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ABSTRACT
The management of Web users’ personal information is in-
creasingly distributed across a broad array of applications
and systems, including online social networks and cloud-
based services. Users wish to share data using these systems,
but avoiding the risks of unintended disclosures or unautho-
rized access by applications has become a major challenge.
We propose a novel access control model that operates

within a distributed data management framework based on
datalog. Using this model, users can control access to data
they own and control applications they run. They can con-
veniently specify access control policies providing flexible
tuple-level control derived using provenance information. We
present a formal specification of the model, an implementa-
tion built using an open-source distributed datalog engine,
and an extensive experimental evaluation showing that the
computational cost of access control is modest.

1. INTRODUCTION
The personal data and favorite applications of a Web user

are typically distributed across many heterogeneous devices
and systems, e.g., residing on a smartphone, laptop, tablet,
TV box, or managed by Facebook, Google, etc. Additional
data and even computational resources may also be available
to the user from relatives, friends, colleagues, and possibly
via social network systems. Web users are thus increasingly
at risk of leaking their private data and in general of losing
control over their own information. In this paper, we in-
troduce a novel collaborative access control mechanism that
provides users with the means to control access to their data
by others and the functioning of applications they run. By
collaborative, we mean that different users are willing to
participate in the appropriate support of access control.
The focus here is therefore on information management in

environments in which data and programs are distributed,
either physically between collaborating peers, or conceptu-
ally between collaborating principals, i.e., entities that can
be authenticated by a computer system or network. (In the
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following, we will generically use the term “peer”.) More
precisely, we consider the issue of access control for such an
environment. While the technology for distributed informa-
tion management has been widely studied, access control
has rarely been included. In such settings, there are three
essential aspects to access control:

R1: Data access As for centralized database systems, users
would like to control who can read and modify their
information.

R2: Application control Users would like to control which
applications can run on their behalf, and what infor-
mation these applications can access.

R3: Data dissemination Users would like to control how
pieces of information are transferred from one partici-
pant to another, and how they are combined, with the
owner of each piece keeping some control over it.

Finally, motivated by usability and efficiency considerations,
we add a fourth, somewhat orthogonal, requirement:

R4: Declarativeness The specification of the exchange of
data, applications, as well as that of the access control
policies, should be declarative.

To illustrate the first three requirements, let us consider
Facebook, a conceptually centralized environment in which
millions of users interact by exchanging data and applica-
tions. To control who can see her information, a user uses a
classic access control mechanism, such as the one currently
employed by Facebook, based on groups of friends (R1).
Next, consider a user installing an application. This typi-
cally involves opening much of her data to a server that is
possibly managed by an unknown third party. Many Face-
book users see this as unreasonable, and would like to con-
trol what the application can do “in their name” and what
information the application can access (R2). Finally, with
respect to data dissemination (R3), users would like to spec-
ify what other users can do with their data, e.g., whether
their friends are allowed to show their pictures to their re-
spective friends.
We adopt the last requirement (R4) because a declarative

specification (i) makes it easier for a user to specify access
control policies, (ii) enables reasoning about these policies,
and (iii) allows for powerful performance optimizations. The
usability consideration is perhaps the most important one,
since typical Web users have neither the desire nor the ex-
pertise to write code to define how data and applications are
exchanged and how access is controlled.
We propose a mechanism that addresses each of these is-

sues by introducing access control in a datalog dialect [4].



1Our work is in scope of the WebdamLog project at In-
ria [2]. We introduce an access control mechanism into Web-
damLog, which is in turn implemented using Bud, an open-
source distributed datalog framework [20]. This setting is
appropriate for our work because Bud and WebdamLog pro-
vide good performance for distributed communication.
Our first contribution is an access control mechanism for

WebdamLog. This yields a language that allows the declar-
ative specification of both data exchange and access control
policies governing this exchange (R4). While a declara-
tive language is not sufficient to guarantee usability, it is
an important first step that supports the later design of ap-
propriate interface concepts and the development of GUIs
adapted to this setting. Towards (R1), we add to Web-
damLog an access control mechanism for extensional data
that is comparable to existing centralized mechanisms. To
support (R2), we introduce a mechanism for controlling the
use of delegation in WebdamLog, that allows peers to del-
egate work to remote peers by installing rules, and is the
main distinguishing feature of the WebdamLog framework.
Lastly, to support (R3), we introduce a sophisticated fine-
grained access control mechanism for intentional data based
on provenance. To our knowledge, this is the first mecha-
nism that uses provenance for distributed access control.
Our next contribution is an implementation of our collab-

orative access control model within the WebdamLog system.
We improve robustness of the open-source WebdamLog sys-
tem, implement a sophisticated access control rule rewriting
mechanism, and propose interesting performance optimiza-
tions aimed at lowering the space overhead and processing
time of access control. 1WebdamLog with access control is
publicly available and open source at https://github.com/
vzaychik/webdamlog-engine.git.
Our final contribution is an extensive experimental evalu-

ation, demonstrating that a carefully engineered system can
support fine-grained provenance-based access control at a
modest cost, which is further reduced by effective perfor-
mance optimizations. We stress here that we made signif-
icant modifications to the state-of-the-art research proto-
types on which we build to support our demanding exper-
imental scenarios. Nonetheless, our focus was primarily on
showing that the overhead of access control is reasonable.
The paper is organized as follows. We give a brief overview

of WebdamLog in Section 2. Our contributions start in Sec-
tion 3 and Section 4, where we show how WebdamLog can
be extended with access control. Section 5 describes sys-
tem implementation and Section 6 presents the evaluation
of performance. We discuss related work in Section 7 and
conclude in Section 8.

2. BACKGROUND
In this section, we briefly review WebdamLog [2].
We assume the existence of a countable set of variables

and a countable set of data values that includes a set of
relation names and a set of peer names. (Relation and peer
names are part of the data.) Variables start with $, e.g. x.
Schema. A relation in our context is an expression m@p

where m is a relation name and p a peer name. A schema
is an expression (π,E, I, σ) where π is a possibly infinite set
of peer names, E is a set of extensional relations of the form
m@p for p ∈ π, I is a set of intentional relations of the form
m@p for p ∈ π, and σ, the sorting function, specifies for each

relation m@p, an integer σ(m@p) that is its sort. A relation
cannot be at the same time intentional and extensional.1
Schema information of peer p is recorded locally in the

ternary relation kind@p. For the fact kind@p(xrel, xkind, xarity),
xrel is a relation name, xkind is its kind, i.e., int or ext (for in-
tentional or extensional), and xarity is an integer, the arity of
the relation. For example, the information that m1@p1 ∈ E
and σ(m1@p1) = 3 is recorded by the fact kind@p1(m1, ext, 3).
Note that xrel is the key of relation kind: a relation has a
unique arity and kind. For readability, we introduce the fol-
lowing notation. When the fact that a relation is extensional
is important, we underline its name. For example, kind@p
is an extensional relation. Names of intentional relations are
not underlined. A relation name is not underlined when it
is unimportant whether it is extensional or intentional.
Instance. A fact over a relation m@p is an expression of

the form m@p(a1, . . . an), where n = σ(m@p) and a1, . . . , an

are data values. An example of a fact is:
pictures@myalbum(1771.jpg, “Timbuktu”, 11/11/2011)

An instance associates a finite set of facts with each exten-
sional relation m@p.
Rules. A term is a constant or a variable. (Terms are

prepended with $.) A rule at peer p is of the form:

[at p] $r0@$p0($U0):- $r1@$p1($U1),. . . , $rn@$pn($Un)

where $ri are relation terms, $pi are peer terms, and $Ui are
vectors of terms. (To simplify, we ignore negative literals
in this paper.) The following safety condition is imposed:
each variable occurring in the head of the rule (including
$r0 and $p0 if they are variables) must occur in the body.
In addition with respect to peer and relation variables, rules
are evaluated from left to right and it is required that each
$pi, i > 0, must be previously bound in $Uj for some j < i.

WebdamLog rule semantics. At a particular point in time,
each peer p has a state consisting of some facts, some rules
specified locally, and possibly some rules that have been del-
egated to p by other peers. Peers evolve by updating their
base of facts, by sending facts to other peers, and by updat-
ing their delegations to other peers. So, both the set of facts
and the set of delegated rules evolve over time. (To simplify,
we follow [2] in assuming that the set of rules specified lo-
cally is fixed.) A subtlety lies in the use of variables for peer
names. The nature of a rule may depend on the instanti-
ation of its variables, i.e., one instantiation of a particular
rule may be local, whereas another may not be.
The semantics of a rule with head m@p(u) at peer p′ de-

pends on the nature of the relation in its head. It may be
extensional (m@p in E) or intentional (m@p in I) and local
(p=p′) or non-local (p 6=p′). WebdamLog distinguishes fur-
ther between five main categories of rules, beginning with
local rules, in which all relations in the body are local:

A. Local rule with local intentional head. These rules, like
classical datalog rules, define local intentional predi-
cates, i.e., logical views.

B. Local rule with local extensional head (local database
update). These rules derive new facts that are inserted

1In deductive database terminology, a fact is extensional if
it is stored in a database. So an extensional relation is a
database relation. A fact is intentional if it is derived. Thus
an intentional relation is a view.



into the local database. As in Dedalus [6], facts are not
persistent by default. To have them persist, one can
use rules of the form m@p(U) :- m@p(U). Deletion can
be captured by controlling the persistence of facts.

C. Local rule with non-local extensional head. Facts de-
rived by such rules are sent to other peers and stored
in an extensional relation at that peer, which allows
for a form of messaging between peers.

D. Local rule with non-local intentional head. Such a rule
defines a new intentional relation at the remote peer
based on local relations of the defining peer.

E. Non-local. Rules of this kind allow a peer to install a
rule at a remote peer, which is itself defined in terms
of the relations of other remote peers. This is delega-
tion, which enables the sharing of application logic by
peers. Peers can obtain logic (rules) from other sites
and deploy logic (rules) to other sites.

Examples of these rule types will be included in the next
two sections, in the presence of access control.

Security assumptions. The existence of a secure communi-
cation channel is assumed between any two peers, as well as
that of a secure authentication mechanism for peers. Typ-
ically, messages between peers will include requests to in-
sert/delete facts and to install rule delegations. The identity
of the sender and the receiver of a message is guaranteed by
the communication channel.
It is also assumed that peers who are granted privileges

on data are trusted to handle those privileges responsibly.
As with standard access control, the system cannot prevent
improper behavior. A user with read privileges on a data
item is not prevented from copying that item, and making
the copy available to all peers. An interesting issue that
we do not address here is the verification of correct behav-
ior and detection of access right violations. Cryptographic
techniques towards those goals have been considered in a
related context [3].
The last assumption (for simplicity) is that access con-

trol policies are non-sensitive. In particular, each peer can
inspect the access rights of other peers in the system.

3. ACCESS CONTROL FOR LOCAL RULES
We next introduce a very rich access control mechanism

for WebdamLog allowing the specification of complex access
control policies. In this section, we define the semantics of
local rules in the presence of such policies. For extensional
data, the mechanism we use is standard. Its main originality
resides in the use of provenance information for controlling
access to intentional data. The general mechanism to sup-
port read, write and grant in a coherent manner turns
out to be rather subtle. To prevent the access control mecha-
nism from becoming too constraining, we introduce means of
overriding it in a controlled manner. 1We will demonstrate
the practicality and flexibility of our approach in Section 6.
Access control over relational data is called coarse-grained

if it is specified at the level of tables or views. Fine-grained
relational access control [16, 21, 23] instead operates at the
tuple level, or sometimes even at the cell level. We propose
a hyprid approach, where users specify coarse-grained access
to extensional relations, and the system computes tuple-level
annotations for intentional data based on provenance. This

friend {alice,,bob} READ
friend {alice} GRANT
photo {alice,,bob,,pete} READ
tag {alice,,bob,,pete} READ

friendPhoto {alice} WRITE
allPhotos {alice,,bob} WRITE

friendPhoto {bob,,alice} READ
friendPhoto {bob,,alice} WRITE
allPhotos {bob} GRANT
friend {bob} GRANT

allPhotos {charlie,,alice} WRITE

acl@alice(rel,*pset,*priv)

acl@bob(rel,*pset,*priv)

acl@charlie(rel,*pset,*priv)

Figure 1: Peers alice, bob, and charlie and the relevant
portion of their acl relations.

approach supports fine-grained access control, while easing
the burden of complex access policy specification.
The access control policy is primarily based on a ternary

intentional relation acl@p for each peer p that specifies the
access control list for p — a list of statements defining priv-
ileges over the relations of p. In a fact acl@p(xrel, xpset, xpriv),
xrel@p is some relation at p, xpset is a set of peers, and xpriv is
a privilege (to be explained). Its meaning is that each peer
in xpset is granted the privilege xpriv on relation xrel@p. We
consider three privileges:

The read privilege is required to see the tuples in the spec-
ified relation, and applies to both intentional and ex-
tensional relations.

The write privilege is required to insert/delete a tuple in
an extensional relation. (To simplify, we ignore tuple
updates here.) By analogy, the write privilege is re-
quired to participate in defining an intentional relation
r@p, i.e., adding/removing rules with r@p in the head.

The grant privilege is required to grant any privilege on
a relation, including grant itself, to any peer.

In this section, we consider only local rules. We first in-
formally discuss their semantics under access control (Sec-
tion 3.1) and then formalize that semantics (Section 3.2).
To simplify presentation, we assume in these two sections
that the content of acl and kind is given (and fixed). We dis-
cuss the specification of the content of these two relations in
Section 3.3. We will consider non-local rules in Section 4.

3.1 Access control by example
In this section, we explain by example the effects of ac-

cess control on the semantics of local rules in WebdamLog.
Throughout, we refer to the peers and relations in Figure 1.
Successful execution of a WebdamLog rule in the presence

of access control imposes some constraints on the privileges
of the executing peer (where the rule is run) and the target
peer (the peer occurring in the head of the rule). If the
executing peer does not have the write privilege on the
relation occurring in the head, the rule has no effect. Assume
that the executing peer has such a privilege. For a particular
instantiation of the rule, the target peer will receive the
resulting tuple only if it has the read privilege on each fact
in the rule body for that particular instantiation.
When WebdamLog rules are executed with access control,

one can abstractly think that the rules are “rewritten” with



extra conditions added to the body asserting proper access
rights. Indeed, we will formally describe the semantics with
access control using such a rewriting in Section 3.2 and this
is a core aspect of the implementation. (For instance, we will
see that an atom corresponding to “has write privilege on the
head relation” will be added to the rule body.) And, as we
will see, such a rewriting is also used in the implementation.
But for now, we continue with the informal presentation.

Local rules with extensional head. The presence of an
extensional relation in the head is interpreted as an insertion
into the local database if the head relation is local, or into
an external database otherwise. Recall that names of exten-
sional relations are underlined for readability. Consider two
rules with the same bodies but different head relations:

[at alice] friendPhoto@alice($ph) :- friend@alice($p),
photo@alice($ph), tag@alice($ph, $p)

[at alice] friendPhoto@bob($ph) :- friend@alice($p),
photo@alice($ph), tag@alice($ph, $p)

The first rule inserts into a local relation friendPhoto@alice
the photos of alice for which at least one of its friends is
tagged. This insertion succeeds because alice has read priv-
ileges on all relations in the body and the write privilege
on the relation in the head; alice has these privileges because
a peer has full access to its own relations.
Now suppose that (i) bob grants the write privilege to

alice on friendPhoto@bob and (ii) alice grants read privi-
leges to bob on all relations in the body. Then the insertion
specified by the second rule will succeed. Otherwise it will
fail because either (i) alice is not allowed to write or (ii) bob
is not allowed to read the resulting tuples.

Local rules with intentional head. Recall that the write
privilege on an intentional relation means the privilege to
define that relation. Consider two rules defining a relation
at alice:

[at alice] allPhotos@alice($f) :- friendPhoto@alice($f)
[at bob] allPhotos@alice($f) :- friendPhoto@bob($f)

The first rule specifies that the local intentional relation
allPhotos@alice includes photos from friendPhoto@alice. This
rule always executes successfully because alice can define
its own relations. The second rule is successful if (i) alice
grants the write privilege to bob on allPhotos@alice and (ii)
bob grants the read privilege to alice on friendPhoto@bob.
When both (i) and (ii) hold, relation allPhotos@alice con-
tains the union of friendPhoto@alice and friendPhoto@bob.
We make a distinction with respect to access control based

on the kind (intentional or extensional) of the relation in the
head of the rule. Since allPhotos@alice is intentional, access
is controlled not only by the relation acl. As for extensional
relations, we require the read privilege on allPhotos@alice
for access to the contents of this relation. Additionally, be-
cause the relation is intentional, access to it is also controlled
by the provenance of each fact. By default, a peer can ac-
cess a fact in an intentional relation if that peer’s rights are
sufficient to derive it.
If charlie queries allPhotos@alice, it will see the tuples com-

ing from friendPhoto@alice only if it has the read privi-
lege on friendPhoto@alice; it will see the tuples coming from
friendPhoto@bob only if it has read on friendPhoto@bob.

Note that this results in fine-grained access control, since a
peer may see only a subset of the tuples in a relation.
Access control for intentional relations is compositional.

Consider the following two rules:

[at bob] allPhotos@alice($f) :- friendPhoto@bob($f)
[at alice] allPhotos@charlie($f) :- allPhotos@alice($f)

Without access control, allPhotos@alice and allPhotos@charlie
both include all the photos from friendPhoto@bob. In con-
trast, with access control, allPhotos@charlie contains these
photos only if both alice and charlie have the read privilege
on friendPhoto@bob.

Overriding the default semantics. Recall that a rule with
an extensional head derives new extensional facts from source
facts in the relations in the body. We treat these inferred
facts as brand new, with access controlled solely by the acl
entry of the extensional relation that contains them. In
contrast, rules with an intentional head, which define views
that may or may not be materialized, derive facts that retain
their relationship with contributing source facts. Access to
intentional facts depends on the privileges that allowed their
derivation and so is based on provenance information.
We believe this to be the most natural default semantics

that will match many common cases. But it should be clear
from the examples that this semantics may sometimes be
too constraining for intentional data and too liberal for ex-
tensional data. This motivates a mechanism for overriding
the default semantics, which is achieved by including pre-
serve and hide annotations on individual subgoals of rules.
Adding hide removes provenance history and can be used to
override the behavior of intentional rules, making access less
restrictive. Adding preserve forces the retention of prove-
nance history and can be used to override the behavior of
extensional rules, making access more restrictive. The ad-
dition of hide is particularly important, because inherited
provenance can severely impede information sharing. The
hide keyword allows for a novel and flexible capability to
declassify intentional data, as illustrated next.

Hiding provenance for intentional data. Consider a rule
that alice uses to publish photos in friends’ photo albums:

[at alice] allPhotos@$p($ph) :- [hide friend@alice($p)],
photo@alice($ph), tag@alice($ph, $p)

Consider $p = pete and suppose that pete is not enti-
tled to read friend@alice. Because of the use of hide, photos
from photo@alice in which pete is tagged are still copied into
allPhotos@pete. In contrast, without hide the photos would
not be copied. By using hide, alice is declassifying some in-
formation for pete (namely, that pete occurs in friend@alice)
without revealing the entire contents of friend@alice to pete.
In this example overriding the default semantics using hide
prevents access control from becoming too constraining. An-
other example will highlight a subtlety of hide.
Suppose that bob, a friend of alice, re-publishes alice’s

photos using the following rule:

[at bob] allPhotos@$p($f) :-
[hide allPhotos@bob($f), friend@bob($p)]

Observe that bob is declassifying data in friend@bob, as he
should be entitled to do for his own local extensional rela-
tion. However, bob is also declassifying photos of its friends,



e.g., of alice. The question is: Should bob be entitled to
do so? The answer is positive only if bob has the grant
privilege on the corresponding data. This is precisely the
semantics enforced by our access control model.

Preserving provenance for extensional data. When an
extensional fact is defined by a rule, it does not preserve
any information about access constraints on the atoms in
the body of the rule that computed it. Because of this a
peer can, for example, make a copy of a picture, effectively
erasing its provenance record, and subsequently distribute it
with no limitations (assuming proper grant privileges). To
override this behavior, it is possible to tag atoms in the body
of a rule with the keyword preserve, with the effect that
the provenance for the tagged atoms is kept in the created
tuple. For instance, consider the rule:

[at alice] newAllPhotos@bob($ph) :- friend@alice($p),
[preserve photo@alice($ph)], tag@alice($ph, $p)

Suppose that alice intends to prevent charlie from accessing
photo@alice, and so withholds read access on that relation
from charlie. By introducing the preserve annotation, alice
further makes sure that charlie will not see the photos that
were copied into newAllPhotos@bob even if bob grants read
privileges on that relation to charlie.
The annotations preserve and hide can be applied to

multiple subgoals of a rule. The following example, in which
we use two annotations in the same rule, highlights a sub-
tlety of this semantics.

[at p] r@q($x) :- [preserve r1@p($x)], r2@p($x)
r@q($x) :- r1@p($x), [preserve r2@p($x)]

Although the two rules come from different annotations
on a single rule, this yields a disjunction. Suppose that facts
r1@p(a) and r2@p(a) hold. The fact r@q(a) will hold if q
has the read privilege on either r1 or r2.
There is a fundamental difference between the intentional

and extensional cases when considering changes. Access to
an intentional fact may change as access to the facts from
which it was derived changes, much in the same way as
its existence depends on the existence of these facts. On
the other hand, access to an extensional fact is fixed at
the time when it is created, even if the fact was annotated
with fine-grained provenance information using preserve.
To illustrate, suppose that after alice has copied its pic-
tures into newAllPhotos@bob, it grants the read privilege
on photo@alice to charlie. This will not change the acces-
sibility of the tuples already created in allPhotos@bob, and
charlie will not see them.

Access control policies. 1An access control policy is (i) a
set of rules that define the content of acl@p for each peer p,
specifying coarse-grained access, and (ii) hide and preserve
annotations on rules of a WebdamLog program that define
how access is propagated. We will discuss how acl@p is
defined in Section 3.3. Formal semantics of a WebdamLog
program under a particular access control policy is specified
by rewrite rules, which we present next.

3.2 Formal semantics for local rules
The formal semantics of local rules under access control

is defined by rewriting the rules of a program P into an-
other set of rules, namely Acc(P ), that are evaluated under

(almost) standard WebdamLog semantics. Their evaluation
enforces the access control semantics.
Although the access control mechanism we introduce can

be enforced within the WebdamLog language itself, it turns
out that it is convenient to use a language with set val-
ues. Such values are useful to conceptually capture sets of
peers that share the same access privilege. The use of such
sets, while natural for the formalization, is essential for per-
formance. We therefore extend WebdamLog, which allows
only atomic values, to support set values as well. We do
this in the standard manner, so details are omitted. Note
that WebdamLog is implemented on top of Bud, which does
support nested values. Therefore, from an implementation
viewpoint this extension turned out to be straightforward.
In the following, we will use the auxiliary notions of a

p-set, the predicate includes, and extended relations:

p-set A p-set is simply a set of peers, e.g {alice, bob, charlie}.
The p-sets are used to record a particular kind of
provenance information that is used for access control.

includes The fact that a peer q is in a p-set P is denoted
includes(P, q). Observe that includes has a universal
semantics, so, unlike other relations, includes is neither
stored extensionally, nor defined by WebdamLog rules.

extended relation For each (intentional or extensional)
relation r@p(x1 . . . xn) of arity n, its extended relation,
r+@p(x1 . . . xn,P, priv), is of the same kind and has
arity n+ 2.

Coarse-grained access control is recorded in acl relations.
For the write privilege, access is controlled at the relation
level, i.e., is purely coarse-grained. For example, some q has
write access to relation r@p if acl@p(r,P,write) holds for
some P that includes q.
For read or grant, access is controlled both at the re-

lation level (coarse-grained) and at the tuple level (fine-
grained). Extended relations combine data with access con-
trol information to specify access control at the tuple level.
For a privilege priv that is either read or grant, q will
have priv access to a fact r@p(a1 . . . an) if both conditions
hold:

coarse-grained q has priv access to the relation, i.e., some
fact acl@p(r,P, priv) holds for some P that includes q;

fine-grained r+@p(a1 . . . an,P, priv) holds for some P that
includes q.

We use the symbol Ω to denote the set of all peers. A
fact r+@p(x1 . . . xn,Ω, priv) indicates that the correspond-
ing fact has no fine-grained access control for privilege priv.
Also, by definition, we let P1 ∩ ... ∩ Pk = Ω when k = 0.
Note that if r+ includes two facts r+@q(x1 . . . xn,P, priv)

and r+@q(x1 . . . xn,P′, priv) with identical data and privi-
lege values, but with different p-sets, then priv on tuple
x1 . . . xn is available to any peer in P or P ′, and we replace
the two facts by r+@q(x1 . . . xn,P ∪ P′, priv). In the follow-
ing, we will assume that for a tuple r@q(x1 . . . xn) and a
privilege priv there is a single corresponding tuple in r+.
To simplify presentation, we assume next that preserve

(respectively, hide) annotations appear on the first k (re-
spectively, last n − k) subgoals of the n subgoals in the
body. Note that since the order of subgoals matters in Web-
damLog, this is restricting the language. However, the def-
initions presented next can be extended to the general case
in a straightforward way.



We next consider how read and grant rights are speci-
fied combining fine-grained and coarse-grained requirements.
For write, such rules are not needed since we assume write
is solely governed by coarse-grained access control. We first
consider rules with an extensional relation in the head, and
preserve annotations.

Definition 3.1 (Extensional with Preserve).
Given a local rule with extensional head, assume there are
preserve annotations on the first k of n subgoals, for 0 ≤
k ≤ n:

[at p] r@q(x1, . . . , xn) :- [preserve r1@p(U1)], . . .
[preserve rk@p(Uk)],
rk+1@p(Uk+1), . . . rn@p(Un)

The rule is rewritten as follows, for priv that is either
read or grant:

1: [at p] r+@q(x1, . . . , xn,F1 ∩ ... ∩ Fk ∩ C1 ∩ · · · ∩ Ck, priv) :-
2: r+

1 @p(U1,F1, priv), . . . r+
k @p(Uk,Fk, priv),

2’: r+
k+1@p(Uk+1,Fk+1,grant), . . . r+

n @p(Un,Fn,grant),
3: acl@p(r1,C1, priv), . . . acl@p(rk,Ck, priv),
3’: acl@p(rk+1,Ck+1,grant), . . . acl@p(rn,Cn,grant),
4: includes(F1 ∩ · · · ∩ Fk ∩ C1 ∩ ... ∩ Ck, q),
4’: includes(Fk+1 ∩ · · · ∩ Fn ∩ Ck+1 ∩ ... ∩ Cn, p),
5: acl@q(r,P′,write), includes(P′, p) 2

where each Ui is a tuple of values of the proper arity, and
each Fi and each Cj are sets of peers. E.g., r+

1 @p(U1,F1, priv)
states that peer p knows that each peer in F1 has priv priv-
ilege on the tuple r1@p(U1).
The justification for this rewriting is as follows:

1. A tuple produced by the head has the p-set resulting
from F1 ∩ ... ∩ Fk ∩ C1 ∩ ... ∩ Ck. It imposes both fine-
grained and coarse-grained conditions derived from the
source facts that are annotated with preserve. Be-
cause the output is extensional, the resulting p-set of
each head fact will be frozen after it is created and will
no longer depend on its sources.

2,2’. We use extended relations, r+
i @p(Ui,Fi, priv/grant),

for each ri@p. These provide bindings for the Ui and
the fine-grained p-sets Fi.

3,3’. We use p’s acl relation acl@p(rj,Cj, priv/grant) for
each rj@p in the original rule. These provide bindings
for the Ci coarse-grained p-sets.

2,3,4. Because the output tuples are being sent to peer q, we
restrict the produced tuples to those on which q has
the priv privilege. Line (4.) tests that q is in the first
k fine-grained and coarse-grained p-sets.

2’,3’,4’. Because of the declassification of the subgoals (not an-
notated with preserve), we use the grant privilege
for these subgoals. Line (4’.) tests that p is in the last
n− k fine-grained and coarse-grained p-sets.

5. Finally, peer p must have the write privilege on r@q
to insert new tuples into r@q.

In the case where k = 0 (i.e., there are no subgoals an-
notated with preserve), the p-set in the head tuple is the
complete p-set, Ω. So, in absence of preserve, no fine-
grained access control is imposed on the resulting tuples.
Next, let us consider rules with an intentional relation in

the head, and hide annotations. Again we consider read
and grant rights, combining fine-grained and coarse-grained
requirements.

Definition 3.2 (Intentional with Hide).
Given a local rule with intentional head, assume there are
hide annotations on the last n − k of n subgoals, for 0 ≤
k ≤ n:

[at p] r@q(x1, . . . , xn) :- r1@p(U1), . . . rk@p(Uk),
[hide rk+1@p(Uk+1)], . . .
[hide rn@p(Un)]

The rule is rewritten, for priv that is either read or
grant exactly as (1-5) in Definition 3.1. 2

The justification for the rewriting is virtually identical to
the extensional case. The first k subgoals are treated sim-
ilarly by default and the remaining subgoals are explicitly
annotated, but with hide. Because the head of the rule is
intentional, the derived facts reflect, at all times, changes
in the facts that produced them (including their p-sets),
whereas these were frozen for extensional facts.
In the case when k = 0 (i.e. there are no subgoals anno-

tated with hide), the facts in the head inherit fine-grained
and coarse-grained annotations from all facts in the body,
which is the default semantics for an intentional-head rule.
Note that if q = p (in the previous two definitions), then

line 5 of the rule in Definition 3.1 always holds.
Finally, observe that both extensional and intentional facts

have two extra columns in extended relations. An issue
arises when starting a WebdamLog program from an initial
state with nonempty extensional relations that are lacking
these two extra columns. To initialize the extended exten-
sional relations, the system executes the following rule for
each r@p:

[at p] r+@p(x1 . . . xn,Ω, priv) :- r@p(x1 . . . xn)

In this case, the facts in r+@p are created with no fine-
grained constraints: all p-sets are Ω. The constraints speci-
fied by the acl relation will be applied in the above rewriting
whenever r+@p is used.

3.3 Defining acl and kind
The relation kind@p is extensional, whereas, as previously

mentioned, the relation acl@p is intentional. The main rea-
son for this is to have more flexibility in specifying access
control. Consider the following two rules:

[at alice] acl@alice(photos,grant, bob) :-
[at bob] acl@alice(photos,read, $x) :- friends@bob($x)

With the first rule, bob is allowed by alice to grant privileges
on photos@alice. With the second, bob grants the read
privilege on photos@alice to all its friends. Note that bob
can do this only because it was granted the grant privilege
by alice.
Observe how the content of friends@bob impacts access

control on photos@alice. In particular, observe how un-
friending someone (i.e., deleting some tuple from relation
friends@bob) results in revoking access rights.
Now consider the following two rules:

[at alice] acl@alice(acl,grant, sue) :-
[at sue] kind@alice(newPhotos, int, 3) :-

With the first rule, sue receives (from alice) all privileges
to alice’s peer, allowing sue to create and delete relations.



Now, with the second rule sue introduces a new relation
newPhotos@alice. By default, both alice and sue have the
grant privilege on the newly created relation, and so they
also have read and write on this relation.
We use the following rules to enforce some basic con-

straints on the acl relations and to control access to the
acl relations themselves.

• If p has the grant privilege on r@q, then p also has
read and write privileges on r@q. (Note that p
grants these privileges to itself.)
• Peer q has the grant privilege on each relation in

q and, in particular, on acl@q. Thus q can create
relations and define access policies on its own peer.

These constraints can be expressed using WebdamLog
rules and can easily be enforced by the engine. Note that
the grant privilege provides a fine-grained administration
mechanism, in that p can give q administrative access to its
relations by granting grant on acl@p to q. Our framework
does not currently support roles, or any other type of admin-
istration mechanism beyond that of the grant privilege.
We conclude with a remark on access control on the acl

relation. Observe that the write privilege on relation acl
provides the grant privilege on all relations of the corre-
sponding peer. Note also that one can control read access
to an acl relation like to any standard relation. The fact
that some peer does not have access to such relations fur-
ther limits the distribution of information.

3.4 Complexity
Finally, we consider the issue of complexity. A natural

question to ask is whether the introduction of access control
increases the complexity of accessing information. In [2], the
authors show that for positive and local WebdamLog pro-
grams, one can compute the final state and answer queries in
ptime data complexity (the program is assumed to be fixed
and the complexity is in the size of the input instance). The
proof follows from the fact that, as in datalog, the num-
ber of tuples that can be derived in a computation is poly-
nomial in the size of the input instance. The proof does
not carry immediately to WebdamLog with access control
because the p-sets we use could possibly introduce an ex-
ponential blow-up in the number of facts that may be de-
rived. However, recall that we replace two facts in r+@q
that agree on data and priv values and have p-sets P and
P’ by r+@q(x1 . . . xn,P ∪ P′, priv). It then turns out that
the number of facts remains polynomial, because the atomic
attributes of each relation form a key for that relation, as
in V-relations [4]. Thus, for positive and local WebdamLog
programs with access control, one can compute the final
state and answer queries also in ptime. Details are omit-
ted. Thus, from the theoretical viewpoint, our access control
mechanism does not increase the complexity for positive and
local programs beyond ptime. Indeed, experimental results
in Section 6 will demonstrate that a carefully engineered im-
plementation of our rich access control mechanism does not
significantly degrade performance.

4. NON-LOCAL RULES
General delegation is based on rules with non-local rela-

tions in the body and is the main distinguishing feature of
WebdamLog. With delegation, a peer p can ask another

peer q to do processing on its behalf. Delegation provides
significant flexibility for application development but also
raises challenges for access control.
The following example illustrates the danger of a simplis-

tic semantics for non-local rules. Consider two rules:

[at bob] message@sue(“I hate you”) :- date@alice(d)
r@bob(x) :- date@alice(d), secret@alice(x)

Without access control these two rules are installed at
alice. Assuming date@alice(d) succeeds, alice will send hate
mail to sue as a result of the first rule. Next, as a result of the
second rule, the entire relation secret@alice will be copied
into r@bob, even if alice did not intend to give bob access to
this data. The main reason for these problem is that, by the
standard semantics of WebdamLog, the rules delegated to
alice by bob are executed as if they were originated by alice,
which is clearly unacceptable.
With access control, we are going to run these two rules

at alice in a sandbox with bob’s privileges. For the first rule,
the hate message will be sent (assuming that bob has grant
on date@alice and write on message@sue) but marked as
coming from bob. For the second rule, data will be sent only
if bob also has read or grant access to secret@alice.
For a client bob delegating a rule to a server, the semantics

of delegation under access control guarantees that:
• If the rule has side effects, e.g., it results in the in-
sertion of tuples into some relation of sue, these side
effects are attributed to bob.
• The rule executes with bob’s access privileges.

Note that, in practice, when alice sends sue a message say-
ing that the author of the message is bob, sue may question
this fact and ask alice for a proof. The delegation from bob
to alice can be presented to sue and serve as such a proof.
A natural question to ask is whether delegating process-

ing from p to q, with access control that uses sandboxing,
will yield exactly the same semantics, with possibly different
performance, as if p were getting the data locally and run-
ning a local computation. It turns out that this is not the
case. This is because, when evaluating p’s delegation, q will
use data (i) to which it has access (by definition q cannot
access data to which it has no access) and (ii) to which p
has access (because of sandboxing). On the other hand, in
a local computation p is only limited by (ii) but not by (i).
We conclude this section by mentioning a more permissive

way of handling access control in delegation. The semantics
we described in this section is very protective and typically
results in testing extra conditions. A local rule running at p
can read p’s data, whereas if it were running at p on behalf
of q it would be necessary to check that q has the read
privilege on the data. In some cases, p may choose to give q
full privileges to run rules at p as if these rules were installed
by p itself. For example, this may be the case if q is the
smartphone of user Alice and q is her laptop.

5. SYSTEM IMPLEMENTATION
In this section, we describe the implementation of our col-

laborative access control model in the context of the Web-
damLog system. We started from the implementation of the
WebdamLog system and extended it to support access con-
trol. WebdamLog is implemented on top of the Bud system,
an open-source distributed datalog engine with updates and



asynchronous communication [5]. All processing is done in
memory and all intentional relations are materialized.
Each WebdamLog peer processes its program in ticks,

made up of 4 parts. In Part 1, a peer receives messages from
other peers, and acts on the messages by adding or delet-
ing facts, installing or removing collections, and installing
or removing rules. Modifying a peer’s program arises due
to delegation and is specific to WebdamLog. In Part 2 of a
tick, a peer’s program is re-wired in response to any changes
from Part 1, i.e., the dependency graph is re-computed and
relations are invalidated as appropriate. In Part 3, a peer’s
program is run to fixpoint. In Part 4, outgoing messages
are created and sent to other peers. In our experiments, we
report time until fixpoint (sum of Part 3 for all ticks), which
corresponds to time spent by Bud in standard database com-
putation, and total tick time (sum of Parts 1 through 4),
which corresponds to the total time of computation by Bud
and WebdamLog.

5.1 Implementation of access control
We improved the implementation of WebdamLog to make

processing more robust so as to support our demanding ex-
perimental scenarios. We now describe some of these im-
provements. Message semantics differ between Bud and
WebdamLog. In Bud, each message is expected to be a
single tuple, the order of messages is not important, and
message loss is acceptable. Bud natively supports the UDP
protocol for peer-to-peer communication. In WebdamLog,
message loss is not acceptable because messages are not re-
sent. We worked together with Bud developers to add TCP
messaging to Bud. We also implemented message queuing
to buffer messages intended for peers not yet started.
Recall from Section 3 that access to the extensional rela-

tions of peer p is coarse-grained, and is specified in acl@p. A
relation xrel@p appears in three tuples: acl@p(xrel, xpset,read),
acl@p(xrel, xpset,grant), and acl@p(xrel, xpset,write). The
public access policy, in which a relation is accessible to all
peers, is specified by a special p-set symbol Ω.
Further, recall from Section 3.2 that information in acl@p

is used in rule evaluation to derive fine-grained (tuple-level)
read and grant access to some relation r@p, with the
resulting p-set values recorded in a column of the corre-
sponding extended relation r+@p(x1 . . . xn, xpset, priv). This
is accomplished by rewriting every WebdamLog rule as per
Definitions 3.1 and 3.2, repeated below.

1: [at p] r+@q(x1, . . . , xn,F1 ∩ ... ∩ Fk ∩ C1 ∩ · · · ∩ Ck, priv) :-
2: r+

1 @p(U1,F1, priv), . . . r+
k @p(Uk,Fk, priv),

2’: r+
k+1@p(Uk+1,Fk+1,grant), . . . r+

n @p(Un,Fn,grant),
3: acl@p(r1,C1, priv), . . . acl@p(rk,Ck, priv),
3’: acl@p(rk+1,Ck+1,grant), . . . acl@p(rn,Cn,grant),
4: includes(F1 ∩ · · · ∩ Fk ∩ C1 ∩ ... ∩ Ck, q),
4’: includes(Fk+1 ∩ · · · ∩ Fn ∩ Ck+1 ∩ ... ∩ Cn, p),
5: acl@q(r,P′,write), includes(P′, p) 2

To make processing more efficient, we create two extended
relations, r+

read@p(x1 . . . xn, xpset) and r+
grant@p(x1 . . . xn, xpset).

Because of this, we must now rewrite each WebdamLog
rule into two access control rules, one for read and one for
grant. Nonetheless, storing two extended relations rather
than one with twice as many tuples proved more efficient in
our experiments, leading to an improvement of about 40%
in the fixpoint computation on average.

birds@alice(ph)
birds A READ a101.jpg
art B READ a102.jpg
fave C READ

art@alice(ph)
a102.jpg

A 8 {Bob,8Cathy,8Don} a103.jpg
B 8 {Cathy,8Ezra} a104.jpg
C 8 {Bob,8Ezra}
D A8∩8C {Bob} fave@alice(ph)
E B8∩8C {Ezra} a101.jpg
F D8∪8E {Bob,8Ezra} a102.jpg

a104.jpg

a101.jpg D READ
a102.jpg F READ
a104.jpg E READ

formula@alice(sym,7expr,7pset)

album+@alice(ph,7sym,7priv)

aclf@alice(rel,7sym,7priv)

Figure 2: Example of Optimization 2 (formulas)

5.2 Performance optimizations
Writeable (Optim 1). Consider again the rewriting

given in Definition 3.1. In the basic implementation of ac-
cess control, p does not have any information about its own
write privileges on relations of a remote peer q. To eval-
uate the rule, p sends tuples to a temporary relation on q
and delegates a rule to push these tuples into r@q, subject
to acl@q(r,P′,write), includes(P ′, p) (line 5 of the rule).
To avoid sending tuples that may be rejected, we check the

condition acl@q(r,P′,write) and includes(P ′, p) locally at
p. This is done by adding a relation writeable@p(r, q) that
contains a tuple for each remote relation r@q for which p has
the write privilege. In our implementation, writeable@p(r, q)
is loaded from the file system to simulate the persistent na-
ture of peers. This relation can also be populated on start-up
based on information that is exchanged between peers.
Formulas (Optim 2). When evaluating access control

rules, the system exchanges p-set values between peers and
intersects them as part of rule evaluation. Long p-sets can
arise naturally in this process, and significantly increase
message size (i.e., communication cost) and rule evaluation
time. To address these issues we observe that, since fine-
grained access is derived by a small number of rules from
a small number of base relations, to which access is coarse-
grained, it is likely that there are relatively few distinct p-
sets. The formulas optimization is based on this observation.
The idea is to associate a symbol with each unique p-

set that occurs among annotations of tuples on a peer p.
Figure 2 illustrates our approach for the program:

[at alice]
album@alice($ph) :- birds@alice($ph), fave@alice($ph)
album@alice($ph) :- art@alice($ph), fave@alice($ph)

We maintain a relation formula@p(sym, expr, xpset) that as-
sociates a symbol with a formula and with the resulting
p-set. The contents of formula@p are computed on the fly
during rule evaluation, and are maintained independently
for each peer. Each formula symbol used in tuples sent to
a remote peer is included in that message, together with
the corresponding p-set, but without the deriving expres-
sion. Observe that symbols are used instead of p-sets in the
formula-specific version of the acl relation called aclf@alice
and, consequently, in the tuples of extended relations like
album+@alice. In this example, we store (and look up) the



symbol F and the associated peers {bob, ezra} that have
read access to “a102.jpg”. Without this optimization, this
set would need to be recomputed as: {{bob, cathy, don} ∩
{bob, ezra}} ∪ {{cathy, ezra} ∩ {bob, ezra}}.
Formulas act as a cache of common p-set expressions. Us-

ing formulas comes at the cost of maintaining additional
data structures, and of making rule rewriting more com-
plex. Nonetheless, as we will demonstrate in Section 6, this
optimization significantly improves performance because it
allows us to avoid recomputation of long complex p-sets.

6. EXPERIMENTAL EVALUATION
1The access control mechanism we propose is flexible and

can be tailored to the needs of particular applications. Ac-
cess control rewriting of Section 3.2 will introduce overhead.
The more fine-grained the policy, the higher the overhead of
the policy is expected to be. The goal of the experimental
evaluation is to demonstrate that this overhead is modest
even for the most demanding policies.
We evaluate the performance of our implementation us-

ing two realistic data exchange scenarios. The first, “Photo
Album” (PA), implements a variant of our running example
using networks of peers extracted from Facebook. The sec-
ond, “Master-Aggregators-Followers” (MAF), is fully syn-
thetic and allows studying the effect of database size and
network size/topology on performance. The scale of our ex-
perimental evaluation is in-line with our motivating applica-
tion, personal information management. We target queries
involving a number of nodes that is in the hundreds, corre-
sponding to the size of an average user’s social network. 1In
both scenarios, each peer is running under its own access
control policy that is distinct from other peers. We further
vary policies by access control conditions, described later in
this section.

Scenario 1: Photo Album (PA). In this scenario, we exe-
cute a WebdamLog program that computes the contents of
a photo album featuring photos in which alice and bob ap-
pear together. This computation uses two salient features of
WebdamLog, namely, peer variables and delegation, and is
made up of two steps. First, names of peers from which pho-
tos will be retrieved are gathered in allFriends@sue($peer) by
taking a union of friend@alice($peer) and friend@bob($peer).

[at sue] allFriends@sue($peer) :- friend@alice($peer)
allFriends@sue($peer) :- friend@bob($peer)

Next, sue gathers photos from remote peers by retrieving
photos in which both alice and bob are tagged.

[at sue] album@sue($photo, $peer) :-
allFriends@sue($peer), photo@$peer($photo),
tag@$peer($photo, alice), tag@$peer($photo, bob)

This program is executed over 20 sample networks of vary-
ing size (from 20 to 250 peers), which are built using a his-
torical crawl of Facebook. To generate these networks, we
randomly sample a pair of nodes connected by a friendship
edge to represent alice and bob and use the nodes in their
immediate neighborhood to represent their friends.
Each photos@$peer contains about 1,000 facts represented

by integer values. Tags are assigned to photos independently
for each {$peer, $photo} pair, with the probability of tagging

a photo with alice or with bob set to 10%, and probability
of tagging a photo with any other peer name set to 1%. The
resulting size of album@sue($photo, $peer) with no access
control, or, equivalently, under the public access control
policy, varies depending on network size, and is between
100 and 1,600 tuples. We will discuss access control policies
later in this section.

Scenario 2: Master-Aggregators-Followers (MAF). In
a MAF network, one master peer gathers data from n ag-
gregators (agg), which in turn gather data from a total of m
followers (fol), with k aggregators per follower (described as
MAF n/m/k). For example, in a MAF (10/2/1) network,
there are 10 followers and 2 aggregators, with 1 aggregator
per follower and 10

2 = 5 followers per aggregator.
In our experiments, we vary n, m and k to investigate

the effect of network size (number of peers) and network
topology (number of aggregators per follower) on execution
time and space overhead.
We experiment with two flavors of the MAF scenario. In

a union of joins (UoJ), each aggregator takes a join of data
from the relevant followers and the master then takes a union
of results from aggregators. For example, the following pro-
gram is executed in MAF(3/3/2)-UoJ.

[at master] t@master($x) :- s@agg1($x)
t@master($x) :- s@agg2($x)
t@master($x) :- s@agg3($x)
s@agg1($x) :- r@fol1($x), r@fol3($x)
s@agg2($x) :- r@fol1($x), r@fol2($x)
s@agg3($x) :- r@fol2($x), r@fol3($x)

In a join of unions (JoU), aggregators take a union of
follower data and master joins results from the aggregators.
The following program is executed in MAF(3/3/2)-JoU.

[at master]
t@master($x) :- s@agg1($x),s@agg2($x),s@agg3($x)
s@agg1($x) :- r@fol1($x) s@agg1($x) :- r@fol3($x)
s@agg2($x) :- r@fol1($x) s@agg2($x) :- r@fol2($x)
s@agg3($x) :- r@fol2($x) s@agg3($x) :- r@fol3($x)

Note that in both MAF-UoJ and MAF-JoU, rules are ini-
tially installed on master and then delegated to agg and fol
peers. This is done to make timing of experiments easier
and is not essential to the computation.
Each follower peer’s extensional relation r@fol(x) is pop-

ulated with randomly generated facts. We vary the number
of facts from 1,000 to 10,000 in increments of 1,000, and re-
strict the domain of $x to between 1,000 and 10,000 distinct
integer values for the respective cases.
Scenarios PA and MAF differ in three important ways.

First, the flow of information is different: MAF is a 3-level
pyramid, with information flowing from the bottom to the
top, while in PA sue first requests all data and then collects
it. Second, the program in PA is more complex, making
use of peer variables and self-joins. Third, the number of
messages being exchanged is much higher in PA, resulting
in a higher number of fixpoint computations — about 250
at sue for the largest PA network, compared to about 20 at
master for the largest MAF network.

Access control conditions. Each PA and MAF scenario is
executed under three different conditions: access control dis-
abled, a public access control policy, and a known access
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Figure 3: Total time, averaged across agg peers in MAF-JoU (10/2/1), as a function of database size.

control policy. Under the public policy, all peers have read
access to all extensional relations of other peers. This policy
computes the same result in album@sue($photo, $peer) (for
PA) and t@master(x) (for MAF) as when the WebdamLog
program is executed without access control. Comparing per-
formance under the public policy to performance without
access control gives an understanding of the overhead intro-
duced by the relations required to maintain access control
information and by access control rule rewriting.
Under the known policy, peers have read access to the

extensional relations of the peers to which they are con-
nected by a direct edge. This policy represents a common
case in social networks such as Facebook, where one’s friends
have access to their data but peers outside the friendship
network do not. This policy allows us to evaluate the over-
head of computing non-trivial p-sets, and of propagating
them through access control rule rewriting. A program
under the public policy is more efficient than under the
known policy, provided that it computes the same result
under both policies. This is because public access to a fact
is represented compactly by the symbol Ω, rather than by a
variable-length p-set required for the known policy.
A subtlety in evaluating the known policy arises in the

MAF-UoJ scenario, due to delegation in WebdamLog being
processed left-to-right. Consider the following rule.

[at master] s@agg($x) :- r@fol1($x), r@fol2($x), r@fol3($x)

This rule is evaluated by installing the following chain of
delegations on participating peers.

[at fol1] temp@fol2($x) :- r@fol1($x)
[at fol2] temp@fol3($x) :- temp@fol2($x), r@fol2($x)
[at fol3] s@agg($x) :- temp@fol3($x), r@fol3($x)

For a non-empty result to be computed in s@agg, fol2
must have read access to r@fol1, and fol3 must have read
access to r@fol1 and r@fol2. To simplify policy generation,
we assume all fol peers that send data to the same aggregator
have read access to each others r relations. An analogous
situation arises in MAF-JoU, when a join of relations at
each aggregator is processed left-to-right. To ensure that a
non-empty result is computed in t@master, we grant read
access to each agg peer on all r relations of fol peers.
Remark. We did not run any experiments with policies

that include hide and preserve. These constructs make
the policy language more flexible, but do not add new im-
plementation challenges: evaluating under hide is identical
to extension evaluation; evaluating under preserve is iden-
tical to intentional evaluation.

Experimental environment. All experiments are conducted
on a cluster of 8 Linux nodes running CentOS 2.6.32 (64-
bit). Six cluster nodes have Quad-core Intel(R) Xeon(R)
CPU X5460 @ 3.16GHz with 8G of RAM. Two other cluster
nodes have 16 Intel(R) Xeon(R) CPU E5-2643 0 @ 3.30GHz
with 15.65G of RAM.
For the PA scenario, peers sue, alice and bob share a single

node, while other peers are spread out evenly across the
remaining nodes. For the MAF scenarios, master runs on
a dedicated node and the remaining peers are spread out
evenly, with agg and fol peers running on separate nodes.
All experiments are executed 5 times with a cold start.

We report averages of 5 executions.

Performance optimizations. We start by presenting a com-
parison of different access control conditions with and with-
out performance optimizations, using a representative exam-
ple. Figures 3(a) and 3(b) show the average running time
of agg peers for the JoU (10/2/1) scenario as a function of
database size (namely, size of r@fol at each fol). In this
scenario, an agg peer takes a union of extensional relations
from 5 fol peers.
Observe from Figure 3(a) that Optim 1 (writeable) sig-

nificantly outperforms the unoptimized implementation of
public access control, while Optim 2 (formulas) performs
slightly worse than the unoptimized version. Finally, the
combination of Optim 1 and Optim 2 performs compara-
bly to Optim 1 alone and to no access control. (We denote
this combination by Optim (1 & 2).) These results are as
expected. Formulas do not speed up the running time for
public because we store p-sets for this policy using the spe-
cial symbol Ω, which is already as compact a representation
of a p-set as can be. In fact, adding formulas introduces an-
other level of indirection: a relation is added to the rewriting
and rewriting rules become more complex, without the ben-
efit of making p-sets more compact.
Next, observe from Figure 3(b) that Optim 1 (writeable)

significantly outperforms the unoptimized implementation
of the known policy, and that Optim 2 (formulas) alone
slightly outperforms the unoptimized implementation. The
best results are achieved with Optim (1 & 2) because p-sets
are non-trivial for the known policy, and formulas make
working with p-sets more efficient during fixpoint computa-
tion and during data exchange between peers.
We observed similar trends in all scenarios in our experi-

ments, for all types of peers. In some cases, Optim (1 & 2)
performs slightly worse than Optim 1 alone for the public
policy, but in most cases performance of these two options is
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Figure 4: Fixpoint time in MAF-UoJ as a function of network size.
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Figure 5: Running time of peer sue in PA, as a function of network size.

comparable, and is significantly better than performance of
the unoptimized version. Optim (1 & 2) is always the most
efficient option for the known policy, and is significantly
more efficient than the unoptimized version.
In summary, the public policy under Optim 1 achieves

performance comparable to no access control, and so is as
efficient as can be. We use this configuration in our experi-
ments in the remainder of the section. The best performance
for known is achieved by Optim (1 & 2), and we use this
configuration in our experiments. As expected, access con-
trol does introduce overhead, but it is modest.

Varying network size. We fix the size of each r@fol to
10,000 facts and vary the number of agg and fol peers, while
keeping the ratio of followers to aggregator constant at 5.
Figures 4(a) and 4(b) show the running times to fixpoint

with and without access control for MAF-UoJ scenarios.
The overhead of optimized access control is either fixed for
the optimized implementations or shows a slight linear slope.
The running time of agg peers was under 1.5 sec (total) in
this scenario and we omit these plots. (Figure 7 in the ap-
pendix presents total running times corresponding to the
fixpoint times in Figure 4.) Similar trends are observed in
the MAF-JoU, see Figures 6(a) and 6(b) in the appendix.
We now consider the photo album (PA) scenario, which

we execute with 20 networks of varying size, fixing the size of
all photos@$friend relations to about 10,000 facts. Figure 5
shows the running time to fixpoint and the total time on peer
sue. We do not complete executing unoptimized versions of
the program with public and known policies for networks
with more than 80 peers because a significant portion of the
running time in the unoptimized PA scenario is spent in Part
2 of the tick (see Section 5), which re-wires the Bud program
in response to program updates. Majority of the time is

spent on dependency graph computation, which appears to
be exponential in the number of relations and dominates
the total running time for networks of more than 50 peers.
These effects are amplified by the limited amount of RAM
per peer in our experiments, especially for larger networks,
where we run up to 30 peers per cluster node.
The optimized version of our implementation is able to

handle networks with up to 250 peers using our experimen-
tal environment (8 physical cluster nodes), and shows rea-
sonable performance, with both fixpoint time and total time
increasing linearly for all access control conditions (including
no access control). The linear increase is due to the direct
relationship between the size of the network and the number
of ticks executed by sue, since WebdamLog processes each
peer message separately. Figure 8 in the appendix presents
fixpoint and total times on peer friend, averaged across peers.
We also experimented with the effect of network topology

(number of aggregators per follower) for the MAF scenario.
Figure 9 in the Appendix presents these results.
In summary, the overhead of access control increases

with increasing network size but remains reasonable for the
optimized implementations. The overhead of access control
grows at most linearly with increasing network size for MAF
and PA scenarios (for the optimized versions) and quadrat-
ically for PA for the unoptimized versions.

Space overhead of access control. In the final set of ex-
periments, we consider the space overhead introduced by ac-
cess control. We focus on the MAF-JoU (10/2/1) scenario
and vary the size of r@fol from 1,000 to 10,000. Figure 10
in the appendix presents these results, and is followed by a
brief discussion. Access control introduces a modest amount
of space overhead, but performance optimizations are effec-
tive at reducing this overhead.



7. RELATED WORK
Bud [5] is a declarative datalog-based language imple-

mented in Ruby. Our implementation uses Bud as a trans-
port mechanism and distributed datalog engine. We made
a number of enhancements to Bud, described in Section 5.
The WebdamLog language was first formally described in

[2] as a version of distributed datalog in which peers ex-
change not only facts, but also rules. Expressiveness and
semantic issues were formally investigated, but access con-
trol was not considered. Methods for enforcing basic access
control primitives over a distributed data model are consid-
ered in [3]. The authors study cryptographic techniques to
support, for example, authentication. The techniques they
propose can be combined with those we present here.
Controlling access to intentional facts in WebdamLog is

related to managing virtual views in SQL, which is handled
differently among current database systems. When an au-
thorized user accesses a view, it is usually evaluated with the
privileges of the defining user (“definer’s rights”) although
some systems (e.g. mySQL) permit access to views using
the privileges of the invoker of the view (“invoker’s rights”).
Our model supports a novel set of alternatives that encom-
passes both invoker’s and definer’s rights.
The access control model we have described is fine-grained,

unlike the SQL standard. Lefevre et al. [16] proposed a fine-
grained access control model for implementing personal pri-
vacy policies in a relational database. They use query mod-
ification to enforce their policies, as we do, but their policy
model and implementation assume a centralized database
system. A commercial example of fine-grained access con-
trol is Oracle’s Virtual Private Database (VPD), which sup-
ports access control at the level of tuples or cells. Alternative
semantics for fine-grained access control have been investi-
gated thoroughly [16, 21, 23]. Rizvi et al. [21] distinguish
between Truman and Non-Truman models. (The expression
is motivated by the movie The Truman Show where the hero
is unaware that he lives in an artificial environment.) Query
answers in our system follow the Truman paradigm: queries
are not rejected because of lack of privilege but the user’s
privileges determine the answers that are returned.
Our model of access control shares some features with

the model of reflective database access control (RDBAC)
in which access policies can be specified in terms of data
contained in any part of the database. Olson et al. [17]
formalize RDBAC using a version of datalog with updates [9]
but their model does not include distribution, delegation, or
the use of provenance.
The use of provenance as a basis for access control was

first noted in the context of provenance semirings [14, 7].
A security semiring can contain tuple-level security anno-
tations and define the rules by which they are propagated
to query results. Another example of provenance-based ac-
cess control is the work of Park et al. [19] in which access
decisions are based on a transactional form of provenance.
The emergence of social networks and other Web 2.0 ap-

plications has led to the adaptation of access control to these
domains. In online social networks, the distinguishing fea-
ture of access control models is that a policy is expressed in
terms of network relationships amongst members [10, 13].
A number of advanced features for access control in online
social networks have also been studied. For example, Hu
et al. [15] focus on enabling multiple parties to simultane-
ously control access to resources, including a voting scheme

to resolve conflicts. Cheng et al. [12] emphasize policies
expressed over diverse relationships (e.g. resource-user and
resource-resource relationships, not just user-to-user rela-
tionships). Shehab et al. [22] focus on controlling the ac-
cessibility of data by third-party applications, including au-
tomatic generalization of personal information. Our frame-
work can support arbitrarily complex relationships, since
our data model is not fixed, but we do not focus on multi-
party control and we do not consider transformations of the
data when it is deemed accessible to a peer. A number of
policy specification languages have been proposed, including
fine-grained access control based on semantic web represen-
tations of the social network and authorizations, allowing
existing tools like SWRL and SPARQL to be deployed for
policy enforcement [11]. Each of these works assumes a cen-
tralized implementation of the social network; although the
access control models may in some cases extend to a dis-
tributed setting, their implementation does not.
We emphasize that while we used a social network as a

motivating example and for our experimental setting, the
core of our framework is much broader and is intended to
support the diverse requirements of access control in a vari-
ety of distributed information-sharing applications.
Also, security in distributed systems has primarily focused

on issues of remote authentication, authorization, and pro-
tection of data and distributed trust; such issues are outside
the scope of our present work [1, 18].

8. CONCLUSION
We have described a novel access control model for dis-

tributed data management that allows peers to declaratively
specify powerful policies governing access to their data, dis-
semination of their data, and delegation of computation.
Building upon the distributed data processing and transport
mechanism provided by Bud and the high-level language
constructs of WebdamLog, we implemented our access con-
trol model, proposed key performance optimizations, and
demonstrated that performance overhead of access control
evaluation is modest in realistic scenarios.
In the future we would like to investigate automated tools

for reasoning about policies, which can help peers under-
stand the consequences of policies they author and detect
policy errors. While computationally intractable in the worst
case, we hope to find useful, practical constraints that lead
to efficient policy analysis methods. Another feature that
we do not currently support, but plan to investigate in the
future, is allowing users to iteratively refine access control
policies. This can be supported by a two-part solution,
where (1) full fine-grained provenance of access is exposed,
enabling debugging, auditing and explanation; and (2) ac-
cess to facts is computed incrementally under policy up-
dates. Finally, our framework does not currently implement
a concurrency control mechanism. It would be interesting to
explore the interaction between concurrency and distributed
access control, and we leave this to future work.
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APPENDIX
Plots and discussion in this section complement experimen-
tal results presented in Section 6.
Figures 6 and Figure 7 complement Figure 4, in which

we presented fixpoint time with and without access control
for the MAF-UoJ scenario as a function of network size. In
Figure 6 we show fixpoint time for master and agg for the
MAF-JoU scenario, and observe similar trends as for MAF-
UoJ. In Figure 7, we show total running time for master,
agg, and fol peers. We observe the same trends in perfor-
mance for total time as for fixpoint time, with Optim (1 &
2) exhibiting comparable performance for the known pol-
icy as Optim 1 for public. The overhead of the optimized
implementation of access control is either linear or, better
yet, fixed compared to no access control.
Consider Figures 7(b) and 7(d). Observe that (i) there

is no increase in total time with No Access Control as net-
work size increases, because the aggregator / follower ratio
is being help constant; and (ii) that optimized versions of
access control introduce a fixed overhead over the No Access
Control case, despite the increasing size of the p-sets. The
latter observation points to the effectiveness of Optim 2.
Figure 8 presents fixpoint and total times on peer friend in

the PA scenario, averaged across peers. This figure comple-
ments Figure 5 in Section 6. (Recall from Section 6 that we
were unable to run unoptimized versions of PA, and so we do
not include these here.) Both public and known are effi-
cient and show a linear increase over No Access Control. We
would expect that public runs faster than known, which is
not the case here, so this case should be further investigated.
In a final experiment, we explore the effect of network

topology on performance. Figure 9 presents total time on
agg and fixpoint time on fol for MAF-UoJ. These plots are
representative of other results for both MAF-UoJ and MAF-
JoU scenarios. We hold the size of the network constant at



0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

10/2/1 20/4/1 30/6/1 40/8/1 50/10/1 

Fi
xp

oi
nt

 ti
m

e,
 s

ec
on

ds
 

Network size, #followers / #aggregators / #aggregators per follower 

Known Public Known Optim (1&2) Public Optim 1 No Access Control 

(a) MAF-JoU, time at master

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

10/2/1 20/4/1 30/6/1 40/8/1 50/10/1 

Fi
xp

oi
nt

 ti
m

e,
 s

ec
on

ds
 

Network size, #followers / #aggregators / #aggregators per follower  

Known Public Known Optim (1&2) Public Optim 1 No Access Control 

(b) MAF-JoU, average time at agg peers

Figure 6: Fixpoint time in MAF-JoU as a function of network size.
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(d) MAF-UoJ, average time at fol peers

Figure 7: Total time in MAF-JoU and MAF-UoJ as a function of network size.
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Figure 8: Running time of peer friend in PA, as a function of network size.
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Figure 9: Running time in MAF-UoJ, as a function of the number of aggregators per follower.
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Figure 10: Space overhead of access control, for MAF-JoU (10/2/1).

the largest MAF size (50/10/k) and vary the number of
aggregators per follower k between 1 and 5.
As the value of k increases, the number of results at

an aggregator diminishes rapidly, hence the trend in Fig-
ure 9(a). We observe a significant difference between public
and known policies in unoptimized versions, which is due
to the p-set growth with increasing k. Note that Optim (1
& 2) eliminates this growth successfully, with performance
under the known policy matching that of the public pol-
icy. The overhead of access control appears fixed for the agg
peer and linear for the fol peer.
Figure 10(a) presents the space overhead of storing access

control information: relations acl@p at each peer, p-sets an-

notating each intentional tuple, and any additional relations
required by optimizations 1 and 2. We plot total space for
all tables (both extensional and intentional, which are mate-
rialized in WebdamLog) on all peers as of the last tick. We
observe that the amount of space increases linearly for all ac-
cess control conditions, including no access control. Further,
we observe that public Optim 1 and known Optim (1 & 2)
have lower space overhead than the respective unoptimized
versions, and that this overhead is reasonable. Figure 10(b)
shows the total amount of network traffic exchanged among
all MAF-JoU (10/2/1) peers and we observe similar trends
as in Figure 10(a): the amount of network traffic increases
linearly with increasing EDB size, as expected.


