
Log Sanitization: Auditing a Database Under Retention

Restrictions

Wentian Lu and Gerome Miklau

Department of Computer Science, University of Massachusetts
140 Governors Drive, Amherst, MA USA

Technical Report 08-22
June 29, 2008

Abstract

Auditing the changes to a database is critical for identifying malicious behavior, maintaining
data quality, and improving system performance. But an accurate audit log is a historical record
of the past that can also pose a serious threat to privacy. Policies which limit data retention
conflict with the goal of accurate auditing, and data owners have to carefully balance the need
for policy compliance with the goal of accurate auditing.

In this paper, we provide a framework for auditing the changes to a database system while
respecting data retention policies. Our framework includes a historical data model that supports
flexible audit queries, along with a language for retention policies that hide individual attribute
values or remove entire tuples from history. Under retention policies, the audit history is partially
incomplete. We formalize the meaning of audit queries on the protected history, which can
include imprecise results. We implement policy application and query answering efficiently in a
standard relational system, and characterize (both theoretically and experimentally) the cases
where accurate auditing can be achieved under retention restrictions.

1 Introduction

Auditing the changes to a database is critical for identifying malicious behavior, maintaining data
quality, and improving system performance. But an accurate audit log is a historical record of the
past that can also pose a serious threat to privacy. In many domains, retention policies govern how
long data can be preserved by an institution. Regulations mandate the disposal of past data and
require strict retention periods to be observed. For example, the Fair Credit Reporting Act limits
the retention, by credit reporting agencies, of personal financial records. In addition, institutions
often adopt their own retention policies, choosing to remove sensitive data after a period of time
to avoid its unintended release, or to avoid disclosure that could be forced by subpeona.

1



Retention restrictions conflict with the goal of accurate auditing, and data owners therefore have
to carefully balance the need for accurate auditing with the privacy goals of retention policies. Un-
fortunately, current mechanisms for auditing and managing historical records have few capabilities
for managing the balance between the two objectives. Obeying a retention policy often means the
wholesale destruction of the audit log.

In this paper we propose a framework for auditing the changes to a database system in the presence
of retention restrictions. We consider a historical data model and propose two kinds of rules for
selectively removing or obscuring sensitive data from the record of the past. Despite the removal
of information, it is often still possible for an auditor to monitor the record of actions taken on the
database. We provide an overview of the motivation and contributions of this work through the
following detailed example.

1.1 Example Scenario

We begin with a database storing tables belonging to a client schema. Clients interact with the
database by submitting queries and updates, always on the current snapshot. In the running
example used throughout this paper, the client schema consists of a single table, S, describing
employees:

S(eid, name, department, salary)

The auditor is responsible for monitoring access to the database and tracking down malicious
actions after they have occurred. Auditors typically inquire about what happened to the database,
when it happened, and who did it.1 To enable the auditor to query the state of the database over
time, the system maintains an audit log table, LS , for each table S in the client schema. Each
modifying operation, issued by a client on S, is recorded in LS along with additional audit fields
describing the time of modification, the type of modification (insert, update, delete), and any other
fields possibly of interest to the auditor. Table 1 shows an audit log table including audit fields
recording the name of the issuing client and their IP address.

The audit log can easily be converted to an alternative transaction-time representation. Table 2
shows such a table, denoted TS . It represents the complete data history of the table, recording, in
the from and to columns, the active period of each tuple in the database. Throughout the paper
we will use both the log-based and transaction-time representations as they each have benefits for
expressing queries and formally defining concepts.

These historical tables can support a variety of queries of interest to the auditor. Some simple
examples include:

A1. Return all employees who earned a salary of 10k at some point in time.

A2. Return the clients who updated Bob’s salary, and the time of update.
1We are concerned here with auditing modifications only. We do not audit queries that read from the database.

2



client IP time type eid name dept sal

Jack 1.1.1 0 ins 101 Bob Sales 10
Jack 2.1.1 100 upd 101 - - 12
Kate 3.1.1 200 upd 101 - Mgmt -
Kate 4.1.1 300 upd 101 - - 15
Jack 1.1.1 0 ins 201 Chris HR 8
Jack 2.1.1 300 upd 201 - Mgmt 10
Kate 4.1.1 500 del 201 - - -

Table 1: The audit log describing the history of operations performed on a client table with schema
S(eid, name, dept, salary). Columns client and IP are audit fields.

eid name dept sal from to
101 Bob Sales 10 0 100
101 Bob Sales 12 100 200
101 Bob Mgmt 12 200 300
101 Bob Mgmt 15 300 now
201 Chris HR 8 0 300
201 Chris Mgmt 10 300 500

Table 2: The transaction-time table, derived from the audit log in Table 1, that describes the data
history of the client table.

A3. Return the clients who updated any employee’s dept, and the time of update.

In general, some audit queries are conventional queries over a transaction-time database (such as
A1). Others ask specifically about changes, and reference the special audit fields contained in the
audit log (such as A2, A3).

The compliance officer is responsible for enforcing data retention restrictions arising from privacy
regulations or institutional policies. These policies are typically non-negotiable – they must be
respected by all users of the system, including the auditor. We propose two kinds of declarative
retention rules for limiting the lifetime of data. Notably, these retention policies are expressed in
terms of TS , the transaction time table describing the data history. This is the most natural choice
because retention policies refer only to the client schema, and to the notion of time.

Our first retention rule is called redaction. When redaction is applied to an attribute value, it
removes the value but does not hide its existence. For example, a redaction rule may say: Hide
Bob’s salary between time 0 and 250. The second operation, called expunction, is more extreme.
When a tuple is expunged, it is completely removed, along with all evidence of its existence. For
example, an expunction rule may say: Remove the record of all employees in the HR department
between time 0 and 300.

Applying a set of retention rules transforms the stored history of the database.2 Table 3 shows a
2As a practical matter, retention rules may be applied physically, altering storage of the table, or logically, in

which the access is restricted but hidden data is still stored.

3



eid name dept sal from to

101 Bob Sales sx 0 100
101 Bob Sales sy 100 200
101 Bob Mgmt sy 200 250
101 Bob Mgmt 12 250 300
201 Bob Mgmt 15 300 now
201 Chris HR 8 0 300
201 Chris Mgmt 10 300 500

Table 3: The transaction time table, transformed under the following retention policies:
RedactS(name = Bob, {salary}, [0, 250]) and ExpungeS(dept = HR, [0, 300]). (The gray row has
been deleted.)

new transaction-time table, the result of applying the retention rules to the table TS . In applying
the redaction rule, salary values have been replaced with variables (sx, sy). We use variables as
an alternative to NULLs in order to support more accurate auditing. Also note that there is an
extra row in Table 3 because the time interval [200,300] in the original data has been split into two
intervals: [200,250], in which Bob’s salary is hidden, and [250,300], in which Bob’s salary can be
revealed to be 12k. In applying the expunction rule, Chris’s membership in the HR department
has been removed from the history: he is now only in the Mgmt department from time 300 to
500. For illustration purposes, the expunged row is included in Table 3, but displayed with a gray
background.

A main goal of this paper is provide a proper semantics for audit queries in the presence of retention
policies. Because the transformed history has tuples removed by expunction and values obscured by
redaction, the answers to audit queries may be uncertain or, in some cases, provide false information.
We reconsider the previous audit queries under retention restrictions:

A1. Return all employees who earned a salary of 10k at some point in time.

This query is a straightforward selection on the transaction-time table. On the original data
in Table 2 the answer to this query is {Bob, Chris}. On Table 3, under the retention policy,
the answer to this query includes Chris as a certain answer. However, Bob is only a possible
answer because the predicate depends on the unknown value of variables sx and sy. Our
implemented system returns both answers, labeled appropriately as possible or certain.

A2. Return the clients who updated Bob’s salary, and the time of update.

The answer to this query on the original data is {(Jack, 100), (Kate, 300)}. The transformed
history in Table 3 shows that Bob’s salary definitely changed at time 100 (from sx to sy)
and at time 300 (from 12k to 15k). In addition, it may have changed at time 250 (from sy to
12k), depending on the unknown value of variable sy. (Note that the uncertainty about this
change is crucial – if it is possible to deduce that the change did not occur, then it is clear
that Bob’s salary was indeed 12k between 250 and 300, and the retention policy is violated.)

In order to fully answer the query, we must use the audit log to get the names of the clients who
issued the update. Jack and Kate performed the updates at time 100 and 300, respectively,
so the certain answers to this query are: {(Jack, 100), (Kate, 300)}. A subtlety here is how to

4



return the possible answer for the update at 250, since there is no known client that performed
that update. The possible answer that could be returned is: (NULL,250), but not if it reveals
that this is a fake update.

A3. Return the clients who updated any employee’s dept, and the time of update.

The answer to this query on the original data is {(Kate,200), (Jack,300)}, which can easily
be computed from the original audit log LS . In the transformed history in Table 3 we find
evidence of only one update to the department field, at time 200. This is a result of the
expunction policy that removed Chris’ record from time 0 to 300. Thus, the answer to this
query under the retention policy is {(Kate,200)} and the record of Jack’s update is lost.

Notice that the answer to query A3 is incorrect: a tuple that is in the true answer (i.e. with respect
to the original data) is omitted from the new answer. From the auditor’s perspective this is a worse
outcome than that of A1 and A2 where the true answer is one of the possible answers. One of the
goals of our framework is to provide answers to auditor queries that, although imprecise, do not
lead to false conclusions. Also note that in reasoning about the answers to queries A2 and A3 we
referred to the transformed transaction-time table and used it infer actions that were performed
on the database. Later in the paper we make this process explicit by computing a sanitized audit
log, consistent with the retention policies, that can be queried directly.

In summary, the main contributions of the paper are:

• We propose declarative rules for expressing retention restrictions over a historical data model.
(Section 3)

• We provide a precise semantics for audit query answers under retention restrictions, and we
study theoretically the impact of retention policies on the accuracy of audit queries. (Section
4)

• We implement our framework as extensions to Postgres, showing that uncertain answers can
be computed efficiently over our incomplete historical data model. (Section 5)

• We demonstrate (through simulation on sample data) that useful auditing can be performed
in the presence retention restrictions, despite uncertain answers. (Section 6)

Our work extends and integrates techniques from temporal databases, incomplete databases, and
fine-grained access control into a flexible framework for controlled auditing. We distinguish our
contributions from this work in Section 7.

2 Data Model and Audit Queries

In this section we describe our data model, based on backlog and transaction-time databases [1, 2],
and our language for expressing audit queries.

5



2.1 Data model

Let (S1, . . . , Sk) be the client schema. We refer to each relation Si as a regular relation to distinguish
it from transaction-time relations defined below. We use tuples(Si) to refer to the set of all tuples
that could occur in Si (i.e., the cross-product of the attribute domains).

Audit Log

An audit log is a complete record of the operations on a client table over time, and we maintain an
audit log table LS for each table S of the client schema. Each row in LS represents a transaction
modifying a tuple of S. Table 1 shows an example audit log table. In general, the schema of LS is:

(〈audit-fields〉, ttime, type, 〈client-fields-from-S〉)

The audit fields may contain an arbitrary set of attributes describing facts about the transaction.
In our examples, the audit fields record the name of the issuing client and their IP address, but in
general they may include many other fields describing the context of the operation. ttime is a time
stamp, from a totally-ordered time domain T , reflecting the commit time of the transaction. We
assume each transaction receives a unique time stamp. The type field describes the modification as
an insert, update, or delete. The fields of the client schema describe the changes in data values. If
the transaction is an insert, each attribute value is included; for updates, only modified values are
included, with unchanged attributes set to NULL; for deletes, all attribute values are NULL. This
description of an audit log is essentially a backlog database [1] with the addition of audit fields.

We assume that each audit record refers to a unique tuple, identified by the key of the client table.
In practice, a transaction may affect multiple tuples. If necessary, this relationship can be recorded
in a statement-id, relating the changes to tuples made by a statement. Without loss of generality
we omit this.

Transaction-time relation

A transaction-time relation (a t-relation for short) represents the sequence of states of a relation in
the client schema. Formally, a t-relation over S is a subset of tuples(S)×T . A tuple (p1, . . . , pn, t) ∈
TS represents the fact that tuple (p1, . . . , pn) is active at time instant t. In examples (and our
implementation) we use the common representation for t-relations in which (p1, . . . , pn, from, to)
means that (p1, . . . , pn) holds at each instant t, for from ≤ t ≤ to. Table 2 is an example of a
t-relation.

6



Audit log versus T-relation

Given an audit log table LS , a unique t-relation can be computed from it in a straightforward way
by executing each statement. After a modification, the values of a tuple are active until the time
instant of the next operation modifying that tuple. We use exec to indicate this procedure, and we
define TS to be exec(LS).

It is also possible to reverse this procedure, computing an audit log from a t-relation (although
no audit fields will be included). This procedure, denoted exec−1, computes initial insertion trans-
actions at the time instant a new tuple is created, subsequent update transactions at the instant
of each change to a tuple, and (for tuples that are no longer active) delete transactions. Notice
that computing an audit log from TS will reproduce a table similar to LS but with the audit fields
removed: Πttime,type,S(LS) = exec−1(TS).

The audit log LS and the t-relation TS represent similar information. As a practical matter it
is not necessary to maintain both. However, in the formal development presented here, each
representation serves an important purpose. We will see in the next section that retention policies
are defined in terms of TS , and can be applied directly to TS . But TS does not include audit fields.
We will also reconstruct an audit log from the protected TS in order to make explicit the possible
inferences about changes to the database.

2.2 Audit queries

A variety of interesting audit queries can be expressed over TS and LS . LS is a regular relation, but
queries over t-relation TS may use extended relation algebra operators to cope with transaction-
time . We omit a formal description of these operators, which can be found in the literature [3, 4],
and instead present examples highlighting their features.

The example audit queries from Section 1.1 are expressed as follows on TS or LS :

A1. Return all employees who earned a salary of 10k at some point in time. Πname(σsal=10k(TS))

A2. Return the clients who updated Bob’s salary, and the time of update.

Πclient,ttime(σtype=Upd∧name=Bob∧sal 6=NULL(LS))

A3. Return the clients who updated any employee’s dept, and the time of update.

Πclient,ttime(σtype=Upd∧dept!=NULL(LS))

Conventional joins on t-relations are possible, as well as joins between a t-relation and regular
relation. For example, our audit log LS can be joined with TS on the ttime attribute. In addition, we

7



can use concurrent cross-product (denoted ×�) or concurrent join (denoted ./�) as binary operators
on t-relations that combine tuples active at common time periods. The following example query
includes a concurrent self join on TS :

A4. Return all employees who worked in the same department as Bob at the same time.

Πname(σname′=Bob(TS ./
�
dept=dept′ T

′
S))

Finally, the time-slice operator restricts a t-relation to a specified interval in time. For interval
[m,n], it can be defined as: τm..n(R) = R ×� {〈m,n〉} where {〈m,n〉} is a singleton t-relation
without user-defined attributes. The result of applying the time-slice operator is a t-relation. A
regular relation representing the snapshot database at time m can be written as πS−{from,to}
(τm..m(TS)).

3 Describing and Applying Retention Policies

In this section, we define the semantics of our redaction and expunction rules, and how they are
applied to the stored history.

3.1 Retention policy definitions

Retention policies are used to restrict access to tuples or attribute values in one or more historical
states of the database. The need for retention policies arises from the sensitivity of data items in
the client schema. Thus it is most natural to express retention policies in terms of the t-relation,
TS , which describes states of the client relation as it evolves through time. We define our retention
policies formally below as transformations on TS .

Our first retention operation is called redaction. It suppresses attribute values in tuples for a
specified time period. Redaction is useful because it hides sensitive data values, but preserves the
history of modification of the tuple. Our second retention operation is called expunction. An
expunged tuple is removed from history, and the historical record is modified accordingly to hide
its existence.

These two operators serve different purposes as they enact value removal in the case of redaction,
and existence removal in the other. Expunction is a more extreme operation because it does not
merely suppress information, but changes the historical record in ways that can substantially change
answers to audit queries. We believe that a variety of privacy policies can be satisfied through the
use of redaction policies alone, which will lead to more accurate auditing.

In the definitions that follow, a Boolean condition φ, on client relation S, is a Boolean combination
of comparisons S.A θ c, or S.A θ S.B, for any θ ∈ {=, 6=, <,≤, >,≥}.

8



Definition 3.1 (Expunction Rule) An expunction rule, over a client table S, is denoted E =
ExpungeS(φ, [u, v]) where φ is a Boolean condition on attributes of S, and [u, v] is a time interval
(u, v ∈ T , and u ≤ v).

An expunction rule asserts that all tuples matching condition φ should be removed from a specified
interval in time. When an expunction rule E is applied to a t-relation TS , the intended result is a
new t-relation. Denoted E(TS), this new t-relation consists of all facts from TS except those that
satisfy φ and have time field in [u, v]:

Definition 3.2 (Expunction Rule Application) For a client relation S, let TS be a t-relation
over S, and E = ExpungeS(φ, [u, v]) be an expunction rule. The application of E to TS, denoted
E(TS), is a new t-relation with the same schema: E(TS) = TS − {x ∈ TS | φ(x) ∧ x.t ∈ [u, v]}

Unlike expunction, a redaction rule does not remove tuples from the historical record. Instead, a
redaction rule asserts that the values of certain attributes should be suppressed in all tuples that
match condition φ and are active during a specified time interval.

Definition 3.3 (Redaction Rule) A redaction rule, over client table S, is denoted RedactS(φ,A, [u, v])
where φ is a Boolean condition on attributes of S, A is a subset of the columns in S, and [u, v] is
a time interval (u, v ∈ T , and u ≤ v).

When a redaction rule R is applied to a t-relation TS , the intended result is a new t-relation,
denoted R(TS), in which some attribute values have been suppressed. To formalize R(TS) we
use a suppression function supp(x,A) which replaces attributes of A in the transaction-time tuple
x with variables. For example, if x = (101, Bob, Sales, 10k, 300) then supp(x, {dept, salary}) =
(101,Bob,dx, sx, 300). We assume that suppressions of distinct values always use distinct variable
names, and that all instances of a value are replaced by the same variable. The choice to use
such variables instead of NULL values sacrifices some privacy because it reveals when two redacted
values are identical. We believe this is a worthwhile trade off, and we show in Section 5 that the use
of variables can substantially increase auditing accuracy for some queries. Our results can easily
be adapted to a suppression function using NULL values.

Definition 3.4 (Redaction Rule Application) For a client relation S, let TS be a t-relation
over S, and R = RedactS(φ,A, [s, t]) be a redaction rule. The application of R to TS, denoted
R(TS), is a new t-relation with the same schema:

R(TS) = {supp(x,A) | x ∈ TS , φ(x), x.t ∈ [u, v]} ∪
{x | x ∈ TS ,¬φ(x) ∨ x.t 6∈ [u, v]}

9



client IP ttime type eid name dept sal

Jack 1.1.1 0 ins 101 Bob Sales sx
Jack 2.1.1 100 upd 101 - - sy
Kate 3.1.1 200 upd 101 - Mgmt -

NULL NULL 250 upd 101 - - 12
Kate 4.1.1 300 upd 101 - - 15

NULL NULL 300 ins 201 Chris Mgmt 10
Kate 4.1.1 500 del 201 - - -

Table 4: A sanitized audit log, P (LS) transformed under the retention policies of Section 1.1 and
Example 3.5.

We assume for simplicity that A does not contain the key for table S. If the key for R is sensitive,
and subject to retention policies, a surrogate non-sensitive key attribute can be introduced to the
schema. This means that even if all attributes of the schema are redacted, the history of changes
to a tuple is still preserved.

Having applied a redaction policy, the resulting table R(TS) is formally an incomplete t-relation. It
is a representation of a set of possible worlds, each resulting from a different substitution of distinct
values for the variables introduced by the suppression of attributes. We define incomplete relations
formally in Section 4.

Retention policy composition

Retention rules can be combined to form complete retention policies. A set of redaction rules is
combined by hiding any attribute value that satisfies the selection condition and time-period of any
individual redaction rule. A set of expunction rules is combined by removing all tuples satisfying
any individual expunction rule. Expunction rules take precedence over redaction rules: a tuple
satisfying both an expunction and redaction rules will be removed rather than suppressed.

Example 3.5 In Section 1.1, we described informally two retention policies. The redaction policy
that hides Bob’s salary between time 0 and 250 is written formally asR = RedactS(name=’Bob’, sal, [0, 250]).
The expunction policy that removes the record of all employees in the HR department between time
0 and 300 is written E = ExpungeS(dept=’HR’, [0, 300]). Table 3 is the t-relation that results from
applying both E and R to the original table TS shown in Table 2.

3.2 Sanitizing the audit log

Consider a policy P consisting of redaction and expunction rules. According to the definitions
above, we apply the policy to TS , to get the t-relation P (TS). As we have seen in the examples
of Section 1.1, the answers to audit queries are not determined completely by the table P (TS).
For one, the audit fields in LS are not present. We must use LS in combination with P (TS) to

10



LS

TS P(TS)

Original Data Data Under 
Retention Restrictions

P(LS)

exec exec-1

Policy
Application

Figure 1: Illustration of the relationships between original history (LS and TS) and the history
under retention policy P . P (TS) is defined directly, while P (LS) is the sanitized log derived from
P (TS) and including audit fields from LS .

answer queries that reference the audit fields. In addition, the operations applied to the database
need to be inferred from P (TS) which represents just the history of database states. In order to
combine audit field information, and to make explicit the changes to the database that are implied
by P (TS), we compute a sanitized log consistent with P (TS). This new log is denoted P (LS) and
has the property that running it results in P (TS), that is: exec(P (LS)) = P (TS). The auditor, and
other users, will have access to both P (TS) and the sanitized audit log. Together we refer to these
as the sanitized history. The relationship between the audit log and transaction-time tables in our
framework is illustrated in Figure 1.

In computing the sanitized history, we hope to satisfy the following properties.

• A sanitized history is secret if it respects the semantics of the policy, hiding tuples and values
appropriately. This means it is not possible to infer from the protected history anything that
is not present in P (TS) (the defined meaning).

• A sanitized history is sound if it omits information, but does not lead to false answers to
audit queries. This property is ensured for all queries if the possible worlds implied by P (TS)
includes the original history. In that case, the true answer to any audit query must be a
possible answer under retention restrictions.

Note that for any redaction rule R and expunction rule E, R(TS) and E(TS) are secret by definition.
The challenge to secrecy comes from integrating LS . Also note that expunction policies necessarily
violate soundness. Because an expunction policy changes history by removing records, it produces
false answers to audit queries.

11



Definition 3.6 (Sanitized Log) Let P be a retention policy consisting of redaction rules, expunc-
tion rules, or both, and let P (TS) be the (possibly incomplete) t-relation that results from applying
P to TS. The sanitized log under P is denoted P (LS) and is defined as follows:

1. Treating any variables present in P (TS) as concrete data values, compute the audit log table
exec−1(P (TS))

2. Let L0
S = Π〈audit-fields〉,ttime(LS)

3. P (LS) = L0
S ./=ttime exec−1(P (TS))

This procedure first uses the exec−1 to compute an audit log from P (TS). Then we extract the
audit fields and time column from the original audit log. This table, L0

S , is then joined with
exec−1(P (TS)). We use a right outer join to preserve tuples in exec−1(P (TS)) which may not have
a match in L0

S . This occurs when the application of a redaction policy splits the active interval of
one or more records. It suggests that an update operation occurred in the history, but the time
instant of this update does not match any update in the original audit log.

Example 3.7 Table 4 is the sanitized audit log computed according to the above definition, for
the policy described in Example 3.5.

Note that Definition 3.6 is not itself an attractive strategy for computing the sanitized log. We
describe our implementation of policy application in Section 5. In addition, we will see below that
policies can be “applied” logically in which case P (LS) may never be materialized.

3.3 Retention policy analysis

We can show the following properties of the sanitized log.

Proposition 3.8 Let LS be an audit log, TS the t-relation derived from it, and let P be a retention
policy consisting of a set of redaction rules R1 . . . Rn where each Ri = RedactS(φi,Ai, [ui, vi]).

• The computation of P (LS) is sound.

• The computation of P (LS) is secret iff
ui, vi ∈ Πttime(LS) for all i.

Proof 3.9 (Sketch) Soundness follows from that fact that P (TS) is sound, and the fact that P (LS)
is consistent with P (TS), in the sense that exec(P (LS)) = P (TS). It follows that the original history

12



is one possible world of P (LS). If the condition ui, vi ∈ Πttime(LS) fails, then there are dangling
tuples in the join described in Definition 3.6. The absence of audit fields leaks information and
violates secrecy. If the condition holds then there are no dangling tuples. Secrecy follows from the
fact that R(LS) is consistent with R(TS) and uses only the projection, L0

S, of LS.

The sanitized log from Example 3.7 and Table 4 demonstrates the problems that result from
arbitrary redaction intervals. These policies split intervals and suggest phantom updates that
cannot be convincingly represented in the log. The failure of secrecy appears not to be merely an
artifact of the semantics of redaction, but instead a fundamental difficulty in presenting an audit
log that is consistent with a redacted data history. It is possible that secrecy could be achieved by
introducing additional uncertainty about phantom modifications, but this entails a more powerful
model of incompleteness, potentially sacrificing efficiency, and degrading audit query accuracy.
Further investigation is a topic of future work.

As a practical matter, to avoid sacrificing secrecy for redaction rules, the desired time interval
[u, v] of each redaction rule can be shifted, either forward or backward, to the time of the nearest
modification (to any field) in the log.

Policy/Query Independence

It is possible to decide statically, for a given policy and audit query, whether the query answer will
be unaffected by the policy. This problem is very closely related to the study of view independence
of updates [5, 6]. Here the audit query occupies the place of the view. Our retention policies can be
considered deletions (in the case of expunction) or updates (in the case of redaction). These results
provide accurate sufficient conditions for determining policy-query independence in our framework.

3.4 Physical v. Logical Policy Application

The discussion above has suggested the physical application of retention policies to the audit log
and derived transaction-time table, in which record removal and attribute suppression are reflected
in the storage system. Physical sanitization is appropriate when privacy policies mandate removal
of data, data storage is not trusted, and/or the database will be shared with others who are subject
to retention restrictions.

An alternative is logical removal, in which the audit log is not physically changed. Instead, a logical
view is computed which is consistent with the retention policy. Logical sanitization can support
multiple distinct retention policies that can be associated with users or groups of users, in a manner
very similar to an access control policy. (Under logical log sanitization, our retention policies can
be seen as a combination of fine-grained and view-based access control over a transaction-time
database.)

In Section 5 we implement our policies both physically, using an update program that transforms

13



stored tables, and logically, by rewriting incoming audit queries to return answers that are in
accordance with the stated policy.

4 Audit queries under retention restrictions

Under a retention policy that includes a redaction rule, audit queries must be evaluated over tables
containing variables in place of some concrete values. In this section we use techniques for querying
incomplete information [7, 8] to describe precisely the answers to audit queries under retention
policies.

4.1 Incompleteness in relations and t-relations

Both regular relations and transaction-time relations can be incomplete. There are two main
features that distinguish an incomplete relation from a concrete relation. The first is the presence
of variables in attribute values. The second is a status column, included in the schema of every
incomplete relation. The status column is C when the tuple is certain to exist in the relation, and
P when the tuple may possibly exist.

Under a retention policy P , the inputs to our audit queries are the audit log table P (LS) and
t-relation P (TS). Both tables may be incomplete, since they may contain variables. In addition,
each of their tuples is understood to have a status of certain. In general, audit query answers will
include both possible and certain tuples.

An incomplete relation represents a set of possible relations. Let R be a relation schema (regular or
transaction-time) and let IR be an incomplete relation over R. Also let IR = Ip

R ∪ Ic
R where Ic

R are
the certain tuples and Ip

R are the possible tuples. If V is the set of variables appearing in R, and f
is a one-to-one function from the variables V into the domain of R, then a possible world consists
of the certain tuples under f , plus any subset of possible tuples under f . The set of possible worlds
represented by IR is denoted rep(IR) and defined as:

rep(IR) = {f(Ic
R) ∪X | f ∈ F,X ⊆ f(Ip

R)}

where F is the set of all one-to-one functions f : V → dom(R) and f(IR) is the relation after
replacing variables according to f .

Recall that in our framework, variables only appear in attributes of the client schema – not in
time stamps. Extending the definition of t-relation from Section 2, an incomplete t-relation over
S is a subset of tuples(S) × T × {P,C}. A tuple (p1, . . . , pn, t, u) ∈ IS represents the fact that
tuple (p1, . . . , pn) is certainly active at time instant t (if u = C) or possibly active at time instant
t (if u = P). Incomplete t-relations can also be represented as tuples (p1, . . . , pn, from, to, u) which
means that (p1, . . . , pn) has status u at each instant t, for from ≤ t ≤ to.

14



4.2 Extended Relational Algebra on incomplete relations

Next we define the extended relational algebra operators on incomplete relations. The semantics
of these operators is similar to the model of relational incompleteness presented by Biskup [9], but
includes extensions for transaction-time. Naturally, these operators return incomplete relations, in-
heriting variables from the input relations and computing the status field appropriately for output
tuples. We provide definitions of selection, cross-product, concurrent cross-product, and set differ-
ence. Join and concurrent-join are derived from these, and projection, union, and the time-slice
operator are defined in a standard way.

Selection

Let IR be an incomplete relation, and E be a selection condition that is the Boolean combination
of comparisons of the form R.x = c (for constant c) or R.x = R.y. Comparisons can evaluate to P,
C, or False. If the arguments are two different constants, or two different variables, the comparison
evaluates to False. The comparison of a variable with a constant evaluates to P. If the arguments
are identical variables, or identical constants, the comparison evaluates to the status value for the
tuple. The Boolean combination of terms is evaluated using the rules of three-valued logic where
P is interpreted as Unknown, and C is interpreted as True.

Tuples are included in the output of the selection operator if their status evaluates to either P or
C. When the condition E has evaluated to P under the comparison of a variable with a constant,
this variable binding needs to be applied to the output tuple. Formally we have:

σE(IR) = {〈f(r.∗), E(r)〉 | r ∈ R,E(r) = P ∨ E(r) = C}

The tuples returned have all non-status attributes (denoted r.∗) with variables replaced under
mapping f , and a new status field E(r).

Example 4.1 Consider the selection condition R.a = 100 ∧ R.b = R.c. On the input relation
{〈dx, dy, 9, C〉}, the selection operation will return {〈100, 9, 9, P 〉}.

Cartesian product

If IR and IS are two incomplete relations over schema R and S, the cartesian product IR × IS is
defined as:

IR × IS = {〈r.∗, s.∗, status〉 | r ∈ IR, s ∈ IS}

where status is set to r.status ∧ s.status.

15



Concurrent cartesian product

If IR and IS are two incomplete t-relations over schema R and S, the concurrent cartesian product
IR × IS is defined as:

IR ×� IS = {〈r.∗, s.∗, from, to, status〉 |
r ∈ IR, s ∈ IS , [r.from,r.to] ∩ [s.from,s.to] 6= ∅}

where status is set to r.status ∧ s.status, from = max(r.from, s.from), to = min(r.to, s.to).

Duplicate Elimination

Duplicates (on the non-status columns of a table) can arise as a result of projection or union, but
also selection and join (because of the substitution for variables). If a tuple is both possible and
certain, it is only necessary to preserve the certain version of the tuple. In general, duplicates on
the non-status columns are eliminated by preserving a single tuple with a status value equal to the
disjunction of all duplicates’ status values. That is, it will be C if at least one duplicate had status
C.

Set Difference

If IR and IS are two incomplete relations, then in computing IR − IS , the tuple 〈r.∗, status〉 will
be removed from IR only when there exists a tuple 〈s.∗, C〉 ∈ IS where r.∗ and s.∗ shares the same
value or variables on each attribute. Otherwise, if r.∗ and s.∗ can be evaluated as possibly true
(variable and constant), mark r.status as P . When IR and IS are t-relations, we must expand the
temporal intervals into instants (according to our definition of t-relation), execute the set difference,
and finally coalesce them back into intervals.

Example 4.2 Recall from Section 1.1 that audit query A1 returns All employees who earned a
salary of 10k at some point in time. and can be written Πname(σsal=10k(TS)). On the incomplete
t-relation shown in Table 3 (for which the omitted status column is uniformly C) we have the
intermediate result of σsal=10k(TS):

eid name dept sal from to status
101 Bob Sales 10 0 100 P
101 Bob Sales 10 100 200 P
101 Bob Mgmt 10 200 250 P
201 Chris Mgmt 10 300 500 C

and the final result of Πname(σsal=10k(TS)):

name status
Bob P

Chris C

16



5 Implementation

The implementation of our framework, which is also described briefly in [10], translates our historical
data model into standard relations in Postgres. Our goal is to show the practical feasibility of
our framework. We optimize our implementation using commonly-available indexing strategies
and query rewriting techniques. A fully optimized implementation might make use techniques
specifically designed for transaction-time data, but these are beyond the scope of our prototype.

In our implementation, the time stamp fields from and to are combined into one attribute named
trange, which is stored as an interval type (actually a one-dimensional cube data type in Postgres).
Utilizing cube data type simplifies expression of the concurrent join (it will use one query without
union by using the “overlap” operator rather than four queries with union operation [11]), and we
also use an available R-tree implementation. In each t-relation, status is represented as a Boolean
value.

5.1 Physical Application of Retention Policy

As discussed in the previous section, physical application of a retention policy will result an incom-
plete history, introducing variables into some attributes. We represent variables as the output of
a keyed hash function on the input value. If P = E ∪ R is a retention policy containing expunc-
tion and redaction rules, the application of the policy is executed in one scan of the table, in a
tuple-by-tuple manner:

1. Define a cursor on the t-relation, and scan each tuple τ to find out the qualified expunction
and redaction rules E

′
and R

′
by test each φ∧ trange overlap [u, v]. Checking all the relevant

policies at the beginning will avoid the conflicts among redaction policies (e.g. when R1

removes a value of A where A is in φ of R2).

2. Coalesce the time intervals of all E
′

into a minimum number of intervals [u1, v1], . . . , [un, vn].
For each attribute A, coalesce the time intervals of all A related redaction into [uA

1 , v
A
1 ], . . . , [uA

m, v
A
m]

3. For each t ∈ [τ.from, τ.to], if t ∈ [ui, vi] then remove t from τ .trange. If not, for each A value
at t, if t ∈ [uA

j , v
A
j ], replace A with variable.

For example, let (a, b, 10, 100) be a tuple where a and b are general attributes, and 10 and 100 are
the from and to time. Figure 2 show that there exists five sub-tuples for this tuple.

5.2 Audit Query Evaluation

In the following we implement in SQL the semantics of extended relational operators over incom-
plete relations. We describe the rewriting of SELECT-FROM-WHERE blocks to accommodate

17



a

b

expunction
redaction on a

redaction on b

1 2 3 4 5

Figure 2: Time line of two attributes, and the new time periods resulting from application of a
retention policy.

incompleteness. First, we write a WHERE clause that will select any tuple evaluating to either P
or C, eliminating all others. Second, we formulate a SELECT clause that is used to compute the
correct trange (if necessary), the status column, and return appropriate values of variable bindings.
To return the correct variable bindings for selection (as described in Section 4), we must rewrite
those attributes when they appear in both the SELECT list and some equality expression in the
WHERE clause. If an attribute appears in two equality expressions in an OR operation, we may
need to break the query into parts and union their results.

In the following description, the function isvari(x) tests if x is a variable. onevari(x,y) returns
true only when one x and y is variable. binds(x,y) returns a constant if only one of input
parameters is a variable or returns x if x and y are same constant or variable. The general algorithm
is as follows:

1. Reorganize the WHERE clause as a set of disjunctive conditions D = {D1, . . . , Dn}, where
each Di = {ci} and ci is a conjunction. Unite Di and Dj : Di = Di ∪Dj and D = D − {Dj}
only if for any ci ∈ Di and cj ∈ Dj , there is no equality expression related to same attribute.
Finally we get D′

= {D1, . . . , Dm} and each Di ∈ D
′

will be executed in a separate query.

2. For each Di ∈ D
′
, create a new query, defining the SFW clauses as follows:

WHERE clause: for each conjunct c ∈ Di, c consists of a set of conjunctive atomic expressions
exp. If exp is t.a op CON , rewrite it as t.a op CON or isvari(t.a). If exp is t1.a op t2.a,
rewrite it as t1.a op t2.a or onevari(t1.a,t2.a). If there are two expressions like t1.a =
CON1 and t2.a = CON2, add a new expression in this conjunctive term t1.a != t2.a. In
addition, add condition on trange if it is a concurrent join.

FROM clause: only tables involved in Di.

SELECT clause: Put Di into SELECT clause, and for each c ∈ Di, add a conjunction of
related status attributes to the term computing the final status. If attribute a of select list
also appears in exp like t.a = CON , replace a with CON as a return value. If a appears in
t1.a = t2.a, use a special function binds(t1.a, t2.a) as the result. Finally, compute the correct
trange value if necessary (i.e., concurrent join).

3. Union each query generated on Di.

18



0

1

2

3

4

5

6

7

8

q1 q2 q3

Ex
ec

. T
im

e 
(s

)
possible tuples
certain tuples
original

Figure 3: Performance on
three queries, for each query
the bars from left to right
are original,physical and logi-
cal solution respectively.

0

10

20

30

40

50

60

1 10 20 30 40 50
History Length

Ex
ec

. T
im

e 
(s

)

original
physical
logical

Figure 4: Performance of Q3
on tables with variable his-
tory length and fixed snap-
shot size of 100,000.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10
Snapshot Size (x10000)

Ex
ec

. T
im

e(
s)

original
physical
logical

Figure 5: Performance on Q3
of tables with variable snap-
shot size and fixed history
length 50.

Example 5.1 The following is an example query on complete table emp:

SELECT name, t1.dept, t2.sal

FROM emp AS t1, emp AS t2

WHERE t1.dept=t2.dept AND

t1.sal=100 AND t2.sal=200

The algorithm above will produce the following rewritten query if emp is incomplete:

SELECT name, binds(t1.dept,t2.dept) AS dept,

200 AS sal, (t1.dept=t2.dept AND

t1.sal=100 AND t2.sal=200 AND

t1.status AND t2.status) AS status

FORM emp AS t1, emp AS t2

WHERE (t1.dept=t2.dept

OR onevari(t1.dept, t2.dept))

AND (t1.sal=100 OR isvari(t1.sal))

AND (t2.sal=200 OR isvari(t2.sal))

AND t1.sal!=t2.sal

As discussed in section 4, duplicates may arise in the result of operations such as union, projection,
join and join. The duplicate elimination process can be achieved by grouping on all non-status
columns and then aggregating the (boolean) status column using bitwise OR.

5.3 Logical Solution

Our implementation above is based on the physical removal of expired information. To implement
policies logically, we construct a query QP whose answer on TS and LS is equivalent to the answer
of Q on P (TS) and P (LS).

19



For simplicity, we assume that the redaction policies satisfy the condition in Pr op. 3.8. Generally
the composition will begin by adopting the rewriting algorithm in the previous subsection, which
results in a set of sub-queries Q = {Q1, . . . , Qn} connected by union operator. For each sub-
query Qi, decide the relevant redaction policies. Attributes appearing in both the SELECT and
WHERE clause are called critical attributes. Attributes appearing only in the SELECT clause are
called select-only attributes. Attributes appearing only in WHERE clause are called where-only
attributes. Rewrite Qi as follows:

1. SELECT clause: for each select-only attribute, add a case statment.

2. FROM clause: for each table, add a case statement modification on its where-only attributes.

3. WHERE clause: for any expunction rules (φ, [u, v]), add conjunction of not (φ∧trange overlap [u, v]).

Note that the case statement modification is inspired by similar work in [12], but we change the
semantics from NULLS to variables. In addition, our definition of retention policies gives users full
flexibility to describe their needs.

6 Evaluation

In this section we study the performance of query processing in our framework and evaluate the
impact of retention policies on the accuracy of query results. Our experiments address the following
key questions:

• Overhead and Scalability. We assess the performance overhead of evaluating audit queries
using both physical and logical policy application. We test the scalability of our framework
in terms of database size (the average snapshot size) and history length (the average number
of versions of tuple).

• Accuracy of uncertain answers. We study the impact of retention policies on the accuracy of
query results. Over sample data, we measure the precision and recall of query answers as a
function of the selectivity of redaction policies.

• Suppression using variables v. NULLs. Using NULLs is a common solution in relational
database research such as fine-grained access control[12]. However, variables can hide values
while preserving more information about changes. We show that the extra information kept
by variables significantly increases the accuracy of audit query answers.

6.1 Experimental Setup

In all our experiments we use Postgres 8.3 running on an Intel Core2 workstation with 2.40GHz
CPU and 2Gb memory. Our datasets are synthetically-generated histories based on our example
client schema S(eid,name,dept,sal).

20



We generated our history with an initial set of employees that grows slowly over time through
periodic insertions. We apply a random sequence of independent updates to attributes throughout
the lifetime of individuals. Thus the total tuples in the t-relation and log is closely approximated
by the product of two parameters: the initial number of employees (the snapshot size) and the
average number of versions of each employee tuple (the history length).

We use two redaction policies3 and three queries in our experiments. They are:

R1: Redact all department values before a specified time.

R2: Redact salary values for the Mgmt and HR department in a specified time period.

Q1: Return the employee information when he was in dept Mgmt and salary is 10k.

Q2: Return all the clients who changed the salary of employees in dept Mgmt.

Q3: Return all employees who worked in the same department as a specific employee at the same
time.

The three queries include one table scan (Q1), a traditional join of the audit log and t-relation
(Q2), and a concurrent self join on the t-relation (Q3).

We measure the query execution time by reporting the average of 10 runs with the largest and
smallest runs omitted.

6.2 Overhead and Scalability

In our first experiment (shown in Figure 3) we compare the execution time of each of the three
queries for physical and logical policy application. The baseline (original) is the time to compute
the audit query without the retention policy, that is, on the original tables. For the logical and
physical techniques, we also distinguish between the time for computing certain tuples and possible
tuples. The total number of tuples is 1 million.

We find that evaluating queries under retention restrictions has a modest overhead, to be expected
from the added clauses in the queries and the fact that result sizes are increased because of uncertain
tuples. In addition, the logical solution is uniformly slower that the physical because of the more
complex queries required when policies are composed with queries. It is worth noting that the
certain tuples alone can be computed more quickly that the original result. This is because the
rewritten query computing certain tuples can ignore variables and the certain tuple set returned
tends to be smaller than the true result.

These relationships hold when we scale up the size of the historical data set. Figure 4 shows the
execution time of Q3 on the history with fixed snapshot size of 100,000 when scaling on history

3We do not consider expunction rules since they will simply remove tuples and reduce the size of the history.

21



lengths from 1 to 50. Similarly, Figure 5 uses a fixed history length of 50, and varies the snapshot
size from 10,000 to 100,000. That is to say, the total number of tuples in the data history is ranges
from 100,000 to 5,000,000 in both cases. Both physical and logical execution times increase nearly
linearly as the total number of tuples increases in the two graphs. Both techniques scale at close
to the rate of the query on the original data, with the physical case outperforming the logical.

6.3 Accuracy of Uncertain Answers

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

origi 0.001 0.01 0.1 0.25 0.5 0.75
Selectivity

Pe
rc

en
ta

ge

certain possible impossi

Figure 6: Answer Distribu-
tion (Q2)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.001 0.01 0.1 0.25 0.5 0.75
Selectivity

Pe
rc

en
ta

ge

recall of certain recall of impossi

Figure 7: Recall of Answers
(Q2)

0

0.2

0.4

0.6

0.8

1

0.01 0.1 0.25 0.5 0.75 0.9 0.99
Selectivity

Pe
rc

en
ta

ge

variable, recall of certain variable, recall of impossi
null, recall of certain null, recall of impossi

Figure 8: Variables v.s. Null

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

origi .01 .1 .25 .5 .75 .9 .99 origi .01 .1 .25 .5 .75 .9 .99
Selectivity

Pe
rce

nta
ge

certain possible impossible

Figure 9: Answer Distribution (Q3)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

.01 .1 .25 .5 .75 .9 .99 .01 .1 .25 .5 .75 .9 .99
Selectivity

Pe
rce

nta
ge

recall of certain recall of impossible

Figure 10: Recall of Answers (Q3)

Next we evaluate experimentally the accuracy of audit query answers under sample retention poli-
cies. Over the original data, an audit query can be considered to partition the set of all feasible
query answers (determined by the active domain) into answer tuples and disqualified tuples. Un-
der retention restrictions, audit queries partition the set of feasible answers into certain answers,
possible answers, and disqualified tuples. Our first measure of accuracy considers this distribution
of answers as a function of the selectivity of the redaction policies. The second measurement is the
precision and recall of our answers to original ones. Assume the answer space is I and the original
answer are A, the certain tuples in our model are A

′
, the possible tuples is B. The precision of

certain tuples is defined by A∩A
′

A′ and the recall of certain tuples is defined A∩A
′

A .

We can also define precision and recall of the impossible tuples, which may be relevant to auditors
since disqualifying answers has value in an investigation. The precision of impossible tuples is

22



defined (I−A
′−B)∩(I−A)

I−A and recall of impossible tuples is defined (I−A
′−B)∩(I−A)

I−A′−B
. Note that if

we consider sound retention policies, as described in Section 3, then the precision of certain and
impossible tuples is always equal to 1.

The first experiment is taken on Q2, which is a standard join between the t-relation and the audit
log. Since policy R2 is irrelevant to this query, the selectivity is measured by R1. We vary the
time condition in R1 to increase its selectivity, e.g. 50% indicates that the time condition is half of
history time. Figure 6 shows the answer distribution. The first bar is the result without the policy.
The true answer, which for Q2 is a set of client names, happens to return 20% of all the clients
in the database. The other 80% are impossible. Under retention policies we can see the region of
possible tuples grows with the selectivity of the policy. Yet, the certain tuple set remains close to
20% for reasonable selectivities of up 10 or 25%. Figure 7 measures the recall of the certain and
impossible tuples directly for the same query and policy. The recall for certain tuples decreases
rapidly when selectivity is larger than 50%. When selectivity is larger than 10%, we miss a lot of
impossible answers but recall of certain answers decreases much more slowly.

The second experiment is on Q3 (the concurrent self-join). We vary the target employee E in
the select condition, choosing a person who joined the company at an earlier or later time. The
results are shown in Figure 9 and 10 (left side for earlier employee and right side for new employee).
The trend of the answer distribution and recall is quite different from the last experiment. The
percentage of possible tuples, recall of certain and impossible tuples all have an inflection point as
the selectivity goes up. This is because when the selectivity is small, fewer variables are introduced
to the t-relation so we can retain a high recall. When the selectivity increases, the number of
variables increases and recall decreases. On the other end, when selectivity is extremely high, the
t-relation is mostly variables on key attributes. We can still get high recall since the equivalence
among variables can be inferred accurately. We can get very high accuracy at selectivity 100%.
The difference inside the two settings of this experiment are inflection point at different selectivity
level and average recall of impossible tuples. This is decided by attribute dependency between
eid and trange. Small eid tends to join and leave earlier according to our data generation. So an
early employee’s information tends to be removed by R1 even when selectivity is small, which cause
comparing dept value difficult for join.

6.4 Suppression using variables v. NULLs

In our final experiments we apply of redaction policies using a suppression function that uses NULL
values instead of variables. Figure 8 shows the recall of certain and impossible tuples on Q3 (with
condition on an early employee) compared with the variable solution, where variables significantly
outperforms NULLs. For example, with a selectivity of 25% the recall of certain tuples is 97%
using variables, but just 56% using NULLs. This is because any two tuples with NULL on the join
column will produce a possible output tuple. With distinct variable assignments, only identical
variables will result in an output tuple.

23



7 Related Work

Retention policies and problems of expiring historical data have been studied in a variety of contexts.
Garcia-Molina et al. considered expiring tuples from materialized views in a data warehouse [13].
An administrator can declaratively request to remove tuples from a view, and the system will
remove as much information as possible as long as it does not impact of views referencing the
original view. Toman proposed techniques for automatically expiring data in a historical data
warehouse while preserving answers to a fixed set of queries [14]. Skyt et al. consider vacuuming
a temporal database [15]. Policies remove entire tuples, and the authors are concerned with the
correctness of vacuum specifications, and mitigating actions to handle queries referencing missing
information. The above works differ from ours because they do not consider cell-level removal,
do not view the resulting database as an incomplete history from which possible answers can be
derived, and do not consider an audit log accompanying the history. Recently, Ataullah et al.
[16] have considered retention restrictions on complex business records that are defined, in their
framework, by logical views in a database. They define protective and destructive policies, and
reduce a number of retention problems to well-studied relational view problems.

Our redaction policies (especially when implemented logically) are related to fine-grained access
control rules. Wang et al. [17] recently studied the correctness of query answers under cell-level
access control policies, and made an important connection between that problem and models of
incomplete information. To our knowledge there is little work on access control over time-varying
data. Note that work on “temporal access control models” [18] refers to access rights that change
over time, not the problem of negotiating access to data with a time dimension.

Transaction-time databases have been studied extensively by the research community including
work on query languages and logical foundations [4, 3, 19], implementation techniques [20, 21,
1], techniques for accommodating time in standard databases [11, 22], as well as implemented
extensions to existing systems [23]. Jensen studied querying backlog relations to monitor changes
to a database [2].

Incomplete information also has a long history in databases [7, 24, 9], including in temporal
databases. The model of temporal incompleteness presented by Gadia et al. [8] is more expres-
sive than ours. It allows for uncertainty about values, but also represents certain values whose
active period is uncertain. Despite work on data models and query languages to support temporal
incompleteness, we are not aware of any implementations of the techniques.

Finally, recent research into database auditing [25, 26] has focused on monitoring disclosures that
result from releasing a series of query answers. Our work has a different goal since we focus on
monitoring only modifications to the database.

24



8 Conclusions & Future Work

We have presented a framework for limiting access to historical data, while still permitting au-
diting. Our redaction rules hide values but preserve information about the lifetime of tuples in
a database, allowing an auditor to get accurate answers from the historical record despite the
information removed by retention restrictions. We demonstrated that our techniques have a mod-
est performance overhead, even when implemented on a standard relational system, and that the
uncertainty introduced by sample retention policies is acceptable.

Our approach to obscuring values with variables was shown to substantially improve answer accu-
racy (as compared with NULLs). A further extension could generalize or summarize the redacted
values. At a small cost to confidentiality, this could substantially improve auditing capabilities.
In addition, a more powerful model of incompleteness might offer improved soundness and secrecy
properties for sanitized histories, at the expense of increased query processing complexity. We
believe both of these are promising directions for future work.

References

[1] C. S. Jensen, L. Mark, and N. Roussopoulos, “Incremental implementation model for relational
databases with transaction time,” IEEE Transactions on Knowledge and Data Engineering,
vol. 3, no. 4, pp. 461–473, 1991.

[2] C. S. Jensen and L. Mark, “Queries on change in an extended relational model,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 4, no. 2, pp. 192–200, 1992.

[3] S. K. Gadia, “A homogeneous relational model and query languages for temporal databases,”
ACM Trans. Database Syst., vol. 13, no. 4, pp. 418–448, 1988.

[4] J. Chomicki, “Temporal query languages: a survey,” in Temporal Logic: ICTL’94, vol. 827,
1994, pp. 506–534.

[5] J. A. Blakeley, N. Coburn, and P.-A. Larson, “Updating derived relations: detecting irrelevant
and autonomously computable updates,” pp. 295–322, 1999.

[6] J. A. Blakeley, P.-A. Larson, and F. W. Tompa, “Efficiently updating materialized views,”
SIGMOD Rec., vol. 15, no. 2, pp. 61–71, 1986.

[7] T. Imielinski and W. Lipski, “Incomplete information in relational databases,” J. ACM, vol. 31,
no. 4, pp. 761–791, 1984.

[8] S. K. Gadia, S. S. Nair, and Y.-C. Poon, “Incomplete information in relational temporal
databases,” in 18th International Conference on Very Large Data Bases, August 23-27, 1992,
Vancouver, Canada, Proceedings, L.-Y. Yuan, Ed. Morgan Kaufmann, 1992, pp. 395–406.

[9] J. Biskup, “A foundation of codd’s relational maybe-operations,” ACM Trans. Database Syst.,
vol. 8, no. 4, pp. 608–636, 1983.

25



[10] W. Lu and G. Miklau, “Auditguard: A system for database auditing under retention restric-
tions,” in VLDB Demo Program, forthcoming, 2008.

[11] R. T. Snodgrass, Developing time-oriented database applications in SQL. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2000.

[12] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. DeWitt, “Limiting
disclosure in hippocratic databases,” Proceedings of the Thirtieth international conference on
Very large data bases-Volume 30, pp. 108–119, 2004.

[13] H. Garcia-Molina, W. Labio, and J. Yang, “Expiring data in a warehouse,” in Conference on
Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998,
pp. 500–511.

[14] D. Toman, “Expiration of historical databases,” in Symposium on Temporal Representation
and Reasoning (TIME), 2001, pp. 128–135.

[15] J. Skyt, C. S. Jensen, and L. Mark, “A foundation for vacuuming temporal databases,” Data
Knowl. Eng., vol. 44, no. 1, pp. 1–29, 2003.

[16] A. Ataullah, “A framework for records management in relational database systems,” Master’s
thesis, University of Waterloo, 2008.

[17] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J.-W. Byun, “On the correctness
criteria of fine-grained access control in relational databases,” in Conference on Very Large
Data Bases, 2007, pp. 555–566.

[18] E. Bertino, C. Bettini, and P. Samarati, “A temporal authorization model,” in ACM Confer-
ence on Computer and communications security. New York, NY, USA: ACM Press, 1994,
pp. 126–135.

[19] R. T. Snodgrass, The TSQL2 Temporal Query Language. Norwell, MA, USA: Kluwer Aca-
demic Publishers, 1995.

[20] R. Shaull, L. Shrira, and H. Xu, “Skippy: a new snapshot indexing method for time travel in
the storage manager,” in ACM SIGMOD Conference, 2008, pp. 637–648.

[21] D. B. Lomet, R. S. Barga, M. F. Mokbel, G. Shegalov, R. Wang, and Y. Zhu, “Transaction
time support inside a database engine,” in ICDE, 2006.

[22] N. L. Sarda, “Extensions to sql for historical databases,” IEEE Transactions on Knowledge
and Data Engineering, vol. 2, no. 2, pp. 220–230, 1990.

[23] R. T. Snodgrass and C. S. Collberg, “The τ -MySQL transaction time support,” Available at
www.cs.arizona.edu/tau/tmysql.

[24] G. Grahne, The Problem of Incomplete Information in Relational Databases, ser. Lecture Notes
in Computer Science. Springer, 1991, vol. 554.

[25] R. Agrawal, R. J. Bayardo, C. Faloutsos, J. Kiernan, R. Rantzau, and R. Srikant, “Auditing
compliance with a hippocratic database.” 2004, pp. 516–527.

26



[26] R. Motwani, S. U. Nabar, and D. Thomas, “Auditing sql queries,” in ICDE. IEEE, 2008, pp.
287–296.

27


