. Note that OHPB model 2 exhibits ex-
ponential increase in segment sizes and yields segment sizes
most similar to the exponentially increasing sizes of Opti-
mized PB for b = 4. Compared to Optimized PB, however,
OHPB exhibits slower growth of segment sizes, as would
be expected when trying to accommodate heterogeneous
client bandwidths. In general, accommodating clients with
low bandwidths also requires larger initial segments. From
the figure, we observe that OHPB model 1 has significantly
slower growth in segment sizes compared to OHPB model
2 because the former tries to lower the startup delays for
low bandwidth clients at the cost of increased delays for
the high bandwidth clients. In fact, the initial segments of
OHPB model 1 are similar to Optimized PB (b = 1.5), while
the later segments are similar to Optimized PB (b = 1).

Figure 5 explores the startup delay experienced by clients
for different weight assignments. We report results obtained
by solving the OHPB LP (model 2) for B = 10, r = 0.25,
and client bandwidths [1, 1.5, 2, 2.5, 3, 3.5, 4] with different
weight assignments. In the figure, four example weight as-
signments for OHPB model 2 are considered, namely: 1)
the client type with bandwidth b = 1 is assigned weight
9/10, with the remaining types assigned equal weight of
1/60; 2) same as (1) but with the client type with band-
width b = 2.5 the one that is assigned weight 9/10; 3) same
as (1) but with the client type with bandwidth b = 4 the
one that is assigned weight 9/10; and 4) all client types
assigned equal weight of 1/7. The results show that assign-
ing higher weight to a client type can significantly lower
the startup delay for that type of client, compared to that
achieved with the equal weight assignment. For example,
assigning a weight of 0.9 to the client type with b = 2.5 re-
sults in a factor of 4 reduction in startup delay for these
clients compared to when all client types have equal weight
assignments. This decrease in startup delay, however, comes

 0.01

 0.1

 1

 1 1.5 2 2.5 3 3.5 4

S
ta

rt
up

 D
el

ay

 (
fr

ac
tio

n
of

 to
ta

l m
ed

ia
 d

ur
at

io
n)

Client Bandwidth
 (in units of media playback rate)

BroadCatch
HeRO

OHPB (model 1)
OHPB (model 2)

 1e-04

 0.001

 0.01

 0.1

 1

 1 1.5 2 2.5 3 3.5 4

S
ta

rt
up

 D
el

ay

 (
fr

ac
tio

n
of

 to
ta

l m
ed

ia
 d

ur
at

io
n)

Client Bandwidth
 (in units of media playback rate)

BroadCatch
HeRO

OHPB (model 1)
OHPB (model 2)

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 1.5 2 2.5 3 3.5 4

S
ta

rt
up

 D
el

ay

 (
fr

ac
tio

n
of

 to
ta

l m
ed

ia
 d

ur
at

io
n)

Client Bandwidth
 (in units of media playback rate)

BroadCatch
HeRO

OHPB (model 1)
OHPB (model 2)

(a) B = 5 (b) B = 10 (c) B = 15

Figure 6: Comparing OHPB, BroadCatch, and HeRO

at the cost of increased startup delays for the lower band-
width clients.

We compare OHPB with HeRO and BroadCatch for the
same example set of client bandwidths ([1, 1.5, 2, 2, 5, 3, 3.5, 4])
used for Figures 3-5. Similar comparative results are ob-
tained with other sets of bandwidth values. Figure 6 shows
the startup delay experienced by clients of each type, for
three server bandwidth values. The results for OHPB are
for equal weightings of the client types. The startup de-
lay results for BroadCatch and HeRO are averages over all
distinct time slots in the respective transmission schedule,
of the startup delay for a client arriving in that time slot.
Note that OHPB provides lower startup delay than both
HeRO and BroadCatch for most client bandwidths. OHPB
model 2, in particular, provides substantially lower startup
delay than BroadCatch or HeRO for all client bandwidths
except b = 1. Note also that with increasing server band-
width but fixed client bandwidths, the relative performance
of both BroadCatch and HeRO worsen since these proto-
cols are designed for a client bandwidth range that varies
with the server bandwidth. For example, when B = 10,
BroadCatch assumes client bandwidths ranging from 1 to 8.
Finally, note that, unlike OHPB, neither BroadCatch nor
HeRO can take advantage of fractional units of client band-
width, and so, for example, clients with b = 2 and b = 2.5
experience identical startup delay.

3.3 Startup Delay vs. Quality Tradeoffs
Consider a system where each layer of a media file is de-

livered using a separate instance of the OHPB protocol. It
is advantageous in such a system for each instance of the
protocol to use the same parameters r (measured in units
of the bit rate of the respective layer) and K, and the same
segment size progression. For a concrete example, we con-
sider a system of this type that is broadcasting a 30 minute
video with 10 equal bit rate layers, and OHPB (model 2)
with client bandwidths and other parameters identical to
those used for Figure 6(a).

Now consider a client with total available reception band-
width b = 10. Such a client has per-layer bandwidth b =
1, 1.5, 2.0, or 2.5 if 10, 6, 5, or 4 layers are received, respec-
tively. Thus, from Figure 6(a), it can be seen that the client
has a choice of receiving all 10 layers with a startup delay of
9 minutes, 6 layers with a startup delay of 2 minutes, 5 layers
with a startup delay of 56 seconds, or 4 layers with a startup
delay of 36 seconds. There is no advantage to receiving less
than 4 layers as it does not reduce the startup delay below

36 seconds. Had the same file been broadcast using the Op-
timized PB protocol with b = 2.5, for example, the choices
available to the client would be to receive 10 layers with a
startup delay of 18 minutes, 6 layers with a startup delay of
8 minutes, 5 layers with a startup delay of 3 minutes, or 4
layers with a startup delay of 27 seconds. Had the file been
broadcast using the BroadCatch protocol (using B = 5 per
layer as in Figure 6(a)), the client could receive 10 layers
with a startup delay of 8 minutes, 5 layers with a startup
delay of 2 minutes, or 3 layers with a startup delay of 1.9
minutes. Since BroadCatch cannot take advantage of frac-
tional bandwidth, the layer/delay tradeoffs available using
BroadCatch are somewhat limited. Clearly, OHPB offers a
much better range of tradeoffs between media quality and
startup delays.

3.4 Discussion
We close this section with a discussion of OHPB’s salient

features, and by qualitatively comparing OHPB with Broad-
Catch and HeRO. Note that the OHPB LP allows the me-
dia segment sizes to be tailored to satisfy any desired lin-
ear objective function (such as minimizing the mean startup
delay of clients). Both BroadCatch and HeRO include no
such optimization criteria. The OHPB LP allows the seg-
ment size progression to be designed for any range of client
bandwidths. In particular, the range of client bandwidths
that can be supported by the protocol is independent of
the server bandwidth, whereas in BroadCatch and HeRO,
the client bandwidth range is directly related to the server
bandwidth. Furthermore, since OHPB requires a segment
to be completely downloaded before playback, the Reliable
Periodic Broadcast approach [20] of delivering each segment
as a digital fountain [2] can be used to provide support for
packet loss recovery. With protocols such as HeRO and
BroadCatch that may play a segment while it is being re-
ceived, the aforementioned packet loss recovery mechanisms
are not applicable. Finally, as discussed in the next section,
OHPB can be extended to support quality adaptation when
the achievable client reception bandwidth is time-varying.

4. QUALITY ADAPTATION
This section describes techniques for quality adaptation

using work-ahead when the achievable client reception rate
is time-varying, and the media file has a layered encod-
ing. Section 4.1 describes an approach for achieving work-
ahead in OHPB systems. Client-side policies for performing
work-ahead are considered in Section 4.2. Section 4.3 de-

scribes candidate rules for adding and dropping layers. A
performance study of the resulting policy is presented in
Section 4.4.

4.1 Efficient Work-ahead
In a periodic broadcast system, the server transmits each

segment at fixed rate to possibly multiple clients, and thus
work-ahead cannot be achieved for a particular client by
varying the segment transmission rate. Instead, a possible
approach for achieving work-ahead is to download segments
ahead of their scheduled download time.

Accomplishing work-ahead in this manner is complicated
by the cyclic transmission of segments. As an example, con-
sider a client that has partially received a segment, and then
stops listening to the channel broadcasting this segment due
to a drop in the available bandwidth. If the client later re-
sumes reception on the channel in time to receive data equiv-
alent in amount to the data it is missing, it will be able to
receive the remainder of the segment only if its reception
period aligns with the broadcast of the missing portion.

A remedy to the above problem is to apply erasure codes
to each segment so that a channel transmits a very long se-
quence of encoded packets instead of transmitting the pack-
ets in a cyclic fashion. With erasure codes, all packets are
essentially equivalent, and a segment can be reconstructed
from any subset of packets equal (or possibly slightly longer)
in total size to the size of the segment. In previous work,
the Reliable Periodic Broadcast protocols [20] used erasure
codes to enable efficient packet loss recovery. Here we apply
erasure codes to achieve efficient work-ahead.

4.2 Work-ahead Policy
The work-ahead policy determines how the available band-

width is allocated among the layers to provide maximal pro-
tection against short-term bandwidth fluctuations. We iden-
tify two considerations for work-ahead: the aggressiveness of
the policy, and the allocation of work-ahead among the lay-
ers.

The aggressiveness of the policy is important because if
a policy is too aggressive, it risks having many fluctuations
in quality, which may be displeasing to the viewer [30]. If
a policy is not aggressive enough quality may increase very
slowly, if at all. Note that OHPB allows clients to trade off
startup delay for quality. The number of layers selected by a
client determines the per-layer bandwidth requirement (and
therefore, the number of channels the client must listen to
concurrently on each layer), and the startup delay τ . We
add a buffering constant, T , to the buffering requirements
of OHPB, that is at any given point in the download, a layer
attempts to have T + τ time units buffered. The buffering
constant aims to provide a “soft” guarantee on the amount
of time playback of a layer can be sustained in the event
of a bandwidth drop. When T is small, this work-ahead
policy behaves more aggressively, whereas when T is larger
the policy is more conservative.

The allocation of work-ahead among layers is another im-
portant consideration and the following can be noted. First,
work-ahead on lower layers is “safer” since it reduces the
chances of work-ahead data being wasted in the event of a
layer drop [23]; it is “safer” to work-ahead on lower layers
because in the event of a layer drop, any work-ahead on that
layer is lost, and consequently (in case of cumulative layer-
ing), the buffering on all layers above may become useless.

Second, spreading the work-ahead among many layers allows
the client to tolerate greater short-term bandwidth reduc-
tion. This is because, regardless of the amount of work-
ahead available on a layer, the bandwidth consumption of
that layer can only be reduced to zero.

Suppose that a client is receiving n layers and on d layers
the buffering constraint is satisfied (i.e., T +τ time units are
buffered). Taking the above into consideration, the following
work-ahead rule is proposed: if there is bandwidth in excess
of that needed to receive the currently subscribed layers, and
d < n, work-ahead on layers that do not satisfy the buffering
requirement. The extra bandwidth is shared using a round
robin scheme with a time quantum of T/n, to enable all
layers to have a fair chance at getting T time units buffered.
The order of round robin service begins with the lowest layer
that does not meet the buffering requirement.

4.3 Policy for Adding/Dropping Layers
The decision to add a layer may depend on currently avail-

able bandwidth, currently achieved work-ahead, the band-
width requirements of the currently subscribed layers and
the new layer, and an estimate of the bandwidth available
in the future. Obtaining a reasonable estimate of the fu-
ture available bandwidth may, however, be quite difficult.
Thus, in previous work [23] and in this work, the decision to
add a new layer is taken when the instantaneous bandwidth
exceeds the bandwidth requirement of the subscribed lay-
ers in addition to the new layer, provided some work-ahead
condition is satisfied.

Determining the bandwidth required for the current sub-
scription level needs some special consideration. Note that
unlike unicast streaming, the bandwidth requirement in an
OHPB system does not equal the layer bit rate as the clients
are required to listen on multiple server channels at an ag-
gregate rate greater than the layer bit rate. Furthermore, a
client can choose a higher startup delay that enables it to
subscribe to more layers, using a lower total reception rate
on each layer. Let bτ

l denote the required client bandwidth
for layer l for a startup delay τ , as determined for a particu-
lar OHPB protocol setting (i.e., as described in Section 3.3).
Note that bτ

l decreases near the end of the download, once
there are fewer than sτ

l segments remaining to receive, and
is given by min(K − k, sτ

l)× r, in units of the layer bit rate,
where k is the earliest segment currently being downloaded
on the layer, and sτ

l is the value of s that a client must use
to achieve a startup delay of τ .

Our approach is to add a layer when the available band-
width exceeds that required to sustain the current subscrip-
tion and the new layer, while continuing to buffer on the
(n−d) layers that do not meet the work-ahead requirements.
The specific heuristic that we employ is to increase the sub-
scription whenever possible, provided we can receive on the
layers lacking sufficient buffering at twice the required rate
bτ
l . This choice is motivated by the observation that devot-

ing additional bandwidth to a layer results in diminishing
returns since we can only work-ahead and receive the later
segments, and the additional bandwidth cannot speed up
the process of receiving segments that are imminently re-
quired. Experiments suggest that this heuristic of receiving
at twice the required rate gives satisfactory performance.

When bandwidth drops below the requirements of the
work-ahead policy, the policy tries several strategies to re-
duce the amount of bandwidth being used. First, it will

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100110120

U
ni

ts
 o

f B
an

dw
id

th

Time from start of download (min)

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100110120

U
ni

ts
 o

f B
an

dw
id

th

Time from start of download (min)

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100110120

U
ni

ts
 o

f B
an

dw
id

th

Time from start of download (min)

(a) Bandwidth Pattern 1 (b) Bandwidth Pattern 2 (c) Bandwidth Pattern 3

Figure 7: Bandwidth Patterns Used For Quality Adaptation Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 la

ye
rs

 b
ei

ng
 p

la
ye

d
ou

t

Time from start of playback (min)

bandwidth pattern 1
bandwidth pattern 2
bandwidth pattern 3

Figure 8: Quality Adaptation
with Different Bandwidth Pat-
terns (s = 8, T = 5 minutes)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 la

ye
rs

 b
ei

ng
 p

la
ye

d
ou

t

Time from start of playback (min)

s = 4
s = 8

s = 16

Figure 9: Quality Adaptation
with Various Startup Delays (T =
5 minutes, Bandwidth Pattern 1)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 la

ye
rs

 b
ei

ng
 p

la
ye

d
ou

t

Time from start of playback (min)

T=1min
T=5min

T=15min

Figure 10: Effect of T on Qual-
ity Adaptation (s = 8, Bandwidth
Pattern 3)

stop work-ahead on layers, starting with the highest qual-
ity layers. If this does not reduce bandwidth requirements
enough, the policy will then stop downloading on layers,
starting with the highest layers. This is because download-
ing to higher layers increases the risk of receiving data that
subsequently cannot be played out if the period of low band-
width is sustained. If a drop in bandwidth is sustained long
enough, layers of quality may need to be dropped according
to the following rule: a layer is dropped if one of its segments
has not been downloaded in time for playback.

4.4 Performance Evaluation
This section presents sample evaluations of our quality

adaptation mechanism assuming a 10 layer media file, where
each layer is delivered using OHPB (model 2) with the same
parameters, namely B = 10, r = 0.25, and client band-
widths [1, 1.5, 2, 2.5, 3, 3.5, 4], with equal weight assignment
per client type. Simulations were run on various bandwidth
variation patterns. The bandwidth patterns show avail-
able bandwidth, in units of media bit rate, as a function
of time. Each bandwidth variation is designed to test dif-
ferent aspects of the quality adaptation algorithm. A saw-
tooth bandwidth variation pattern (Figure 7 (a)) is used
to model bandwidth fluctuations that may be seen owing
to application of TCP-like or TCP-friendly congestion con-
trol algorithms. The second bandwidth variation pattern
(Figure 7 (b)) incorporates many increases and decreases
in bandwidth. However, in this pattern, the increases and
decreases are sharper than in the first bandwidth variation
pattern. Since layer addition/removal causes bandwidth us-
age to change in multiples of s ∗ r, the work-ahead policy
should show improved bandwidth utilization in conditions of
the second bandwidth variation pattern. We also report sim-

ulation results that test the performance of the work-ahead
policy under exceptional circumstances such as bandwidth
decreases halfway through the download of video segments
(Figure 7 (c)). The goal was to measure how much quality is
preserved in such a case. We have experimented with other
bandwidth patterns, but for brevity, restrict our discussion
here to the above-mentioned bandwidth patterns.

The performance of the quality adaptation policy under
various bandwidth conditions is examined in Figure 8. The
protocol is able to exploit bandwidth that is available during
the sawtooth and square wave fluctuations. The work-ahead
policy uses this extra bandwidth to download segments that
occur closer to the end of the media and as a result is able to
deliver higher quality at the end of playback. As predicted,
the square wave bandwidth pattern enables the protocol to
attain higher levels of quality. Since the majority of down-
loading is done at the beginning of the download, the work-
ahead policy is able to sustain very high levels of quality
when bandwidth decreases halfway through the download.

Since users may choose to dedicate different amounts of
bandwidth to downloading each layer, the work-ahead pol-
icy is tested for users who choose to devote, 1, 2 or 4 units
of bandwidth per layer. When r = 0.25 this is equivalent
to users receiving on, s = 4, 8 or 16 channels per layer.
Figure 9 examines the effectiveness of the work-ahead pol-
icy with bandwidth pattern 1 for users who dedicate differ-
ent amounts of bandwidth for downloading each layer. The
work-ahead policy is able to increase playback quality for
all of these users. Note that, from Figure 7 (a), the min-
imum achievable client reception rate over the duration of
the download is 4 units of bandwidth.

When the user dedicates 1 unit of bandwidth per layer, it
is expected that the user should be able to receive at least 4

layers without the work-ahead policy. With the work-ahead
policy the client is able to receive higher levels of quality
at the beginning of the download. This can be attributed
to the client performing work-ahead before playback begins.
However, once playback begins, the client cannot download
segments on time for such a high number of layers. Despite
not being able to keep up with downloading more layers
of quality during playback, the client is still able to use the
bandwidth available during fluctuations to download the last
segment of the media, completing its playback with 7 layers
of quality.

When s = 8 the expected number of layers a client should
be able to receive without work-ahead is 2. Figure 9 shows
that the work-ahead performed when extra bandwidth is
available allows the client to receive more than 2 layers for
almost half of the playback time. Similarly, the work-ahead
policy enables the user with s = 16 to receive 2 layers for
over half the playback time, when the expected number of
layers would be 1.

As stated previously, the value of T determines how ag-
gressively the protocol will behave when adding layers. The
effects of T are examined with bandwidth pattern 3 in Fig-
ure 10, for T = 1 minute, T = 5 minutes, and T = 15 min-
utes. The third bandwidth pattern is chosen because the
T values are designed to ensure that the protocol can sus-
tain playback quality when bandwidth drops for extended
periods of time. In each case, the percent of data wasted is
also measured and it is found that data is only wasted when
T = 1 minute; in this case, 0.69% of the data is wasted.
This suggests that when T is low, the client attempts to
add many layers but when bandwidth drops, it does not
have enough buffered data on these layers to download par-
tially completed segments in time for playback. Intuitively,
when T = 15 minutes the client slowly adds layers and does
not achieve higher layers of quality. In these evaluations,
T = 5 minutes performs the best, providing a balance be-
tween adding quality and maintaining work-ahead.

5. CONCLUSIONS
This paper addressed the challenge of streaming popu-

lar media files, on-demand, to heterogeneous clients. We
considered both heterogeneity in the average available band-
width and heterogeneity due to time-varying available band-
width. The new Optimized Heterogeneous Periodic Broad-
cast (OHPB) we develop supports heterogeneous client band-
widths better than previous periodic broadcast protocols,
and provides a tunable degree of differentiation between
clients types with differing achievable reception rates, with
respect to their associated startup delays. A novel method-
ology, based on linear programming models, is used to de-
velop the OHPB segment size progression. For delivery
of layered media files using OHPB, we developed efficient
quality adaptation mechanisms and policies that allow each
client to independently determine how to allocate time-varying
available bandwidth among layers at any instant of time
such that uniform playback quality can be maintained.

6. ACKNOWLEDGMENTS
This research was supported by the Natural Sciences and

Engineering Research Council (NSERC) of Canada. The
authors thank the anonymous ACM Multimedia reviewers
for comments that improved the paper presentation.

7. REFERENCES
[1] C. Aggrawal, J. Wolf, and P. Yu. A Permutation-Based

Pyramid Broadcasting Scheme for Video-on-Demand Systems.
In Proc. IEEE ICMCS, Hiroshima, Japan, June 1996.

[2] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A Digital
Fountain Approach to Reliable Distribution of Bulk Data. In
Proc. ACM SIGCOMM, Vancouver, USA, September 1998.

[3] S. Cheung, M. Ammar, and X. Li. On the use of Destination
Set Grouping to Improve Fairness in Multicast Video
Distribution. In Proc. IEEE INFOCOM, San Francisco, USA,
March 1996.

[4] D. Eager and M. Vernon. Dynamic Skyscraper Broadcasts for
Video-on-Demand. In Proc. MIS, Istambul, Turkey, September
1998.

[5] D. Eager, M. Vernon, and J. Zahorjan. Bandwidth Skimming:
A Technique for Cost-Effective Video-on-Demand. In Proc.
MMCN, San Jose, USA, January 2000.

[6] D. Eager, M. Vernon, and J. Zahorjan. Minimizing Bandwidth
Requirements for On-Demand Data Delivery. IEEE Trans. on
Knowledge and Data Engineering, 13(5):742–757,
September/October 2001.

[7] S. Floyd and K. Fall. Promoting the Use of End-to-End
Congestion Control in the Internet. IEEE/ACM Trans. on
Networking, 7(4):458–472, August 1999.

[8] L. Gao, J. Kurose, and D. Towsley. Efficient Schemes for
Broadcasting Popular Videos. In Proc. ACM NOSSDAV,
Cambridge, UK, July 1998.

[9] A. Hu. Video-on-Demand Broadcasting Protocols: A
Comprehensive Study. In Proc. IEEE INFOCOM, Anchorage,
USA, April 2001.

[10] A. Hu, I. Nikolaidis, and P. Beek. On the Design of Efficient
Video-on-Demand Broadcast Schemes. In Proc. MASCOTS,
Maryland, USA, October 1999.

[11] K. Hua and S. Sheu. Skyscraper Broadcasting: A New
Broadcasting Scheme for Metropolitan Video-on-Demand
Systems. In Proc. ACM SIGCOMM, Cannes, France,
September 1997.

[12] K. A. Hua, O. Bagouet, and D. Oger. Periodic Broadcast
Protocol for Heterogeneous Receivers. In Proc. MMCN, Santa
Clara, USA, January 2003.

[13] L. Juhn and L. Tseng. Harmonic Broadcasting for
Video-on-Demand Service. IEEE Trans. on Broadcasting,
43(3):268–271, September 1997.

[14] T. Kim and M. Ammar. A Comparison of Layering and Stream
Replication Video Multicast Schemes. In Proc. ACM
NOSSDAV, Port Jefferson, USA, June 2001.

[15] A. Legout and E. Biersack. PLM: Fast Convergence for
Cumulative Layered Multicast Transmission Schemes. In Proc.
ACM SIGMETRICS, Santa Clara, USA, June 2000.

[16] X. Li and M. H. Ammar. Bandwidth Control for
Replicated-Stream Multicast Video Distribution. In Proc.
HPDC, Syracuse, USA, August 1996.

[17] X. Li, M. H. Ammar, and S. Paul. Video Multicast over the
Internet. IEEE Network, 13(2):46–60, April 1999.

[18] M. Luby, V. Goyal, S. Skaria, and G. Horn. Wave and Equation
Based Rate Control Using Multicast Round Trip Time. In
Proc. ACM SIGCOMM, Pittsburgh, USA, September 2002.

[19] A. Mahanti, D. Eager, and M. Vernon. Improving Multirate
Congestion Control Using a TCP Vegas Throughput Model.
Computer Networks, 48(2):113–136, June 2005.

[20] A. Mahanti, D. Eager, M. Vernon, and D. Sundaram-Stukel.
Scalable On-Demand Media Streaming with Packet Loss
Recovery. IEEE/ACM Trans. on Networking, 11(2):195–209,
April 2003.

[21] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven
Layered Multicast. In Proc. ACM SIGCOMM, Stanford, USA,
September 1996.

[22] J. Paris, S. Carter, and D. Long. Efficient Broadcasting
Protocols for Video-on-Demand. In Proc. MASCOTS,
Montreal, Canada, July 1998.

[23] R. Rejaie, M. Handley, and D. Estrin. Quality Adaptation for
Congestion Controlled Video Playback over the Internet. In
Proc. ACM SIGCOMM, Cambridge, USA, September 1999.

[24] R. Rejaie, M. Handley, and D. Estrin. RAP: An End-to-End
Congestion Control Mechanism for Realtime Streams in the
Internet. In Proc. IEEE INFOCOM, New York, USA, March
1999.

[25] H. D. Sherali and G. Choi. Recovery of Primal Solutions When
Using Subgradient Optimization Methods to Solve Lagrangian
Duals of Linear Programs. Operations Research Letters, 19,

1996.

[26] M. Tantaoui, K. Hua, and T. Do. BroadCatch: A Periodic
Broadcast Technique for Heterogeneous Video-on-Demand.
IEEE Trans. on Broadcasting, 50(3):289–301, 2004.

[27] L. Vicisano, L. Rizzo, and J. Crowcroft. TCP-like Congestion
Control for Layered Video Multicast Data Transfer. In Proc.
IEEE INFOCOM, San Francisco, USA, April 1998.

[28] S. Viswanathan and T. Imielinski. Metropolitan Area
Video-on-Demand Service using Pyramid Broadcasting.
Multimedia Systems, 4(4):197–208, August 1996.

[29] Y. Zhao, D. Eager, and M. Vernon. Network Bandwidth
Requirements for Scalable On-Demand Streaming. In Proc.
IEEE INFOCOM, New York, USA, June 2002.

[30] M. Zink, O. Künzel, J. Schmitt, and R. Steinmetz. Subjective
Impression of Variations in Layer Encoded Videos. In Proc.
IEEE IWQoS, Monterey, USA, June 2003.

APPENDIX

A. SUBGRADIENT ALGORITHM FOR THE
OHPB LINEAR PROGRAM

To construct the subgradient algorithm, we first refor-
mulate the OHPB LP as follows. Observe that constraint
groups (3)-(6) essentially impose inequality relations between
τj and linear combinations of li. By successive substitutions
of (4)-(6) into (3), we obtain the revised OHPB LP, which
is equivalent to the original:
Minimize

P

j wjτj

Subject to:
8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

P

i li = L

τ1 ≥ α
(1)
11 l1 + α

(2)
11 + . . . + α

(K)
11

. . .

τ1 ≥ α
(1)
1K

l1 + α
(2)
1K

+ . . . + α
(K)
1K

. . .

τm ≥ α
(1)
m1l1 + α

(2)
m1 + . . . + α

(K)
m1

. . .

τm ≥ α
(1)
mK

l1 + α
(2)
mK

+ . . . + α
(K)
mK

li, τj ≥ 0, ∀i, j

We next derive an equivalent Lagrange dual problem of
the above LP, by relaxing all the lower-bound constraints on
τ . We introduce corresponding dual prices λij , and modify
the objective function as follows:

Minimize
P

j wjτj +
P

i

P

j [
P

k α
(k)
ij li − τi]

Subject to:

P1 :

P

i li = L

li, τj ≥ 0 ∀i, j

By Lagrange duality, an optimal solution to the relaxed
LP is always an upper-bound for the optimal solution of the
original OHPB LP; furthermore, by varying dual prices, the
maximum optimal solution to the relaxed LP exactly equals
the optimal solution to the OHPB LP. Therefore, we can
focus on the following Lagrange dual problem instead:

max
λij≥0

min
l∈P1

[
X

j

wjτj +
X

i

X

j

(λij(
X

k

α
(k)
ij li − τi))]

= max
λij≥0

min
l∈P1

[
X

i

(wi −
X

j

λij)τi +
X

i

X

j

(λij

X

k

(α
(k)
ij li))]

(A.1)

Note that dual feasibility requires
P

j
λij ≤ wi, because

otherwise the inner minimization is unbounded. Therefore,
(A.1) is equivalent to:

max
λ∈P2

min
l∈P1

X

i

X

j

(λij

X

k

(α
(k)
ij li)) (A.2)

where P2 is the following feasibility polytope of vector λ:

P2 :

 P

j
λij ≤ wi ∀i

λij ≥ 0 ∀i, j

The subgradient algorithm for (A.2) starts with an initial
vector λ. It iteratively updates the primal vector l and the
dual vector λ until convergence. Any feasible vector in P2

can be used to initialize λ, e.g., λij = wi/K, ∀i, j. Then in
each iteration of the subgradient algorithm, we first update
l, by assuming λ as a constant vector, and solve the in-

ner minimization problem minl∈P1

P

i

P

j
(λij

P

k
(α

(k)
ij li)).

This sub-problem has a nice combinatorial structure, and
can be efficiently solved. Let β be the following constant
vector:

βi =
X

j

(λij

X

k

α
(k)
ij), ∀i

The minimization problem above is reformulated into:

min
l∈P1

X

i

βili

Let i∗ = argminiβj , then the optimal vector l can be
computed as follows:

li =

0 ∀i 6= i∗

L i = i∗

We next update the dual price vector λ based on values
in l and a prescribed sequence of step sizes in vector θ:

λ′
ij = λij [k] + θ[k]

X

t

(α
(t)
ij lt)

λ′ is in general infeasible; it is projected into the feasible
polytope P2 and then becomes the new value for λ in the
next iteration:

λij [k + 1] =
λ′

ij
P

j λ′
ij

wi

After both primal and dual variables are updated, the
next iteration of the subgradient algorithm starts. As long as
the step size sequence in θ satisfies θ[k] ≥ 0, limk→∞ θ[k] = 0
and

P

k
θ[k] = ∞, the algorithm converges at optimal val-

ues in λ. Then primal recovery techniques can be applied
to obtain the optimal vector l∗, through a convex combina-
tion of intermediate values of l computed along the way of
convergence [25].

