
Gradient-based Hierarchical Clustering

Nicholas Monath∗, Ari Kobren∗, Akshay Krishnamurthy, Andrew McCallum
College of Information and Computer Science

University of Massachusetts Amherst
{nmonath, akobren, akshay, mccallum}@cs.umass.edu

Abstract

We derive a continuous cost function for hierarchical clustering that is amenable to
gradient-based optimization. Our continuous cost function is inspired by a recently
proposed, discrete hierarchical cost function [5]. We present an accompanying
algorithm that proceeds in two stages. In the first stage, the algorithm learns
parametric routing functions at each node in a fixed hierarchy. In the second
stage, the data points are clustered by routing each one from the root to a leaf.
The routing function at each node may be arbitrarily complex as long as it is
differentiable–e.g., a neural network. This facilitates discovery of arbitrary cluster
boundaries. We present two algorithms for routing function optimization; the
more efficient algorithm optimizes routers of disjoint subtrees in parallel, leading
to enhanced scalability. In experiments with traditional clustering datasets, our
method is competitive with other state of the art methods.

1 Introduction

Clustering is a fundamental unsupervised learning problem that has been widely studied in both
theory and practice. Clustering algorithms can be organized into two families: hierarchical and
flat. Hierarchical clustering has proven to be particularly useful for many reasons. A hierarchy
simultaneously encodes flat clusterings of various granularities, facilitates data visualization, and
promotes efficient search and insertion of new data. In the flat clustering setting, gradient-based
approaches are remarkably effective because they are scalable and efficient; they can also be used
for online optimization [13]. However, in the hierarchical clustering setting, gradient-based methods
are scarce. This is largely due to the fact that most hierarchical clustering methods are defined
algorithmically rather than in terms of cost minimization; in the few cases in which a cost function is
well-defined [7, 5, 14], gradient-based methods are not a natural fit because of the discreteness of the
problem.

In this work, we present a continuous cost function for hierarchical clustering that can be optimized
using gradient-based methods. Our continuous objective is inspired by a discrete cost function that
has recently received significant study [5]. Both the continuous and discrete objectives encourage
similar points to be placed near one another in the hierarchy while also encouraging the hierarchy to
be balanced. In more detail, for each pair of points, the cost incurred is proportional to the product of
their distance to one another in the tree and their similarity. Thus, splitting similar points near the
root is expensive, while splitting dissimlar points near the root is cheap.

In our continuous hierarchical clustering model, each node stores a parametric routing function that
is used to compute the fit of any data point at that node. Collectively, the routers define how data
points are placed in the hierarchical clustering subject to a top-down traversal of the tree structure.
We show how our continuous cost can be written as a differentiable function in terms of the routing
parameters alone. Then, the search over hierarchical clusterings can be performed efficiently via

*The first two authors contributed equally.

Discrete Structures in Machine Learning Workshop (NIPS 2017), Long Beach, CA, USA.

gradient-based methods. This parametric tree structure bears resemblance to hierarchical structures
used for extreme classification [11, 1, 4, 6]. Unlike the extreme classification setting, our setting is
completely unsupervised.

Our approach is advantageous from a modeling perspective because it supports joint training of
arbitrarily complex routing functions. This advantage plays a significant role in hierarchical clustering
quality especially for the the first bipartitioning of the data is crucially important and notoriously
difficult [6]. With complex, jointly trained routers it is possible to learn a locally suboptimal split of
the data at the root for the sake of creating a globally optimal hierarchical clustering. In this work, we
explore the use of 2-layer neural network routing functions.

Jointly optimizing routing parameters of all nodes in the tree can be expensive. Thus, we also present
an alternative training procedure that scales logarithmically in the size of the tree. This approach
jointly optimizes the routers in specific subtrees independently. In this setting, we are able to improve
training efficiency by optimizing disjoint subtrees in parallel. The use of stochastic gradient descent
and the continuous cost function makes our approach highly amenable to parallel computation and
accelerated computing using GPUs.

We compare the clustering performance of our method to state-of-the-art hierarchical clustering
algorithms on benchmark datasets. The results show that our method is competitive with existing
approaches. Our experiments highlight the power of both non-linear routing functions and joint
training. Our work introduces a method for gradient-based hierarchical clustering, which we believe
has the potential to be highly scalable and effective in practice.

2 A Continuous Cost Function for Hierarchical Clustering

Hierarchical clustering is a recursive partitioning of data in a tree structure. Formally,
Definition 1 (Hierarchical Clustering [9]). A binary hierarchical clustering T on a dataset {xi}Ni=1

is a collection of subsets such that C0 , {xi}Ni=1 ∈ T and for each Ci, Cj ∈ T either Ci ⊂ Cj ,
Cj ⊂ Ci or Ci ∩ Cj = ∅. For any C ∈ T , if ∃C ′ ∈ T with C ′ ⊂ C, then there exists two
CL, CR ∈ T that partition C.

Our goal is to develop a gradient-based method for hierarchical clustering capable of discovering
complex cluster boundaries while promoting efficiency and scalability. To do this, we employ a
routing-based hierarchical clustering approach [15, 8]–that is, each point is clustered via a top-down
traversal of the hierarchy. We define a continuous, differentiable cost function that can be expressed
in terms of the routers in the tree and show how to optimize the routing parameters via gradient
descent.

2.1 Hierarchical Clustering as Routing in a Tree

In our model, each node, v, (other than the root node) is assigned a parametric routing function,
f(·; θ(v)), where θ(v) are v’s parameters. The router at v scores the fit of a point in that node. Given
that a point x reaches v, the probability that x will be routed to v’s left child, v.left, is proportional
to the score of the routing function at v.left with input x, i.e. Pr[x v.left|v] ∝ f(x; θ(v.left)).
The normalized probability is computed via the softmax between the scores for x at v.left and
v.right. Further, the (unconditional) probability of x reaching any node v′ is simply the product
of scores corresponding to the path from the root to v′. Given a tree T and the corresponding set of
routing parameters, clustering is performed by routing each data point greedily along its route-to-leaf
path. The probability of such a hierarchical clustering is computed using the path probabilities.

Related Work Tree structures are commonly used in classification to reduce the complexity of
classifying a data point from linear to logarithmic in the size of the label-space. Many approaches
including hierarchical softmax [11] and more recent work in extreme classification such as LOM-Trees
[4] and Recall Trees [6], make use of learned routing functions at each node of the tree. The router at

each node determines the child to which a data point should descend. The primary difference among
these approaches lies in the mechanisms by which the routers are trained and a point is labeled once
it reaches a leaf. Our work is inspired by this hierarchical router-learning paradigm but differs from
previous work significantly in that our setting is unsupervised.

2

l1 l2

vi

vj vk

lvs(vi)

lca(l1, l2)

{v 2 vi l2}

Figure 1: A tree. vi = lca(l1, l2) and |lvs(vi)| =
4, shown in gray. The path vi l2 is bolded.

Some previous work in hierarchical clustering
also develops top-down, routing-based algo-
rithms. Both PERCH and BIRCH route incom-
ing points to the leaves of an incrementally built
tree [15, 8]. In PERCH, routing in performed
via A? search, which can be slow; in BIRCH,
routing a new data point is performed by choos-
ing, at each node in the tree, the child for which
the distance between the new data point and the
mean of the descendants of that child is small-
est. While routing in BIRCH is efficient, the
algorithm produces low-quality clusterings in
practice.

2.2 Dasgupta’s Hierarchical Clustering Cost Function

Our work is inspired by a recently proposed cost function for hierarchical clustering [5]. For a dataset
X , the cost of a tree, T , is defined to be:

J(T) =
∑

x,x′∈X2

Sim(x, x′)|lvs(lca(x, x′))| (1)

where, X2 is the set of pairs of points of X , lvs(·) returns the descendant leaves of its argument
and lca(·, ·) returns the least common ancestor of its arguments (see Figure 1). In words, for each
pair of points in the tree, the cost of the pair is the product of their similarity and the number of
descendant leaves of their least common ancestor (and the total cost is the sum of these products).
Intuitively, we incur a large cost for splitting similar points near the root of the tree, since the root has
the largest number of descendant leaves. The cost function has a number of nice properties like: it
encourages balanced trees, the optimal tree under the cost is binary and minimizing the cost of any
subtree improves the global objective.

Unsurprisingly, finding the minimum cost tree, T ? = argminT J(T), is NP-hard. Moreover, the
algorithm presented for constructing the tree relies on recursively solving sparsest-cut problems.
This strategy is somewhat undesirable in that it may make mistakes by virtue of local optimization
of each cut rather than global optimization of a collection of cuts. Recent work develops global
inference algorithms based on rounding relaxed integer and semi-definite programs [12, 3]. These
approaches also achieve provably better approximation guarantees. To our knowledge, no gradient-
based algorithms for optimizing the cost, or related cost functions, are known.

2.3 A Continuous Version of the Cost Function

We derive a continuous objective for hierarchical clustering inspired by the cost function described
above (Section 2.2). In the continuous objective, for each pair of data points, the cost incurred is
computed with respect to the probability distribution over the pair’s least common ancestor in the
tree:

J ′(T ; Θ) =
∑

x,x′∈X2

Sim(x, x′)Pr[|lvs(lca(x, x′))|]

=
∑

x,x′∈X2

Sim(x, x′)
∑
v∈T

Pr[v = lca(x, x′)]Pr[|lvs(v)|]

=
∑

x,x′∈X2

Sim(x, x′)
∑
v∈T

Pr[v = lca(x, x′)]
∑

x′′∈X
Pr[x′′ v]

=
∑

x,x′∈X2

∑
x′′∈X

∑
v∈T

Sim(x, x′)Pr[v = lca(x, x′)]Pr[x′′ v].

3

The cost function can be rewritten by expressing both Pr[x′′ v] and Pr[v = lca(x, x′)] in terms of
the routing parameters . The term Pr[x′′ v] is simply a product of conditional probabilities along
the path from the root to v with respect to the data point x′′ (Section 2.1). The term Pr[v = lca(x, x′)]
can be computed as follows:

Pr[v = lca(x, x′)] = Pr[x v.right]Pr[x′ v.left] + Pr[x v.left]Pr[x′ v.right]

where v.left is v’s left child and v.right is v’s right child. In words, the probability that v is the
least common ancestor of x and x′ is the probability that both x and x′ arrive at v but then one is
routed to the left and the other is routed to the right. After rewriting the cost in terms of the routing
parameters the cost can be optimized via gradient-based methods–as long as the routing functions are
differentiable.

3 Router Optimization

In this section, we describe two algorithms for optimizing the routing parameters. The first procedure
jointly optimizes all routers in the tree and second optimizes subtrees independently for improved
efficiency.

For both methods, the tree structure, T , is fixed a priori; specifically, T is a complete
binary tree with L leaves (where L is a hyper-parameter of the algorithm). Note that
this restricts the space of trees to those that have binary branching factor and do not ex-
ceed a depth of log2 L. However, the shape of the resulting hierarchical clustering need
not be balanced. For example, if L is large, some nodes may be unused (i.e., no data
points are routed to those nodes). Unused nodes may be pruned in post-processing.

B0

B1 B2

Figure 2: BW Training. B0 is trained first; B1

and B2 are trained in parallel. Data point used
in training B1 and B2 are determined by routing
through B0.

Full Tree Optimization As written, the con-
tinuous cost function has an inner sum over all
data points, another inner sum over all nodes in
the tree, and an outer sum over all pairs of data
points (Section 2.3). Computing the cost exactly
for a large dataset is not scalable. One mitiga-
tion strategy is to estimate various elements of
the continuous cost function using samples.

In each iteration of full tree (FT) optimization,
we approximate the cost of a tree T using a
collection of sampled pairs, S ⊂ X2. For each
pair, we approximate the number of data points
under each node v using a second sample, S′(i):∑

x∈X Pr[x v] ≈ ∑
s∈S′ Pr[s v] · |X||S|

where i indicates the ith sample (i.e., sampled
pair) in S. We compute this approximation for each v ∈ T (hence, full tree optimization). Each
training mini-batch of size b contains b pairs, i.e., |S| = b. The cost is minimized via stochastic
gradient descent.

Block-wise Optimization Block-wise (BW) optimization minimizes a further approximation of
the cost function. In BW optimization we create a set of blocks, B, where each block is a subtree of
T . We perform FT optimization within each block; blocks are optimized in a top-down order. The
training pairs for a block B are sampled from the data points that would reach the root of that block
subject to a top-down traversal of T (see Figure 2).

BW optimization is efficient because it only updates the parameters for a small number of nodes
(equal to the size of the corresponding block). Additionally, a group of disjoint blocks can be trained
in parallel. Another advantage of BW optimization is that it can be focused on particular regions of
the tree. However, due to the extent of its approximation, BW optimization only trains a handful of
routing functions jointly and thus is at risk of inducing additional errors.

Initialization and Regularization We initialize the routing parameters in a greedy level-wise
approach. For each split ordered in a top-down manner, we select a point at random, p1 from the

4

dataset and assign it to the left child, v.left and find the point that is least similar to the selected
point, p2 and assign it to the right child v.right. We train the corresponding routing decision to
route points more similar to p1 to v.left and points more similar to p2 to v.right.

For each pair, we penalize the entropy of the distribution over least common ancestors induced by the
routing parameters. This discourages the routers from allowing data points to appear equally likely
with respect to multiple paths through the tree.

4 Experiments

Evaluation Metric We evaluate our approach experimentally by comparing its hierarchical clus-
tering performance to state-of-the-art approaches. Following previous work we evaluate the quality
of the discovered hierarchical clustering using dendrogram purity [7, 2, 8]. Dendrogram purity is
defined as:

DP(T) =
1

|P?|
K∑

k=1

∑
xi,xj∈C?k

pur(lvs(lca(xi, xj)), C?k)

where C? is a ground-truth flat clustering, P? is the set of data point pairs in the same cluster and
pur(·, ·) measures the fraction of data points under its first argument (i.e., a node in the tree) that are
members of the cluster defined by its second argument (i.e., a ground-truth cluster).

Methods We compare four variants of our gradient-based hierarchical clustering approach. We use
two types of routing functions: linear (GHC-L) and feed-forward neural networks with a single hidden
layer (GHC-N). We use both FT training (GHC-FT) and BW training (GHC-BW). We evaluate against
the following hierarchical clustering algorithms: PERCH [8], BIRCH [15], a top-down partitioning
via recursive sparseset cut [5], hierarchical K-Means, and hierarchical agglomerative clustering
with complete link (HAC-C). We perform a grid search over hyper-parameters for our algorithm,
which include: learning rate, number of samples, and hidden layer size (in GHC-N). We report the
dendrogram purity average and discrete hierarchical clustering cost [5] over five random shufflings of
the data.

Datasets We evaluate on three datasets from the UCI machine learning repository [10] identified as
clustering benchmarks in previous work [8, 7]. The datasets are: glass, which has 214 points and
6 clusters, spambase, which as 7000 points and 2 clusters, and digits, which as 200 points and 10
clusters. Each dataset has ground-truth classification labels that are used for evaluation.

Results Table 3a presents the dendrogram purity results for each algorithm. We find that our
approach is competitive with the best state-of-the-art approaches. More complex routing functions
(i.e., neural networks) improve over linear routing models on all datasets. We find that joint training–
as opposed to optimizing a single bipartition of the data in each iteration–also improves both the cost
and dendrogram purity in two out of three datasets (Figure 3).

Alg Glass Spambase Digits
Sparsest Cut 0.46± 0.01 - 0.49± 0.01
GHC-N-FT 0.47± 0.02 0.62± 0.02 0.51± 0.03

PERCH 0.47± 0.02 0.61± 0.01 0.61± 0.03
BIRCH 0.43± 0.01 0.60± 0.01 0.54± 0.05

HKMeans 0.51± 0.01 0.63± 0.00 0.59± 0.03
HAC-C 0.47 0.63 0.59

(a) Dendrogram purity for clustering benchmarks.

Alg Glass Spambase Digits
Sparest Cut 6.97e5 - 2.66e3

GHC-L-BW-2 7.54e5 1.42e8 2.72e3
GHC-N-BW-2 7.53e5 8.66e7 2.71e3

GHC-L-FT 6.85e5 1.80e8 2.66e3
GHC-N-FT 6.68e5 9.92e7 2.65e3

(b) Discrete cost [5].

Figure 3: Clustering quality. Figure 3a shows that GHC-N-FT is competitive with state-of-the-art
algorithms in practice. Figure 3b shows that neural routers outperform linear routers and joint training
yields lower cost clusterings than training routers independently.

5

5 Conclusion and Discussion

In this paper, we derive a continuous cost function for hierarchical clustering. We show how to
express the cost function in terms of routing parameters at each node in the hierarchy and give
two algorithms for optimizing the cost via gradient descent. We compare our approach to other
hierarchical clustering algorithms empirically and demonstrate that it achieves high quality clustering
performance.

By virtue of leveraging parallel training and computation of gradients, our method has potential
to be highly efficient and scalable. However, we notice that at times, in both FT and BW training,
gradient descent requires many iterations to converge. In future work, we are interested scaling our
implementation to larger datasets. This will require a deeper understanding of the cost function
in order to design initialization and regularization techniques–as well as modifications to the cost
function–that facilitate faster convergence to local minima. We are also interested in rigorously
analyzing the regret associated with our training procedures.

References

[1] Alina Beygelzimer, John Langford, and Pradeep Ravikumar. Error-correcting tournaments.
ALT, 2009.

[2] Charles Blundell, Yee Whye Teh, and Katherine A Heller. Bayesian rose trees. UAI, 2012.
[3] Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest cut

and spreading metrics. In SODA. Society for Industrial and Applied Mathematics, 2017.
[4] Anna E Choromanska and John Langford. Logarithmic time online multiclass prediction. NIPS,

2015.
[5] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. STOC, 2016.
[6] Hal Daume III, Nikos Karampatziakis, John Langford, and Paul Mineiro. Logarithmic time

one-against-some. ICML, 2017.
[7] Katherine A Heller and Zoubin Ghahramani. Bayesian hierarchical clustering. ICML.
[8] Ari Kobren, Nicholas Monath, Akshay Krishnamurthy, and Andrew McCallum. A hierarchical

algorithm for extreme clustering. KDD, 2017.
[9] Akshay Krishnamurthy, Sivaraman Balakrishnan, Min Xu, and Aarti Singh. Efficient active

algorithms for hierarchical clustering. ICML, 2012.
[10] M. Lichman. UCI machine learning repository, 2013.
[11] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model.

AISTATS, 2005.
[12] Aurko Roy and Sebastian Pokutta. Hierarchical clustering via spreading metrics. In NIPS, 2016.
[13] D. Sculley. Web-scale k-means clustering. WWW, 2010.
[14] Michael Wick, Sameer Singh, and Andrew McCallum. A discriminative hierarchical model for

fast coreference at large scale. In ACL. Association for Computational Linguistics, 2012.
[15] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering method

for very large databases. ACM Sigmod Record, 1996.

6

	Introduction
	A Continuous Cost Function for Hierarchical Clustering
	Hierarchical Clustering as Routing in a Tree
	Dasgupta's Hierarchical Clustering Cost Function
	A Continuous Version of the Cost Function

	Router Optimization
	Experiments
	Conclusion and Discussion

