
Pretenuring for Java

Stephen M. Blackburn Sharad Singhai Matthew Hertz
Kathryn S. McKinley J. Eliot B. Moss

Architecture and Language Implementation Laboratory, Department of Computer Science
University of Massachusetts, Amherst, MA 01003-4610

ABSTRACT
Pretenuring can reduce copying costs in garbage collectors by allo-
cating long-lived objects into regions that the garbage collector will
rarely, if ever, collect. We extend previous work on pretenuring as
follows. (1) We produce pretenuring advice that is neutral with re-
spect to the garbage collector algorithm and configuration. We thus
can and do combine advice from different applications. We find
that predictions using object lifetimes at each allocation site in Java
programs are accurate, which simplifies the pretenuring implemen-
tation. (2) We gather and apply advice to applications and the Jala-
peño JVM, a compiler and run-time system for Java written in Java.
Our results demonstrate that building combined advice into Jala-
peño from different application executions improves performance
regardless of the application Jalapeño is compiling and executing.
This build-timeadvice thus gives user applications some benefits
of pretenuring without any application profiling. No previous work
pretenures in the run-time system. (3) We find that application-
only advice also improves performance, but that the combination
of build-time and application-specific advice is almost always no-
ticeably better. (4) Our same advice improves the performance of
generational and Older First collection, illustrating that it iscollec-
tor neutral.

General Terms
Garbage collection, pretenuring, lifetime prediction, profiling

1. Introduction
Garbage collection (GC) is a technique for storage management
that automatically reclaims unreachable program data. In addition
to sparing the programmer the effort of explicit storage manage-
ment, garbage collection removes two sources of programming er-
rors: memory leaks due to missing or deferred reclamation; and

�
This work is supported by NSF ITR grant CCR-0085792, NSF grant

ACI-9982028, NSF grant EIA-9726401, NSF Infrastructure grant CDA-
9502639, DARPA grant 5-21425, and IBM. Any opinions, findings, con-
clusions, or recommendations expressed in this material are the authors’
and do not necessarily reflect those of the sponsors.

memory corruption through dangling pointers because of prema-
ture reclamation. The growing use and popularity of Java, in which
garbage collection is a required element, makes attaining good col-
lector performance key to good overall performance. Here our goal
is to improve collector performance by reducing GC costs for long-
lived objects. We focus ongenerational copying collection[17]
and demonstrate the generality of our approach with theOlder First
collector [15].

Generational copying GC partitions the heap into age-based gener-
ations of objects, where age is measured in the amount of alloca-
tion (the accepted practice in the GC literature). Newly allocated
objects go into the youngest generation, thenursery. Collection
consists of three phases: (1) identifying roots for collection; (2)
identifying and copying into a new space any objects transitively
reachable from those roots (called ‘live’ objects); and (3) reclaim-
ing the space vacated by the live objects. Rather than collecting the
entire heap and incurring the cost of copying all live objects, gen-
erational collectors collect the nursery, place survivors in the next
older generation, and only collect successively older generations if
necessary.

Pretenuring allocates some objects directly into older generations.
If pretenured objects are indeed long-lived, then the pretenuring
avoids copying the objects from the nursery into the generation
where they are allocated. An ideal pretenuring algorithm would
inform the allocator of the exact lifespan of a new object, and then
the allocator would select the ideal generation in which to place the
object. The collector would thus consider an object only after it has
sufficient time to die, avoiding ever copying it. If an object will die
before the next nursery collection, then the allocator would place
it in the nursery (the default), whereas if the object lives until the
termination of the program, then the allocator would place it into a
permanent region.

Without an oracle, pretenuring advice can be gleaned from applica-
tion profiling on a per allocation-site [8] or call-chain [4, 14] basis.
For our suite of Java programs, we show that allocation-site advice
results in accurate predictions, and these predictions are robust over
different input data. ML programs are similar [8], whereas C pro-
grams need the additional context of a call-chain [4, 14].

We use two object lifetime statistics (measured in bytes allocated):
lifetime and time of death. Object lifetime is how long an object
lives (in bytes of allocation), and time of death is the point in the
allocation history of the program at which the object becomes un-
reachable. Our advice classifies each object asimmortal—its time
of death was close to the end of the program,short lived—its life-
time was less than a threshold value, orlong lived—everything else.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
OOPSLA 01 Tampa Florida USA
Copyright ACM 2001 1-58113-335-9/01/10…$5.00

342

Cheng,Harper, andLee (CHL) insteadclassifyobjects(allocated
at a particularallocationsite)thatusuallysurvive a nurserycollec-
tion in a generationalcollectoraslong lived, andthosethatdo not
asshortlived [8]. CHL profileagivenapplicationandgenerational
collectorconfigurationto generatepretenuring advice.We instead
usefrequentfull-heapcollectionsto generatethelifetime statistics
from which we derive our advice,a morecostlyprocess.Because
ourstatisticsarecollector- andconfiguration-neutral,they aremore
general.

Thegeneralityof our pretenuringadviceresultsin two key advan-
tagesover previouswork. (1) Sincewe normalizeadvicewith re-
spectto total allocation for a specificexecution,we can and do
combineadvice from different applicationsthat shareallocation
sites(e.g.,classesinternalto the JVM, andlibraries). (2) We can
anddo usetheadviceto improve two distinctcollectors,anAppel-
stylegenerational collector[3] andanOlderFirstcollector[15], on
five benchmarks,threefrom SPECJVM98.

In ourexperiments,weusetheJalapẽnoJVM [2, 1], acompilerand
run-timesystemfor Java written in Java, extendedwith anAppel-
style generationalcollector. We profile all our benchmarks, and
thencombinetheir pretenuringadviceto improve theperformance
of Jalapẽno itself; we call this systembuild-timepretenuring. Be-
causeCHL profile adviceis specificto both the applicationand
collectorconfiguration, they cannot readilycombineadvicefor this
purpose. Whenmeasuringtheeffectivenessof our build-time pre-
tenuring,we omit informationfrom theapplicationto bemeasured
from the combinedadvice. Suchadviceis called true advice[4].
We show that build-time pretenuringimproves the performance
of Jalapẽno running our benchmarks an averageof 8% for tight
heapswithout any application-specific pretenuring. As the heap
sizegrows, the impactof garbagecollectiontime andpretenuring
on total execution time decreases,but pretenuringstill improves
collectorperformance.Building pretenuringinto the JVM before
distributionmeansuserswill benefitfrom pretenuringwithoutpro-
filing their applications.Justusingour application-specific profile
advicealwaysimprovesperformance, too: up to 3.5%on average
for tight heaps.Our adviceis alsoon averagecomparable to us-
ing CHL advice,andis significantlybetterfor tight heaps. Com-
biningourbuild-timeandapplication-specific advicealwaysyields
thebestperformance: it decreasesgarbagecollectiontimeonaver-
ageby 20%to 32%for mostheapconfigurations. It improvestotal
executiontime on averageby 7% for a tight heap.

Theremainderof this paperis organizedasfollows. Section3 dis-
cussesour approach to pretenuringandthe collectionandgenera-
tion of pretenuringadvice. It alsoanalyzesthelifetime behaviorsof
objectsin our Java applications.We thendescribeour experimen-
tal methodology andsettingin Section4. Section5 presentsexecu-
tion timeresultsfor pretenuringwith generational collectionfor the
Jalapẽno JVM at build-time, application-specific pretenuringwith
CHL andour advice,andthe combinationof application-specific
and build-time advice. We further demonstratethe generalityof
our adviceby showing the sameadviceimproves an Older First
collector. We thencomparerelatedwork with our approach, and
conclude.
2. Background
For thispaperwebuilt anAppelstylegenerationalcollector[3] that
partitionsthe heapinto a nurseryanda second,older, generation.
It alsohasa separate,permanentspacethatis never collected.The
total heapsizeis fixed. Thenurserysizeis flexible: it is thespace
not usedby the older generationandthe permanent space.Some

heapspaceis alwaysreserved for copying (this spacemustbe at
leastas large as sum of the nurseryand the older generationin
order to guarantee that collecting the nurseryand then the older
generationwill not fail). Whenall but the reserved heapspaceis
consumed, it collectsthe nursery, promotessurviving objectsinto
the older generation, andmakes the freedspacethe new nursery.
After anurserycollection,if theold generation’ssizeis closeto that
of thereservedspace,it triggerscollectionof theoldergeneration.

3. Pretenuring Advice
Two objectives are central to our approach: producing robust
andgeneralpretenuringadvice,andunderstanding andtestingthe
premiseof per-site lifetime homogeneity on which the successof
profile-drivenpretenuringrests.

3.1 Gathering and Generating Pretenuring Advice

Any algorithmfor generatingpretenuringadvicemustconsider the
two majorcostcomponents:copyingandspacerental. Thecopy-
ing costincludesscanning andcopying anobjectwhenit survives
a collection. The spacerentalcost is the spacein memoryoccu-
pied by objectsover time. On the two extremes,pretenuringad-
vice thatrecommendspretenuringall objectsinto permanentspace
minimizescopying costsbut incursa high spacerentalcost; and
advicethat recommends pretenuringno objectsminimizesspace
rentalcostat theexpenseof highercopying costs.

Oneof our goalsis to generate advicethat is neutralwith respect
to any particularcollectionalgorithmor configuration. This goal
precludestheuseof themetricusedby CHL [8], which pretenures
if thecollectorusuallycopiesobjectsallocatedataparticularsitein
the context of a specificgenerationalcollectorconfiguration.Our
approach is insteadbasedontwo fundamentalobjectlifetimestatis-
tics: ageandtimeof death. Objectageindicateshow longanobject
lives,andtime of deathindicatesthepoint in theallocationhistory
of theprogramatwhich theobjectbecomesunreachable.

Following the garbagecollection convention of equatingtime to
bytesallocated,we normalizeagewith respectto max live size.
Maxlive sizerefersto themaximumamountof liveobjectsin apro-
gramexecution, which indicatesthe theoretical minimummemory
requirementof aprogram.Wenormalizetimeof deathwith respect
to total allocation.1 For example,consideran objectallocatedto-
ward the endof the programthat diesafter the last allocation. It
hasa normalizedtime of deathof 1.00. Objectageis a fractionor
multiple of the max live size. For example,an ageof 0.25means
thatduring thelifetime of theobject,0 � 25 � maxlive sizebytesof
allocationoccurs.

Therelationshipsbetweenobjectage,time of death,maxlive size,
and total allocationare illustratedin Figure 1 for a Java version
of health runninga small input set,whereonepoint is plottedfor
eachobject’s ageand time of death. The top and left axes nor-
malize‘time’ with respectto totalbytesallocatedfor thatprogram,
while thebottomandright axesshow time with respectto thepro-
gram’s max live size,which relatesto a ‘heapfull’ of allocation.
This figure shows that a large numberof objectshave short life-
times, and the vertical ‘lines’ of points indicate that throughout
the life of the programobjectsare most likely to die when they
reachoneof a small numberof ages(for exampleabout 0.2 and
0 � 6 � max livesize).

1The relationshipbetweenmax live sizeand total allocationis a
functionof allocationbehavior. In our Java programs,total alloca-
tion rangesfrom 11 to 113timesmaxlivesize.

343

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

O
bj

ec
t t

im
e

of
 d

ea
th

 r
el

at
iv

e
to

 to
ta

l a
llo

ca
tio

n

O
bj

ec
t t

im
e

of
 d

ea
th

 r
ea

lti
ve

 to
 m

ax
 li

ve
 s

iz
e

�

Object age relative to max live size

Object age relative to total allocation

immortal

long

short

Figure 1: Object Age and Death Distrib utions for health (3-
128)

Object Lifetime Profiling

We analyzeageand lifetime statisticsusing an executionprofile
for eachapplication.Theprofile takestheform of anobjectgraph
mutationtrace,which recordsall objectallocations,pointermuta-
tions, andobject deaths. We log all allocations,all heappointer
mutations,andwhenthecollectorfreesanobject.To obtainaccu-
rateobjectdeathinformation,we trigger a (non-generational)full
heapcollection frequently (onceevery 64KB of allocation). We
gatherageandtime of deathstatisticsfor eachobject,aswell as
themaxlivesizeandtotalallocationfor theapplication.

Binning

For eachobjectallocatedat a given site,we categorizeit into one
of threebins: short, long, or immortal. We usethefollowing algo-
rithm.

1. If anobjectdiesmorethanhalfway betweenits time of birth
andtheendof theprogram,webin it asimmortal.

2. Otherwise,if an object’s ageis lessthanTa
� maxlive size

bytes,thenit is binnedasshort.

3. In all othercases,anobjectis binnedlong.

We useTa � 0 � 2 in our experimentsbelow. Our immortal classi-
fication criterion is basedon the observation that objectsthat will
never be copiedhave a lower spacerequirementthanobjectsthat
may becopied.The lattermusthave spacereserved into which to
copy them. Becausein an Appel-stylegenerational collector, the
reservedspaceoverheadis 100%(half theheap),anobjectshould
be classifiedasimmortal if deadtime/lifetime

�
1 for that object,

wheredeadtimeis thetimefrom whentheobjectdiesto theendof
theprogram.Figure1 illustratesthis categorization.

Allocation SiteClassification

Using the bins, we then classify a site. Given an allocationsite
thatallocatesa fractionSf of short-livedobjects,L f of long-lived
objects,and I f of immortal objects,we classify it usinga homo-
geneitythresholdH f asfollows:

1. If Sf � H f � L f � I f we classifythesiteshort.

2. Otherwise,if Sf � L f � H f � I f , we classifythesite long.

3. In all othercases,we classifythesite immortal.

Thuswemakeaconservativeclassification(short)for thesiteif that
is themostcommoncase,andthe lessconservative classifications
(long or immortal) whenthey aresufficiently morecommonthan
the otherchoices.For example,given fractionsof 0.1 short,0.35
long,and0.55immortal,we classifythesite‘long’ if Hf �	� � 55

� 35
 0 � 1� � 0 � 1, but if H f

�
0 � 1, weclassifyit ‘immortal.’ Weuse

H f � � 33in ourexperiments.Wefind ourbinningandclassification
fairly insensitive to reasonable choicesof Ta andH f .

Combining Classificationsfr om Differ ent Program Executions

We arealsoable to combinedatafrom differentprogramexecu-
tions to generatepretenuring advice. Our tracecombiningalgo-
rithm worksasfollows. For eachsite,we generatenew combined
binssc � lc � ic. For eachtracet, wefirst computeaweightwt for each
site: wt � vs vt , wherevs is thevolumeallocatedat thesite,andvt
is thetotal volumeof allocationin thetrace.We thencomputethe
following combinedbins for all siteswith traceinformation. Let
wc � ∑n

t � 1 wt .

sc � �
n

∑
t � 1

st � wt � wc

lc � �
n

∑
t � 1

lt � wt � wc

ic � �
n

∑
t � 1

it � wt � wc

With thesebins, we thenusethe sameclassificationalgorithmas
above but with a differenthomogeneity factor, which we call the
combininghomogeneityfactor, Hcf . We found that it wasimpor-
tant to be particularlyconservative whencombiningtraces,so we
usedHcf � 0 � 9.

3.2 Testingthe Homogeneity Premise

Profile-drivenpretenuringis premisedonhomogeneousobjectlife-
timesat eachallocationsite. Previous work shows that ML pro-
gramsareamenableto a classificationof sitesasshortand long,
wherelong means‘usually survivesonenurserycollection’ [8]. C
programsarenothomogeneousateachcall site,but requirethedy-
namiccall chainto predictsimilar classesof lifetimes[4, 14]. We
show in this sectionthat theallocationsitesin our setof Java pro-
gramshave homogeneouslifetimeswith respectto our new classi-
ficationscheme.

We use3 benchmarks from the SPECJVM98 suite: 202 jess,
213 javac, and 228 jack, plusIBM’ spBOB [6], onwhichSPEC

JBB 2000is based, andhealth, anobject-orientedJava versionof
the OldenC programthat modelsa healthcaresystem[13]. We
choosetheseprogramsbecausethey exercisethe garbagecollec-
tor. Weexplicitly excludeotherSPECJVM98 benchmarkssuchas
201 compress because they have a low ratioof total heapsizeto

344

max live sizeandthusdo not exercisegarbagecollection. Table1
containsthe total allocationin bytes,maximumlive sizein bytes,
andtheratio betweenthetwo, for eachbenchmark.

Benchmark Li ve Alloc Alloc/Li ve
jess 4,340,224 493,363,764 113
javac 12,450,043 651,452,676 52
jack 7,216,975 517,214,752 72
pBOB 36,272,138 678,600,124 18
health (6-128) 3,503,011 39,679,440 11

Table 1: Benchmark Characteristics: (Li ve) is maximum live
sizein bytes,(Alloc) is total allocation in bytes.

Wepresenttwo typesof resultsin theremainderof thissection.For
javac andfor our combinedadvice,we illustrateour binning and
classificationsfor a numberof call sitesin each.We thenpresent
aggregateadvicesummariesfor eachbenchmarkandtheactualbe-
havior of thesiteto demonstratethequality of our advice.

Binning and Classification

Table2 shows our per-sitebins andobjectclassificationfor javac
andour combinedadvicefor the Jalapẽno build-time system.We
include the top 14 sitesranked by their spacerentalcosts,where
spacerentalis thesize � lifetime productfor eachof theobjectsal-
locatedat thatsiteasapercentageof total spacerental,andpresent
a cumulative total of spacerentalcosts.Clearly, we excludemany
sitesin this presentation.Thelow cumulative total for spacerental
demonstratesthatthereareverymany sitescontributing to thetotal
allocation.

We include the numberand volume of objectsthe site allocates,
andshow the percentageof objectsthat arebinnedasshort,long,
or immortal. UsingTa � 0 � 2 � H f � 0 � 33� andHcf � 0 � 9, we show
our resultingclassification.Notice that many allocationsitesare
homogeneous:themajority of objectsat a sitearein a singlebin.
For somesites,especiallyin the combinedtrace,objectsarewell
distributedamongbins. For javac, we classifymany sitesaslong
(l), andin thecombinedtrace,severalsitesasimmortal (i). Thus,
we find sitesto pretenureinto thelong livedandimmortalspace.

Table3 summarizesthelevel of classificationaccuracy for eachof
our benchmarks. We classify objectsas (short (s), long (l), and
immortal (i)) on both a per-objectandper-sitebasis.We examine
theper-object(exact, indicatedwith subscripto) andper-site(rep-
resentative, indicatedwith subscripts) decisionsfor eachobjectto
establishthelevel of errorin thepersitedecisions.

Theninedecisionpairsfall into threecategories:neutral,bad,and
goodwith respectto the non-pretenuredstatusquo. Neutralpre-
tenuringadviceallocatesobjectsinto the nursery(� so � ss � , � lo � ss � ,
and � io � ss�). Badpretenuringadviceallocatesobjectsinto a longer
lived region than appropriate(� so � ls � , � lo � is � , and � so � is �). Fol-
lowing badadvicetendsto wastespace.Goodpretenuring advice
allocatesobjectsinto longer lived regions,but not too long lived
(� io � is � , � lo � ls � , and � io � ls �). Following goodadvicereducescopy-
ing withoutwastingspace.Table3 indicatesthatonaverage,44.3%
of our adviceis “good”, 52.3%is “neutral”, andonly about 3.4%
is “bad”.

4. Methodology
This sectionbegins by describinghow we usepretenuringadvice,
thenit overviews theJalapẽno JVM andtheGCtoolkit webuilt for
this exploration. We thendiscusshow we measureandconfigure
our system.

4.1 Using Pretenuring Advice

Both the generationalandOlder First collectorshave threeobject
insertionpoints:aprimaryallocationpoint (thenursery),aprimary
copy point (the secondgenerationand copy zone, respectively),
andanallocationpoint in permanent (immortal)objectspace.Our
adviceclassificationsmapallocationsto theseinsertionpoints in
theobviousway.

We have modifiedthe Jalapẽno compilerto generatean appropri-
ateallocationsequence whencompilingeachnew bytecodeif the
compilerhaspretenuringadvicefor thatbytecode. We provide ad-
vice to thecompilerasafile of � sitestring� advice� pairs,wherethe
sitestringidentifiesaparticularbytecodewithin aclass.By provid-
ing adviceto thecompileratbuild time(whenbuilding theJalapẽno
boot image[1]), allocationsitescompiledinto theboot image,in-
cluding the Jalapẽno run-timesystem,canpretenure.If adviceis
provided to the compilerat run-time, allocationsitescompiledat
run-time,includingthosein theapplication,canpretenure.

The advice part of a pair indicateswhich of the three insertion
points to use. Sincethe nurseryis the default, oneneedsto pro-
vide adviceonly for long-livedandimmortalsites.

In application-specific pretenuring,we useself advice[4], i.e., the
benchmarkexecutionsusethesameinput whengeneratingandus-
ing advice. In build-time pretenuring,we usecombinedadvice,
omitting informationfrom theapplicationto bemeasured, which is
calledtrue advice.

Using an advicefile is not the only way onemight communicate
pretenuringadviceto a JVM; bytecoderewriting is anotherpossi-
bility whenonedoesnot have accessto the JVM internals. BIT
is a bytecode modificationtool that facilitatesannotationof arbi-
trary bytecodes[12]. Similarly, IBM’ s JikesBytecodeToolkit2 al-
lows bytecodemanipulation. Sinceour pretenuringadviceis im-
plementedinsideJalapẽno, we manipulatethe intermediaterepre-
sentationdirectly. Also, for build-timepretenuring,weavoid modi-
fying alargenumberof Jalapẽnoclassfilesby usingjustonesimple
text file for all pretenuringadvice.

4.2 The Jalapeño JVM and the GC Toolkit

We usetheJalapẽno JVM for our implementationstudy[1]. Jala-
pẽno is ahighperformanceJVM writtenin Java. BecauseJalapẽno
usesits own compilerto build itself, a simplechange to the com-
piler gave us pretenuringcapability with respectto both the JVM
run-timeanduserapplications.Thecleandesignof Jalapẽnomeans
that the addition of pretenuringto Jalapẽno (beyond the garbage
collectorsand allocatorsthemselves) is limited to writing a sim-
ple advicefile parserandmaking the above minor changeto the
compiler. Thesechangestotaledonly a few hundredlinesof code.

We have developedGCTk, a new GC toolkit for Jalapẽno. It is
anefficient andflexible platformfor GC experimentation,thatex-
ploits the object-orientationof Java andJVM-in-Java propertyof

2Availableat http://www.alphaworks.ibm.com/tech/jikesbt

345

% spacerental % % bin %
site objects volume site total short long immortal classification

javac 137 465394 9307880 13.082 13.082 55.74 35.22 9.04 s
3301 145636 4077808 8.727 21.809 2.64 77.13 20.23 l
3364 148676 2378816 5.556 27.365 38.10 51.28 10.62 s
3361 96696 1547136 5.553 32.918 4.85 78.83 16.32 l
3308 48328 1159872 3.783 36.701 0.56 54.70 44.74 l
3310 49812 1793232 3.501 40.202 1.33 64.43 34.24 l
3331 46924 791408 3.198 43.400 1.10 64.47 34.44 l
3330 40156 1766864 2.734 46.134 1.10 65.09 33.81 l

29 435580 14588780 2.256 48.390 93.53 3.61 2.86 s
3327 382616 7652320 2.046 50.436 93.00 4.11 29.0 s
3340 32956 763504 1.843 52.279 3.39 81.67 14.94 l
3303 22684 635152 1.670 53.949 4.37 52.81 42.81 l
3339 23980 575520 1.519 55.468 1.84 73.91 24.25 l
103 4787 114888 1.491 56.959 5.31 16.94 77.75 i

combined 1992 725186 14503720 4.801 4.801 77.79 15.15 7.06 s
1862 106212 1699392 3.595 8.396 65.62 23.03 11.35 s
2442 45537 1466549 3.367 11.763 56.74 18.86 24.39 s
2893 515773 19759078 3.358 15.122 51.86 15.62 32.52 s
3266 1663676 53687928 3.214 18.336 72.42 26.03 1.55 s
3111 127833 7877744 2.953 21.289 20.15 25.76 54.09 s
2333 1191535 38129120 2.398 23.687 69.86 28.38 1.76 s
1727 9813 235512 1.796 25.483 8.75 11.54 79.71 s
1377 5461 89956 1.667 27.150 0.09 0.00 99.91 i
3583 5453 567112 1.667 28.818 0.00 0.00 1.00 i
424 15489 309780 1.633 30.451 47.22 15.75 37.03 s

2934 38758 775160 1.628 32.079 40.06 32.54 27.40 s
1499 5294 460012 1.620 33.699 0.00 0.00 1.00 i
2182 5273 84368 1.610 35.309 0.00 0.00 1.00 i

Table 2: Per-siteObject Binning and Classification

% good% % neutral% % bad%
benchmark � io � is � � lo � ls � � io � ls � � so � ss � � lo � ss � � io � ss � � so � ls � � lo � is � � so � is �

jess 41.6 0.1 0.0 47.3 3.9 5.8 0.0 0.4 0.7
javac 10.6 37.0 15.5 23.7 8.1 3.1 1.6 0.3 0.2
jack 29.6 7.6 0.8 46.2 7.8 5.6 1.3 0.2 0.9

health 25.5 3.5 1.7 42.0 19.5 5.8 1.4 0.3 0.3
pBOB 37.7 3.3 6.8 33.9 4.9 4.0 2.5 6.0 0.9
average 29.0 10.3 5.0 38.6 8.9 4.8 1.4 1.4 0.6

Table3: Per-program Pretenuring DecisionAccuracy (weightedby spacerental cost)

Jalapẽno. We have implementeda numberof GC algorithmsusing
GCTk andfound their performance to besimilar to thatof theex-
istingJalapẽno GCimplementations.OurAppel-stylegenerational
collector is well tunedandusesa fastaddress-orderwrite barrier
[15]. We extendthealgorithmin a straightforwardway to include
an uncollectedregion (for immortal objects). We recentlyimple-
mentedthe Older First GC algorithm [15] using the GCTk, and
addedanuncollectedregion to it aswell.

4.3 Experimental Settingand GC Configuration

Weperformedourexperimentaltiming runsonaMacintoshPower
Mac G4, with two 533 MHz processors, 32KB on-chip L1 data
andinstructioncaches,256KB unifiedL2 cache,1MB L3 off-chip
cache,and384MB of memory, runningPPCLinux 2.4.3.(Weused
only oneprocessor for our experiments.)

As indicatedin Section3.1,a time-spacetrade-off is at theheartof
eachpretenuringdecision. In order to betterunderstandhow that
trade-off is playedout andto make fair comparisons, we conduct

all of our experimentswith fixedheapsizes.We expressheapsize
asa functionof theminimumheapsizefor thebenchmarkin ques-
tion. We definetheminimumheapsizefor a benchmark to be the
smallestheapin whichthebenchmarkcanrunwhenusingaAppel-
stylegenerational collectorwithout pretenuring.This amount is at
leasttwice themaxlivesize,we determineit experimentally.

For the generational algorithm, we collect when the sum of the
spaceconsumed by the three allocation regions (nursery, older
generation,and permanentobject space)and the reserved region
reachesthe heapsize. We collect the older generation, asper the
Appel algorithm,when it approaches the sizeof the reserved re-
gion.

5. Results
This sectionpresentsexecutiontime andother resultsusinggen-
erationalcollectionfor build-timepretenuring,application-specific
pretenuringwith our adviceand CHL advice,and the combina-
tion of build-time andapplication-specific pretenuring.Finally, we

346

70 %

75 %

80 %

85 %

90 %

95 %

100 %

105 %

110 %

1 1.25 1.5 2 2.5 3

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Heap size relative to minimum heap size (log)

Build time pretenuring

SPEC _202_jess
SPEC _213_javac

SPEC _228_jack
Olden health(6,128)

IBM pBOB

Figure 2: Relative Execution Time for Build-Time Pre-
tenuring

96 %

97 %

98 %

99 %

100 %

101 %

102 %

103 %

104 %

1 1.25 1.5 2 2.5 3

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Heap size relative to minimum heap size (log)

Application pretenuring: geometric mean for all benchmarks

CHL application PT
UMass application PT

Figure 3: Relative Execution Time for Application-
SpecificPretenuring

demonstratethatour adviceis collector-neutralby showing that it
improvesaverydifferentcollectoraswell, theOlderFirstcollector.
In all of theexperiments,weusethepretenuringadviceparameters
Ta � 0 � 2, H f � 0 � 33,andHcf � 0 � 9 asdescribedin Section3.1.

We usethetimesreportedby theSPECJVM98 benchmarks them-
selves; health similarly reportsits execution time. The pBOB
benchmarkrunsfor a fixedperiodandreportstransactionspersec-
ond, which we invert, giving time per transactionasour measure
of time. We always report times normalizedwith respectto the
non-pretenuredcase.

5.1 Build-T ime Pretenuring

Build-time adviceis trueadvice;in theseexperimentswe acquired
it by combining advice(Section3.1)from eachof theotherbench-
marks. Becausepretenuringwill only occurat sitespre-compiled
into the Jalapẽno boot image,build-time advicedoesnot result in
pretenuringof allocationsiteswithin anapplication.However, be-
causeconsiderableallocationoccursfrom thosesitescompiledinto
the boot image(quite notablyfrom the Jalapẽno optimizing com-
piler), build-time advicehasthe distinct advantageof delivering
pretenuringbenefitswithout requiringtheuserto profile theappli-
cation.

Figure2 showsfor eachbenchmarkthetotalperformanceimprove-
mentusingbuild-time pretenuringnormalizedwith respectto the
generational collectorwithout pretenuring. It plots on the x-axis
theheapsizein multiplesof theminimum heapsizefor 32 points
between1 and3.25on a log scaleversusrelative executiontime.
All our resultsusethesamex-axis.

Notice that there is a lot of jitter for eachbenchmarkin these
graphs. This jitter is presentin our raw performance resultsfor
eachspecificallocatoraswell as in the normalizedimprovement
graphswe show. Thejitter is mostlydueto variationsin thenum-
ber of collectionsat a given heapsize. Small changesin the heap
sizecan trigger collectionseither right beforeor after significant
objectdeath,which affectsboth the effectivenessof a given col-
lection and the numberof collections. This effect illustratesthat
GCevaluation should,aswedo,usemany heapconfigurations,not
just two or three.Pretenuringneitherdampensnorexaggeratesthis
behavior, but is subjectto it.

In somecases,build-time pretenuringdegradestotal performance
by a few percent,but for mostconfigurations, programsimprove,
sometimessignificantly. Improvementstendto declineastheheap
sizegetslargerbecausethecontribution of garbagecollectiontime
to total time declinesastheheapgetsbigger, simply becausethere
arefewer collections.Pretenuringthushasfewer opportunitiesto
improve performance, but pretenuringstill achieves an improve-
mentonaverageof around2.5%evenfor largeheaps.All programs
improve on average,and for javac and health, with a number a
configurations improvements aremorethan15%. Theseimprove-
mentsarea resultof reducingcopying in thegarbagecollector, and
thesignficantdecreasein GCtimeimprovesoverallexecutiontime.
Section5.3presentsthesemeasurementsaswell.

5.2 Application-Specific Pretenuring

In this section,we compare our classificationschemeto the CHL
scheme[8] usingapplication-specific (self) advice. Given an ap-
plicationrunningwith a generationalcollectorwith afixednursery
size,CHL advicegenerationfirst measuresthe proportionof ob-
ject instancesthat survive at leastoneminor collectionon a per-
allocationsitebasis.CHL classifiesaslong-lived thoseallocation
sitesfor which a high proportionsurvive (we implementedtheir
approach with thesame80%thresholdthey used).CHL thenpre-
tenures(allocates)objectscreatedat thesesitesinto theoldergen-
eration,andallocatesobjectsfrom all theotherallocationsitesinto
thenurseryin theusualway. Becauseof allocation-sitehomogene-
ity in ML (which wealsoobservedin Section3.2 for our Java pro-
grams),their approachis fairly robustto thethreshold.

The biggestdifferencebetweenthe two classificationschemesis
that we include an immortal category and our collector puts im-
mortal objectsinto a region that it never collects. With respectto
spacerentalcost,pretenuringallocateson average29% of objects
into theimmortalspace(seeTable3), andthesedecisionsareover-
whelminglycorrect(becauseourdecisionsto pretenureto immortal
spaceareso conservative). Sinceboth schemesget thesametotal
heapsize in our experiments,allocationinto the immortal region
reducestheportionof theheapthegenerationalcollectormanages
in our scheme(seefigure5).

Figure3 comparesCHL andUMassapplication-specific pretenur-
ing, usingthe generational collector, which hasa flexible nursery

347

55 %

60 %

65 %

70 %

75 %

80 %

85 %

90 %

95 %

100 %

1 1.25 1.5 2 2.5 3

M
ar

k/
co

ns
 r

at
io

 r
el

at
iv

e
to

 n
on

-P
T

�

Heap size relative to minimum heap size (log)

Geometric mean for all benchmarks

Application PT
Build time PT

Application & build time PT

(a) Relative Mark/ConsRatios

50 %

60 %

70 %

80 %

90 %

100 %

110 %

1 1.25 1.5 2 2.5 3

N
or

m
al

iz
ed

 G
C

 ti
m

e

Heap size relative to minimum heap size (log)

Geometric mean for all benchmarks

Application PT
Build time PT

Application & build time PT

(b) RelativeGarbageCollectionTime

91 %

92 %

93 %

94 %

95 %

96 %

97 %

98 %

99 %

100 %

101 %

102 %

1 1.25 1.5 2 2.5 3

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Heap size relative to live size (log)

Geometric mean for all benchmarks

Application PT
Build time PT

Application & Build time PT

(c) Relative ExecutionTime

Figure4: Comparing UMassApplication-Specific,Build-Time,
and CombinedPretenuring

size. Thefigureshows theaveragerelative executiontime usinga
geometricmeanof our benchmark programs.On averageour ad-
vice performsaboutaswell asCHL, exceptin a tight heapwhere
the impactof immortalobjectsis highestandour adviceperforms
significantlybetter. With UMasspretenuring,immortalobjectsare
never copied,andbecausethey do not requirereservedcopy space
they aretwiceasspaceefficientasregularheapobjects.With CHL
theseobjectstypically go into thesecondgeneration.Givena tight
heapanda flexible nurserysize,the amountof spaceavailableto
the nurseryis thusreduced, which triggersmorefull heapcollec-
tionsfor CHL. Thiscostis greaterthanthesavingsof avoidingone
copy out of the nursery. Our schemeis sometimessubjectto the
samebehavior, but clearlylessfrequently. With a largerheap,both
schemesavoid theseadditionalfull heapcollections.

BecauseCHL advicegeneration is specificto program,collector,
andcollectorconfiguration,it cannot be combinedfor build-time
pretenuringwithout significantchangeto thealgorithm. We make
no further comparisonswith CHL because of this drawback and
because, as we have just illustrated,our three-way classification
offerssimilarperformanceto theCHL two-wayschemeonaverage
andmuchbetterperformance thanCHL for tight heaps.

5.3 Combining Build-Time and Application-Specific
Pretenuring

This section shows that combining build-time and application-
specificpretenuringresultsin betterperformancethaneitherone
alone.For thesethreepretenuring schemes,we presentresultsus-
ing thegeometricmeanof the5 benchmarksfor relativemark/cons
ratio in Figure 4(a), the geometricmeanof the relative garbage
collectiontime in Figure4(b), the geometricmeanof the relative
executiontime in Figure4(c), andthe relative executiontime for
eachbenchmarkin Figure6.

Figure4(a)showsthemark/consratiofor eachpretenuringscheme,
relativetonon-pretenuring. Themark/consratiois theratioof bytes
copied(“marked”) to bytesallocated(“cons”). Thefigureexplains
whypretenuringworks: it reducescopying. In all cases,pretenur-
ing reducesthenumber of objectsthecollectorcopies.Reductions
rangefrom 1% to 33%,which is quite significantwhenminimum
heapsizescanbeaslarge150MB (pBOB).

Figure5 offers additionalinsights. Figure5(a) shows heapusage
over time for a run of the javac benchmark without pretenuring,
and Figure 5(b) shows it with pretenuring. The top line in each
graphshows the total heapconsumption immediatelybeforeeach
GC. Thesecondline shows thespaceconsumedby theoldergen-
erationimmediatelybeforeeachGC (both nurseryand full heap
collections). Finally, the bottom line shows the immortal space
consumption (alwayszeroin Figure5(a)).

Note that in pretenuring, allocationto immortal spaceeffectively
increasesthe sizeof the heapbecause it doesnot needto reserve
spaceto copy immortals.(Of coursethetotal spaceavailableis the
samein both cases.)Thusthe pretenuring graph’s total occupied
heapsize is larger. This makes the nurseryeffectively larger. A
largernurserydelaysthegrowth of theoldergenerationanddefers
older generationcollections.The lowestpointsin the secondline
arevery similar in bothgraphs,which shows thatpretenuringdoes
not allocatemany immortalobjectsinappropriately (if it does,the
secondline would be higher for pretenuring). Also note that the
shapesof thefour troughsin thesecondlinestowardstheright side

348

0 MB

2 MB

4 MB

6 MB

8 MB

10 MB

12 MB

14 MB

16 MB

0 MB 125 MB 250 MB 375 MB 500 MB 625 MB 750 MB

V
ol

um
e

of
 h

ea
p

co
ns

um
ed

Time (allocation)

_213_javac, 30MB heap, no pretenuring

Gen 1 + Gen 0
Gen 1

(a)HeapProfileWithout Pretenuring

0 MB

2 MB

4 MB

6 MB

8 MB

10 MB

12 MB

14 MB

16 MB

0 MB 125 MB 250 MB 375 MB 500 MB 625 MB 750 MB

V
ol

um
e

of
 h

ea
p

co
ns

um
ed

Time (allocation)

_213_javac, 30MB heap, build & application pretenuring

Immortal + Gen 1 + Gen 0
Immortal + Gen 1

Immortal

(b) HeapProfile with Build-Time andApplication-Spec-
ific Pretenuring

Figure5: Heap UsageOver Time By Regionfor a Run of javac

of the figures. Whennot pretenuring,the bottomsof the troughs
areflat, showing that thereis no directallocationto theoldergen-
eration.With pretenuring,they show anupwardslopeto theright,
indicatingdirectallocationto theoldergeneration.

In summary, pretenuringperformsbetterbecauseit doeslesscopy-
ing. It reducescopying in two ways:directallocationinto theolder
spacesavoidscopying to promotelongerlivedobjects;andtheim-
mortalspaceeffectively increasesthesizeof theheap,thusreduc-
ing thenumberof GCsandtheamount of copying.

Figure4(b) shows that the reductionin copying costsignificantly
andconsistentlyreducesGC time, especiallyconsidering the ad-
vice is true ratherthanself advicefor build-time pretenuring. In
particular, combinedapplicationand build-time pretenuringim-
provesGC time between20%and30%for mostheapsizes.App-
lication-specificpretenuringis on averageusually the leasteffec-
tive of the three,but it occasionallyimprovesover build-time pre-
tenuring,mirroring the mark/cons results. Combinedpretenuring
is virtually alwaysthebestof thethreeschemes.

Collector time is of coursea fraction of total executiontime and
that fraction rangesfrom around 10% on large heapsto 45% on
very smallheapsfor our programs. Figure4(c) shows that all the
pretenuringschemesimproveperformance.Averageimprovements
areusuallybetween1%and4%,but asshown in Figure6, individ-
ual programsimprove by asmuchas29%.

Figure6 comparesthe threeschemeswith respectto eachof our
benchmarkprograms. Noticeagainthatpretenuringimprovesper-
formancemorein tighterheaps.For application-specificpretenur-
ing andatight heap,jess, javac, andjack exhibit degradationsdue
to the phenomenondescribedin Section5.2. We get our bestim-
provements on javac andhealth. Tables1 and3 show that these
programshave very different lifetime characteristicsand receive
very differentpretenuringadvice.For javac, pretenuringallocates
objectswith 11% of the spacerentalcostinto the immortal space
and54% into the long-lived space.For health, 26% go into im-

mortaland5% into thelong-livedspace.Thesedifferencesfurther
emphasizethevalueof a three-way classification.

5.4 Impr oving Older First Collection

Using an Older First (OF) collector [15], we show the samead-
vicecanimprove thiscollectoraswell. TheOFcollectororganizes
the heapin allocationorder. View the heapasa queue;the oldest
objectsareat the tail andthe OF allocatorinsertsnewly allocated
objectsat theheadof thequeue.OFbeginsby positioningthewin-
dow of collectionat theendof thequeue,whichcontainstheoldest
objects.During a collection,it copiesandcompacts the survivors
in place,returnsfreeblocksto theheadof thequeue,andthenpo-
sitions the window closerto the front of the queue, just pastthe
survivors of the currentcollection. When it bumpsinto the allo-
cationpoint for the youngestobjects,it resetsthe window to the
oldestobjects.SeeStefanović, et al., for moredetails[15].

With pretenuringadvice,OF puts immortal objectsin a reserved
spacethat is never collected. OF allocateslong-lived objectsat
the copy point for the previous collection, which gives them the
longestpossibletime beforeOF will considerthemfor collection.
OFcontinuesto putshort-livedobjectsat theheadof thequeue.As
with thegenerationalcollector, we usea fixedsizedheap,reduced
by the spaceallocatedto immortal objects. We setthe collection
window size,g, to 0 � 3 � heapsize.

Figure7 shows thegeometric meanof therelative performancefor
all our benchmarks, normalizedwith respectto the OF collector
without pretenuring, for build-time,application-specific,andcom-
binedpretenuring. Application-specificOF pretenuringis almost
alwaysa win, except for a numberof heapsizesaround1.5 where
javac seesadegredationof 20%for oneheapsizeandsomebench-
marksseeocassional degredationsashigh as10%.Thesedegreda-
tionsleadto degradationsin thegeometric meanat around 1.5and
1.7. In thesecases,thedegradationsarecausedby a significantin-
creasein thenumberof collections,mostlikely dueto overzealous
pretenuring. Again,build-time pretenuringimprovesperformance,
andadditionalimprovements from combined pretenuringarecon-
sistentandsignificant,rangingfrom 2% to 23%.

349

88 %

90 %

92 %

94 %

96 %

98 %

100 %

102 %

1 1.25 1.5 2 2.5 3

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Heap size relative to minimum heap size (log)

SPEC _202_jess

UMass application PT
UMass build time PT

UMass application & build time PT

(a) jess

70 %

75 %

80 %

85 %

90 %

95 %

100 %

105 %

110 %

115 %

120 %

1 1.25 1.5 2 2.5 3

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Heap size relative to minimum heap size (log)

SPEC _213_javac

UMass application PT
UMass build time PT

UMass application & build time PT

(b) javac

92 %

94 %

96 %

98 %

100 %

102 %

104 %

106 %

1 1.25 1.5 2 2.5 3

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Heap size relative to minimum heap size (log)

SPEC _228_jack

UMass application PT
UMass build time PT

UMass application & build time PT

(c) jack

80 %

85 %

90 %

95 %

100 %

105 %

1 1.25 1.5 2 2.5 3

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Heap size relative to minimum heap size (log)

Olden health (6, 128)

UMass application PT
UMass build time PT

UMass application & build time PT

(d) health

92 %

94 %

96 %

98 %

100 %

102 %

104 %

106 %

108 %

110 %

1 1.25 1.5 2 2.5 3

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Heap size relative to minimum heap size (log)

IBM pBOB 1.2B4

UMass application PT
UMass build time PT

UMass application & build time PT

(e) pBOB

Figure 6: Comparing UMass Application-Specific, Build-T ime, and Combined Pretenuring Execution Time Relative to Non-
Pretenuring

350

75 %

80 %

85 %

90 %

95 %

100 %

105 %

1 1.25 1.5 2 2.5 3

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Heap size relative to minimum heap size (log)

Older-first pretenuring: geometric mean for all benchmarks

Application PT
Build time PT

Application & Build time PT

Figure 7: Relative Execution Time for Pretenuring with
OF Collection

SincetheOF collectorvisits olderobjectsmoreregularly thanthe
generational collector, thereis potentialfor betterimprovements,
and it is realizedin theseresults. However, our implementation
of the OF collector is currently not well tuned,and doesnot in-
cludekey detailssuchasanaddressorderwrite barrier[15]. These
drawbackspreventdirectcomparisonsbetweentheperformanceof
the OF and generational collectorswith or without pretenuring.
Indeed, thesecomparisonsarenot pertinentto the subjectof this
work. Thekey point of this sectionis thatwe canusethesamead-
vice in this vastly differentcollectorandit improvesperformance
aswell.

6. RelatedWork
We first compareour work to previous researchon generational
garbagecollectors,objectlifetime prediction,andpretenuring.We
then relateit to work on predictionand object segregation for C
programswith explicit allocationandfreeing.

Ungarpioneeredthe useof generationalcopying garbagecollec-
tion to effect quick reclamationof the many short-lived objectsin
Smalltalkprograms[17]. Performancestudieswith avarietyof lan-
guagesdemonstratewell tunedgenerationalcollectorperformance
rangesfrom 10%to 40%of thetotal executiontime [18, 20,19,5,
16,8].

UngarandJacksonuseprofiling to identify whatwecall long-lived
objectsin a two generationcollector for Smalltalk [18, 19]. The
older generationin their systemis the tenured,permanent space
and is never collected. They do not allocatedirectly into this re-
gion, but copy into it objectsthatsurvive a given numberof nurs-
ery collections.Their systemkeepslong-livedobjectsin thenurs-
ery, repeatedlycollectingthemto keepfrom tenuringthem,which
would resultin tenuredgarbage.They outlinea multi-generational
approach thatwould copy thelong-livedobjectsfewer times.They
noticeimmortalobjects,but sincethosewereinsignificantin their
system,they take no specialaction. We allocateimmortalobjects
directly into a permanent space.We thusnever copy immortalob-
jects. We have the potentialnever to copy long-lived objects,but
we may.

Cheng,et al. (CHL), evaluatepretenuringand lifetime prediction
for ML programsin thecontext of agenerational collector[8]. Sim-
ilar to UngarandJackson, they divide theheapinto two regions:a
fixedsizenurseryandanoldergeneration.They collectthenursery
on every collection,andbothspaceswhentheentireheapfills up.
They generatepretenuringadvicebasedon profilesof this collec-
tor, andclassifycall sitesasshort-livedor long-lived.Most objects
areshort-lived, andallocationsitesarebimodal: eitheralmostall
objectsareshort-lived,or all arelong lived.Theiradviceis depen-
dent on their collection algorithm and the specificconfiguration,
whereasour pretenuringadviceis basedon two collector-neutral
statistics:ageandtime of death. We thereforecananddo useit
with differentconfigurationsof a generationalcollector, andwith
analtogetherdifferentcollector, theOlderFirst collector.

CHL staticallymodify thoseallocationsiteswhere80%or moreof
objectsarelong-livedto allocatedirectly into theoldergeneration,
which is collectedlessfrequently than the nursery. We allocate
insteadinto threeareas:the nursery, the older generation, or the
permanent space.We never collect our permanent space.At col-
lectiontime,their systemmustscanall pretenuredobjectsbecause
they believed that the write barriercost for storingpointersfrom
the pretenuredobjectsinto the nurserywould be prohibitive. We
insteadperformthewrite barrierasneeded; this costis very small
in our case.Thecostof scanningis significant[8, 15], andasthey
pointout,it reducestheeffectivenessof pretenuringin theirsystem.
We never collect or scanimmortal objects,andonly collect long-
livedobjectslaterwhenthey havehadtimeto die. In summary, our
pretenuringclassificationis moregeneral,andour collectorsmore
fully realize the potentialof pretenuring. Most importantly, the
moregeneralmechanism we useto gatherstatisticsandgenerate
adviceenablesour systemto combineadvicefrom differentexecu-
tionsandperformbuild-time pretenuring,which is not possiblein
their framework.

Harrismakesdynamicpretenuringdecisionsfor Java programsin
thecontext of a two generation collectorandshows improvements
by detectinglong-livedobjects[10]. This techniqueusessampling
basedonoverflow, andthustendsto samplemorelargeobjects,and
canreactto phasechanges.Our schemefor build-time pretenuring
is mostsimilar to thiswork, andit achievesbetterperformanceim-
provements dueto lower overhead. Profiling enablesusto achieve
even betterperformance. Our adviceis neutralwith respectto the
collector, andweshow thatwecanpredictobjectlifetime basedon
the allocationsite whereasHarris’ work doesnot investigatehow
muchcontext is neededto performprediction.

For explicit allocationanddeallocationin C programs,Hansonper-
forms objectsegregationof short-lived andall otherobjectson a
per allocation site basiswith userspecifiedobject lifetimes [9].
BarrettandZorn extendHanson’s algorithmby usingprofile data
to predictshort-lived objectsautomatically[4]. To achieve accu-
rateresults,their predictorusesthedynamic call chainandobject
size,whereaswe show Java predictiondoeswell with only theal-
locationsite. Subsequentwork by Siedl andZorn predictsshort-
lived objectswith only the call chain[14]. In thesethreestudies,
a majority of objectsareshort-lived,andthegoal is to groupthem
togetherto improve locality and thusperformanceby reusingthe
samememoryquickly. Barrett and Zorn’s allocatordynamically
chooses betweena specialareafor theshort-livedobjects,andthe
default heap. Becausewe attain accurateprediction for an allo-

351

cationsite,we staticallyindicatewhereto placeeachobjectin the
heap,whichis cheaperthandynamicallyexaminingandhashingon
the call chainat eachallocation. Sincein their context long-lived
is theconservativeassumption,BarrettandZornpredictshort-lived
only for call chainswhere100%of theallocationsprofile to short
lived. In a garbagecollectedsystem,our conservative prediction
is insteadshort-lived.Wealsodifferentiatebetweenlong-livedand
immortalobjects,which they do not.

A technique somewhat complementaryto pretenuringis large ob-
ject space(LOS) [7, 19, 11]. Oneallocateslarge objects(oneex-
ceedingachosensizethreshold)directly into anon-copying space,
effectively applyingmark-sweeptechniquesto them. This avoids
copying theseobjects,and can noticeablyimprove performance.
OurGCTkdoesnot (yet)supportLOS,sowecannotcomparehere
the relative benefitsof LOS and pretenuring. SomeJVMs allo-
catelarge objectsdirectly into older spaces;i.e., they usesizeas
a criterionfor pretenuring.(Theseolderspacesmayalsobemark-
sweep,sothey areeffectively implementingpretenuringandLOS.)
While pretenuringlargeobejctsmaybegenerallyhelpful in a two-
way classificationsystem(a point thatrequiresfurtheranalysis),it
couldbedisastrousto pretenureinto our immortalspaceusingsize
asa criterion. Thecompress benchmark is anexampleof this: it
allocatesanddiscardslargearrays.

7. Conclusions
This papermakes several unique contributions. It offers a new
mechanism for collectingandcombining pretenuringadvice,and
a novel and generalizableclassificationscheme. We show app-
lication-specificpretenuringusing profiling works well for Java.
Our per-site classificationschemefor Java finds many opportuni-
ties to pretenureobjectsand reducescopying, garbagecollection
time, and total time, sometimessignificantly. We are the first to
demonstratetheeffectivenessof build-timepretenuring, andwedo
sousingtrue advice.BecauseJalapẽno is written in Java for Java,
we profile it andany librarieswe chooseto include,combinethe
advice,thenbuild theJVM andlibrarieswith thatadvice,andship.
User applicationsthus can benefit from pretenuringwithout any
profiling. We furthershow that thecombinationof build-time and
application-specificpretenuringoffersthebestimprovements.

Acknowledgements
WethankSaraSmolensky whodid thefirst studiesthatinspiredthis
work. We also thankJohnCavazos,Asjad Khan, andNarendran
Sachindranfor their contributions to various incarnations of this
work, and our anonymous reviewers for their helpful comments.
Finally, we thank the membersof the Jalapẽno teamat IBM T.J.
WatsonResearchCenterwho helpedfacilitatethis research.

8. REFERENCES
[1] B. Alpern,D. Attanasio,J.J.Barton,M. G. Burke, P.Cheng,J.-D.

Choi, A. Cocchi, S.J.Fink, D. Grove,M. Hind, S.F. Hummel,
D. Lieber, V. Litvinov, M. Mergen,T. Ngo,J.R. Russell,V. Sarkar,
M. J.Serrano,J.Shepherd, S.Smith,V. C. Sreedhar, H. Srinivasan,
andJ.Whaley. TheJalapeño virtual machine.IBM SystemJournal,
39(1),Feb. 2000.

[2] B. Alpern,D. Attanasio,J.J.Barton,A. Cocchi, S.F. Hummel,
D. Lieber, M. Mergen,T. Ngo,J.Shepherd, andS.Smith.
Implementing Jalapẽno in java. In ACM ConferenceProceedingson
Object–OrientedProgrammingSystems,Languages,and
Applications, Denver, CO,Nov. 1999.

[3] A. W. Appel. Simplegenerational garbagecollection andfast
allocation.Software–Practice andExperience, 19(2):171–183,1989.

[4] D. A. Barrett andB. Zorn.Usinglifetime predictorsto improve
memoryallocation performance.In Proceedingsof theACM
SIGPLAN’93Conferenceon ProgrammingLanguage Designand
Implementation (PLDI), Albuquerque, New Mexico,June23-25,
1993, pages187–196,June1993.

[5] D. A. Barrett andB. Zorn.Garbagecollection usinga dynamic
threatening boundary. In Proceedingsof theACM SIGPLAN’95
Conferenceon ProgrammingLanguage DesignandImplementation
(PLDI), La Jolla, California, June18-21,1995, pages301–314,June
1995.

[6] S.J.Baylor, M. Devarakonda, S.J.Fink, E. Gluzberg, M. Kalantar,
P. Muttineni,E. Barsness,R. Arora,R. Dimpsey, andS.J.Munroe.
Java server benchmarks. IBM SystemJournal, 39(1),Feb. 2000.

[7] P. J.Caudill andA. Wirfs-Brock. A third-generation Smalltalk-80
implementation. In OOPSLA’86 ACM Conferenceon
Object-OrientedProgrammingSystems,Languages,and
Applications, pages119–130,1986.

[8] P. Cheng,R. Harper, andP. Lee.Generational stackcollection and
profile-drivenpretenuring.In Proceedingsof theACM SIGPLAN’98
Conferenceon ProgrammingLanguage DesignandImplementation
(PLDI), Montreal, Canada,17-19June1998, pages162–173,May
1998.

[9] D. R. Hanson.Fastallocation anddeallocation of memorybasedon
object lift imes.Software—Practice andExperience, 20(1):5–12,Jan.
1990.

[10] T. L. Harris.Dynamicadaptive pre-tenuring.In Proceedingsof the
International SymposiumOn MemoryManagement(ISMM),
Minneapolis,MN U.S.A,15-16October, 2000, pages127–136. ACM,
2000.

[11] M. Hicks,L. Hornof,J.T. Moore,andS.Nettles.A studyof Large
Object Spaces.In ISMM’98 Proceedingsof theFirst International
Symposiumon MemoryManagement, pages138–145.ACM, 1998.

[12] H. B. LeeandB. G. Zorn.BIT: A tool for instrumenting java
bytecodes.In USENIXSymposiumon Internet Technologiesand
Systems, 1997.

[13] A. Rogers,M. C. Carlisle,J.H. Reppy, andL. J.Hendren.
Supporting dynamicdatastructureson distributed-memory
machines.ACM Transactionson ProgrammingLanguagesand
Systems(TOPLAS), 17(2):233–263,Mar. 1995.

[14] M. L. SeidlandB. G. Zorn.Segregating heap objectsby reference
behavior andlifetime. In ASPLOS-VIIIProceedingsof the8th
International Conferenceon Architectural Supportfor Programming
LanguagesandOperating Systems,SanJose, California, October
3-7,1998, pages12–23,Nov. 1998.

[15] D. Stefanović, K. S.McKinl ey, andJ.E. B. Moss.Age-based
garbage collection. In Proceedingsof the1999ACM SIGPLAN
Conferenceon Object-OrientedProgrammingSystems,Languages&
Applications(OOPSLA’99), Denver, Colorado, November1-5,1999,
pages379–381,Nov. 1999.

[16] D. Tarditi andA. Diwan.Measuringthecostof storagemanagement.
Lisp andSymbolic Computation, 9(4),Dec.1996.

[17] D. Ungar. Generationscavenging: A non-disruptive high
performancestorage reclamationalgorithm.In Proceedingsof the
ACM SIGSOFT/SIGPLANSoftware Engineering Symposiumon
Practical SoftwareDevelopmentEnvironments,Pittsburgh,
Pennsylvania,April 23-25,1984., pages157–167,May 1984.

[18] D. UngarandF. Jackson.Tenuring policiesfor generation-based
storagereclamation.In N. K. Meyrowitz, editor, Conferenceon
Object-OrientedProgrammingSystems,Languages,and
Applications(OOPSLA’88), September25-30,1988,SanDiego,
California, Proceedings, pages1–17,Nov. 1988.

[19] D. UngarandF. Jackson.An adaptive tenuring policy for generation
scavengers.ACM Transactionson ProgrammingLanguagesand
Systems(TOPLAS), 14(1):1–27,1992.

[20] B. Zorn.ComparativePerformanceEvaluation of Garbage
Collection Algorithms. PhDthesis,Computer ScienceDept.,
University of California, Berkeley, Dec.1989.AvailableasTechnical
ReportUCB/CSD89/544.

352

