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Abstract
Models of Internet routing are critical for studies of Internet secu-
rity, reliability and evolution, which often rely on simulations of the
Internet’s routing system. Accurate models are difficult to build and
suffer from a dearth of ground truth data, as ISPs often treat their
connectivity and routing policies as trade secrets. In this environ-
ment, researchers rely on a number of simplifying assumptions and
models proposed over a decade ago, which are widely criticized for
their inability to capture routing policies employed in practice.

In this study we put Internet topologies and models under the
microscope to understand where they fail to capture real routing
behavior. We measure data plane paths from thousands of vantage
points, located in eyeball networks around the globe, and find that
between 14-35% of routing decisions are not explained by existing
models. We then investigate these cases, and identify root causes
such as selective prefix announcement, misclassification of under-
sea cables, and geographic constraints. Our work highlights the
need for models that address such cases, and motivates the need for
further investigation of evolving Internet connectivity.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Protocols
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1. INTRODUCTION
Research on existing and new protocols on the Internet is chal-

lenging because key aspects of the network topology are hidden
from public view by interdomain routing protocols. Further, de-
ploying new protocols at Internet scale requires convincing large
numbers of autonomous networks to participate. As a result, net-
working researchers rely on assumptions, models, and simulations
to evaluate new protocols [13, 26], network reliability [20, 41], and
security [1, 16, 24].

Our existing models of interdomain routing [11], however, have
important limitations. They are built and validated on the same
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incomplete topology datasets, typically routes observed via route
monitors such as RouteViews and RIS [33, 39]. These vantage
points expose a large fraction of paths from global research & ed-
ucation networks (GREN) and core networks, but they are incom-
plete in two keys ways. First, they expose few paths to and from
eyeball and content networks. Second, they do not expose less pre-
ferred paths that would be used if the most preferred path was not
available. As a result, they do not capture partial peering, more
complex routing policies based on traffic engineering, or load bal-
ancing and the rich peering mesh which exists near the edge of the
network [35].

While limitations of our existing models are well known [27,29,
35]–and are even being addressed in recent work [15]–we lack a
solid understanding of how much these limitations impact our abil-
ity to accurately model the interdomain routing system. Recent
work has attempted to address this issue by observing destination-
based routing violations in control plane data [28] and by surveying
a population of network operators about their policies [12]. How-
ever, these approaches are limited in terms of scale and their ability
to observe behavior at the network edge.

In this paper, we take a systematic approach to understand how
our models of routing policies [11] hold in practice. We leverage
a combination of data plane measurements covering the network
edge (Section 3.1) and control plane experiments which allow us
to directly measure relative preference of routes (Section 3.2). We
create a methodology that accounts for numerous potential causes
of violations to our assumptions including sibling ASes [4], com-
plex AS relationships [15], prefix-specific routing policies, and the
impact of geography. We investigate the prevalence of each of these
causes in AS-level paths observed via measurements of the data and
control planes.

We revisit generally held assumptions and models of Internet
routing. Our goal is not to measure a complete Internet topology;
rather, we seek to improve our understanding of routing decisions
made by ASes when routing their traffic. Towards this goal we
make the following observations for our measured paths:
• Known hybrid and partial transit relationships (e.g., those ex-

plored in [15]) contribute a surprisingly small amount to unex-
pected routing decisions.

• Per-prefix routing policies appear to explain 10-20% of unex-
pected routing decisions, where an AS chooses a longer or more
expensive path than our model predicts.

• We find that some large content providers like Akamai and Net-
flix are destinations for a large fraction of unexpected routing
decisions (21% and 17%, respectively).

• Routing decisions vary based on geography. We find that paths
traversing multiple continents deviate from our models more,
owing to undersea cable ASes which are not accounted for in



our models. We also observed a tendency for ASes to prefer
non-international paths when endpoints are in the same country.

Our results highlight areas where more investigation would yield
the largest payoff in terms of improving our accuracy when mod-
eling AS relationships and routing policies. We also identify
key areas, specifically investigating prefix-specific routing policies,
where additional vantage points and looking glass servers could im-
prove the fidelity of our AS topology data.

2. MODELING INTERDOMAIN ROUTING
The now standard model of routing policies was developed

by Gao and Rexford [10, 11] based on seminal work by Grif-
fin, Sheppard, and Wilfong [17] and Huston [18, 19]. In this
model, ASes connect to each other based on business relationships:
(1) customer-provider, where the customer pays the provider, and
(2) peer-to-peer, where the ASes exchange traffic at no cost. This
model gives the following view of local preferences and export
policies, based on the economic considerations of ASes:

Local Preferences. An AS will prefer routes through a neigh-
boring customer, then routes through a neighboring peer, and then
routes through a provider. In other words, an AS will prefer cheaper
routes.

Export Policy. A customer route may be exported to all neigh-
boring ASes. A peer or provider route may only be exported to
customers.

This model is sometimes augmented with the assumption that
ASes only consider the next hop AS on the path when making their
routing decisions. This simplifies analysis and makes debugging
more tractable [20]. Simulation studies also often restrict path se-
lection to the shortest among all paths satisfying Local Preference
and use tie-breakers to induce unique routing decisions when AS
path lengths are same [13, 14].

While the above model and variations thereof have been used in
many studies (e.g., [1, 13, 16, 21, 41]), it is well known that this
model fails to capture many aspects of the interdomain routing sys-
tem [27, 29, 35]. These aspects include AS relationships that vary
based on the geographic region [15] or destination prefix, and traf-
fic engineering via hot-potato routing or load balancing.

Prior work has used traceroute measurements and BGP data to
address some of these issues (e.g., [27, 29]); however, these mea-
surements only offer a glimpse into ASes’ routing preferences.
Namely, they expose only the set of paths that are in use at the
time of measurements. In contrast, we use active control plane ex-
periments (PEERING [37]) to expose less preferred paths. Further,
these datasets have poor or no coverage of paths used by edge net-
works [7]. On a smaller scale, network operators were surveyed
about their routing policies to better understand how our models
correspond to practice [12], but the scale and representativeness of
a survey approach makes generalizing these observations infeasi-
ble.

3. METHODOLOGY
We aim to understand the gap between interdomain routing mod-

els and empirically observed behavior on the Internet. Our method-
ology combines two measurement techniques to gain better visibil-
ity into interdomain routing policies. First, we passively observe
routing decisions on paths towards popular content networks (Sec-
tion 3.1). We leverage the RIPE Atlas platform which provides a
large collection of vantage points located around the world for our
traceroute measurements. We thus observe routing decisions for
broad range of hosts from variety of vantage points. One limitation

of this approach lies in its passiveness as it only provides informa-
tion about paths that are in use at the time of measurements. We
do not get any information about the alternate paths available to
an AS. Our second technique (Section 3.2) overcomes the above
mentioned limitation and exposes less preferred paths for different
ASes. We use PEERING [2, 37, 40] to selectively poison BGP an-
nouncements and force ASes to choose an alternate path, then we
use RIPE Atlas probes as vantage points to run traceroutes towards
poisoned prefixes to observe these alternate paths. This approach
of actively probing routing decisions enables us to discover less
preferred paths and also reverse engineer the BGP decision pro-
cess. However, the PEERING platform is currently limited to few
locations from which we can send poisoned announcements.

3.1 Passively observing route decisions
It is well known that a disproportionately large amount of Inter-

net traffic originates from a few popular content providers [23,36].
However, there is little empirical data about the paths this traffic
takes [23]. We target these paths with our measurements. Note
that it is not our goal to observe routing decisions for the entire In-
ternet. Rather, we focus on the more tractable task of measuring
a subset of important Internet paths (those carrying most traffic)
from a diverse set of vantage points, and putting those paths under
the microscope to understand how and why they differ from paths
predicted by routing models.

Selecting content providers. We consider a list of the top appli-
cations from Sandvine [36] and top Web sites from Quantcast [31].
From these lists, we isolate top HTTP and non-HTTP hosts in terms
of number of downstream bytes and number of visits. Finally,
we arrive at a list of 34 DNS names representing 14 large content
providers.

AS type Probes Distinct ASes Distinct Countries
Stub-AS 787 333 106
Small ISP 581 188 78
Large ISP 56 109 51
Tier 1 69 8 3

Table 1: Distribution of selected RIPE Atlas probes.

Vantage points (VPs). RIPE Atlas has broad global coverage, but
is known to have a disproportionate fraction of probes skewed to-
wards Europe. To avoid a bias towards European ASes, we picked
equal number of probes from each continent. For every continent,
we picked probes in a round robin fashion from different countries
and ASes so that selected probes cover a wide range of ASes. Ta-
ble 1 summarizes the location of these probes in terms of AS type
using the categorization method of Oliveira et al. [30]. The bulk
of the probes are located near the network edge in stub and small
ISP networks. To measure paths to content providers, each RIPE
Atlas node performs a DNS lookup for each of the 34 content DNS
names, and then performs a traceroute to the resolved IP. We use
1,998 RIPE Atlas probes located in 633 ASes, distributed accord-
ing to our sampling methodology.

Data set. We used maximum probing rate allowed by RIPE At-
las to perform 28,051 traceroutes towards selected hosts. These
traceroutes ended up in a total of 218 destination ASes. The num-
ber of destination ASes is large relative the number of content
providers because large numbers of content servers are hosted out-
side the provider’s network (e.g., inside ISPs) [5]. We convert the
traceroute-based IP-level paths into AS paths using the method de-
scribed by Chen et al. [7]. Since interdomain routing is destination-
based, we can observe routing decisions for all ASes along the path



to a given destination. We thus observe routing decisions for a total
of 746 ASes.

3.2 Actively probing route decisions
Passive measurements observe only the most preferred route for

an AS toward a destination. We use PEERING [2, 37, 40] to expose
alternate, less preferred routes and to attempt to reverse engineer
BGP decisions.
PEERING operates an ASN and owns IP address space that we can
announce via several upstream providers. PEERING allows us to
manipulate BGP announcements of its IP prefixes and observe how
ASes on the path react. We used PEERING to announce prefixes
using six US universities (Georgia Tech, Clemson, University of
Southern California, Northeastern, Stony Brook, and Cornell) and
one Brazilian university as providers. We change announcements at
most once per 90 minutes to allow for route convergence and avoid
route flap dampening. We use prefixes allocated to the PEERING
research testbed reserved for our experiments; these prefixes carry
no real traffic beyond our measurements.
Discovering alternate routes. We start announcing an IP prefix
from all PEERING locations in an anycast announcement. At each
round, we observe the preferred route at a target AS T and the
next-hop neighbor N that T is using to route toward our prefix.
We then poison N , i.e., add N ’s AS number to the path [3, 9],
to trigger BGP loop prevention at N and cause N to no longer
have a path to our prefix (and stop announcing a route to T ). This
forces T to choose a different route, through a different neighbor
N ′. We repeat this process in consecutive rounds, poisoning the
newly-discovered neighbor, to identify all neighbors and routes T
can use toward our prefixes. When we observe different routes at
the target AS T (through different neighbors) from multiple van-
tage points (e.g., due to different routing preferences at different
geographic locations), we run the algorithm for each vantage point
separately. We can potentially execute this algorithm for each AS
in the topology as the target AS. A similar experiment was per-
formed by Colitti [9]; here, we use the same mechanism with a
more diverse set of providers and with a different goal.

We insert all poisoned ASes into a single AS-set, and surround
the poisoned AS-set with PEERING’s AS number. This limits AS-
path length, prevents inference of non-existent inter-AS links, and
allows operators to identify the poisoning.
Reverse engineering BGP decisions. In addition to the exper-
iment to discover alternate routes, we conduct a complementary
experiment to infer BGP decision triggers. We first announce an
IP prefix from one PEERING location (called the magnet), wait five
minutes to allow for route convergence, then announce (anycast)
the same IP prefix from all other PEERING locations. After we any-
cast the prefix, an AS may change to a new route with higher Local-
Pref, shorter AS-path length, or better intradomain tie-breakers, as
specified in the BGP decision process [8]. If an AS x keeps using
the route toward the magnet after we anycast the prefix, we check if
the magnet route is cheaper according to the Gao-Rexford model or
has shorter AS-path length than all other routes we observed from
x. If none of these checks are satisfied, we infer AS x is using in-
tradomain costs or route age (the last tie-breaker before router ID)
as a tie-breaker. If AS x did not choose the route to the magnet,
we check if the chosen route is cheaper or shorter than the route to
the magnet. If none of these checks are satisfied, we infer AS x is
using intradomain costs as a tie-breaker.

We repeat this process using each PEERING location as the mag-
net. We also check whether the route chosen after we anycast the
prefix is more expensive according to the Gao-Rexford model or
is the same cost but has longer AS-path length than other routes

we observed, which is a violation of the model. The route to the
magnet may become unavailable when a downstream AS receives
and chooses a more preferred route; in these cases we consider the
downstream AS’s decision.

Vantage points (VPs). We perform traceroutes from 96 RIPE At-
las probes and approximately 200 PlanetLab nodes every 20 min-
utes, and collect BGP feeds every 15 minutes from RouteViews
and RIPE RIS to monitor paths toward PEERING prefixes. We use
the maximum number of RIPE Atlas probes allowed within daily
probing budget limits. We implement a greedy heuristic that picks
probes to maximize the number of ASes traversed on the default
paths toward PEERING locations.

Data set. We needed a total of 188 distinct poisoned announce-
ments to infer preferences for all 360 target ASes we observe on
paths toward PEERING (some poisonings are useful for multiple
target ASes). We observe 739 inter-AS links. We find 45 inter-AS
links that are not in CAIDA’s AS-relationship database, 10 of which
(22.2%) can only be observed with poisoned announcements.

3.3 Comparison with existing models
We compare paths observed in our passive and active measure-

ments with CAIDA’s topology of inferred inter-AS relationships.
We aggregate five topologies (Oct. 14 to Feb. 15) inferred using
the method presented by Luckie et al. [25]. We aggregate these
snapshots to mitigate the impact of transient link failures on the
topology used in our analysis. When inferences conflicted, we took
the majority poll of inferred relationships while assigning higher
weight to more recent inferences, i.e., if the latest two months had
the same inference, we used that inference regardless of the first
three months. We use this topology to compute all paths that sat-
isfy the Gao-Rexford (GR) model described in Section 2.

We compare the measured paths with all paths satisfying the GR
model computed using CAIDA’s inferred relationships. We con-
sider two properties: (1) whether the measured path satisfies the
GR model of local preference, and (2) whether the measured path
has the same length as the shortest paths satisfying the GR model
of local preference. Based on this we classify routing relationships
as either obeying GR local preference; i.e., using the neighbor with
the Best Relationship type (Best), routing based on shortest path
(Short), or a combination of the two.

For our active probing measurements, we consider the order in
which the target AS T chooses paths. Again, we consider two prop-
erties: (1) whether the relationship between T and the next-hop on
the first path is equal or better than the relationship with the next-
hop on the second path, and (2) whether the first path is shorter or
equal in length as the second path. We similarly label the observed
decisions which obey property (1) as Best, and those that obey (2)
as Short. We have limited visibility on what path the second neigh-
bor exported to T when T chose the first path. When labeling deci-
sions, we assume the second neighbor exported the second path to
T when T chose the first path. We verified this assumption holds
for the results we report.

In both cases, the sets should be treated as disjoint, with ASes
that obey both Best and Short path policies appearing only in the
Best/Short category. Observations which follow neither of these
properties are considered inconsistent with existing models (i.e.,
NonBest/Long category). There can be, however, some cases when
a path suggested by CAIDA’s inferences might not exist in practice.
One of the reasons can be incomplete or erroneous inferences in the
topologies. In addition, an AS might apply more complex filters
than suggested by Gao-Rexford model when deciding which paths
to advertise to neighbors (Section 4.3 discusses this in more detail).



4. HOW OFTEN DO MODELS HOLD?
We now consider how empirically observed AS paths compare

with those predicted by GR model. We then investigate how often
deviations can be explained by known sources of inaccuracies.

Encouragingly, we find that a majority of routing decisions
(64.7%) for passively observed measurements are correctly in-
ferred by the commonly used GR model; however, a significant
fraction (34.3%) do not follow that model. Figure 1 (Simple) char-
acterizes the observed routing decisions based on whether the path
chosen is Best or Short. We find only a small number of cases
(8.3%) where decisions can neither be explained by Best nor by
Short path selection. In the following sections, we explore the rea-
sons behind these decisions that differ from model-based predic-
tions.
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Figure 1: Breakdown of routing decisions observed by taking
into account complex relationships (Complex), siblings (Sibs),
prefix-specific policies (PSP-1, PSP-2) and by combining com-
plex and siblings relationships with both criteria of prefix-
specific policies (All-1, All-2).

4.1 Complex routing relationships
A well known limitation of existing routing policy models is

the simplification of relationships into either customer-provider or
settlement-free peering relationships. Recent work by Giotsas et
al. addresses this limitation by augmenting relationship inferences
with cases of hybrid relationships (i.e., ASes whose arrangements
vary based on location) and partial transit relationships (i.e., ASes
who will behave as providers, but only for a subset of prefixes) [15].
The hybrid relationship dataset contains pairs of ASes and the cor-
responding cities where relationships differ for a given AS pair. To
use this dataset, we use the geolocation data from [6], which offers
good coverage of infrastructure IPs such as routers. For each pair
of ASes in each AS path, we geolocate corresponding IP addresses
and if the geolocation data points to the same city as mentioned in
hybrid relationship dataset for that AS pair, we use the hybrid rela-
tionship. Figure 1 (Complex) shows the breakdown of routing de-
cisions observed taking into account these complex relationships.
Interestingly, we find that taking these relationships into account
has nearly no impact on the classification in our dataset (less than
1% change).

4.2 Sibling ASes
The mapping between AS numbers and organizations is not one-

to-one [4]. Many organizations manage multiple AS numbers, ei-
ther for geographic regions (e.g., Verizon with ASNs 701, 702, and
703) or due to mergers (e.g., Level 3 (AS 3356) and Global Cross-
ing (AS 3549)).

Cai et al. [4] present a technique to map organizations to ASes by
using attributes like organization IDs, email addresses and phone

numbers found in whois information of ASes. We take a similar
approach to identify AS siblings, but our approach differs in two
key ways. First, we focus only on e-mail addresses in whois data,
which previous work identified as the field with best precision and
recall [4]. Second, we use DNS SOA records to identify different
e-mail domains that belong to the same organization. For example,
dish.com and dishaccess.tv share the dishnetwork.com authorita-
tive domain. We also remove groups where the e-mail address is
hosted by a popular e-mail provider (e.g., hotmail.com), or regional
Internet registry (e.g., ripe.net). This results in a total of 94 sibling
groups identified in our traceroute data set.

For every non GR decision that an AS makes, we check whether
the AS chooses a path via a sibling. If the path is via a sibling, we
mark this decision as satisfying the Best condition. Figure 1 (Sibs)
shows the result of this change—3.9% more decisions are classified
as Best/Short.

4.3 Prefix-specific policies
Interdomain routing is often abstracted to the level of a desti-

nation AS. However, in practice routing is based on IP prefixes
which may be subject to different export policies by their originat-
ing AS (e.g., forwarding prefixes hosting enterprise-class services
to a more expensive provider). While Giotsas et al. consider par-
tial transit [15], which is a type of prefix-specific policy, they do
not explicitly consider per-prefix policies as implemented by origin
ASes.

We use two criteria to identify prefix-specific policies based on
correlation with BGP data obtained from Routeviews/RIPE [34,
39]. Given an origin AS (O), a neighbor N and a prefix P : Crite-
ria 1 do not assume the edge N − O exists for prefix P unless we
observe O announcing P to N in the BGP data. Criteria 2 is simi-
lar to Criteria 1, except that we require that we observe at least one
prefix announced from O to N before applying Criteria 1. The first
criteria can be seen as being more aggressive whereas the second
aims to ensure that our observation is actually caused by selective
prefix announcement and not poor visibility.

Figure 1 (PSP-1, PSP-2) shows the breakdown of routing deci-
sions using Criteria 1 and 2 above, respectively. We find that prefix-
specific policies account for a significant fraction (10-19%) of un-
expected routing decisions. Combining Criteria-1 and Criteria-2
separately with simple, complex and siblings relationships, yields
85.7% and 75.7% of decisions for Best/Short category respectively
(Figure 2, All-1, All-2). One limitation of these approaches is that
we only check prefix-specific policies for origin ASes. Other limi-
tation is incomplete visibility in BGP control plane data.
Validation. In order to validate the cases of prefix-specific policies,
we try to find a Looking Glass server hosted by the neighboring
AS of the AS originating the prefix being examined. There were a
total of 630 cases of prefix-specific policies involving 149 unique
neighboring ASes. We were able to find looking glass servers in
28 of the neighboring ASes. Using these looking glass servers we
manually verify 100 cases of prefix-specific policies and confirm
that applying Criteria 1 was correct 78% of the time.

4.4 Active BGP Measurements
Using our active BGP measurements, we discover alternate

routes. We study whether the sequence of alternate route choices
match existing models and infer which step of the BGP decision
process led to each route. We report results for experiments per-
formed between Feb. 25th and Apr 27th, 2015.
Alternate routes. We analyze AS routing choices when we use
PEERING to discover alternate, less preferred routes. We com-
pare the sequence of routes chosen by target ASes with CAIDA’s



BGP DECISION BGP FEEDS TRACEROUTES

Best relationship 435 (46.0%) 228 (42.4%)
Shorter path 152 (16.0%) 158 (29.4%)
Intradomain tie-breaker 155 (16.4%) 84 (15.6%)
Oldest route (magnet) 24 (2.5%) 9 (1.6%)
Violation 179 (18.9%) 58 (10.8%)
Total 945 (100%) 537 (100%)

Table 2: BGP decisions observed after we anycast a prefix pre-
viously announced from a single (magnet) location.

AS-relationships database. Out of the 360 ASes we targeted, 310
(86.1%) chose routes following both Best and Shortest (as defined
in Sec. 3.3); 29 (8.0%) chose routes following Best only; 18 (5.0%)
following Shortest only; and 3 (0.8%) did not follow either prop-
erty. We discuss the three observations that did not satisfy either
property to illustrate limitations of current models.

One violation occurs for a European network E that routes
via OpenPeering (AS20562)–a transit relationship identified from
RPLS entries in public routing databases. After poisoning Open-
Peering, E routes through (a likely peer-to-peer relationship) with
AMPATH (AS20080) at AMS-IX. We list this as a violation be-
cause CAIDA identifies OpenPeering as a provider for E and AM-
PATH as a peer of E. Interestingly, the second route is the suffix
of the first route (i.e., the route through OpenPeering also reaches
PEERING through AMPATH at AMS-IX), indicating the first route
includes an unnecessary detour. Relationships are complex; tran-
sit and peering relationships may be preferred one over the other.
Models with finer granularity for ranking neighbors of an AS may
resolve these issues [27].

Another violation occurs at a US university U . The univer-
sity first routes through Internet2 (AS11537) toward one of the
PEERING locations in the US. After we poison Internet2, U routes
through AMPATH (AS20080) toward the PEERING location in
Brazil. We list this as a violation because CAIDA identifies In-
ternet2 as a provider and AMPATH as a settlement-free peer of U .
Our last observed violation is similar, where a European network
first routes through Switch (AS559, identified as a provider) and
then routes through NCSA (AS10764, identified as a settlement-
free peer) to reach PEERING after we poison Switch. These viola-
tions indicate that identifying links used as back-up might improve
our routing models.

Reverse engineering BGP decisions. We now turn to our second
control plane experiment, where we use anycast to explore consid-
erations such as route age on routing decisions. Table 2 shows the
root cause behind BGP routing decisions. Although most decisions
are made based on relationship and path length, more than 17%
of decisions are made based on intradomain tie-breakers and route
age, which are not considered in and could improve current models.

Limitations. BGP poisoning does not work when BGP loop
prevention is disabled or when ASes filter poisoned announce-
ments [20,22]. Intermediate ASes between PEERING locations and
target ASes may prevent us from controlling routes exported to the
target AS. These factors limit our ability to identify all routes avail-
able to and neighbors of target ASes. We consider the subset of
routes we observed and neighbors we identified. Moreover, our re-
sults for these experiments cover a small fraction of the Internet and
are probably biased toward academic and research networks. Our
control plane techniques, however, are general and could be used
by other networks to cover different portions of the Internet. We be-
lieve better coverage and visibility would result in discovering more
violations. To this end, we are working to extend the PEERING

platform and RIPE has configured periodic measurements from a
diverse set of Probes toward all PEERING prefixes.

5. SKEWNESS BY SOURCE AND DESTI-
NATION

We now investigate which source and destination ASes account
for most of the routing decisions which deviate from our model.
Figure 2 (a) and (b) shows the cumulative fraction of routing deci-
sions which violate either the Best or Short condition (i.e., the AS
chooses a path that is longer or more expensive than we would ex-
pect). If violations were evenly distributed across ASes, the curves
would fix y = x; otherwise, some ASes are responsible for a dis-
proportionately larger (or smaller) fraction of violations. We find
this effect is present in both plots, but more prominently for desti-
nation ASes. We focus on the latter.

Destination ASes owned by Akamai account for 21% of vio-
lations. Of these, Cogent (AS174) is the most common source,
responsible for 3.4% of these Akamai related violations. These
Cogent-Akamai violations tend to occur when Cogent prefers a
peer-to-peer path through a Tier-1 AS over a longer customer route
towards Akamai. Netflix’s AS is the destination on 17% of paths
with violations. Of these, nearly a quarter (24%) are due to a stale
inter-AS link in CAIDA’s topology, which included a direct link be-
tween AS3549 and Netflix that no longer exists according to RIPE
ASN Neighbor History [32]. For source ASes, the distribution is
less skewed. Cogent and Time Warner are the top two sources,
responsible for 4.1% and 2.2% of violations, respectively.
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(a) Distribution of violations across source ASes.
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(b) Distributions of violations across destination ASes.

Figure 2: CDF plot of the fraction of violations (x-axis) ex-
plained by source and destinations ASes (y-axis). Violations ob-
served in our dataset are skewed significantly toward Akamai
and Netflix (21% and 17% of total NonBest/Short violations
respectively). The skew for source ASes is less prominent.

6. IMPACT OF GEOGRAPHY
We next consider the role of geography on routing decisions.

First, we isolate traceroutes that stay within a continent (Continen-
tal traceroutes), i.e., all hops stay inside a given continent based on
geolocating router IP addresses. Figure 3 shows the breakdown of
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Figure 3: Breakdown of routing decisions for traceroutes that
stay within continents of Africa (AF), North America (NA), Eu-
rope (EU), South America (SA), Asia (AS) and all continents
combined (Cont), and for intercontinental traceroutes (Non
Cont).

Continent Non-Best/Short Decisions explained
Asia 40.1%
Africa 62.5%
Europe 64.3%
N. America 10.9%
Oceania 62.9%
S. America 66.6%

Table 3: Summary of Non-Best/Short decisions explained by
ASes preferring intra-country routes.

decisions in the continental traceroutes (45% of our dataset). The
fraction of decisions explained by GR for continental traceroutes is
significantly greater than for intercontinental ones.

Domestic paths. Next we focused on traceroutes where we infer
that the entire traceroute stayed within a single country, but there is
a better multinational Best/Short path (in the CAIDA data), which
we define to be a path with at least one AS registered (via whois
data) in a country outside the source and destination AS’s country.
We find that more than 40% of non-Best/Short decisions can be ex-
plained by avoiding alternative multinational paths. One limitation
of this approach is that even for the ASes that reside in multiple
countries, whois data still points to just one country or when an
AS spans across multiple regional internet registries then each RIR
shows different country as the origin of that AS. Table 3 details the
non-Best/Short decisions explained by ASes preferring domestic
routes.

Undersea cables. Undersea cable ASes are a critical component
of Internet topologies that previous works overlook [15,25]. While
some cables are jointly owned by large ISPs, e.g., Pan-American
Crossing, Americas-II (owned by AT&T, Sprint, and many oth-
ers), we observed that others, e.g., EAC- C2C (PACNET), are oper-
ated by independent organizations using their own allocated ASNs
and IP prefixes. Because these cable operators only provide point-
to-point transit along the cables (i.e., they do not originate traffic
and peer in locations proportional to cable landings), they resemble
high-latency, high-cost IXPs and thus confuse existing AS relation-
ship models. As such, we need techniques to identify cable ASes
and correct their relationships in inferred topologies.

We use a list of undersea cables from the TeleGeography Subma-
rine Cable Map [38] to identify ASes for undersea cable operators.
Overall, cable-ASes appear on less than 2% of paths but most of
the decisions (51.2%) involving cable-ASes caused deviations from
Best/Short paths. Table 4 shows fraction of each type of decision
explained by undersea cable ASes.

Violation type Pct. of decisions explained
Non-Best & Short 3.0%
Best & Long 6.5%
Non-Best & Long 4.5%

Table 4: Fraction of decisions of each type that can be at-
tributed to undersea cables.

7. CONCLUSION
In this work, we investigated how interdomain paths predicted

by state-of-the-art routing models differ from empirically observed
routes. We found that while a majority of paths in our dataset agree
with models, more than a third do not. We explained a significant
fraction of these differences due to factors such as sibling ASes,
selective prefix announcements and undersea cables. Further, we
investigated how the models hold up when comparing with ground-
truth routing preferences revealed using PEERING announcements,
and identified AS behavior that is not included in existing models.
As part of future work, we are continuing to investigate cases of
routing decisions that violate today’s models, and we aim to incor-
porate our findings into new models of Internet routing.
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