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Abstract

We propose a framework for enforcing access control
policies on published XML documents using cryp-
tography. In this framework the owner publishes a
single data instance, which is partially encrypted,
and which enforces all access control policies. Our
contributions include a declarative language for ac-
cess policies, and the resolution of these policies
into a logical “protection model” which protects an
XML tree with keys. The data owner enforces an
access control policy by granting keys to users. The
model is quite powerful, allowing the data owner
to describe complex access scenarios, and is also
quite elegant, allowing logical optimizations to be
described as rewriting rules. Finally, we describe
cryptographic techniques for enforcing the protec-
tion model on published data, and provide a per-
formance analysis using real datasets.

1 Introduction

There is an ever-increasing amount of data available
in digital form, and almost invariably that data is
now near a network. Recent research into integra-
tion systems and peer-to-peer databases has created
new ways for diverse groups to share and process
data [23, 34, 21, 28]. But in most practical cases,
complex constraints of trust and confidentiality ex-
ist between these cooperating or competing groups.
As a result, in many cases data is disseminated only
when there are no security or confidentiality issues
among any possible recipient. This means data that
could safely be disseminated to certain parties re-
mains hidden behind a firewall or server.

It is not just database researchers with new re-
search tools that would like to encourage data shar-
ing and dissemination. In the case of scientific data,
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Figure 1: Organization of related problems in terms
of trust domains and key objects Data, Query origi-
nation, and query Execution resources.

U.S. legislation has been passed requiring data un-
derlying federally-funded research to be published
upon request [3]. The U.S. National Institute of
Health (a major funding agency for medical re-
search) will expect all funded scientists to release
their final research data for use by other scien-
tists [29]. In addition to funding agencies, some sci-
entific journals are making data sharing a condition
of publication [27], while others are coming under
pressure to do so [24].

The trust, confidentiality and security issues in-
volved in sharing data are immense however [18, 31],
and there are few tools for managing access to
the data that peers are encouraged or required to
share (especially when distributed data processing
is needed). In this paper we introduce a framework
to allow a database owner to express rich access poli-
cies, generate a single, partially-encrypted version of
the data that enforces all access policies, publish it,
and then enforce the policies by granting keys to
users.

Database security has been studied extensively in
the past [13, 1, 9], however none of that work ap-
plies to data publishing. Consider Figure 1, which
classifies scenarios based on trust domains. The triv-
ial case is that of single-user database applications,
which have a single trust domain, Figure 1-A, and
thus raises no security issues. Most of the work in
database security fits in the scenario of Figure 1-
B, where the data owner controls the execution en-



gine, but doesn’t trust the client asking the queries.
Client-server database applications, as well as many
Web-based database applications fall into this case.
Traditional work in security has focused on the data
owner: how to respond to queries without revealing
protected data. More recent work has also addressed
the client’s security [10]: how to preserve client pri-
vacy by not allowing the data owner to witness all
their queries. A newer class of applications, database
as a service [22], has a different partition into trust
domains: Fig 1-C. A client owns the data and also
issues the queries, but would like to pay an untrusted
party to store the data and execute the queries on
their behalf. Data publishing, the focus of this pa-
per, fits under none of these scenarios – its trust do-
mains are described in Fig 1-D. In this case, once the
data owner has published the data, she loses control
over it: it can be downloaded, copied, disseminated,
redistributed. Both query origination and the exe-
cution engine are in a different trust domain from
the data.

Contributions We propose a comprehensive frame-
work for access control over published data, using
encryption. The components of the framework are
shown in Fig. 2. The data owner starts by defining
high-level access control policies over its data: our
first contribution is to define a language for spec-
ifying such policies as queries. A modified query
engine evaluates these policy queries to produce a
result which is not data, but a single “protection”
over the XML document. Our second contribution
consists of a logical data model for these protections.
The model is simple, yet powerful enough to express
complex policies, has a clean semantics, and admits
some simple logical optimizations, which later result
in significant space savings for the published data.
Next, we need to translate this logical model into a
partially encrypted XML document. Our third con-
tribution consists of showing how to perform this
encryption, using the recent W3C Recommendation
“XML Encryption Syntax” [15] as an encryption for-
mat. We adapt and extend known techniques: secret
sharing [32, 4], bounded key encryption [16, 17], and
random sequences [33].

At this point in our framework, the partially en-
crypted XML document is published on the Inter-
net. Notice that this is a single XML document,
which enforces all access policy queries. Once pub-
lished, the data owner relinquishes all control over
who downloads and processes the data, so we depend
entirely on encryption to enforce our control policies.
A legitimate client can access the data conditionally,
depending on the keys they possess. These keys will
be conventional cryptographic keys (i.e. random bit
sequences, obtained from the data owner) or data
values (e.g. the name, social-security number,
and date-of-birth of a patient’s confidential data),

or “inner” keys (random bit sequences, obtained
from other parts of the data). The client does not,
however, need to decrypt the entire data instance:
they can access it selectively, using a query language,
while supplying appropriate keys. Our fourth con-
tribution is a simple extension to XQuery to support
this. Finally, our fifth contribution consists of an ex-
perimental evaluation, testing the feasibility of such
an approach. We are primarily concerned with the
size of the partially encrypted document, and the en-
cryption/decryption speed. We show that they are
reasonable, and can be dramatically improved using
a combination of logical and physical optimizations.

2 Motivating Example

We now motivate our techniques by presenting a sce-
nario of controlled data publishing. What follows is
inspired from actual challenges faced by biologists at
the University of Washington in meeting their goals
of data dissemination while satisfying trust and se-
curity constraints. The example includes a number
of participants, the trust and privacy issues between
them, and a series of example policy queries that
exercise the capabilities of our framework.

In our scenario a group of primary researchers en-
list the support of technicians in carrying out med-
ical and psychological tests on willing experimental
subjects. Once the data is analyzed, the primary
researchers submit their results to the conference
publisher. In addition, experimental data must be
published so that competing researchers can use it.
Finally, an auditor checks if certain privacy laws are
enforced.

Our policy queries use an extension of XQuery
with a KEY and a TARGET clause. The first pol-
icy query is motivated by the relationship between
primary and competing researcher:

Policy Query 2.1
SUFFICIENT
FOR $x in /doc/subjects/subject
KEY getKey(”registration”),

$x/analysis/DNAsignature/text()
TARGET $x/analysis

This query declares that users with the two keys
in the KEY clause will be granted access to the anal-
ysis target. The first key is an exchange key, named
“registration”: the getKey() construction retrieves
the key named “registration”, or, if one doesn’t ex-
ist, generates a new secure key and stores it for fu-
ture reference. The second key is taken from the
data itself: namely the user must know the value of
the DNAsignature field in order to access the entire
analysis element. Notice that this query fires for all
subject elements. The ”registration” key will be the
same for each target node, while the DNAsignature
value will likely be different for each target node.
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Figure 2: The protected data publishing framework.

The intent of Policy Query 2.1 is to allow com-
peting researchers who have registered (and thus ac-
quired the registration key) to access the analysis
of all subjects with a DNAsignature they can pro-
vide. This severely impedes the competing re-
searchers from doing uncontrolled scans of all DNA
samples, but allows them to verify data for the DNA
samples that they already have.

Policy Query 2.2
SUFFICIENT
FOR $x in /doc/subjects/subject
KEY getKey( $x ) keyChain(”imageKeys”)
TARGET $x/analysis/brain-scan

This query generates a new key for each subject,
and grants access to brain-scan data to users who
have that key. The argument to getKey is now a
node, $x. In addition a keyChain is specified: this is
a convenient way to organize keys. The key for $x is
retrieved from–or stored into–the key chain named
”imageKeys”. When the data owner decides to grant
access to the brain-scan of a specific subject to some
user, she looks up the key associated to that subject
in the keychain ”imageKeys” and sends it to the user
through a secure channel (see Fig. 2). She can thus
have very fine-grained control over how users access
the data.

Notice that the targets of Policy Queries 2.1 and
2.2 overlap. The SUFFICIENT keyword means that
satisfaction of any rule grants access to the common
target. In particular, brain-scan data can be accessed
either with the keys specified in Query 2.1 or with
the key in Query 2.2.

Policy Query 2.3
SUFFICIENT
FOR $x in /doc/subjects/subject

$y in /doc/psychs/psych
WHERE $x/examining-psych/id = $y/id
KEY getKey( $y ) keyChain(”psych”)
TARGET $x

This query simply says that a psychologist exam-
iner is allowed to see all subjects he examined. A

new key is generated for each psychologist (or re-
trieved, if it already exists), in the keychain named
”psych”, and that key grants access to all subjects
examined by that psychologist. Notice that if a sub-
ject was examined by multiple psychologists1 then
each of them has access to that subject: this query
results in self-overlap, in addition to the overlap with
previous queries.

Next we show a more intricate policy query, moti-
vated by the legal requirement of protecting personal
identity data such as name and social security num-
ber. Lab technicians need access to some of the sub-
jects’ data, e.g. age, sex, etc., but not to the identity
data. However, subjects with blood type ”AB-” are
very rare: only one or two are encountered each year.
A technician could trace the identity of such a sub-
ject from the exam-date/year information. The two
policy queries below grant technicians conditional
access to various data components:

Policy Query 2.4
SUFFICIENT
FOR $x in /doc/subjects/subject
WHERE $x/blood-type != ”AB-”
KEY getKey( ”tech1”) keyChain(”technicians”)
TARGET $x/age, $x/sex,

$x/blood-type, $x/exam-date/year

SUFFICIENT
FOR $x in /doc/subjects/subject
KEY getKey(”tech1”) keyChain(”technicians”)
WHERE $x/blood-type = ”AB-”
TARGET $x/sex, $x/blood-type

The first policy query says that the key ”tech1”
grants access to four fields (age, sex, blood-type, and
exam-date/year), but only of subjects with blood
type other than ”AB-”. For the latter, the second
query grants access only to sex and blood-type.

Finally, an auditor wants to verify that HIV tests
are protected. Under the lab’s policy, only registered

1This happens when subject has more than one examining-
psych subelements.



users have access to the HIV test, hence the auditor’s
query is:

Policy Query 2.5
NECESSARY
FOR $x in /doc/subjects/subject
KEY getKey(”registration”)
TARGET $x/analysis/tests/HIV

Notice that this query starts with the NECES-
SARY keyword: it means that only users having the
key named ”registration” (same as in Query 2.1) have
access to the analysis/tests/HIV data.

Current Approaches to Access Control There are
two traditional approaches to controlled access to
data. The first keeps the data on a secure server that
authenticates users and enforces the access policies,
without publishing the data. The other is to publish
multiple views of the data, one for each user or class
of users. This is the current approach to controlled
data publishing, and has several drawbacks. One is
that the number of views may become very large: for
example, to implement Policy Query 2.2 one needs a
different view for each subject in the database. An-
other is that it prevents dissemination: users cannot
further publish the data that they downloaded from
the owner. Finally, it makes evolution harder.

Our Solution In our approach all policy queries are
executed by the policy query evaluator (see Fig. 2)
and then a single partially-encrypted XML docu-
ment, enforcing all policies, is published. Users need
proper keys to access restricted data. The document
can be downloaded, copied, and its accessible parts
partially processed by a certain party before being
passed along to another party with different access
rights.2 The keys are maintained and managed by
the data owner, who grants them to specific users.
Key transmission may be delayed in a data commit-
ment scenario, or interactive key protocols can be
used to enforce complex access control policies.

3 The Tree Protection Logical Model

Assuming we encrypt the published data, it is far
from clear how to enforce multiple, overlapping pol-
icy queries on a single data instance. We describe
here a logical model for protecting an XML tree,
which plays a central role in our secure publishing
framework: it is the output of policy queries, the
input to the physical encryption procedure, and the
data model for the client’s queries.

A tree protection consists of a tree where nodes
are “guarded” by keys or sets of keys. Such a pro-
tected tree limits access in the following way: only

2Of course, we cannot prevent a malicious user from de-
crypting the data and publishing it. But we can allow autho-
rized users to re-publish the encrypted data after processing
or transforming accessible portions.

users with an admissible set of keys can access an
element. Without a qualifying set of keys, the ele-
ment’s name, attributes, and children are all hidden.
We present this formally next.

XML Trees We model an XML document as a
node-labeled tree t with internal nodes labeled from
an alphabet of element and attribute names, and
leaves labeled from a set of values. We denote the
set of nodes with nodes(t) and the set of edges with
edges(t), and value(i) the value of a leaf node i.
Given two nodes i, j ∈ t, we write i ≺ j when i is a
proper ancestor of j and i � j for the ancestor-or-self
relation.

Keys We consider three kinds of keys in our model:
exchange keys, inner keys, and data value keys. To
simplify our discussion we fix the length of key values
at 128 bits, but varying bit lengths are supported.

Exchange keys are stored by the data owner and
communicated through secure channels to various
clients. They have a public name, for identification,
unrelated to their key value which is used for encryp-
tion and decryption. Referring to Sec. 2, Examples
of exchange keys are: ”registration” in Query 2.1,
and the subject’s keys in Query 2.2, with system
generated names like ”subject030223”. We denote
by XchgKey the (finite) domain of exchange keys.

Inner keys are random numbers generated by the
system during the encryption process, and stored
in the XML data itself (as base64 text): users can
only learn them by accessing the XML data where
they are stored. There are no inner keys illustrated
in our motivating example because they are gener-
ated automatically by the system.3 We denote by
InnerKey the (finite) domain of inner keys.

Data Value keys are all the text values, numbers,
dates, etc, that can normally occur in an XML doc-
ument. We derive a 128-bit string by using the
UTF-8 encoding, and dividing the result into 128
bit blocks which are XOR’d together. We use them
as keys because, in some applications, access may
be granted to users who know certain fields of a
protected piece of data. For example a user who
knows a patient’s name, address, and social secu-
rity number may have access to the entire patient’s
record. We denote by DataValue the set of val-
ues. In our motivating example, the DNAsigna-
ture in Query 2.1 is a data value key. We write
Key = XchgKey ∪ InnerKey ∪DataValue.

XML values In our model the leaves of an XML
document may carry either a data value, or an in-
ner key. While the latter is encoded as a base64
string (thus we could model it as a data value) we

3Inner keys are needed to support complex access control
policies, and are used in the normalization process described
later in Sec. 3.2.
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Figure 3: A tree protection P (Example 3.1), and an equivalent normalized protection P ′ (Example 3.4).
The white nodes are metadata nodes.

distinguish it from an access control point of view.
Users may acquire, by some independent means, cer-
tain data values with meaningful semantics: names,
addresses, social security numbers, bank account
numbers. But they have no way of learning an in-
ner key, except by accessing an XML node where
that inner key is stored as a value. Thus, in our
model, the value of a leaf node i ∈ nodes(t) is
value(i) ∈ DataValue ∪ InnerKey.

Metadata XML nodes We introduce an extension
to the basic XML model, by allowing some addi-
tional metadata nodes in the tree. Their role is to
express certain protections or to hold inner keys, and
they are introduced automatically by the system.
Formally, a metadata XML tree tm over a tree t is
obtained from t by inserting some meta-data nodes,
which can be either internal nodes (element or at-
tribute nodes), or leaf nodes, and may be inserted
anywhere in the tree. Thus, nodes(tm) consists of
meta-data nodes, plus nodes(t): we call the latter
data nodes. We assume that the meta-data nodes
can be distinguished in some way from the data
nodes, for example by using an XML namespace. (In
figures, metadata nodes are white while data nodes
are gray.) An operation, trim(tm) = t, recovers the
XML tree from the metadata tree, by removing the
metadata nodes and promoting their children. For
any XML tree t, a trivial metadata tree is t itself,
having no metadata node: in this case trim(t) = t.

Tree Protection A protection over an XML tree t is
P = (tm, σ) where tm is a metadata tree over t and
σ associates to each node i ∈ nodes(tm) a positive
boolean guard formula σi over Key, satisfying the
following grammar (where k ∈ Key):

σ := true | false | k | σ ∨ σ′ | σ ∧ σ′

The intuition is that σi defines the key(s) that a user
needs to present in order to gain access to the node
i. But in order to reach the node i from the root,
the user needs to also satisfy all formulas σj , for all
j ≺ i. This justifies the next definition: we call the
necessity formula, ϕi of a node i to be ϕi = ∧j�iσj .

k
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Figure 4: Typical usage patterns of tree protections,
described in Example 3.2.

Example 3.1 Figure 3 illustrates a protection P =
(tm, σ). Each node i ∈ t is annotated with its guard
formula σi, using named exchange keys k1, k2, k4,
and data value key k3. Guard formula σ2 = (k1 ∧
k3) ∨ k4 and necessity formula ϕ6 = k1 ∧ true ∧ k2.
There are no metadata nodes in this case, so t = tm.

Example 3.2 Figure 4 illustrates typical usages for
the three kinds of keys. An exchange key is used as
in (a): it simply protects a subtree. An inner key
is shown in (b) where the white nodes are metadata
nodes: the key k protects the right subtree, and the
user can access it only by reading the left subtree,
which in turn is locked with k′. A data value key
is shown in (c): here k is a data value stored in the
tree, for example a Social Security number, but the
user must know it in order to access the tree.

3.1 Semantics

The semantics of protection P is a function,
accP (K), which, given a set of keys K, returns a set
of nodes that can be accessed by the user “knowing”
K. The function will return only the data nodes that
the user can access: during the process described
below she may also access metadata nodes, but in
the semantics we only care about which data nodes
she can access. The input K will be restricted to
K ⊆ XchgKey ∪ DataValue, because before ac-
cessing the XML document a user can only know
exchange keys and data values, not inner keys.

The function accP (K) is described by an itera-
tive process. The user has currently access to a set
of nodes N (initially empty) and to a set of keys



M (initially K). N may contain both data nodes
and metadata nodes, while M may contain all types
of keys, including inner keys. At each step she in-
creases M by adding all values on the leaf nodes in
N , and increases N by adding all nodes that she can
unlock by “using” the current the keys in M . In or-
der to unlock a node, she can either use the keys in
M directly, or combine some keys in order to gener-
ate new keys. For example secret sharing protocols
require the computation of a bit-wise XOR between
two random keys, r1 ⊕ r2. For our semantics we
assume to be given a function M ′ = combine(M)
which, given a finite set of keys M ⊆ Key, returns a
set of keys M ′ ⊇ M which includes all allowed com-
binations of the random keys in M . The exact defi-
nition of combine may depend on the protocols: for
our purpose, we will define it to be combine(M) =
M∪{r ⊕ r′ | r, r′ ∈ M ∩ InnerKey}. Other choices
are possible, but one has to restrict combine to be
computationally bounded, otherwise it may return
the set of all random keys4. Finally, we need the fol-
lowing notation: for a set of keys M and positive for-
mula ϕ over M we say M |= ϕ, if ϕ is true under the
truth assignment derived from M by using keys in M
as true propositional variables and assuming all oth-
ers false. For example: {k1, k2, k3} |= k4 ∨ (k1 ∧ k2)
but {k1, k2} 6|= k2 ∧ k3.

We can now define the function accP (K) formally:
accP (K) = N ∩ nodes(t), where N ⊆ nodes(tm)
and M ⊆ Key are the least fix point of the following
two mutually recursive definitions:

N = {i | i ∈ nodes(tm), combine(M) |= ϕi}
M = K ∪ {value(i) | i ∈ N}

Finding this fixpoint can be done with a standard
iterative procedure5 which corresponds to the infor-
mal description above.

Example 3.3 For the tree protection P illustrated
in Figure 3, the following are values of accP (K)
for selected subsets K ⊆ XchgKey. (The subtree
of t returned by the access function is represented
as a set of node identifiers.) accP ({k1}) = {1, 3},
accP ({k2}) = {}, accP ({k1, k2}) = {1, 2, 3, 4, 6},
accP ({k1, k4}) = {1, 2, 3, 5}, accP ({k1, k3}) =

{1, 2, 3, 4}, accP ({k1, k3, k4}) = {1, 2, 3, 4, 5}.

Having defined semantics we can now define
equivalence between two protections P , P ′ of the
same XML tree t. Namely P and P ′ are equiva-
lent (in notation, P ≡ P ′) if for every set K ⊆
XchgKey ∪ DataValue, accP (K) = accP ′(K).
Notice that the two protections may use different
metadata nodes: what is important is that the user
can learn the same set of nodes from both protec-
tions, with any set of keys K.

4The set of random keys is finite, e.g. 128-bit keys.
5This definition can be expressed in datalog, for example.
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3.2 Rewrite Rules

We describe a set of local rewrite rules to be used in
optimizations and normalization. It is easy to check
that all rewrite rules are sound, i.e. each replaces
one protection with an equivalent one. This can be
verified in each case by showing that the access func-
tions for the left and right protection are equal.

The rewritings in Figure 5 are intended to ex-
press logical optimizations. (The list is not exhaus-
tive.) For example, in the left protection of rule
(b) the same formula appears on many nodes: the
right protection introduces a new metadata node,
and uses that formula only once. In (c) the need for
nested protections is eliminated: nested protections
lead to nested encryptions, which increase the size
of the output XML document significantly. Hence
(c) can be viewed as a space-reducing optimization.

Figure 6 shows more rewriting rules that we use
to normalize the protection before encrypting it as
shown in Sec. 4. A protection is normalized if every
formula σi is atomic (i.e. consisting of a single key,



true, or false). These rules therefore transform a pro-
tection with complex key formulas (disjunctions and
conjunctions) into a protection having only atomic
key formulas. In the process new meta data nodes
and new randomly-generated inner keys are intro-
duced. We describe the rewritings below:
(a) Disjunction: To eliminate σ1 ∨ σ2 a new ran-

dom key is generated, s, and stored twice: once
guarded with σ1 and once with σ2. The actual
data is now guarded with s.

(b) Conjunction: To eliminate σ1 ∧σ2 two new ran-
dom keys are generated, sa and sb, guarded
with σ1 and σ2 respectively. The actual data
is guarded with s = sa⊕ sb. A user needs to ac-
quire both sa and sb in order to unlock s: know-
ing only sa, for example, reveals nothing about
s. This is a standard secret sharing protocol in
cryptography [4].

Recall that in the definition of the access function
accP (K) the set of keys K is required to consist only
of exchange keys and data values. Had we allowed
K to contain inner keys too, then these two rewrite
rules would not be sound: having the inner key s a
user can access the protected trees on the right of
Fig. 6, but learns nothing on the left. Our definition
of the semantics, accP (K), is such that it allows the
system to introduce its own inner keys, as in Fig. 6.

Example 3.4 Figure 3 contains the normalized tree
protection P ′ resulting from P after an application
of rule (a) followed by an application of rule (b). A
client in possession of key k4 can access the nurse
element by discovering key s in the metadata node.
Alternatively, a client with both keys k1 and k3

can discover sa and sb and use them to compute
s, thereby also gaining access to the nurse element.

4 Implementing a Protection with
Encryption

Given an XML document t and protection P , we
now describe how to generate an encrypted XML
document t′ that implements P such that a user (or
adversary) knowing a set of keys K will have efficient
access only to those nodes of t in accP (K). The first
step is to normalize P and obtain an equivalent pro-
tection P ′ for a metadata tree tm. Then we encrypt
P ′, as described next.

XML Encryption Recommendation The recent
W3C Recommendation on XML Encryption Syntax
and Processing [15] provides a standardized schema
for representing encrypted data in XML form, along
with conventions for representing cryptographic keys
and specifying encryption algorithms.

The basic object is an XML element
EncryptedData containing four relevant sub-
elements: EncryptionMethod describes the

algorithm and parameters used for encryp-
tion/decryption; KeyInfo describes the key used
for encryption/decryption (but does not contain
its value); CipherData contains the output of the
encryption function, represented as base64-encoded
text; EncryptionProperties contains optional
user-defined descriptive data. The cipher text in-
cluded in the CipherData element is the encryption
of an XML element or element content. When
the encrypted contents is itself an EncryptedData
element, it is called nested encryption.

KeyInfo In our framework, the content of the
KeyInfo element contains its length in bits, and
other fields that depend on the type of the key, as fol-
lows. For an exchange key it simply contains a Name
subelement equal to its identifier. For an inner key
it contains either one or two Name subelements: in
the first case the Name is the local name of the in-
ner key; in the second case the two inner keys with
these names need to be XOR-ed. Recall from earlier
in this section that for a data value key, its derived
bitstring v is used for encryption and decryption.
In this case, KeyInfo contains the following subele-
ments: path denotes the path expression that leads
to this data value; concealment contains v ⊕ r for
a random bitstring r; hash contains h(r), the result
of the SHA hash function applied to r. It is com-
putationally hard to reproduce v given the values of
concealment and hash. However, a user with a pro-
posed data value can easily check whether it matches
the data value key. The user derives the bitstring w
from their proposed value, computes h(w⊕ (v⊕ r)),
and tests whether the result equals hash. This will
be the case when v = w. This technique is more
secure than an earlier encryption method described
in [16, 17] for a similar purpose. In designing it, we
were inspired by the techniques of [33] for search on
encrypted data.

The Encryption The actual encryption of the pro-
tection P ′ is done by a straightforward recursive
traversal of the metadata tree of P ′. Notice that
after normalization, all keys in P ′ are atomic. The
encryption proceeds as follows. A node protected
by the key true is simply copied to the output (af-
ter processing its children recursively). A node pro-
tected with the key false is removed from the out-
put, together with all its children and descendants.
A node protected with a key k is translated into an
EncryptedData element with the following children:
EnctryptionMethod (in our case this is always AES
with 128-bit keys), KeyInfo, which has the struc-
ture described above, and CipherData, which is the
encryption of the node with the current key.

Example 4.1 Figure 7 shows an XML instance
constructed from the normalized protection P ′ of
Figure 3. The CipherValue element contains bytes



<?xml version="1.0"?>
<EncryptedData>
    <EncryptionMethod Alg="AES" KeySize="128"/>
    <KeyInfo>
        <name>k1</name>
    </KeyInfo>
    <CipherData>
       <CipherValue>
       qZk+NkcGgWq6PiVxeFDCbJz
       ...
       DCbJzQ2JkcGgWq6PiVxeFFD
       </CipherValue>
    </CipherData>
</EncryptedData>

<hosp att="val">
 <MetaNode:OR>
   <MetaNode:AND>
     <EncryptedData>
         <!-- encrypts sa with key k1 -->
     </EncryptedData>
     <EncryptedData>
         <!-- encrypts sb with key k3 -->
     </EncryptedData>
     <EncryptedData>
         <!-- encrypts s with key sa XOR sb -->
     </EncryptedData>
   </MetaNode:AND>
   <EncryptedData>
    <EncryptionMethod Alg="AES" KeySize="128"/>
    <KeyInfo>
      <name> s </name>
    </KeyInfo>
    <CipherData>
      <CipherValue>
      VxeFDCbJzQ2JqZk+NkcGgWq6
      ...
      q6PFDCbJkcFDCbJiVxe2zQGg
      </CipherValue>
    </CipherData>
   </EncryptedData>
 </MetaNode:OR>
 <phys>
   ....
 </phys>
</hosp>

Decrypts to

Figure 7: Encrypted XML based on protection of
Figure 3.

(encoded as base64 text) which may be decrypted
to reveal the root element of the original tree. Once
decrypted, the element name (<hosp>), and its at-
tributes, are revealed. Its content however is still
partially encrypted: the first child of the <hosp> el-
ement is another EncryptedData element, while the
second child, <phys> is unencrypted since it is not
protected in P .

Compression Nested encryption can result in a sig-
nificant size increase. We deal with this at a logical
level by applying the rewriting rules in Sec. 3.2, and
at the physical encryption level we can apply com-
pression before encryption. We discuss this further
in Section 7.

4.1 Security Discussion

The implementation of a protection is designed so
that the following property will hold:

Property 4.2 (Security) Suppose t is an XML
document, P is a protection over t, and t′ is the
implementation of P over t described above. Then
for any set of keys K:

1. if x ∈ accP (K), there is an efficient algorithm
for reproducing x from t′ and K.

2. if x /∈ accP (S) then the most efficient algorithm
for deriving x from t′ and K requires guessing
missing keys.

The first item easy to prove: the access function,
accP (K) can be easily computed following its defi-
nition, for example by running a datalog program.
The second statement is much more complex. It
relies on the fact that each encryption protocol we
use is in itself secure. For example, in secret shar-
ing a key s is computed as sa ⊕ sb, and nothing at
all can be deduced about s from either sa or sb in
isolation. This protocol offers the strongest security
guarantee, much stronger than any practical encryp-
tion algorithm [4]. Our protocol for encrypting with
data value keys is also secure. However, the security
of the combined protocols requires a separate formal
proof, and this is beyond the scope of our paper.

Not captured by Property 4.2 is the fact that an
adversary may learn facts about the data without
decrypting nodes. For example they will see the
size of the encrypted ciphertext hiding a subtree.
They can count the number of encrypted children
of a node, even if they cannot decrypt them. Some
of these leakages can be avoided with improved en-
cryption schemes, but this is beyond our scope.

5 A Policy Query Language

In this section we describe the language for writing
policy queries and define its semantics. The lan-
guage itself has already been illustrated in Sec. 2,
and here we provide its complete syntax. Then we
present its semantics, which is more interesting and
far from obvious: a set of policy queries must evalu-
ate to a single unified protection on the XML tree (as
described in Sec. 3) and must therefore resolve pos-
sibly overlapping and contradictory policy queries.

Recall that policy queries are evaluated by the
database owner on an XML data instance, in a
secure environment, before publishing the access-
controlled version of the database, and will be re-
evaluated or updated when the database changes,
to produce a new version of the published data.

5.1 Syntax

The general form of a policy query is:

[SUFFICIENT | NECESSARY]
FOR . . . LET . . .WHERE . . .
KEY keyExpr1, keyExpr2, . . .
TARGET targetExpr1, targetExpr2, . . .

A policy query can be either a sufficient or a
necessary query. The query contains an XQuery
[6] FLWR expression (but without the RETURN
clause) followed by a KEY and a TARGET clause.
KEY expressions have the following form:

KEY [path-expr] |
[getKey(key-name) [keyChain(keychn-name)] ]



The first expression, path-expr, denotes a data value
key, and must evaluate to a data value. The second
expression, getKey(key-name), is an exchange key ex-
pression, optionally followed by a key chain name. If
such a key exists in the keychain then it is retrieved;
otherwise a new random 128-bit key is generated,
and is associated with that name and keychain. The
expressions targetExpr1, targetExpr2, . . . are XPath
expressions denoting nodes in the XML document.

5.2 Semantics

Intuitively, given an input XML document t, a policy
query specifies a protection over t as follows. If the
query is a sufficient query, then it says that a user
holding the keys k1, k2, . . . can unlock the target
node. If the query is necessary, then it says that any
user that can access the target must have the keys
k1, k2, . . . Typically, a data provider writes multi-
ple protection queries, and evaluates all of them on
the XML document t that it wants to publish, which
results in a protection P for t that enforces all the
queries. Such a protection may not exist. We say
that the policy queries are consistent for t if a pro-
tection for t exists; we say that they are consistent if
they are consistent for any t. Checking consistency
and constructing the protection P is non-obvious.
We show how to do this next.

Policy queries → primitive rules The first step
is to evaluate the policy queries on the XML doc-
ument t and obtain a set of primitive rules. Given
an XML document t, a primitive sufficient rule is a
rule of the form rs = S → e, where S is a set of
keys and e ∈ nodes(t). Similarly, a primitive neces-
sary rule is a rule of the form rn = e → S. Thus, a
primitive rule applies to a particular tree t, and to a
particular element of that tree. Given a tree t and a
policy query, we evaluate the query to obtain a set
of primitive rules on t, as follows. We first compute
all variable bindings in the FOR. . . WHERE. . . LET. . .
clauses: this computation is a standard step in any
XQuery processor. For each such binding the key
expressions in the KEY clause evaluate to some keys
k1, k2, . . ., and the target expressions in the TAR-
GET clause evaluate to some nodes v1, v2, . . . For
each descendant-or-self node e of some target node
(i.e vi � e, for some i = 1, 2, . . .) add the rule
{k1, k2, . . .} → e, if the query was a sufficient query,
or the rule e → {k1, k2, . . .}, if the query was a nec-
essary query. Repeat this for each binding of the
query, then for each policy query. The result is a
set, R, of primitive rules for t.

Primitive rules → Protection We show here how
to derive a protection PR that “enforces” all primi-
tive rules in a set of primitive rules R. The protec-
tion is over t itself, i.e. no metadata nodes are added
(these are added later, during normalization). The

intuition for the construction below is the following.
The meaning of a sufficient rule S → e is that any
user having the keys S can access the node e; a neces-
sary rule e → S specifies that the user is not allowed
access to e unless he has all keys in S. We seek a
protection PR that satisfies all rules in R, but it is
easy to see that such a protection is not uniquely de-
fined. For example if R contains only sufficient rules,
then the True protection, where each guard formula
is simply true, satisfies R: clearly this is not what we
want from a set of primitive sufficient rules. Instead
we define the meaning of R to be the most restrictive
protection satisfying all rules. We make this formal
next, using some lattice-theoretic techniques [20].

Recall the definition of accP (K) in Sec. 3.

Definition 5.1 (Primitive rule satisfaction)
Let P be a protection over metadata tree t.

• For a sufficient primitive rule rs = S → e, P
satisfies rs (denoted P � rs) if e ∈ accP (S).

• For a necessary primitive rule rn = e → S,
P satisfies rn (denoted P � rn) if for all K, if
e ∈ accP (K) then S ⊆ K.

Define now PS(R) ={P | P = (t, σ),∀r ∈ R,P � r}.
This is the set of all protections over t that satisfy all
rules in R. Notice that we only consider protections
over t, and do not allow additional metadata nodes.
We define next the most restrictive protection in the
set PS(R) to be the greatest lower bound, for the
following order relation. Recall that ϕi =

∧
j�i σj is

the necessity formula at node i (Sec. 3).

Definition 5.2 Given two protections P and P ′

over the same metadata tree t, P is more restric-
tive than P ′, denoted P � P ′, if for all nodes
i ∈ nodes(t), ϕi → ϕ′

i (the logical implication holds).
The relation � is a preorder6. For a set of protec-
tions S, GLB(S) denotes the greatest lower bound
under �.

We can now define formally the meaning PR of a
set of primitive rules R to be GLB(PS(R)), when
PS(R) 6= ∅, and to be undefined otherwise. In
other words, the meaning of R is the most restric-
tive protection that satisfies all primitive rules in
R. We show how to construct GLB(PS(R)), when
PS(R) 6= ∅. In particular this construction proves
that the greatest lower bound exists.

We partition the set of primitive rules into suffi-
cient and necessary primitive rules: R = Rs ∪ Rn.
The following theorem summarizes the key proper-
ties that we need in order to compute the protection
PR. For a set of key expressions S = {σ1, . . . , σn},
the notation

∧
S denotes σ1 ∧ . . .∧ σn, and

∨
S de-

notes σ1 ∨ . . . ∨ σn.
6Reflexive and transitive.



Theorem 5.3 Let t be a metadata tree, Rs be a set
of primitive sufficient rules and Rn a set of primitive
necessary rules on t. Then:

• If GLB(PS(Rs ∪Rn)) exists then it is equal to
GLB(PS(Rs)).

• GLB(PS(Rs)) always exists, and is the protec-
tion defined as follows. For every node i ∈
nodes(t), the key expression σi is given by:
σi =

∨
{
∧

S | ∃(S → e) ∈ Rs, i � e} That is,
the key formula for the node i is the disjunc-
tion of all key expressions S that are sufficient
to unlock some descendant of i.

• GLB(PS(Rs ∪ Rn)) exists iff the following
Consistency Criterion is satisfied: For every
pair of rules (S → e) ∈ Rs and (e′ → S′) ∈ Rn,
if e′ � e (i.e. e′ is a ancestor-or-self of e), then
S′ ⊆ S.

The proof is included in [26].

Evaluation Procedure This results in the following
procedure for computing the protection PR from a
set of primitive rules R. First check the consistency
criteria: if it fails, then PR is undefined and the set
of rules is inconsistent. Otherwise, we retain only
the sufficient rules Rs, and construct the protection
as follows. Given a node i, identify all rules S1 → e1,
S2 → e2, . . . for which the target nodes e1, e2, . . . are
either i or its descendants: then protect i with the
key expression (∧S1) ∨ (∧S2) ∨ . . .

Checking Consistency Statically The procedure
outlined above checks at runtime whether a set of
queries is consistent for t. It is also possible to check
at compile time whether a set of policy queries is
consistent (i.e. for any input tree t). We show in
[26] how to reduce the problem to query contain-
ment for the XQuery language. Thus checking con-
sistency is no harder than deciding containment of
queries in the language considered. For the com-
plete XQuery language the containment problem is
undecidable (since it can express all of First Order
Logic), and hence, so is the consistency problem.
However, if one restricts the policy queries to a frag-
ment of XQuery for which the containment problem
is decidable, then the consistency problem is decid-
able. For example, [14] describes such a fragment
for which the containment problem is ΠP

2 -complete.

6 Querying Protected Data

A user holding a copy of the protected data instance
P , and a set of keys K may access P naively by im-
plementing the access function accP (K) from Sec. 3.
This, however, is hopelessly inefficient. We describe
here a simple extension of XQuery that allows the
user to access data selectively, and, moreover, guide
the query processor on which keys to use where. The

extension has a single construct: access(tag, k1, k2,
. . . ) where tag is an XML tag and k1, k2, . . . are
key expressions of the following form:
getKey(key-name) | path-expr = value
The first denotes an exchange key, while the second
a data value key.

Example 6.1 Consider Policy Query 2.1 from
Sec. 2. Assume a physician downloaded the data,
named it protectedData.xml, and needs to access
the analysis element of a patient named “John
Doe”. Recall that this data is protected by both
the “registration” key and by the DNAsignature
data value. The physician has the “registration”
key, and can retrieve the DNAsignature from its
local database, called patients.xml. She does this as
follows:

FROM $x in document(“patients.xml”)/
patients/patient[name=“John Doe”]

$y in document(“protectedData.xml”)/
subjects/subject/
access(analysis, getKey(“registration”),
DNAsignature/txt()=$x/DNAsignature/txt() )

RETURN $y
The query returns the analysis element.

This construct can be implemented in a query ex-
ecution environment to decrypt only EncryptedData
elements for which a qualifying set of keys is held,
and then select those decrypted elements that match
tag. Other optimizations that in addition avoid de-
crypting elements that do not match tag are also
possible, but beyond the scope of the discussion.

7 Performance Analysis

Next we discuss the performance of a preliminary
Java implementation. We begin with an input
document t and protection P , generate the en-
crypted document t′ enforcing P , and then process
t′ naively by reproducing t by decryption (assuming
possession of all keys). We focus on the following
metrics: time to generate t′, the size of t′ compared
with t, and the time to reproduce t from t′.

Algorithm Choice and Experimental Setup

We use a public Java implementation [8] of the
Advanced Encryption Standard (AES) [11] with
128-bit keys. We tested other algorithms as well
and while the ideal choice of algorithm is a complex
issue7 it is not a critical factor for the results below.
We use three real datasets (Sigmod Record, an
excerpt of SwissProt, and Mondial) for our experi-
ments8. We consider basic protections which place

7The choice of algorithm is a trade-off between raw en-
cryption speed, key setup time, sensitivity of each of these
to key length, in addition, of course, to the security of the
algorithm.

8Available from the University of Washington XML Data
Repository: www.cs.washington.edu/xmldatasets
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Figure 8: Size of protected documents (left), and time to generate and decrypt protected documents (right).

single unique keys at all nodes on different levels
of the document trees, and are named accordingly.
For example, P1 guards the root with a single key,
and P23, guards nodes at level 2 and 3 with distinct
keys (with True everywhere else).

Protected document size The ciphertext output of
a symmetric encryption algorithm is the same size
as the cleartext input. However, in the case of en-
crypting XML, the cleartext uses a text encoding
with 8 bits per character (UTF-8), while the cipher-
text is binary data and is represented using 6 bits
per character (base64 text), to conform with the En-
cryption standard [15]. This results in an immediate
blow-up of 33% in the case of the simplest encrypted
XML. The problem is compounded during super-
encryption, since the inflated representation of the
ciphertext becomes the cleartext for another round
of encryption. We address this difficulty by applying
rewriting rules to avoid super-encryption, and also
by using compression.

Figure 8 (left) presents the size of the encrypted
instance t′ for the three datasets and various pro-
tections, with and without compression. The pro-
tected instance can be considerably larger than the
original, especially in the case of P123 which involves
many keys and super-encryption: 5 times the size
of original for Mondial, 7 times for SwissProt for
this protection. Applying rewriting rules (Sec. 3),
when possible, can help however. Protection P13 can
be seen as an approximation of the result of apply-
ing rewriting rule (d) to push the level two formu-
las down in protection P123, and this reduces the
protected instance size by 25%. Pulling formulas
up in the tree using rewriting rule (b) can have an
even larger impact: P12 is roughly 70% smaller than
P123 in each case. Finally, for each dataset and each
protection, file sizes are presented with and without
compression9. With gzip, under P123, t′ is in fact

9We used gzip compression, which can easily be applied to
the cleartext before encryption, and then after decryption by
the client. The W3C Encryption Schema includes metadata
to describe such pre- and post-processing of data.

smaller than the original data . The positive impact
of the rewritings above are only slightly diminished
when compression is applied.

It should be emphasized that the encrypted
instance generated is capable of supporting many
different access policies. In the absence of our tech-
niques, a separate instance must be published to
each user according to their access rights. Therefore
a small constant factor increase in instance size is
extremely favorable in many cases.

Generation and Decryption Time The graph on
the right of Figure 8 measures the generation time
(above the x-axis) and decryption time (below the x-
axis)10. The number in parentheses next to the pro-
tection name is a count of the number of keys used in
the protection. The extra time to compress is more
than compensated by the time saved by processing
less data, so that compression actually reduces gen-
eration and decryption time overall. The two rewrit-
ings mentioned above have a modest positive impact
on generation time: 12% and 18% respectively.

The absolute generation and decryption times of
our preliminary implementation do not reflect the
possibilities for fast processing. The symmetric algo-
rithms used here have been implemented [2] to run
orders of magnitude faster than numbers reported
here. In fact, absolute throughput of optimized en-
cryption implementations appears to far exceed the
throughput of many XML parsers, so we expect that
the addition of our techniques to a data processing
architecture would not be the bottleneck.

8 Related Work and Conclusions

A number of access control models for XML have
been proposed [12, 19, 30]. These rely on a trusted
processor to regulate access and do not allow secure
publishing. One of these is XACML [30], a flexible
standard for declaring access control policies. Our
policy queries could be expressed as XACML poli-
cies. Unlike our formalism, XACML is not based on

10for the Sigmod Record dataset; other results were similar.



a query language like XQuery. Rules requiring joins,
like our Policy Query 2.3 (Sec. 2) are expressed in an
ad-hoc syntax. The Author-X system [5] supports
remote enforcement using encryption and key trans-
mission, but this work does not describe a formal
model of document protection, an expressive pol-
icy language, nor does it support data value keys.
The use of data value keys to enforce binding pat-
terns was addressed recently in the context of XML
[25]. These techniques extend those developed in
[7, 16, 17].

Conclusions We have provided a comprehensive
framework for controlled sharing of data. Our
framework includes high-level access control poli-
cies, a powerful logical model for protecting a doc-
ument tree, and encryption techniques to construct
an XML document that enforces the policies. We
believe such a framework can satisfy the needs of
emerging communities of users who want to share
data in a distributed setting, but are restricted by
trust and privacy constraints. Our continued work
is focused on proving formal security claims about
the data instances we have described here, as well as
improved query processing and update techniques.
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