
E�cient Packet Demultiplexing forMultiple Endpoints and Large MessagesMasanobu YuharaFujitsu Laboratories Ltd.1015 KamikodanakaNakahara-kuKawasaki 211, Japan Brian N. Bershad Chris MaedaSchool of Computer ScienceCarnegie Mellon University5000 Forbes Ave.Pittsburgh, PA 15213J. Eliot B. MossDept. of Computer ScienceUniversity of MassachusettsAmherst, MA 01003July 11, 1993AbstractThis paper describes a new packet �lter mechanism that e�ciently dispatches incoming network packets to oneof multiple endpoints, for example address spaces. Earlier packet �lter systems iteratively applied each installed�lter against every incoming packet, resulting in high processing overhead whenever multiple �lters existed.Our new packet �lter provides an associative match function that enables similar but not identical �lters tobe combined together into a single �lter. The �lter mechanism, which we call MPF (Mach Packet Filter), hasbeen implemented for the Mach 3.0 operating system and is being used to support endpoint-based protocolprocessing, whereby each address space implements its own suite of network protocols. With large numbers ofregistered endpoints, MPF outperforms the earlier BSD Packet Filter (BPF) by over a factor of 4, resulting in a33% shorter latency in the kernel. The MPF also allows a �lter program to dispatch fragmented packets, whichwas nearly impossible with previous �lter mechanisms.1 IntroductionIn this paper, we describe a new packet �lter mechanism, called MPF (Mach Packet Filter) that e�ciently handlessimultaneously installed multiple �lters. Our new packet �lter also deals well with context-dependent demultiplex-ing, which is necessary when receiving multiple packets in a fragmented message. We have implemented our newpacket �lter in the context of the Mach 3.0 operating system [Accetta et al. 86]. The new packet �lter improvesperformance by taking advantage of the similarity between �lter programs that occurs when performing endpoint-based protocol processing. With 10 TCP/IP sessions MPF performs 7 times faster than the CMU/Stanford packet�lter (CSPF) [Mogul et al. 87], and 4 times faster than the BSD packet �lter (BPF) [McCanne and Jacobson 93].The advantage of MPF increases as the number of sessions grows.The original packet �lters (CSPF and BPF) shared two primary goals: protocol independence and generality.The �lters did not depend on any protocol, and future protocols could be accommodated without changing thekernel. Our new �lter mechanism shares these two goals, and �ts alongside the BPF and CSPF implementations.(MPF is implemented as an extension to the base BPF language.) Consequently, a packet �lter program built forCSPF or BPF will work with our system. Although MPF has been implemented for the Mach operating system, ithas not required any changes to the Mach microkernel interface, and indeed has no Mach-speci�c aspects. Therefore,other BPF implementations could be extended to support MPF programs, and our implementation should porteasily to other operating systems that support packet �lters.1.1 MotivationA packet �lter is a small body of code installed by user programs at or close to a network interrupt handler of anoperating system kernel. It is intended to carry an incoming packet up to its next logical level of demultiplexingthrough a user-level process. An operating system kernel implements an interpreter that applies installed �lters1



against incoming network packets in their order of arrival. If the �lter accepts the packet, the kernel sends it to itsrecipient address space.The packet �lter mechanism was originally intended to support network monitoring [Mogul et al. 87], andprimarily functioned to place the machine in \promiscuous mode" whereby all packets were routed to a single spyprocess. Two packet �lters, CSPF and BPF, are in common use in today's systems. CSPF is based on a stackmachine. A �lter program can push data from an input packet, execute ALU functions, branch, and notify whetherit accepts or rejects the packet. BPF is a more recent packet �lter mechanism. The BPF abstract machine isregister-based and has two registers (A and X), an input packet (P[]), and a scratch memory (M[]). It executesload, store, ALU, and branch instructions as well as a return instruction that can specify the size of the packet tobe delivered. As shown in [McCanne and Jacobson 93], BPF admits a somewhat more e�cient interpreter thanCSPF.With microkernel technology, where traditional operating system services such as protocol processing are im-plemented outside the kernel, the original packet �lter provided a convenient mechanism to route packets from thekernel to a single protocol server. In such cases, relatively few packet �lters would ever be installed on a machine(typically two: one to recognize IP tra�c, one to recognize all other tra�c), so the scalability of the packet �lter wasnot important. Unfortunately, a single point of dispatch for all network tra�c resulted in communication overheadfor microkernel-based systems substantially larger than for monolithic systems (those in which the protocols are allimplemented in the kernel) [Maeda and Bershad 92].To address this problem, we have decomposed the protocol service architecture so that each application isresponsible for its own protocol processing [Maeda and Bershad 93]. That is, every address space contains, forexample, a complete TCP/IP stack. Figure 1 illustrates the structural di�erences between the two di�erent protocolstrategies.
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(a)  Single  protocol  serverFigure 1: Two ways to structure protocol processing. In the system on the left, all packets are routed through acentral server and then on to their eventual destination. In the system on the right, the kernel routes an incoming,but unprocessed network packet directly to the address space for which the packet is ultimately intended.At its core, the new protocol architecture on the right relies on the kernel's packet �lter to hand o� incomingpackets to the appropriate address space. For example, an address space for TCP/IP port 2371 would register itsown packet �lter that recognizes incoming packets destined for that port. Our distributed protocol architecturerevealed two serious problems with the earlier implementations of the packet �lter:1. The packet �lter's programming interface was not designed to be scalable. The dispatch overhead grew linearlywith the number of potential endpoints. For even a workstation-class machine, it is not uncommon to haveseveral hundred endpoints (ports) in use at a time, so scalability becomes critical for e�cient demultiplexing.2. A packet �lter is unable to e�ciently recognize and dispatch multipacket messages. Some protocols requireinformation on the previous or future packets to dispatch a packet. For example, the IP protocol splitsone large IP packet into several small IP packets when the underlying data link layer cannot accept a large2



packet [RFC791]. Moreover, the fragmented packets may arrive out of order. The existing packet �ltershave no mechanisms for dealing with fragmentation, let alone out of order delivery. Therefore, they cannotdispatch fragmented packets to any of multiple endpoints. Instead, fragments must all be sent to a higher-level intermediary process using the \packet �lter of last resort" at the expenses of substantially more kernelmessages and boundary crossings.1.2 Our solutionTo deal with the scalability problem, our new packet �lter takes advantage of the structural and logical similaritywithin a protocol, and dispatches all packets destined for that protocol in a single step. Typically, �lter programsfor a particular protocol consist of two parts: one that identi�es the protocol and one that identi�es the session inthat protocol. (The code in Appendix A shows an example BPF program for TCP/IP dispatching.) The �rst partis exactly the same for all sessions within a protocol, while the second part di�ers only in the constant values thatidentify the particular session instance. Figure 2 contrasts the old packet �lter mechanisms, which execute similarcode repeatedly for each protocol for each session, with our own MPF.The kernel's �lter module internally transforms, or collapses, �lter programs for the same protocol into a single�lter program. A special new instruction in the packet �lter enables associative lookup on packet data, and simpli�esthe identi�cation and collapsing of similar code sequences.
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parameters (including the destination IP address (dst addr)) are the same for all TCP/IP sessions. The �rst part(A) of the MPF program checks if the packet uses the TCP/IP protocol. The second part (B) extracts the TCPsession information from the packet and puts it into the scratch memory. Parts (A) and (B) are common to allTCP/IP �lters. The last part (C) determines if the packet is in fact destined for this particular �lter (session). Thenew ret match imm instruction makes it easier to identify the (possibly) common part (A and B) and the dispatchpart (C). The ret match imm instruction is a combination of the packet �lter's compare and return instructions, asshown in Table 1./* Part (A) */begin ; MPF/BPF identifierldh P[OFF_ETHERTYPE] ; A = ethertypejeq #ETHERTYPE_IP, L1, Fail ; If not IP, fail.L1: ld P[OFF_DST_IP] ; A = dst IP addressjeq #dst_addr, L2, Fail ; If not from dst_addr, fail.L2: ldb P[OFF_PROTO] ; A = protocoljeq #IPPROTO_TCP, L3, Fail ; If not TCP, fail.L3: ldh P[OFF_FRAG] ; A = Frag_flags|Frag_offsetand #!Dont_Frag_Bit ; Clear Don't Fragment bitjeq #0, L4, Fail ; If fragmented, failL4:/* Part (B) */ld P[OFF_SRC_IP] ; A = src IP addressst M[0] ; M[0] = Aldx 4 * (P[OFF_IHL] & 0xf) ; X = offset to TCP headerld P[x + OFF_SRC_PORT] ; A = src TCP portst M[1] ; M[1] = Ald P[x + OFF_DST_PORT] ; A = dst TCP portst M[2] ; M[2] = A/* Part (C) */ret_match_imm #ALL, 3 ; Compare keys and M[0..2].key #src_addr ; If matched, accept thekey #src_port ; whole packet. If not,key #dst_port ; reject the packet.Fail: ret #0Figure 3: An MPF program for a TCP/IP session.The MPF implementation takes advantage of the new ret match imm instruction to \collapse" multiple �lterprograms into one, and to convert the ret match imm instruction into a fast associative lookup preceding thedispatch. We assume that in every �lter using ret match imm, all instructions but the ret match imm are commonwith other �lter programs with high probability. When a user task installs a new packet �lter, the kernel's �ltermodule checks whether the program contains any associative match instructions. If not, the �lter is treated aseither a CSPF or a BPF program (Mach 3.0 supports both kinds of �lters). If a match instruction is found, the�lter module then searches for a previously installed �lter program with the same code except for the immediatevalues contained in the key instructions. These immediate values are used by the kernel to create a hash table usedto dispatch incoming packets. Each installed �lter has its own hash table by which the key �elds in an incomingpacket can be quickly matched to an endpoint (in our case, a Mach IPC port). The hash values are calculated usingthe immediate values of the key instructions. Each hash entry has the set of key values, and the correspondingreceive port. Upon �nding a similar �lter, the kernel enters the new �lter's immediate values into the base �lter'shash table. If no similar �lter exists, the kernel creates a new one. The just-installed �lter program is now readyto receive packets.In the example in Figure 3, the hashed values are the source IP address and the TCP source and destinationport numbers. The implementation collapses all �lter programs for TCP sessions into a single internal program.When a packet arrives and the �lter mechanism processes the collapsed �lter, it executes the common part (Aand B) just like a conventional program. If the program rejects the packet in the common part, the whole �ltergroup rejects the packet. Therefore, MPF does not repeatedly execute the common protocol dispatch code in vain.4



MPF match sequence Equivalent BPF match sequenceret_match_imm #3, #ALLkey #key0key #key1key #key2 ld M[0] ; A = M[0]jeq #key0, k1, fail ; if (A == key0) goto k1; else goto fail;k1: ld M[1] ; A = M[1]jeq #key1, k2, fail ; if (A == key1) goto k2; else goto fail;k2: ld M[2] ; A = M[2]jeq #key2, ok, fail ; if (A == key2) goto ok; else goto fail;ok: ret #ALL ; return the whole packetfail: ret #0 ; abort this filterTable 1: The ret match imm instruction from MPF and its equivalent sequence from BPF. The �rst argumentof ret match imm indicates the number of data items to be compared. The subsequent key instructions provideimmediate data. These immediate values are compared with the values in the scratch memory: M[0], M[1], M[2],respectively. If the corresponding values are equal, then the �lter returns with success. The second argument ofthe ret match imm instruction speci�es the number of bytes of the packet sent to the recipient (ALL indicates theentire packet). If any pair of the corresponding values is not equal, the �lter terminates with failure, and the packetis not sent to the recipient for this �lter.If the program does not reject the packet in the common part, the �lter module executes the non-common part,namely the ret match imm instruction. The �lter mechanism calculates the hash value from the data in the scratchmemory (M[0] .. M[2] in the example), and searches for the data in its hash table. If the search is successful,then the packet is sent to the corresponding receive port. If the hash search fails, then the collapsed group of �lterprograms rejects the packet (but other �lter programs might still apply).2.1 LimitationsWhile our strategy limits the number of common sequences that a packet �lter may have to one, and restricts thecode following the common sequence to a single associative match instruction, it nevertheless admits a quite powerfuland easy-to-implement optimization. A more general alternative would extend the packet �lter implementationto identify and cache the result of arbitrary common sequences during �lter processing. Our requirements (fastendpoint demultiplexing), combined with the two-tiered dispatch common to most protocols, convinced us to choosea solution that was simple to implement and right most of the time, rather than one that was more complicated toimplement and right about as often.3 Dispatching fragmented messagesFragmentation occurs when a lower-level protocol layer cannot transfer the entire packet of a higher-level protocol.For example, consider the case of a protocol stack consisting of Ethernet, IP, and UDP. The UDP port number isrequired for demultiplexing, and is embedded at the beginning of an IP message. Since UDP messages can be largerthan the maximum Ethernet message (4K bytes or larger for NFS packets over UDP, but only about 1500 bytes forEthernet), the IP segment containing the UDP message must be fragmented. Only the �rst fragment will containthe UDP header (which includes the UDP port number), but each IP fragment will contain a fragment bit set inits header (except the last fragment), a unique message id, o�set and length information, and �nally the data. Theunique message id, o�set, and length are used to reassemble the incoming message.Demultiplexing fragments is di�cult for several reasons: only the �rst fragment contains the transport header(which provides the information needed for determining the target address space), fragments may arrive out oforder, and some fragments may not arrive at all. We wanted to support simple and e�cient demultiplexing offragments using the packet �lter. We were not concerned with performing actual reassembly at the packet �lterlayer, as we expected that service to be provided by the higher-level protocols.To deal with fragmentation, we added the notion of per-�lter static memory that allows packet �lters to bridgebetween dispatch information present in the �rst fragment of a message (for example, the UDP port), and thatpresent in subsequent fragments (for example, the unique message id). Speci�cally, we record the higher levelsession dispatch information and associate it with a lower level message id, allowing us to dispatch fragments tothe correct address space. This information persists for a �nite time, after which it is automatically removed.Because fragments don't always arrive in order, we also allow a �lter to postpone processing of a packet inthe case where the �rst fragment does not arrive �rst, meaning that no dispatch information is available. These5



fragments are postponed, and processed only after other packets have arrived (hopefully, the dispatch informationhas become available). Postponed packets are dropped if it appears the dispatch information will not becomeavailable, or if we run out of space.We added four new instructions to the packet �lter instruction set to handle fragmentation: register data,ret match data, postpone, and jmp match imm. The �lter module expects the �rst three instructions in thecommon part and jmp match imm in the non-common part. These instructions are described in Table 2, and usedin Appendix B, which shows the 
ow of a TCP/IP �lter program (psuedo code) that handles fragmented packets.Instruction Descriptionregister_data #N, #T This register data instruction stores M[0]...M[N-1] of thescratch memory into the �lter's static memory. The �ltermechanism automatically removes the static memory dataafter T milliseconds. A �lter program uses this instructionto store the information for the dispatch of fragmentedpackets. A jmp match imm instruction must be executedand must have found a match before this instruction isexecuted. This restriction helps the �lter mechanism torecord the data in an associative manner.ret_match_data #N, #R The ret match data instruction compares M[0]..M[N-1] ofthe scratch memory values with the static memory valuesof this �lter if they exist. If the values are the same, Rbytes of the packet are sent to the recipient of this �lter. Ifnot (or if the static memory values do not exist), executioncontinues with the next instruction. A �lter program canuse this instruction to dispatch fragmented packets.jmp_match_imm #N, Lt, Lf The jmp match imm instruction issimilar to the ret match imm instruction in that N imme-diate data values following the instruction are comparedwith M[0] .. M[N-1] of the scratch memory. This instruc-tion conditionally jumps forward depending on the resultof the comparison. If the data match, control transfers toLt, otherwise it goes to Lf.postpone #T This instruction postpones processing of the currentpacket, deferring it to some later time. The speci�c pro-cessing time is dependent on the implementation, but, theimplementation must guarantee that the packet is pro-cessed again if the situation changes such that the packetcan be dispatched. If a postponed packet is chosen forprocessing, it may be postponed again. The �lter mecha-nism guarantees to discard the packet after T millisecondsfrom original arrival, but it may discard the packet earlierbecause of storage limitations.Table 2: New instructions to support handling of fragmented packets.The register data and ret match data instructions store and retrieve the fragmentation information. Whena packet �lter executes the register data instruction, the data in its scratch memory are used as keys associatedwith its receive port in a second (�lter-speci�c) hash table. The ret match data instruction uses this hash table toprovide fast lookup on the fragment information. Each entry in the second hash table has its own expiration timespeci�ed by the �lter program as a timeout value.The jmp match imm instruction is a branching version of the ret match imm instruction described in the previoussection. If the match fails, the program branches to the false-case label. If the match succeeds, the program branchesto the true-case label. As a side e�ect of succeeding, the receive port associated with the key data following thejmp match imm instruction becomes \associated" with the currently running packet �lter. If the �lter then executesa normal return instruction, the associated receive port is recalled and used as the recipient. In this way, weavoid explicitly manipulating kernel descriptors (really, IPC ports) within the packet �lter, while still being able tocollapse �lters that handle fragmentation.The postpone instruction addresses the situation where a later fragment arrives before the �rst fragment. We6



assume that such out of order arrival is rare, so the postponement mechanism is quite simple. A �lter moduleimmediately gives up processing a postponed packet and adds the packet to a pending queue. Pending packets arereprocessed immediately after each new packet is �ltered. Of course, the �lter program may postpone the packetagain. However, the packet's expiration time is set when it is �rst postponed, and the packet will be dropped afterthat time, or if the number of postponed packets becomes too large.The fragmentation support described in this section imposes essentially no overhead on �ltering of non-fragmentedpackets. Note that jmp match imm, unlike ret match imm, allows work to be done following the match on recipient.In particular, it allows the �lter to record fragment matching data upon encountering the �rst fragment.4 PerformanceWe evaluated the performance of the new MPF compared with CSPF and BPF. Since the motivation of MPFis per-task (user space) protocol processing, we used TCP/IP dispatch processing as our benchmark. The �lterprogram we used is shown in Figure 3, Appendix A, and Appendix C.To compare the latency of MPF with the previous packet �lter implementations, we took the following mea-surements.� Filtering time as a function of the number of sessions with a uniform hash distribution.� Filtering time as a function of the number of sessions when all sessions hash to the same hash bucket.In addition, since MPF collapses similar �lters into a single �lter program at installation time, we performedexperiments to quantify the additional overhead incurred during the installation process. To determine the �lterinstallation overhead for MPF, we measured the following.� Filter installation time for a new session of the same protocol.� Filter installation time for a di�erent protocol.The �rst experiment measures the time required to install a �lter for a new session of an existing protocol suchas TCP/IP. The second experiment measures the time to install a completely unrelated packet �lter.4.1 Packet Filter LatencyWe measured packet �lter latency by running the �lter module at user level so that we could easily control theinput packets. All measurements were on a DECstation 5000/200 (25 MHz MIPS R3000) using Mach 3.0 (MK82)and Unix server version UX41. The �lter module and all relevant functions use exactly the same code as the kernel,except that the processor priority manipulations (spl calls) are omitted. However, these manipulations do nota�ect the �lter's performance. Measurements were taken using a 25 MHz free-running counter mapped into theuser address space. Since the counter is read with a single load instruction, the timestamp overhead is minimal.[THE FINAL PAPER WILL ALSO CONTAIN IN-KERNEL MEASUREMENTS RUNNING UNDER A REALPROTOCOL STACK.]Packet �lter performance is strongly a�ected by the cache; the time to �lter a packet with a cold cache canbe four times as long as the time with a warm cache. Since the cache's \warmth" depends on how frequentlynetwork packets arrive, packet �lter latency will have high variance in a real system. To determine cache e�ectson performance, we ran our benchmarks with cold and warm caches. Cold-cache measurements were obtained by
ushing the caches before each packet. This represents a worst-case (and reproducible) measurement. Warm-cachemeasurements were obtained by running the benchmark without 
ushing the caches. Actual performance will varybetween these extremes, with the operating point depending on the frequency of packet arrival, and the nature ofother system activity.To help interpret the results, Table 3 shows the time required for the Ethernet device driver to service an incomingpacket and for the kernel to deliver an incoming packet to the destination address space. These operations occurbefore and after the packet �lter runs, respectively. Packet �ltering (demultiplexing) should take much less timethan these operations, which are dominated by data movement.Latency vs. Number of sessionsThe �rst experiment measures the time required to �lter a TCP/IP packet, as a function of the number of activeTCP/IP sessions. Each packet is unfragmented and contains 10 bytes of data. Note that the time to �lter a packetis constant for all data sizes since the �lters examine only the packet headers. Only TCP/IP protocol �lters were7



Operation Packet Size64 1514Time to read an incoming packet from theEthernet device. 0.1 0.5Time to move an incoming packet from thekernel to the destination address space. 0.1 0.2Table 3: The time (in milliseconds) required for the device driver to service incoming packets and for the kernel todeliver incoming packets to their destination address spaces. These times were measured on a DECstation 5000/200.installed (i.e. there was only one collapsed �lter for MPF) and the source IP addresses and source and destinationports were drawn from consecutive ranges.Table 4 and Figure 4 show the results. The latency of both BPF and CSPF grows linearly as the number ofsessions increases because they must run a �lter program for each session. The latency for MPF, on the otherhand, is insensitive to the number of sessions since only one �lter program is executed to demultiplex packets for allsessions. With only ten TCP sessions, MPF shows performance that is 7.6 times better than CSPF and 4.3 timesbetter than BPF (warm cache case). When we consider the total latency necessary to demultiplex a small packetin the kernel, MPF is 50% faster than CSPF and 33% faster than BPF (warm cache case). The advantage of MPFbecomes greater as the number of sessions increases.# of sessions 1 2 6 10 20 40 60 80 100MPF [ms] 0.035 0.035 0.035 0.035 0.035 0.036 0.036 0.036 0.037warm BPF [ms] 0.031 0.042 0.090 0.149 0.330 0.559 0.830 1.188 1.481cache CSPF [ms] 0.053 0.081 0.169 0.266 0.511 0.998 1.538 2.103 2.613BPF/MPF 0.9 1.2 2.6 4.3 9.5 15.7 23.4 32.8 40.1CSPF/MPF 1.5 2.3 4.9 7.6 14.7 28.1 43.3 58.1 70.7MPF [ms] 0.153 0.154 0.154 0.155 0.155 0.157 0.159 0.160 0.163cold BPF [ms] 0.127 0.144 0.212 0.280 0.436 0.787 1.112 1.429 1.768cache CSPF [ms] 0.132 0.160 0.268 0.382 0.658 1.205 1.753 2.293 2.861BPF/MPF 0.8 0.9 1.4 1.8 2.8 5.0 7.0 8.9 10.8CSPF/MPF 0.9 1.0 1.7 2.5 4.2 7.7 11.0 14.3 17.5Table 4: Filter times (in milliseconds) as a function of the number of active TCP/IP sessions with a uniform hashdistribution.E�ect of Hash CollisionsThe previous experiment measures the best case latency for MPF, where there are no hash collisions. The secondexperiment measures the worst case latency, where all sessions hash to the same hash bucket and the matchingTCP session is the last one in the bucket. Table 5 and Figure 5 show the results.# of sessions 1 2 6 10 20 40 60 80 100warm cache, MPF [ms] 0.035 0.035 0.038 0.042 0.051 0.061 0.106 0.150 0.173cold cache, MPF [ms] 0.153 0.157 0.164 0.172 0.191 0.224 0.270 0.306 0.347Table 5: Filter times (in milliseconds) as a function of the number of active TCP/IP sessions with worst-case hashcollisions.While the processing time of MPF with one hash bucket grows linearly with the number of sessions, it growsmuch more slowly than BPF and CSPF (measured in the previous experiment) because MPF still executes fewerinstructions that BPF because of the collapsed �lters. 8
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Figure 4: Filtering time of the three �lter mechanisms4.2 Filter InstallationThe �nal two experiments measure the �lter installation overhead for MPF.Installing new sessions for the same protocolThe �rst experiment measures the time required to install a new session of an existing protocol, such as TCP. Weexpect that this will be the most common case in real systems since existing operating systems tend to use a singleprotocol family such as the ARPA Internet protocols for the DECNET protocol suite. We installed �lter programsfor the same protocol (TCP/IP), but di�erent sessions, one by one. The results are shown in Figure 6.When the number of installed programs is small, BPF and CSPF �lter installation is about 60% faster thanMPF, because MPF must compare the new �lter program against each installed program. As the number ofprograms increases, the performance di�erence diminishes; with 100 sessions, the installation time is about thesame for the three �lter mechanisms.The extra installation overhead is not excessive for a protocol such as TCP/IP because connection establishmentrequires one and a half network roundtrips.Installing unrelated �lter programsThe second experiment measures the time to install a new �lter program that cannot be collapsed with any existing�lters. This case occurs whenever a �lter is installed that does not correspond to a protocol with a large number ofactive sessions. The �lter programs installed were the same as in the previous experiment except that the protocolnumber was unique for each program. As a result, MPF tries to match each new �lter with each existing �lter,fails, and then prepares a separate hash table for the new �lter.Figure 7 shows the time to install a new �lter program for each implementation. The installation time forMPF grows linearly with the number of �lters while the installation time for BPF and CSPF remains constant.In practice, we expect that the number of protocols (and hence the number of uncollapsed �lter programs) will besmall.5 ConclusionsMPF is a new packet �lter mechanism that can e�ciently dispatch small and large packets even in the existence ofmany sessions, making it suitable for per-task protocol processing. We have introduced a new match instructionwhich the packet �lter mechanism can use as a hint to put the same protocol's programs together. This collapsingremoves repetitive execution of the same code and also provides e�cient associative lookup. MPF also supports9
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Figure 5: E�ects of hash collisions. The curve from the previous experiment is shown for comparison.new instructions to dispatch fragmented packets. Our implementation of MPF shows that it is 7.6 times fasterfor TCP/IP packet �ltering than CSPF, and 4.3 times faster than BPF with only ten registered sessions. Thetotal demultiplexing time in the kernel for TCP/IP improves by 50% over CSPF and 33% over BPF. Moreover,MPF's relative advantage increases with the number of sessions. The source code for MPF can be obtained throughanonymous ftp as part of CMU's Mach 3.0 distribution at cs.cmu.edu.
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Figure 6: Filter program installation time, for the same protocol
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AppendixA BPF example program/** P[i]: packet data at byte offset i.* M[i]: i-th word of the scratch memory.* Word = 4 Bytes, Half Word = 2 Bytes, Byte = 1 Byte.** dst_addr: IP address of this host* (destination IP address of this session)** src_addr: source IP address of this session* src_port: source TCP port number of this session* dst_port: destination TCP port number of this session*/begin ; BPF identifierldh P[OFF_ETHERTYPE] ; A = ethertypejeq #ETHERTYPE_IP, L1, Fail ; If not IP, fail.L1: ld P[OFF_DST_IP] ; A = dst IP addressjeq #dst_addr, L2, Fail ; If not from dst_addr, fail.L2: ld P[OFF_SRC_IP] ; A = src IP addressjeq #src_addr, L3, Fail ; If not from src_addr, fail.L3: ldb P[OFF_PROTO] ; A = protocoljeq #IPPROTO_TCP, L4, Fail ; If not TCP, fail.L4: ldh P[OFF_FRAG] ; A = Flags|Frag_offsetand #!Dont_Frag_Bit ; Clear Don't Fragment bitjeq #0, L5, Fail ; If fragmented, failL5: ldx 4 * (P[OFF_IHL] & 0xf) ; X = offset to TCP headerld P[x + OFF_SRC_PORT] ; A = src TCP portjeq #src_port, L6, Fail ; If not from src_port, fail.L6: ld P[x + OFF_DST_PORT] ; A = dst TCP portjeq #dst_port, Suc, Fail ; If not to dst_port, fail.Suc: ret #ALL ; Accept the whole packet.Fail: ret #0 ; Reject the packet.B An example �lter program that processes fragmented packets/** P[<x>]: Data <x> in the packet.* M[i]: i-th word of the scratch memory.* Presented as higher level code for clarity*/if (P[proto] == IP) {if (P[dest_addr] != dest_addr) /* Not to me */return FAILURE;if (P[IP_proto] != TCP)return FAILURE;if (P[fragment_offset] == 0) {/* non-fragmented packet or the 1st fragment */M[0] = P[src_addr];M[1] = P[src_port];M[2] = P[dst_port];if (P[more_fragments]) {/* This packet is the 1st fragment */ 13



/** Check if this 1st fragment is for this filter.*/if (JMP_MATCH_IMM(3, #src_addr, #src_port, #dst_port)) {/** Yes. This is for this filter.* Register the fragmentation information to dispatch* remaining fragments.*/M[1] = P[fragment_ID];REGISTER_DATA (2, time_out);/* Return the whole packet */return ALL;} else {/* No. This is NOT for this filter. */return FAILURE;}} else {/** This packet is a non-fragmented packet.* If it is for this filter, return the whole packet.* Otherwise, fail.*/RET_MATCH_IMM (3, ,#src_addr, #src_port, #dst_port, ALL);}} else {/* 2nd or later fragmented packet */M[0] = P[src_addr];M[1] = P[fragment_ID];RET_MATCH_DATA (2, ALL); /* If matched, return the whole packet */POSTPONE (time_out); /* Otherwise postpone the filtering */}} else {return FAILURE;}C CSPF example program/** Word = 2 Bytes* Note: CSPF is a stack-based word (2 Bytes) machine and there is no* direct way to access a byte or a 4-byte data.*/pushword P[OFF_ETHERTYPE] ; push ethertypepushlit | cand ; if not IP, fail.#ETHERTYPE_IPpushword P[OFF_DST_IP_HI] ; push higher half of dst IP addr.pushlit | cand ; if not dst_addr_hi, fail.#dst_addr_hipushword P[OFF_DST_IP_LO] ; push lower half of dst IP addr.pushlit | cand ; if not dst_addr_lo#dst_addr_lopushword P[OFF_TTL_PROTO] ; push word of TTL and PROTOpushlit | and#PROTO_MASK ; mask off TTL bytepushlit | cand ; if not TCP, fail.#IPPROTO_TCPpushword P[OFF_Frag] ; push Frag_flags|Frag_offsetpushlit | and ; Clear Don't Fragment bit#!Dont_Frag_Bitpushzero | cand ; If fragmented, fail.pushword P[OFF_SRC_IP_HI] ; push higher half of src IP addr.pushlit | cand ; if not src_addr_hi, fail.#src_addr_hipushword P[OFF_SRC_IP_LO] ; push lower half of src IP addr.pushlit | cand ; if not src_addr_lo#src_addr_lo 14



pushword P[OFF_VER_IHL] ; push word with IP Header Lengthpushlit | and ; extract IHL#IHL_MASKpushlit | lsh ; convert it to word offset#1 ; (little endian machine)pushlit | add#OFF_IP ; skip a header from Ethernet.pushstk + 0 ; duplicate stack toppushind ; push src TCP portpushlit | cand ; if not to src_port, fail.#src_portpushlit | add ; get word offset to dst TCP port.#OFF_DST_PORTpushind ; push dst TCP portpushlit | cand ; if not to dst_port, fail.#dst_port ; otherwise, accept the packet.
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