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ABSTRACT
This paper presents a traffic characterization study of the
popular video sharing service, YouTube. Over a three month
period we observed almost 25 million transactions between
users on an edge network and YouTube, including more than
600,000 video downloads. We also monitored the globally
popular videos over this period of time.

In the paper we examine usage patterns, file properties,
popularity and referencing characteristics, and transfer be-
haviors of YouTube, and compare them to traditional Web
and media streaming workload characteristics. We conclude
the paper with a discussion of the implications of the ob-
served characteristics. For example, we find that as with the
traditional Web, caching could improve the end user expe-
rience, reduce network bandwidth consumption, and reduce
the load on YouTube’s core server infrastructure. Unlike
traditional Web caching, Web 2.0 provides additional meta-
data that should be exploited to improve the effectiveness
of strategies like caching.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscellaneous

General Terms
Measurement, Performance

Keywords
YouTube, Web 2.0, Multimedia, Characterization

1. INTRODUCTION
The Web is slowly but steadily undergoing a metamor-

phosis as more and more users are able to create, share, and
distribute content on the Web. This shift toward “user gen-
erated” content represents one of the biggest changes of the
Web since its inception in the early 1990’s. This paradigm
shift has resulted in a surge in popularity of Web sites that
enable users to build social networks and share content. To-
day, user generated content available on the Web includes
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textual information contained in Weblogs (blogs) [41], pho-
tos on sites such as Flickr [22] and Facebook [21], and videos
on sites such as FlixHunt [23] and YouTube [42]. Collec-
tively, these types of Web sites are referred to in the media
as Web 2.0 (to distinguish these from the so-called Web 1.0
sites that host content from established providers) [12].

Web 2.0 changes how users participate in the Web. In-
stead of consuming content posted by a single administra-
tor, users are now able to post their own content and view
content posted by their peers. Some Web 2.0 sites, for ex-
ample MySpace [35] and Facebook [21], promulgate social
networking by allowing individuals with similar interests to
form social groups. Tagging [5, 37], a feature that allows
users to associate words or phrases (“tags”) with content
they post or view on a Web page, is extensively used on
some Web 2.0 sites to categorize and organize content [22].

Adoption of Web 2.0 has been widespread, with users of all
ages participating in posting as well as viewing content [33].
The diversity of participants in Web 2.0 is possible because
of the low barrier to entry into these online communities.
Many Web 2.0 sites are designed such that signing up and
posting content are relatively easy. This enables users who
may not be technically savvy to participate alongside more
experienced users.

As the popularity of Web 2.0 sites grows, and as the avail-
ability of consumer broadband increases, the sheer volume
of data exchanged for Web 2.0 traffic has the potential to
severely strain the resources of both centralized servers and
edge networks serving Web 2.0 users. Understanding Web
2.0 workloads will aid in network management, capacity
planning, and the design of new systems. While there are
extensive studies of traditional Web workload [6, 7, 17, 31],
there have been no substantive studies of Web 2.0 workloads
in the literature. Our work aims to fill this gap and strives
to provide insights into how user generated content is viewed
and distributed on the Internet.

In this paper, we analyze and characterize one such Web
2.0 site, YouTube [42], the largest video sharing site on the
Internet [29]. According to estimates, with 100 million video
views per day YouTube accounts for approximately 60% of
the videos watched on the Internet; YouTube is also growing
at a rapid pace, with 65,000 video uploads per day [40]. This
constant growth of YouTube makes capturing its behavior
by examining a single point in time almost impossible. Our
analysis is based on three months of data that reflects trends
of YouTube traffic from both a local campus network and
a global (i.e., Internet wide) perspective. Locally, we con-
sider the network resources consumed by YouTube traffic as



well as the viewing habits of campus YouTube users. Glob-
ally, we consider characteristics of the most popular videos
on YouTube and examine the relationship between globally
popular videos and videos that are popular on campus.

The main contributions of our paper are threefold. First,
we introduce an efficient measurement framework that en-
ables us to monitor a popular and resource intensive Web
2.0 application over an extended period of time (while pro-
tecting user privacy). Second, we provide one of the first
extensive characterization studies of Web 2.0 traffic. Third,
we examine the implications of the observed characteris-
tics. In particular, we analyze a wide range of features of
YouTube traffic, including usage patterns, file properties,
popularity and referencing behaviors, and transfer charac-
teristics, which we compare to characteristics of traditional
Web and streaming media workloads. For example, we ob-
serve that a small fraction of the requests to YouTube are
for videos, but video downloads account for almost all of
the bytes transferred, as video file sizes are orders of mag-
nitude larger than files of other content types. Although
similar properties have been observed for other Internet ap-
plications, with Web 2.0 the impact may be more significant,
as it is for content that appeals to a much larger audience.
An obvious performance and scalability enhancement is to
utilize caching effectively. Although caching has been thor-
oughly studied for “traditional” Web workloads, there are
differences to consider for Web 2.0. For example, the ability
for anyone to create content and make it available online
implies there will be sustained supply of content. This can
reduce the effectiveness of caching; indeed, we observe a
lower concentration of references than has been observed in
traditional Web workloads. However, Web 2.0 provides an
abundance of meta-data (compared to the traditional Web;
e.g., user ratings, video categories, etc.); this meta-data can
and should be exploited by Web 2.0 caching, in order to be
more effective.

The remainder of the paper is structured as follows. Sec-
tion 2 presents background information on YouTube. We
discuss related work in Section 3. Our data collection frame-
work is described in Section 4, followed by a high-level anal-
ysis of the collected data in Section 5. The next four sections
characterize the YouTube workload in more detail. Section 6
characterizes YouTube’s video and non-video files. The pop-
ularity characteristics of video files accessed by users on our
campus is analyzed in Section 7, and locality properties of
our campus YouTube traffic is analyzed in Section 8. In
Section 9, we characterize the transfer size and durations
for YouTube traffic on our campus network. Section 10 de-
scribes the implications of the workload characteristics we
identified. We conclude the paper in Section 11 with a sum-
mary of our contributions and a discussion of future work.

2. BACKGROUND
YouTube was founded in February 2005 as a Web site that

enables users to easily share video content. As YouTube
expanded, features were added to facilitate social network-
ing among its users. Users can “tag” their uploaded videos
with keywords or phrases that best describe their content,
and these tags are used by YouTube to provide users with
a list of related videos. Tagging, social networking, and
the abundance of user generated content make YouTube the
quintessential Web 2.0 site. According to recent media re-
ports, YouTube is the largest video sharing Web site on the

Internet with over 100 million video accesses per day and
65,000 video uploads per day [40]. Time magazine’s 2006
year end issue named “You” as the person of the year, as an
homage to YouTube and other Web 2.0 users. Due to the
incredible popularity of YouTube, it attracted the attention
of numerous investors. In November 2006, YouTube was
acquired by Google for $1.65 billion US.

One of the keys to YouTube’s success is its use of Adobe’s
Flash Video (FLV) format for video delivery. While users
may upload content in a variety of media formats (e.g.,
WMV, MPEG and AVI), YouTube converts them to Flash
Video before posting them. This enables users to watch the
videos without downloading any additional browser plug-
ins provided they have the Flash Player 7 installed. It
is estimated that over 90% of clients have Flash Player 7
installed.1 To enable playback of the flash video before
the content is completely downloaded, YouTube relies on
Adobe’s progressive download technology.

Traditional download-and-play requires the full FLV file
to be downloaded before playback can begin. Adobe’s pro-
gressive download feature allows the playback to begin with-
out downloading the entire file. This is accomplished us-
ing ActionScript commands that supply the FLV file to the
player as it is being downloaded, enabling playback of the
partially downloaded file. Progressive download works with
Web servers and video content is delivered using HTTP/TCP.
This delivery technique is sometimes referred to as pseudo
streaming to distinguish it from traditional media streaming.
Traditional on-demand streaming of stored media files typ-
ically requires the use of dedicated streaming servers that
facilitate client-server interaction during the course of the
video playback. This interaction may be used for adapta-
tion of video quality or user interactions such as fast forward
or rewind operations.

While video content is usually the focus of a visit to the
YouTube Web site, there are many file transfers that happen
behind the scenes to embed the video file and display the sur-
rounding Web site content. For example, when a user clicks
on a video of interest, a GET request for the title HTML
page for the requested video is made. This HTML page
typically includes references to a number of Javascript files.
These scripts are responsible for embedding the Shockwave
Flash (SWF) player file, and other peripheral tasks such as
processing video ratings and comments. The SWF file is
relatively small (26 KB), so the page loads quickly. Once
the player is embedded, a request for the FLV video file is
issued. The FLV video file is downloaded to the user’s com-
puter using an HTTP GET request, which is serviced by
either a YouTube server or a server from a content distribu-
tion network (CDN).

3. RELATED WORK
There are numerous studies of “traditional” Web (now

referred to as Web 1.0) workloads. Cunha et al. char-
acterized a set of Web browser traces [18], while Gribble
and Brewer analyzed HTTP traces from a dial-in modem
pool [24]. Both examine characteristics such as access pat-
terns, object types, and object sizes. Arlitt and Williamson
identified a set of ten characteristics common to Web server
workloads [7]. Arlitt and Jin examined the much busier

1http://www.adobe.com/products/player census/flashplayer
/version penetration.html



World Cup 1998 Web site, and verified that these character-
istics existed [6]. Mahanti et al. [31] and Duska et al. [20]
characterized Web proxy workloads. A common conclusion
from all of these studies was that caching had the potential
to improve both the user experience (i.e., through reduced
latency) and the scalability of the Web (i.e., by distributing
the workload). Our work is complementary, in that it ex-
amines a Web 2.0 workload for similar characteristics and
opportunities for infrastructure improvements.

Characterization of both stored and live media streaming
has also received considerable attention in the literature.
Characteristics of media files on the Web have been studied
using a crawling or searching perspective, originating from
an edge network [2, 28], or by analyzing traces collected in
the network [15,25].

In 1998, Acharya et al. presented one of the earliest known
study of the characteristics of streaming media files stored
on Web servers [2]. This was followed by Chesire et al. [15]
who analyzed a week-long trace, collected in 2000 from their
campus’s Internet gateway, of live and on-demand RTSP ses-
sions. They found that most media streams viewed on their
campus were encoded at low bit rates suitable for streaming
to dial-up users, were typically less than 1 MB in size, and
had durations less than 10 minutes. In addition, they found
media file popularity to be Zipf-like.

In 2003, Li et al. [28] crawled 17 million Web pages for
stored audio/video files and discovered 30,000 such files. An-
alyzing these files, they reported several observations: media
durations are long-tailed; media files are typically encoded
in proprietary formats; and most video files are encoded at
bit rates targeted at broadband users.

In 2004, Sripanidkulchai et al. [38] analyzed a workload
of live media streams collected from a large CDN. They ob-
serve that media popularity follows a 2-mode Zipf distri-
bution. They also observe exponentially distributed client
arrival times within small time windows and heavy-tailed
session durations.

Workloads from media servers in corporate, university,
and commercial environments environments have also been
studied [3, 4, 14, 16, 27, 43]. For example, Almeida et al. [4]
presented a detailed analysis of workloads from two media
servers (eTeach and BIBS) located at two large universities
in the United States. They found file popularity can be
modeled as a concatenation of two Zipf distributions, and
that client interarrival times followed the exponential distri-
bution in the case of eTeach and the Pareto distribution in
the case of BIBS. They also observed uniform access to all
segments of popular files whereas access to segments of in-
frequently accessed files was non-uniform. The authors also
observed a lack of temporal locality in client requests.

Cherkasova and Gupta [14] analyzed the workloads of two
corporate media servers. They report that video popularity
is Zipf-like, that a significant fraction of the total requests
and bytes transferred were for new content, and that most
accesses to a file occurred soon after the files were made
available on the servers.

More recently, Yu et al. [43] presented an analysis of the
file reference characteristics and the user behavior of the
Powerinfo system, a production video-on-demand system
deployed in major Chinese cities by China Telecom. The
system mostly hosts older television programs encoded in
MPEG format. The authors analyzed 217 days of access
logs from one city with 150,000 users. Their access logs

recorded 6,700 unique video requests and a total of 21 mil-
lion video requests. They found that: request arrival rate is
strongly influenced by time of day, request arrivals can be
modeled by a modified Poisson distribution, video popular-
ity follows the Zipf distribution, and user interest in videos
is fueled by several factors such as the list of videos on the
most recommended list and the availability of new videos.

Recently, we have discovered parallel studies of YouTube [13,
26]. Both of these studies employ crawling for characteriz-
ing YouTube video files. Our work is complementary to
these aforementioned works, with a distinguishing factor be-
ing our measurement based approach to characterizing usage
of YouTube from an edge network perspective.

4. DATA COLLECTION FRAMEWORK
YouTube’s workload is a moving target. Everyday, new

videos are added, new ratings are submitted, and new com-
ments are posted. The popularity of videos also changes on
a daily basis. In this paper, we propose a multilevel ap-
proach to capturing YouTube traffic and understanding its
workload characteristics. First, we monitor YouTube usage
on our local (University of Calgary) campus network. Our
campus consists of approximately 28,000 students and 5,300
faculty and staff [1]. By considering local YouTube usage
we are able to understand how YouTube may be used by
clients of other large edge networks. Section 4.1 describes
our local data collection methodology. Second, we collect
statistics on the most popular videos on the YouTube site.
Section 4.2 explains our global data collection methodology.
By keeping statistics of both local and global YouTube us-
age we are able to compare and contrast characteristics of
videos that are popular at both the local and global level.

4.1 Data Collection of Edge YouTube Usage
An enabling step in this work was the collection of data

from an edge network. Our goals in data collection were to:

• collect data on all YouTube usage at the University of
Calgary network

• gather such data for an extended period of time

• protect user privacy

This conceptually simple task proved challenging, for a
number of reasons. One challenge is the global popularity of
YouTube. Due to its popularity, YouTube’s delivery infras-
tructure is comprised of many servers, including some from
(one or more) Content Distribution Networks (CDNs). A
second challenge is our network monitor has limited CPU
and storage resources,2 thus making storage of lengthy full
packet traces infeasible. A third challenge is our campus
recently upgraded from a 100 to a 300 Mb/s full-duplex net-
work link to the Internet; users on campus were happy to
increase their Internet usage, which places greater pressure
on our aging network monitor. Figure 1 shows the aggregate
bandwidth (inbound + outbound) consumed on our campus
Internet link during the collection period.

The data collection methodology we used to address these
challenges is as follows:

2Our monitor was purchased in spring 2003, when our In-
ternet connection was only 12 Mb/s. Our monitor has two
Intel Pentium III 1.4 GHz processors, 2 GB RAM, and two
70 GB drives.
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Figure 1: Aggregate Campus Internet Bandwidth
During Collection Period

• identify a set of servers that provide YouTube content

• use bro [9] to collect summary information on each
HTTP transaction involving one of those servers

• restart bro daily, compress the previous day’s log

We identified the servers to monitor a priori. Initially we
used tcpdump [39] to gather traces on a workstation while
we browsed the YouTube site. This provided a sample of
the servers used to deliver YouTube content. We then used
whois to determine the networks that the server’s IP ad-
dresses were affiliated with. We identified two networks
(youtube and youtube2) that were assigned to YouTube. For
our long-term data collection, we gather all HTTP trans-
actions involving any IP address on these two networks.
We also identified one CDN (Limelight Networks) deliver-
ing YouTube content. Extracting traffic for this CDN re-
quired a slightly different approach, as the Limelight CDN
also serves traffic for other popular Web 2.0 sites such as
Facebook and MySpace. Fortunately, Limelight incorpo-
rates YouTube into the fully qualified domain name (FQDN)
of each server, so we were able to consider only the transac-
tions including an HTTP Host: field that included the term
“youtube”.3

We used bro to extract summaries of each YouTube HTTP
transaction in real-time. We chose bro because it imple-
ments many of the functions we require; we just had to write
a script to handle events of interest. For each transaction
we record a variety of data about the TCP connection (e.g.,
duration, initial RTT, start and end sequence numbers), the
HTTP request (e.g., the method, URL, Host: name), the
HTTP response (e.g., status code, content length, date). In
this study, application level characteristics are our primary
interest. As a result, our analysis focuses on the HTTP data
that we collect.

To protect user privacy, we convert the YouTube visitor
identifier that is collected from the HTTP header into a
unique integer. Furthermore, the mapping is not recorded
to disk, and the mapping is only valid for a 24 hour period
(i.e., until bro is restarted). This prevents us from analyzing
some aspects of user longevity, but protects user privacy.

After initial experimentation with bro on our monitor, we
found it necessary to add an additional field to each transac-
tion summary. This field indicates the parsing status of each
transaction, which falls into one of four categories: Com-
plete, the entire transaction was successfully parsed; Inter-
rupted, the TCP connection was reset before the transac-
tion was complete; Gap, the monitor missed a packet, and
thus bro was unable to parse the remainder of the transac-
tion; Failure, bro was unable to parse the transaction for
an unknown reason.

3Unfortunately, we still had to process traffic from other
sites on the Limelight network, as multiple FQDNs often
mapped to the same IP address.

Table 1: Breakdown of Transactions
Category Transactions % of Total

Completed 22,403,657 90.82
Interrupted 462,903 1.88
Gapped 383,878 1.56
Failed 1,418,178 5.75
Total 24,668,616 100.01

Table 2: Breakdown of Video Transactions
Category Transactions % of Total

Completed 154,294 24.66
Interrupted 151,687 24.25
Gapped 319,612 51.09
Total 625,593 100.00

Table 1 summarizes the prevalence of each of the trans-
action categories.4 As we would expect, most transactions
have a“Complete”status. About 6% of transactions“failed”.
For transactions in this category we have no information
from HTTP headers. The two most likely reasons for failed
transactions are: our monitor dropped a packet in the con-
nection before the HTTP headers were parsed; or the TCP
connection was not established in an expected manner, so
our script did not know how to handle it properly.5 Un-
fortunately, as we summarize each transaction in real-time
and do not retain the raw packet traces, we do not have
any definitive evidence to determine the prevalence of each.
However, neither of these issues are related to the type of
object being transferred, so it is unlikely that a dispropor-
tionate fraction of failed transactions were for video objects.
We record the number of transactions that ended up in this
category to ensure we are gathering information on the ma-
jority of identified YouTube transactions. Our analyses in
the remainder of this paper ignores the failed transactions.

The breakdown of transactions for video requests is shown
in Table 2. For video requests, only about one quarter of the
transactions were complete. The main reason for this is the
large number of transactions with a gap. As YouTube traf-
fic increased on our campus, we observed that during busy
periods our monitor (when running bro) could not keep up
with the network load.6 This resulted in some transaction
summaries being incomplete due to“gaps” in a TCP connec-
tion’s sequence number space. As Table 2 indicates, most of
the gaps occur in video transactions. This happens because
the video transactions achieve much higher download rates
than most other (smaller) transactions, thus placing a higher
load on our monitor. It is important to note, however, that
most of the data we use is from the HTTP headers, and
these are seen in the first few packets exchanged in a trans-
action, when the transfer rates are lower. As a result, we are
still able to apply all of our analyses to transactions in this
category, except those analyses which require the “Transfer
Duration”.

Approximately 24% of video transactions fall into the “in-
terrupted” category. We can also use these transactions in
most analyses, as the interruptions occur after the exchange
of HTTP headers. We argue that there are two primary
reasons why a video download may fall into this category:

4The total is 100.01% due to rounding error.
5Our script expects a three packet establishment handshake
for each TCP connection: SYN, SYN ACK, ACK. If a
client’s TCP stack behaves differently from this, our script
will mark the transaction as failed.
6In the near future we plan to upgrade to a more powerful
monitor.
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Figure 2: CDF of Ratio of Download Rate to Bit
Rate for Video Transfers (Campus)

poor performance (i.e., slow download rate); or poor content
quality (e.g., the viewer does not find the content interest-
ing). Figure 2 demonstrates this quantitatively. For exam-
ple, approximately 10% of the interrupted transactions had
a slower download speed than encoded bit rate (as shown by
ratios less than one). For these transfers, the users likely be-
came impatient with the jerky video playback and aborted
the transfer. Another 80% of interrupted transfers had ra-
tios similar to the bulk of the completed transfers. For these
we hypothesize that the users simply found the content un-
interesting, and aborted the transfer some time before the
end of the video.

4.2 Data Collection of Global YouTube Usage
Using a Web crawler to collect information on all of the

videos present on YouTube is not a feasible (nor permitted)
method for examining global YouTube file characteristics.
As mentioned earlier, YouTube’s video repository is consid-
ered to be the largest on the Internet, and is still grow-
ing at an estimated 65,000 videos each day [29]. Although
techniques such as pacing would lessen the load of crawl-
ing on the YouTube system, crawling the entire collection of
videos would still take an impractical amount of time. While
methods for random sampling exist, obtaining a sufficiently
large sample of videos would require placing significant load
on the YouTube servers and violating the Terms of Use of
YouTube.7

Instead, we focus on the top 100 most viewed videos of the
day, week, month, and all time (as reported on YouTube) to
draw insights into the relationship between videos that are
globally popular and videos that are locally popular. Our
choice was also motivated, in part, by empirical evidence of
the Pareto principle (or the so called “80-20” or “90-10” rule)
in the file referencing behaviour at Web and media servers
which states 20% (or 10%) of the files on a Web server or a
streaming media server accounted for 80% (or 90%) of the
requests.

We utilize a two step approach to collect data on the top
100 videos on YouTube. First, each day we retrieve the pages
listing the most viewed videos of the day, week, month and
all time. These pages provide the video identifiers of the top
100 videos. The video identifier is an 11 character unique
identifier for the video within the YouTube system. Because
the top 100 video lists are spread over five pages with 20
videos on each page, each time we gather the identifiers we
perform 20 page loads (five for each of the four time frames).

The second step of data collection involves using APIs that

7YouTube Terms of Use: http://youtube.com/t/terms

Table 3: Summary of Local YouTube Data
Item Information

Start Date Jan. 14, 2007
End Date Apr. 8, 2007
Total Valid Transactions 23,250,438
Total Bytes 6.54 TB
Total Video Requests 625,593
Total Video Bytes 6.45 TB
Unique Video Requests 323,677
Unique Video Bytes 3.26 TB

are provided by YouTube for developers.8 The API takes
the form of an HTTP GET request to a URL with a specific
format. Using this format, arguments are passed indicating
which API function is being called along with arguments
for the function. Specifically, the “youtube.videos.get de-
tails” method provided in the API is used. Given a video
identifier and a developer identifier (associated with a user
account we created) the function returns a variety of statis-
tics on the specified video (e.g., duration, category, ratings).
This method is called for each of the identifiers collected in
the first step. This results in a total of 400 API calls each
time this querying is done. Since these API requests are
made to the YouTube site from campus, they are included
in our locally measured data. However, the probing of the
most popular videos is performed at a non-peak time and
contributes less than 1% to the data transferred in our study.
Thus, we do not filter these requests from our dataset.

5. ANALYSIS
We now present a high-level analysis of data collected for

this study. Summary statistics of the data collected from our
edge network are presented in Section 5.1. Section 5.2 de-
scribes longitudinal characteristics observed in the YouTube
traffic on our edge network. Section 5.3 discusses summary
statistics from the global YouTube data.

5.1 Local YouTube Summary Statistics
We monitored YouTube traffic to and from the University

of Calgary campus network for 85 consecutive days, start-
ing on January 14, 2007 and ending on April 8, 2007. Ta-
ble 3 presents summary statistics for this traffic. Our mon-
itoring period subsumes important transitions points in the
academic calendar including the beginning of the semester,
the mid-semester reading break, and the last weeks of the
semester; furthermore, we believe that our monitoring pe-
riod is long enough to capture longitudinal changes in the
characteristics of YouTube traffic.

In total we recorded 23,250,438 valid (i.e., non-failed) HTTP
transactions (i.e., request/response pairs). These transac-
tions account for approximately 6.54 TB of data transfer.
Only 3% of the HTTP requests were for video files; how-
ever, the corresponding HTTP responses accounted for 99%
of the total bytes transferred. Similar skewness has been
observed in other types of Internet traffic; for example, Pax-
son observed 2% of ftpdata connections accounting for up
to 80% of bytes transferred [36]. We also observed that over
50% of the video requests (and corresponding bytes trans-
ferred) were for previously requested videos. This indicates
that in-network caching has the potential to reduce band-
width demands for YouTube content.

Table 4 presents a breakdown of the HTTP request meth-

8http://www.youtube.com/dev



Table 4: Breakdown of HTTP Request Methods
Method Total % of Total

GET 23,221,168 99.87
POST 28,655 0.12
Others 615 0.01

Table 5: Breakdown of HTTP Response Codes
Code % of Responses % of Bytes

200 (OK) 75.80 89.78
206 (Partial Content) 1.29 10.22
302 (Found) 0.05 0.00
303 (See Other) 5.33 0.00
304 (Not Modified) 17.34 0.00
4xx (Client Error) 0.19 0.00
5xx (Server Error) 0.01 0.00

ods seen in the YouTube campus trace. This analysis pro-
vides insights into the activity of YouTube users on our cam-
pus network. As expected, we find that HTTP GET requests
constitute the majority of requests. This indicates almost
all requests are for fetching content from YouTube. We also
observed 28,655 HTTP POST requests. The HTTP POST
method is used by a client’s browser to place content on a
server. In YouTube’s case, POST requests are needed to
rate videos, comment on videos, and upload videos.

At first glance, the number of POSTs appears to be in-
significant; however, when considered relative to the to-
tal number of video requests (625,593), POSTs are non-
negligible. Note that the total number of video requests
reflects how many videos were watched, and one expects
user interactivity to be proportional to the frequency of use
of the YouTube site. We analyzed the content-type field of
the HTTP POST messages to understand the type of con-
tent that is being uploaded to YouTube.

The majority of the POSTs appear to be the result of
users posting comments or rating videos. We observed only
a small number of video upload attempts (133) over the
three month collection period. Since our measurements are
made at a campus edge network it is likely that we observe
fewer uploads than would be present in other edge networks
such as those that service residential users.

We believe the upload/download behaviors observed on
our campus network are similar to those of other edge net-
works as well. For example, estimates put the number of
video uploads to YouTube at 65,000 per day, compared to
100 million daily video downloads [29]. Clearly, most of the
users are consumers of content and only a handful of the
users are content producers, just as on our campus.

The HTTP response codes provide additional insights into
YouTube’s workload. The breakdown of response codes is
shown in Table 5. Response code 200 indicates that a valid
file was delivered to the client. Response code 206 indicates
partial transfer of a file because of GET request for a specific
(byte) range. Response code 304 indicates the availability of
an up-to-date cached copy of the requested file in the client’s
cache, and is obtained in response to an If-Modified-Since
request. On further analysis of the HTTP 304 responses, we
find that 40% of these were generated in response to requests
for JPEG files. This is not surprising as frequent visitors to
YouTube are likely to retrieve many of the thumbnails from
their browser’s local cache. We also find that approximately
1% of the HTTP 304’s were for Flash Video, which sug-
gests some users were re-watching selected videos. HTTP
response codes 200, 206, and 304 makeup 94% of the re-
sponses seen in our campus YouTube traffic. We also find

Table 6: Breakdown by Content Type (Status 200)
Item Images Text Applications Videos

Responses 13,217,449 2,020,436 1,828,486 556,353
Bytes (GB) 37.58 18.59 28.93 5,785.05
% Requests 75.00 11.46 10.38 3.16

% Bytes 0.64 0.32 0.49 98.55
File Size

Mean (KB) 3.18 18.62 5.84 10,110.72
Median (KB) 3.17 25.76 0.22 8,215.00

COV 0.29 2.31 0.66 0.97
Transfer Size

Mean (KB) 3.08 9.60 15.97 10,332.44
Median (KB) 3.24 7.26 21.99 8,364.00

COV 0.51 1.26 0.65 0.99

approximately 5% of the requests to be redirected to an-
other URL (response codes 302 and 303). The 303 response
codes in particular appear to be used for load balancing
purposes. For example, we observed such codes in response
to requests for video files on www.youtube.com. Each of
these requests is then redirected to a different server (e.g.,
v104.youtube.com). Overall, a majority of the requests re-
sulted in the successful delivery of the requested file to the
client. Client errors (response code 4xx) and server errors
(response code 5xx) are infrequently seen.

We also want to understand what types of files are trans-
mitted as a result of campus YouTube usage. For this anal-
ysis, we categorized all HTTP 200 response messages (i.e.,
those responses that carried full sized content data) using
information from the content-type field of HTTP responses.
The results are summarized in Table 6. The results show
that images (e.g., image/jpeg, image/png, image/gif) and
text (e.g., text/html, text/css, text/xml) makeup 86% of all
responses. Applications (e.g., application/javascript, appli-
cation/xml, application/x-shockwave-flash) and videos (video/flv)
account for 10% and 3% of the responses, respectively. As
noted earlier, videos account for almost all (98.6%) of the
bytes transferred.

The middle rows of Table 6 consider characteristics of the
distinct files that were downloaded from YouTube. As one
might expect, the video files are orders of magnitude larger
than other file types. We also find that the mean and me-
dian sizes within each category are similar to each other.
In addition, the coefficient of variation (COV) of file sizes
within the image, application and video categories are less
than one, suggesting the file sizes within these categories are
not highly variable.

The bottom rows of Table 6 show the transfer size statis-
tics. For Images and Videos, the transfer size statistics are
quite similar to the File Size statistics. For Text, the trans-
fers are mostly for a few smaller files, while for Applications,
the transfers are mostly of a few larger files. Additional in-
formation is available in Section 6.1 and Section 9.1.

5.2 Local YouTube Utilization Characteristics
Figures 3, 4, and 5 show the number of unique YouTube

users each day, the number of requests to YouTube these
users generated each day, and the amount of data transferred
by YouTube each day to our network, respectively.

The results show that the number of unique YouTube
users increases steadily for the first three weeks thereafter
increases slowly, reaching 3,000 distinct users/day in the fi-
nal week of our measurement period. Correspondingly, we
also observe an increase in the number of YouTube requests
and the amount of YouTube bytes. There are two proba-
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ble reasons for this noticeable increase in YouTube activity
in early February. First, we believe that students are more
settled by early February, following the initial assignments
of the semester. Second, during this time frame there was
increased media coverage of YouTube. At that time, several
large media companies began demanding removal of copy-
righted content from the site [34]. Simultaneously, a high
profile viral marketing campaign on YouTube raised aware-
ness of the site [11]. Traffic decreases in mid-February as a
result of reading break, when many students leave campus.

Figure 4 shows that the number of requests for video is
approximately two orders of magnitude less than the to-
tal number of requests owing to YouTube use; however, as
shown in Figure 5 video requests consistently account for
almost all of the YouTube byte transfers. Because video re-
quests account for most of the byte transfers, we focus on
these requests in the remainder of this section.

Figure 6 shows how requests for videos were handled by
YouTube’s infrastructure. Specifically, we show how many
video requests were handled by YouTube and the Limelight
CDN. The graph of bytes transferred by YouTube and Lime-
light looks very similar to Figure 6, and is therefore omitted.
We find that during our measurement period the number of
requests and bytes served from the CDN on a daily basis
remained fairly steady and typically accounted for less than
1,000 requests and 10 GB, respectively. It is likely that the
amount of YouTube traffic transferred through the CDN net-
work is intentionally limited, due to the cost incurred when
traffic is directed to it.

Figure 7(a) shows the fraction of total video requests seen
at a particular time of day, while Figure 7(b) shows the
fraction of total video requests by day of week. As ex-
pected, video requests occur with higher frequencies during
the weekdays than during the weekend. The time of day
effects, however, are somewhat intriguing. We do observe
the famous diurnal traffic pattern with more requests dur-
ing day time than during night time; specifically, we find
that there is a steady rise in YouTube traffic from 8 am to
1 pm, followed by a steady state of peak traffic between 2
pm and 6 pm, and subsequently, a steady decline in traffic
from 7 pm to 7 am. Nevertheless, we find there is a non-
negligible amount of video traffic late at night, specifically
between midnight and 4 am. YouTube traffic this late at
night is likely to originate from the university dormitories.

 0

 0.025

 0.05

 0.075

 0.1

 23 20 16 12 8 4 0

F
ra

ct
io

n 
of

 V
id

eo
 T

ra
ns

ac
tio

ns

Hour (MT)

 0

 0.05

 0.1

 0.15

 0.2

SatFriThuWedTuesMonSun

F
ra

ct
io

n 
of

 V
id

eo
 T

ra
ns

ac
tio

ns

Day

(a) (b)

Figure 7: YouTube Traffic Patterns: (a) by time of
day; (b) by day of week

Table 7: Summary of Global YouTube Data
Time Frame Daily Weekly Monthly All Time

Unique IDs 7,515 2,288 586 149
View Count

Average 21,085.83 139,628.08 736,081.33 5,568,708.36
Median 13,117 92,361 521,774 4,161,956
COV 1.71 1.06 0.98 0.80

Rating
Average 4.20 3.93 3.85 4.37
Median 4.59 4.28 4.17 4.57
COV 0.24 0.23 0.24 0.16

Duration (s)
Average 262.00 206.10 162.03 192.62
Median 182 133 138 199
COV 1.05 1.29 0.77 0.58

5.3 Global YouTube Characteristics
Table 7 summarizes statistics observed by monitoring the

YouTube site, each day for 85 days, for the 100 most popu-
lar videos in the day, week, month, and all time categories.
For each category, we collected 8,500 video IDs. We find
that the daily top 100 list of videos changes quite often,
whereas the list of videos in the monthly and all time cate-
gories change rather slowly. Our results indicate that entry
into the all time category requires, on average, 8 times more
views than those in the monthly category. We also find that
popular videos in any of the categories considered have a
high rating (e.g., 4 or more out of 5); the mean and me-
dian ratings are very similar, and the COV of the ratings is
fairly low. Finally, our results indicate that the videos with
longer term popularity tended to have durations well below
the maximum of ten minutes. This can be seen in the mean
and median values for the video durations in the weekly,
monthly, and all time categories, which are in the 2.5 to 3.5
minute range. It is important to point out that the converse
(that short duration videos are more likely to be popular) is
likely not true, although we have not explored this.

6. VIDEO FILE CHARACTERISTICS
In this section, we characterize the YouTube video files

seen in the local and global data sets. Specifically, the fol-
lowing characteristics are studied: file sizes, video durations,
video bit rates, age of videos, video ratings, and video cat-
egories. Where appropriate, we comment on characteristics
of non-video files and point out similarities as well as differ-
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Figure 9: Histogram of Video Durations

ences with respect to traditional Web and media streaming
workloads.

6.1 File Size
Unique file sizes for video and non-video content types are

considered in Figure 8. Since file size is estimated using the
content length field of the HTTP header, we consider only
transactions with status code 200. We find that the number
of unique files for image and video content types is signif-
icantly larger than the number of unique files for text and
application content. We observe 2,897,298 unique files for
images and 322,382 unique files for videos. In contrast, we
only observe 975 unique text files and 174 unique application
files. This suggests that the same framework of HTML and
Javascript pages are being used to display a wide variety of
images (mostly thumbnails) and videos.

YouTube’s stated policy (as of this writing) is to impose a
limit of 100 MB on the size of video files.9 Nonetheless, we
found a small fraction, approximately 0.1%, of the videos to
be larger than 100MB, thus indicating that the file size limit
is not strictly enforced. Furthermore, not many extremely
large sized video files appear to be posted and/or accessed
by campus users; only 10% of the videos requested are larger
than 21.9 MB. We find that unique file sizes for video are
orders of magnitude larger than those observed for other
content types. These larger files will require more storage
space than traditional text based Web content.

6.2 Video Duration
In this section we analyze the duration of video files seen

in our traces. Durations for the globally popular videos
were retrieved using the YouTube API, as described in Sec-
tion 4.2. Since our local data collection process does not
provide the duration of each video, we also used YouTube’s
API to obtain this information for data collected locally.
Figure 9 shows a histogram plot of the video durations in
each of the different categories.

9http://www.google.com/support/youtube/bin/answer.py?
answer=55743& topic=10527
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YouTube places a cap of 10 minutes on video length.9

However, users with “director” accounts are able to post
content that is longer than 10 minutes. In our analysis,
we noticed a few videos which significantly exceeded the 10
minute limit. Specifically, we observed a video that reported
a length of over 60,000,000 seconds. Clearly, this is not a
valid video length. The user with this misreported video
length had other misreported durations in their uploaded
videos. We are unable to determine the precise cause of
these incorrect video durations but suspect it occurs when
the video is converted from its original format into Flash
Video. In order to limit the impact of these incorrect video
lengths, we focus our analysis on videos with lengths of less
than 2 hours. This captures 99.9% of the videos observed
on campus during our measurement period. Not including
videos that are longer than 2 hours, we find that the mean
video duration observed on campus is 4.15 minutes with a
median of 3.33 minutes. The COV is approximately 1.

Figure 9 also shows that videos with longer-term popu-
larity tend to be shorter than others. For example, we find
that 52.3% of the videos in the all time popular category
are between 3 and 5 minutes long. Compared to videos in
the all time category, we find longer duration videos in the
daily and weekly popular categories. Table 7 shows that as
the time frame of popularity increases we observe a decrease
in the coefficient of variation from 1.29 in the weekly most
popular list to 0.58 in the all time most viewed list. This
decrease in variability is also evident in the spike in the his-
togram for all time most popular videos between 3 and 4
minutes.

Our analysis indicates that YouTube videos are slightly
longer than videos found on the Web by Li et al. [28]. Their
study had found that the median size of video clips on the
Web was about 2 minutes.

6.3 Bit Rate (Campus)
The encoded bit rate of a video is an indicator of its play-

back quality. Understanding if the bit rate (and thus play-
back quality) is too low is of interest for several reasons.
First, the popularity of YouTube might decline over time if
other video sharing sites offered videos encoded at a higher
bit rate. Second, video file sizes might increase in the future,
if higher bit rates are demanded by users.

Unfortunately, the bit rate information is not readily avail-
able for YouTube videos. However, for the videos accessed
on our campus network, we were able to estimate the en-
coded bit rate as the ratio of a video’s file size (obtained
from the Content-Length: header) and its duration (re-
trieved using the YouTube API). The results are shown in
Figure 10.
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From Figure 10 several observations can be made. We
find that, among the videos accessed, only a very small
number are encoded at extremely low bit rates (e.g., 10’s
of Kbps). This suggests dial-up users are not the target au-
dience. Similarly, we find very few videos encoded at high
bit rates (e.g., above 1 Mbps). The mean and median bit
rates of the videos accessed on campus was 394 Kbps and 328
Kbps, respectively. Approximately 97% of the videos seen
on campus have bit rates below 1 Mbps. A large number
of the videos, 62.6%, have bit rates between 300 Kbps and
400 Kbps. Our results show that most videos are encoded
to enable the typical broadband user to begin playback with
minimal startup delay. It is interesting to compare our re-
sults with those of Li et al. [28] who had found the median
bit rate of stored video files on the Internet to be around 200
Kbps, with approximately 30% of the content encoded at less
than 56 Kbps. Our results show that YouTube bit rates are
somewhat higher than those reported for on-demand stream-
ing in earlier work, possibly due to the improved broadband
connectivity of the end users.

6.4 Age of Videos
Since YouTube (following the Web 2.0 model) allows all

users to publish videos to their site, there is always new
content to be viewed. In this section, we investigate how
old content consumed by users is. The first measure we
consider is the age of videos. We define the age of a video
as the difference between the time the video was uploaded
(gathered from the API) and when the video was retrieved
from YouTube (or observed on a most viewed list in the case
of globally popular videos).

Figure 11 graphs the age of videos in the weekly, monthly,
and all time most viewed lists as well as the age of videos
viewed on campus. Note that videos in the daily most pop-
ular list tend to be less than 3 days old and are not shown
on the graph. As expected, we observe that videos in the
weekly and monthly most viewed lists tend to be under 1
week or 1 month old, respectively. In contrast, videos in
the all time most viewed videos tend to be older. Interest-
ingly, we also observe older videos on campus where 73%
of videos are over 1 month old and 5% are over 1 year old.
This suggests that users on campus enjoy content that has
been around for a while.

To further investigate how“current”videos viewed by cam-
pus users are, we consider how long it has been since a
viewed video has been “updated”. An update may include
user interactions with a video such as adding comments, etc.
The time a video has been updated can easily be retrieved
using the YouTube API. Figure 12 shows the empirical dis-
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tribution of the time since a video has been updated (in rela-
tion to when it was retrieved) for videos viewed on campus.
While videos viewed on campus are generally not the most
recent content, they are usually recently updated. We find
that 95% of videos viewed on campus have been updated in
the last month.

The time since modification of a file is defined as the dif-
ference between the time a file was last modified (retrieved
from the HTTP header) and the time it was served to the
user. The time since modification is an important measure
of content age to study as it directly impacts the effective-
ness of caching where out of date content requires refetching.
In Figure 13 we consider the time since modification for var-
ious content types on campus. We observe that video and
image files remain unmodified for longer periods, with 50%
of videos not being modified in the past 89.9 days and 50%
of images not being modified in the past 99.3 days. Ap-
plication and text files are updated more frequently, with
50% of text files being modified in the past 13.7 days and
50% of application files being modified in the past 16.8 days.
This implies that relative to application and text content,
videos and images remain fairly static, thus requiring less
refetching to keep them up to date.

6.5 Rating of Videos
An important part of Web 2.0 is user interaction. One of

the interactive features of YouTube is a video rating system
where users may rate videos on a scale of 0-5“stars” (0 being
low and 5 being high). The average rating of a video provides
insight into how well liked it is by users. In this portion of
our characterization of YouTube traffic we examine whether
users enjoyed the content they were watching. The answer
to this question is generally yes, as illustrated in Figure 14
where we present a histogram of ratings for unique videos.

For all sets of videos we observed, the average rating is 3
or higher over 80% of the time. The mean rating of videos in
the most popular lists is consistently near 4 with very little
variation. We make similar observations on campus where



Table 8: Summary of Video Categories
Category Campus All Time Month Week Day

Autos & Vehicles 2.56 0.79 3.01 2.67 1.94
Comedy 13.60 25.40 18.88 13.90 10.36
Entertainment 23.97 22.22 21.69 19.31 20.46
Film & Animation 7.05 7.14 5.62 5.23 6.70
Gadgets & Games 4.09 0.79 2.81 4.93 6.72
Howto & DIY 2.38 0.00 1.61 2.91 2.02
Music 22.35 30.95 20.28 11.88 9.57
News & Politics 3.34 3.17 5.42 9.92 10.02
People & Blogs 6.09 5.56 10.04 9.98 8.72
Pets & Animals 1.87 3.17 1.81 1.84 1.19
Sports 11.26 0.00 7.43 16.64 21.69
Travel & Places 1.45 0.79 1.41 0.77 0.62

the mean rating is 4.18 and the coefficient of variation is
0.32.

As YouTube is an ever expanding and enormous video
library, it is certainly very difficult to browse through all
available content and find which ones to watch. Therefore,
one might expect ratings to aid users find content of interest
among the large volume of content available at YouTube.

6.6 Video Category
The myriad videos available from YouTube are catego-

rized by YouTube into 12 categories, ranging from Autos &
Vehicles to Travel & Places. All 12 categories are listed in
Table 8. We note that all of the categories we consider ex-
isted for several months before our measurement period. In
this section we investigate the types of videos people are
watching on YouTube. We do this utilizing information
from YouTube’s API. Table 8 summarizes the percentage
of videos observed in each category, both on campus as well
as in the most popular (global) lists.

We find that in the daily and weekly data sets, popular-
ity of categories is more uniform than in longer time frames
where clear peaks emerge, specifically around comedy, en-
tertainment, and music (shown in bold). What is popular in
the different time frames also varies. On a daily basis, en-
tertainment and sports are most popular, followed by news
and comedy. This suggests daily popular events may center
around current events in news and sports (shown in italics).
As the time frame considered increases, we observe most of
the videos are comedy, entertainment, and music. Because
these types of content are often enjoyable regardless of their
recency they lend themselves well to being viewed a large
number of times. On campus we observe similar trends,
with the top 4 categories being, entertainment, music, com-
edy, and sports.

It is also interesting to note which categories are not pop-
ular. In most cases, the least popular categories are Autos
& Vehicles, Howto & DIY, Pets & Animals and Travel &
Places. The nature of these categories suggests users view-
ing videos on the YouTube Web site are looking for enter-
tainment rather than reference information on specific top-
ics. This is in contrast to other Web 2.0 Web sites such as
Wikipedia where users are usually looking for information.

7. FILE POPULARITY (CAMPUS)
File popularity has important implications for systems de-

sign and planning. In this section we consider two different
approaches to analyzing file popularity, namely Zipf analysis
and concentration analysis, to understand the video refer-
encing behaviour of YouTube users on our campus.

7.1 Zipf Analysis
Zipf’s law states that if objects are ranked according to the

frequency of occurrence, with the most popular object as-
signed rank of one, the second most popular object assigned
a rank of two, and so on, then the frequency of occurrence
(F ) is related to the rank of the object (R) according to the
relation,

F ∼ R−β

where the constant β is close to one [44]. Zipf’s law has
previously been used to model Web document references [7,
8, 31] and media file references [14,15,38,43].

The simplest verification of the applicability of Zipf’s law
is to plot the rank ordered list of objects versus the respec-
tive frequency of the object on a log-log scale. On a log-log
scale, the observance of a straight line is indicative of the
applicability of Zipf’s law. The plot in Figure 15 shows
that video references at our campus follow a Zipf-like dis-
tribution. We determined the exponent β by performing
a regression analysis. We find β = 0.56 fits our empirical
observations very well with an R2 goodness of fit value of
0.97. This β value is slightly lower than the values reported
by Breslau et al. [8] and Mahanti et al. [31] for Web proxy
workloads (0.64-0.83).

Two factors contribute to the observed Zipf-like behavior.
First, we believe that some of the YouTube content viewed
on campus is genuinely popular among multiple users. An-
other potential factor is YouTube’s infrastructure which aims
to disallow downloading of videos. As a result, users wishing
to view the same content again must return to YouTube and
issue another request.

7.2 Concentration Analysis
Another approach to understanding how skewed the refer-

ences are toward certain videos is the concentration analysis.
The objective of this analysis is to determine the fraction
of the total references accounted for by the most popular
videos. This technique of analyzing skewness in the referenc-
ing behaviour was applied previously to understand mem-
ory and file referencing behaviour [10, 32], Web document
referencing behaviour [7,31], and more recently to the refer-
encing behaviour of media files on an on-demand streaming
system [43].

Figure 16 shows the cumulative distribution of the number
of references and corresponding bytes for videos which are
sorted in descending order according to their observed fre-
quency of reference. We find that for video requests made by
the campus community this principle does not hold. In fact,
the top 10% of videos only account for 39.7% of the videos
and the top 20% account for 52.4%. Clearly, the Pareto rule
(discussed earlier) which was observed in Web and media
server workload studies [7, 31, 43], is generally not applica-
ble for the campus YouTube video workload. However, our
observed video request pattern is similar to file access pat-
terns of Web proxy workloads, as one would expect given
the lower β values [8, 31].

We also analyzed occurrence of one-timer videos, that is
videos that are requested only once in the entire data collec-
tion period. We found that 220,389 one-timer videos. These
one-timers account for 68.1% of the videos and 35.3% of
the total video requests, respectively. In terms of bytes,
one-timers account for approximately 13.6% of the total
video bytes transferred. In a similar analysis of Web doc-
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uments, it was found that approximately 15 − 30% of the
documents referenced at a Web server and approximately
70 − 75% of the documents referenced at a Web proxy are
one-timers [6, 7, 31].

A plausible explanation for why we do not observe the
Pareto rule in our video workload is the diversity of content
available on YouTube. YouTube offers many more (prob-
ably several orders of magnitude more) videos than tradi-
tional media-on-demand servers analyzed in the literature.
More choices may translate into fewer requests per video as
videos become more specialised and have more limited au-
diences (e.g. home videos). The effects of the large amount
of available content are amplified by our edge network point
of view. At the central YouTube server the amount of con-
tent is quite large, but so is the user population. At an edge
network, the number of users is low when compared with
the number of global users. This smaller population still
has access to the large repository of content available on the
YouTube site, likely resulting in less concentration in file ac-
cessing behavior. Similar observations have been made for
Web proxy workloads [31].

8. LOCALITY CHARACTERISTICS
In this section, we consider the temporal locality charac-

teristics of YouTube videos accesses on the campus network.
Temporal locality is the idea that events in the recent past
are good indicators of events in the near future. This prin-
ciple has been applied in operating systems where it has
been found that memory blocks referenced by a program
in the immediate past and near future exhibit high correla-
tions [19]. Similarly, locality has also been found to occur in
Web server and proxy document reference streams [7,30,31].
In this section, we consider temporal locality using working
set analysis, as has been applied in a Web context. We
also examine locality between the most popular videos on
YouTube and videos that are viewed on campus.

8.1 Working Set Analysis
Working set analysis is often used to understand how pop-

ularity of objects changes with time. We consider absolute
drift in the working set relative to the first weeks in Fig-
ure 17. We observe that the number of requests in common
with the first weeks is sensitive to the lower request fre-
quencies that we observe on weekends. However, during the
week when there are more requests we observe more simi-
larity between the first weeks and the daily requests. When
considering the set of videos observed in the first week, we
find that approximately 500 of the videos persist throughout

our measurement period. For the sets of videos observed in
the first 2 and 3 weeks we observe approximately 900 and
1200 persistent videos, respectively.

Figure 18 considers short term temporal locality in the
set of videos viewed each day (working set). We find that
there is not a very strong correlation between videos viewed
on consecutive days. In general, 10% of the previous days
videos are viewed again on the following day. An interesting
trend in our working set analysis is similarity between the
number of videos viewed on a given day and the observed
short term temporal locality. At the beginning of our mea-
surement period when there is less traffic, temporal locality
is usually close to 5%. However, as interest in YouTube
increased in early February we noticed a rise in temporal
locality to 10%. A similar trend is evident on weekends
when video accesses are less numerous. It is possible that
if YouTube traffic were to increase again, commonality be-
tween consecutive days may also increase, making day to day
caching a viable strategy for limiting the impact of YouTube
on network resources.

Absolute growth in the working set is considered in Fig-
ure 19. We observe that the number of videos viewed on
campus increases faster than the set of unique videos that
are observed. By the end of our trace period the total
number of videos viewed is 625,593 whereas the number
of unique videos viewed is 323,677. This large difference
between unique content and total content suggests that if
a cache were allowed to cache all video content for an in-
definite period of time, the savings in network bandwidth
resources could be significant (a factor of 2 reduction in our
case). As is seen in Table 3, this would translate into a
savings of 3.19 TB.

8.2 Global Versus Local Popularity
From a service provider’s perspective, global activity is

often of greater importance than local activity. However, as
was the case with this study, the availability of information
about global activity may be limited or even non-existent. In
this section, we examine what global information we might
infer by studying edge network activity.

We analyze the relationship between global popularity and
files that are viewed on campus in Figure 20. We find that
approximately half of the top 100 videos are viewed on cam-
pus; however, they do not contribute significantly to the
total videos viewed on campus on a daily basis. On most
days the popular videos account for less than 1% of the
videos viewed on campus. This may be as a result of users
not browsing these most viewed lists when they are visit-
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Figure 20: Overlap Between Glob-
ally Popular and Campus Videos

ing YouTube. It may be the case that users are directed
to YouTube by friends sending them specific videos, rather
than going there to browse the large repository of videos.
With the recent surge in popularity of Web 2.0 social net-
working sites such as Facebook which allow users to embed
YouTube videos into their profile page, it is likely that the
number of users who browse the most popular lists will re-
main low while the number of users in general will increase.

9. VIDEO TRANSFER CHARACTERISTICS

9.1 Transfer Size
We analyzed the transfer sizes of video and non-video con-

tent accessed from YouTube by our campus clients. Trans-
fer sizes are also estimated using HTTP responses content
length field. Estimation is required because of gapped trans-
missions, where calculating the amount of data transferred
using TCP sequence numbers is not possible. Consequently,
we restrict attention to HTTP responses containing full size
content (i.e., status code 200).

Figure 21 presents the cumulative distribution of video
and non-video transfer sizes. Similar to file sizes, we observe
video content transfers that are orders of magnitude larger
than transfers for non-video content from the YouTube site.
Video transfer sizes range from very small to very large val-
ues. Typically, the small sized transfers represent short du-
ration video clips and the large size transfers represent long
duration video clips.

Most of the images transferred from YouTube are JPEG
thumbnails that appear on almost every page of the YouTube
site. Our results suggest that these images are typically
less than 5KB in size. Surprisingly, the text transfers (e.g.,
HTML, CSS, and XML files) are larger than the images.
Many Web 2.0 sites, including YouTube, are using Asyn-
chronous Javascripts and XML (AJAX) techniques to de-
sign interactive Web sites. Typical use of AJAX involves
bundling Javascript with HTML, which is likely the reason
why we observe transfers of text files that are generally larger
than images.

A spike is observed in transfer size distribution for ap-
plication content around 26 KB. We have verified that this
spike is caused by transfer of a SWF media player file (e.g.,
player2.swf, p.swf). Steps in the lower portion of the
graph are due to transfers of Javascript objects. These
Javascripts are used for tasks such as managing comments,
the rating system, and embedding the flash player.

9.2 Transfer Duration
In the preceding section, we observed that video content

transfer sizes are orders of magnitude larger than non-video
content served by YouTube. These larger transfers not only
require increased storage capacity at servers, but also more
processing power to handle the longer durations required to
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transmit the larger content. Figure 22 shows the CCDF of
transfer durations for the various types of content served
by the YouTube site. We observe that video transfers have
durations that are orders of magnitude larger than other
content types. While text, image and applications have me-
dian durations of less than 1 second, video transfers exceed
1 second 96.6% of the time. The mean transfer duration
for video content is 104.4 seconds, which is orders of mag-
nitude larger than the means observed for the other content
types. The longer time required for transferring video con-
tent implies that as YouTube becomes more popular, more
processing power will be required at servers to handle mul-
tiple concurrent requests for video content.

10. DISCUSSION
In this section we describe the significance of the results

in Sections 5 through 9. In Section 10.1 we discuss issues
for (edge) network providers. In Section 10.2 we examine
implications for service providers.

10.1 Implications for Network Providers
The most obvious issue created for network providers by

Web 2.0 is the increased bandwidth consumption for trans-
porting large multimedia objects (e.g., videos, high reso-
lution photos). Caching and CDNs, two solutions utilized
for “traditional” Web workloads, are also suited to Web 2.0
workloads, although some differences exist. We examine
each of these potential solutions individually.



Web caching emerged in the mid 1990’s as an approach for
reducing the bandwidth consumption of network links, re-
ducing the load on origin servers, and improving the end user
experience by reducing the retrieval times of static Web ob-
jects. Over time numerous incremental improvements were
made, such as enhanced (cached) object replacement algo-
rithms and cache consistency techniques. Since Web 2.0
utilizes the same application layer protocol (HTTP) as the
“traditional” Web, existing Web caching infrastructures can
benefit Web 2.0 as well. However, such infrastructures may
not be optimally suited for Web 2.0 workloads, and utiliz-
ing the same infrastructure for both may degrade the per-
formance for both. We are not suggesting that a separate
physical infrastructure is needed, but separate logical infras-
tructures may provide both with performance isolation from
each other.

There are a number of reasons Web 2.0 workloads could be
treated differently from traditional Web workloads. First,
the number of large multimedia files is likely to be much
greater for Web 2.0 workloads. These files will account for
the majority of the bytes transferred over the network, even
if they are only a small percentage of the total requests.
In order to reduce (peak) bandwidth consumption, more
of these objects must be cached, which may displace many
smaller objects. This could degrade the experience for many
other users, as cache hit rates decrease. Second, larger cache
sizes may be required, as the breadth in interests may re-
quire many more objects to be cached in order to achieve
a reasonable hit/byte hit rate. Third, the object replace-
ment algorithm of choice may differ; while some characteris-
tics (e.g., recency, frequency) may still be important, others
(e.g., size) may be less useful. In addition, the additional
meta-data available (e.g., user ratings, content topic, etc)
with Web 2.0 applications will provide important informa-
tion, and should be exploited to improve the effectiveness of
caching algorithms.

In the late 1990’s, Content Distribution Networks (CDNs)
emerged. CDNs provided many of the benefits of Web caching,
and also gave content providers more control over their con-
tent. In particular, CDNs enabled a provider to improve
the overall browsing experience for their users. CDNs are
a potential alternative to Web 2.0 caching for edge network
providers. For example, our campus hosts nodes from at
least one CDN; requests for files on this CDN can be served
locally and generate little or no traffic on our external In-
ternet link. If YouTube traffic became significant enough on
a network link (it is currently responsible for 4.6% of traffic
on our campus Internet link), a network provider could con-
sider hosting one or more nodes for the Limelight CDN. Due
to the breadth of content, and the reduced concentration of
reference we have shown, prefetching/preloading techniques
to populate the storage on a CDN node may be relatively
ineffective. At the very least, such techniques will need to
leverage the meta-data that is available, and place greater
importance on local interest than global popularity.

10.2 Implications for Service Providers
A fundamental difference between the traditional Web

and Web 2.0 is that the content creation process is now
widely distributed, and is (mostly) independent of the con-
tent hosting (which is done by a service provider such as
YouTube). This difference has several implications for the
service provider, who must plan, purchase, install, operate

and maintain the central infrastructure used by the site.
Two important issues are storage and computation require-
ments; we discuss each in turn.

User interest in multimedia content is not new; what has
changed is the availability of content. In the traditional
Web, the availability of interesting multimedia content was
often limited (free or otherwise). Only in recent years has
multimedia content began to appear online, as business mod-
els were put in place (e.g., iTunes). With Web 2.0, social
networking effects can result in large user communities grow-
ing around a service. Given the relative ease with which a
person can now create digital content (text, photos, videos,
etc.), coupled with human interest in retaining such infor-
mation indefinitely, it seems that there is sustainable de-
mand for continued growth in storage capacity. For exam-
ple, YouTube receives an estimated 65,000 new videos per
day [29]; with an average size of 10 MB for each video (Ta-
ble 6), this means YouTube’s video repository grows by ap-
proximately 19.5 TB per month! Furthermore, if the user
base increases, a larger number of users start to contribute
content, or if longer/larger videos are permitted, the rate of
growth could increase further. In addition, since much of
the content is likely to be unpopular (the long tail effect),
it will be important to minimize the cost for storing that
content. This suggests high capacity, low cost disks (e.g.,
SATA) with less redundancy than might be used for hosting
traditional Web sites.

Workloads for sites such as YouTube also have implica-
tions for the choice of server used to operate the service.
For example, serving large objects such as videos utilizes
more CPU cycles and takes a longer duration to complete
than serving small (static) objects. Since servicing large
transactions can occupy an HTTP server process or thread
for longer periods of time, this can limit the concurrency
of the server. Tuning the appropriate parameters on the
HTTP server is only one issue to consider. Such workloads
should be better suited to multi-core systems than tradi-
tional single-core systems, which can better support large
numbers of processes or threads in parallel. In addition,
large memory configurations may improve performance, as
the working sets are large. I/O performance will also be im-
portant, as the breadth of requests (and available content)
means many requests will be served from disk.

11. CONCLUSIONS
With the rise of Web 2.0 technologies on the Web, there

is a need to understand their workload patterns, in order
to plan, design, and build more efficient delivery infrastruc-
tures. Popular Web 2.0 sites, such as YouTube and Flickr,
support multiple authors posting and sharing large media
files; this places significant demand on server and network
resources.

We examine the immensely popular video sharing Web 2.0
site, YouTube. The popularity of YouTube, combined with
the amount of data transferred by it, poses many challenges
to measurement of its long-term behavior. To address these
challenges, we take a multi-level approach to measurement,
observing YouTube traffic locally in a campus setting as well
as examining over time the most popular videos on the site.

After an extensive analysis of the YouTube workload, we
find that there are (not surprisingly) many similarities to
traditional Web and media streaming workloads. For exam-
ple, access patterns are strongly correlated with human be-



haviors, as traffic volumes vary significantly by time-of-day,
day-of-week, as well as longer term activities (e.g., academic
calendars). Similarly, video files are much larger than files of
other types, and some videos are more popular than others.
These and other characteristics suggest that caching should
improve the performance and scalability of Web 2.0. How-
ever, there are differences as well. In particular, enabling
anyone (and everyone) to publish content means growth in
content will not only be larger than for traditional Web and
media, but sustainable. This will place greater strain on cen-
tralized resources, and require decentralized approaches such
as caching and CDNs. Furthermore, the breadth and depth
of available content reduces the concentration of references
in the access stream, which can reduce the effectiveness of
caching and prefetching strategies. However, the increased
availability of meta-data in Web 2.0 (a direct result of so-
cial networking) can and should be exploited to make such
techniques more effective.

As future work we plan to upgrade to a more powerful
monitor platform. This should enable us to monitor all of
the campus Internet traffic, not limit us to a static set of IP
addresses, and reduce or potentially eliminate the “gapped”
transactions. Our plan is to decompose all of our campus
Internet traffic, with a focus on interesting new applications
such as YouTube, MySpace, and Flickr. As we develop a
bro script for this work, we intend to reduce the number
of connections that fail to parse, if at all possible. If feasi-
ble from an overhead and privacy perspective, we will also
collect additional information; in particular, HTTP headers
such as Cache-Control: and Location:.
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