
Noname manuscript No.
(will be inserted by the editor)

Resisting Structural Re-identification in Anonymized Social
Networks

Michael Hay · Gerome Miklau · David Jensen · Don Towsley · Chao Li

Received: date / Accepted: date

Abstract We identify privacy risks associated with re-
leasing network datasets and provide an algorithm that
mitigates those risks. A network dataset is a graph repre-
senting entities connected by edges representing relations
such as friendship, communication, or shared activity.
Maintaining privacy when publishing a network dataset
is uniquely challenging because an individual’s network
context can be used to identify them even if other iden-
tifying information is removed.

In this paper, we introduce a parameterized model
of structural knowledge available to the adversary and
quantify the success of attacks on individuals in anon-
ymized networks. We show that the risks of these at-
tacks vary based on network structure and size, and pro-
vide theoretical results that explain the anonymity risk
in random networks. We then propose a novel approach
to anonymizing network data that models aggregate net-
work structure and allows analysis to be performed by
sampling from the model. The approach guarantees ano-
nymity for entities in the network while allowing accurate
estimates of a variety of network measures with relatively
little bias.

1 Introduction

A network dataset is a graph representing a set of en-
tities and the connections between them. Network data

This an author-created version of an article that appears
in the The VLDB Journal, Volume 19, Number 6, 797-823,
doi: 10.1007/s00778-010-0210-x. The final publication is avail-
able at www.springerlink.com. An earlier version appeared at
the 34th International Conference on Very Large Data Bases
(VLDB), 2008.

M. Hay · G. Miklau · D. Jensen · D. Towsley · Chao Li
Department of Computer Science
University of Massachusetts Amherst
Amherst, MA 01002
E-mail: mhay,miklau,jensen,towsley,chaoli@cs.umass.edu

can describe a variety of domains: a social network might
describe individuals connected by friendships; an infor-
mation network might describe a set of articles connected
by citations; a communication network might describe
Internet hosts related by traffic flows. As our ability to
collect network data has increased, so too has the impor-
tance of analyzing these networks. Networks are analyzed
in many ways: to study disease transmission, to measure
a publication’s influence, and to evaluate the network’s
resiliency to faults and attacks. Such analyses inform our
understanding of network structure and function.

However, it can be difficult to obtain access to net-
work data, in part because many networks contain sensi-
tive information, making data owners reluctant to pub-
lish them. An example of a network containing sensitive
information is the social network studied by Potterat et
al. [37], which describes a set of individuals related by
sexual contacts and shared drug injections, relationships
that are clearly sensitive. In this case, the researchers
chose to publish the network. While society knows more
about how HIV spreads because this network was pub-
lished and analyzed, researchers had to weigh that ben-
efit against possible losses of privacy to the individuals
involved. Other kinds of networks, such as communica-
tion networks, are also considered sensitive and for that
reason are rarely published. For example, to our knowl-
edge, the sole publicly available network of email com-
munication was published only because of litigation [7].

We consider the problem of publishing network data
in such a way that permits useful analysis yet avoids
disclosing sensitive information. Most existing work on
privacy in data publishing has focused on tabular data,
where each record represents a separate entity, and an
individual may be re-identified by matching the individ-
ual’s publicly known attributes with the attributes of the
anonymized table. Anonymization techniques for tabular
data do not apply to network data because they fail to
account for the interconnectedness of the entities (i.e.,
they destroy the network structure).

2

Because network analysis can be performed in the
absence of entity identifiers (e.g., name, social security
number), a natural strategy for protecting sensitive infor-
mation is to replace identifying attributes with synthetic
identifiers. We refer to this procedure as naive anonym-
ization. It is a common practice and presumably, it pro-
tects sensitive information by breaking the association
between the real-world identity and the sensitive data.

However, naive anonymization may be insufficient.
A distinctive threat in network data is that an entity’s
connections (i.e., the network structure around it) can be
distinguishing, and may be used to re-identify an other-
wise anonymous individual. We consider how a malicious
individual (the adversary) might obtain partial knowl-
edge about the network structure around targeted indi-
viduals and then use this knowledge to re-identify them
in the anonymized network. Once re-identified, the ad-
versary can learn additional properties about the targets;
for instance, he may able to infer the presence or absence
of edges between them. Since individual connections are
often considered sensitive information, such edge disclo-
sure constitutes a violation of privacy. Whether naive
anonymization provides adequate protection depends on
the structure of the network and the adversary’s capabil-
ity. In this paper, we provide a comprehensive assessment
of the privacy risks of naive anonymization.

Although an adversary may also have information
about the attributes of nodes, the focus of this paper
is on disclosures resulting from structural or topologi-
cal re-identification, where the adversary’s information
is about the structure of the graph only. The use of
attribute knowledge to re-identify individuals in anon-
ymized data has been well-studied, as have techniques
for resisting it [31,32,41,42,44]. More importantly, many
network analyses are concerned exclusively with struc-
tural properties of the graph, therefore safely publish-
ing an unlabeled network is an important goal in itself.
For example, the following common analyses examine
only the network structure: finding communities, fitting
power-law models, enumerating motifs, measuring diffu-
sion, and assessing resiliency [35].

In this paper, we make the following contributions:

– Adversary Model We propose a flexible model of
external information used by an adversary to attack
naively-anonymized networks. The model allows us
to evaluate re-identification risk efficiently and for a
range of different adversary capabilities. We also for-
malize the structural indistinguishability of a node
with respect to an adversary with locally-bounded
external information (Section 2).

– Empirical Risk Assessment We evaluate the ef-
fectiveness of structural attacks on real and synthetic
networks, measuring successful re-identification and
edge disclosures. We find that real networks are di-
verse in their resistance to attacks. Nevertheless, our
results demonstrate that naive anonymization pro-
vides insufficient protection, especially if an adver-

sary is capable of gathering knowledge beyond a tar-
get’s immediate neighbors (Section 3).

– Theoretical Risk Assessment In addition to the
empirical study, we perform a theoretical analysis
of random graphs. We show how properties such as
a graph’s density and degree distribution affect re-
identification risk. A significant finding is that in suf-
ficiently dense graphs, nodes can be re-identified even
when the graph is extremely large (Section 4).

– Privacy Definition We also propose strategies for
mitigating re-identification risk. First, we propose a
privacy condition, which formally specifies a limit on
how much the adversary can learn about a node’s
identity. We compare it with other definitions that
have been proposed in the literature and discuss its
limitations (Section 5).

– Anonymization Algorithm Then we propose a novel
algorithm to achieve this privacy condition. The algo-
rithm produces a generalized graph, which describes
the structure of the original graph in terms of node
groups called supernodes. The generalized graph re-
tains key structural properties of the original graph
yet ensures anonymity (Section 6).

– Algorithm Evaluation We perform a comprehen-
sive evaluation of the utility of the generalized graphs.
This includes a comparison with other state-of-the-
art graph anonymization algorithms (Section 7).

We conclude the paper with a comprehensive review of
related work (Section 8).

2 Modeling the adversary

In this section we describe the capabilities and motiva-
tions of the adversary in the context of network data.
First, we describe the process of naive anonymization
and how the adversary may attack it. Second, we define
the threats of node re-identification and edge disclosure.
Third, we explain how anonymity is achieved through
structural similarity, which motivates a model of adver-
sary knowledge based on degree signatures. Finally we
review alternative models of the adversary.

2.1 Naive anonymization

Formally, we model a network as an undirected graph
G = (V,E). The naive anonymization of G is an isomor-
phic graph,Ga = (Va, Ea), defined by a random bijection
Π : V → Va. For example, Figure 1 shows a small net-
work represented as a graph along with its naive anon-
ymization. The anonymization mapping Π, also shown,
is a random, secret mapping.

Naive anonymization prevents re-identification when
the adversary has no information about individuals in
the original graph. Formally stated, an individual x ∈ V ,
called the target, has a candidate set, denoted cand(x),

3

Alice Bob Carol

4

2

5

Dave Ed

Fred 13Greg

6

7

Alice
Bob
Carol
Dave
Ed
Fred
Greg
Harry

6
8
5
7
2
3
4
1

Harry

8

Fig. 1 A social network represented as a graph (left), the
naive anonymization (center), and the anonymization map-
ping (right).

which consists of the nodes of Ga that could feasibly
correspond to x. To assess the risk of re-identification,
we assume each element of the candidate set is equally
likely and use the size of the candidate set as a measure
of resistance to re-identification. Since Π is random, in
the absence of other information, any node in Ga could
correspond to the target node x. Thus, given an unin-
formed adversary, each individual has the same risk of
re-identification, specifically cand(x) = Va for each tar-
get individual x.

However, if the adversary has access to external in-
formation about the entities, he may be able to reduce
the candidate set and threaten the privacy of individuals.

2.2 Threats

In practice the adversary may have access to external
information about the entities in the graph and their re-
lationships. This information may be available through
a public source beyond the control of the data owner, or
may be obtained by the adversary’s malicious actions.
For example, for the graph in Figure 1, the adversary
might know that “Bob has three or more neighbors,” or
that “Greg is connected to at least two nodes, each with
degree 2.” Such information allows the adversary to re-
duce the set of candidates in the anonymized graph for
each of the targeted individuals. For example, the first
statement allows the adversary to partially re-identify
Bob: cand(Bob) = {2, 4, 7, 8}. The second statement re-
identifies Greg: cand(Greg) = {4}.

Re-identification can lead to additional disclosures
under naive anonymization. If an individual is uniquely
re-identified, then the entire structure of connections sur-
rounding the individual is revealed. If two individuals are
uniquely re-identified, then the presence or absence of
an edge between them is revealed directly by the naively
anonymized graph. Such an edge disclosure, in which an
adversary is able to accurately infer the presence of an
edge between two identified individuals, can be a serious
privacy threat. In the present work, we consider the gen-
eral threat of re-identification as well as the more specific
threat edge disclosure.

Throughout the paper, we model the adversary’s ex-
ternal information as access to a source that provides

answers to a restricted knowledge query evaluated for a
single target node of the original graph G.

An adversary attempts re-identification for a target
node x by using Q(x) to refine the feasible candidate set.
Since Ga is published, the adversary can easily evaluate
any structural query directly on Ga, looking for matches.
The adversary will compute the refined candidate set
that contains all nodes in the published graph Ga that
are consistent with answers to the knowledge query on
the target node.

Definition 1 (Candidate Set under Q) For a knowl-
edge query Q over a graph, the candidate set of target
node x w.r.t Q is candQ(x) = {y ∈ Va | Q(x) = Q(y)}.

Example 1 Referring to the example graph in Figure 1,
suppose Q is a knowledge query returning the degree of
a node. Then for targets Ed, Fred, Greg we have Q(Ed) =
4,Q(Fred) = 2,Q(Greg) = 4, and candidate sets candQ(Ed) =
candQ(Greg) = {2, 4, 7, 8} and candQ(Fred) = {1, 3}.

Given two target nodes x and y, the adversary can
use the naively anonymized graph to deduce the likeli-
hood that the nodes are connected. In the absence of
external information, the likelihood of any edge is sim-
ply the density of the graph (the fraction of all possible
edges that exist in the graph).

If the candidate sets for x and y have been refined by
the adversary’s knowledge about x and/or y, then the
adversary reasons about the likelihood x and y are con-
nected based on the connections between the candidate
sets for x and y. Thus we define the edge likelihood to be
the Bayesian posterior belief assuming each candidate is
an equally likely match for the targeted nodes.

Definition 2 (Edge likelihood under Q) For a knowl-
edge query Q over a graph, and a pair of target nodes x
and y, the inferred likelihood of edge (x, y) under Q is
denoted probQ(x, y) and defined as:

|{(u, v) | u ∈ X, v ∈ Y }|+ |{(u, v) | u, v ∈ X ∩ Y }|

|X| · |Y |− |X ∩ Y |

where X = candQ(x) and Y = candQ(y).

The denominator represents the total number of pos-
sible edges from a node of one candidate set to a node of
the other candidate set, and accounts for the case where
the intersection of the candidate sets is non-empty.

Example 2 Continuing the example above, the inferred
likelihood of edge (Ed, Fred) is:

probQ(Ed, Fred) = (4 + 0)/(4 ∗ 2) = 0.500

because there are 4 edges present in Ga between the dis-
joint candidate sets candQ(Ed) and candQ(Fred). The
inferred edge likelihood of edge (Ed,Greg) is:

probQ(Ed,Greg) = (5 + 5)/(4 ∗ 4− 4) = 0.833

4

Alice Bob Carol

Dave Ed

Fred Greg Harry

(a) graph

Node ID H0 H1 H2

Alice � 1 {4}
Bob � 4 {1, 1, 4, 4}
Carol � 1 {4}
Dave � 4 {2, 4, 4, 4}
Ed � 4 {2, 4, 4, 4}
Fred � 2 {4, 4}
Greg � 4 {2, 2, 4, 4}
Harry � 2 {4, 4}

(b) structural signatures

Equivalence Relation Equivalence Classes
≡H0

{A,B,C,D,E, F,G,H}

≡H1
{A,C} {B,D,E,G} {F,H}

≡H2
{A,C}{B}{D,E}{G}{F,H}

≡A {A,C}{B}{D,E}{G}{F,H}

(c) equivalence classes

Fig. 2 (a) A sample graph, (b) external information consisting of structural signatures H0,H1 and H2 computed for each
individual in the graph, (c) the equivalence classes of nodes implied by the structural signatures. For the sample data, ≡H2

,
corresponds to automorphic equivalence, ≡A.

because 5 edges are present in Ga between the identi-
cal candidate sets candQ(Ed) and candQ(Greg). These
edge likelihoods should be compared with the prior edge
density of 2 ∗ 11/8 ∗ 7 = .393.

In Section 3, we measure the threats of edge disclo-
sure and node re-identification on real networks.

2.3 Anonymity through structural similarity

Intuitively, nodes that look structurally similar may be
indistinguishable to an adversary, in spite of external in-
formation. A strong form of structural similarity between
nodes is automorphic equivalence. Two nodes x, y ∈ V

are automorphically equivalent (denoted x ≡A y) if there
exists an isomorphism from the graph onto itself that
maps x to y.

Example 3 Fred and Harry are automorphically equiva-
lent nodes in the graph of Figure 1. Bob and Ed are not
automorphically equivalent: the subgraph around Bob is
different from the subgraph around Ed and no isomor-
phism proving automorphic equivalence is possible.

Automorphic equivalence induces a partitioning on V

into sets whose members have identical structural prop-
erties. It follows that an adversary — even with exhaus-
tive knowledge of a target node’s structural position —
cannot identify an individual beyond the set of entities
to which it is automorphically equivalent. We say that
two such nodes are structurally indistinguishable and ob-
serve that nodes in the graph achieve anonymity by being
“hidden in the crowd” of its automorphic class members.

Some special graphs have large automorphic equiv-
alence classes. For example, in a complete graph, or in
a graph which forms a ring, all nodes are automorphi-
cally equivalent. But in most graphs we expect to find
small automorphism classes, likely to be insufficient for
protection against re-identification.

Though automorphism classes may be small in real
networks, automorphic equivalence is an extremely strong
notion of structural similarity. In order to distinguish
two nodes in different automorphic equivalence classes,

it may be necessary to use complete information about
their positions in the graph. For a weaker adversary with
limited knowledge, nodes that are not automorphically
equivalent may in fact be indistinguishable. For example,
for an adversary who only knows the degree of targeted
nodes in the graph, Bob and Ed are indistinguishable
(even though they are not automorphically equivalent).
This motivates the notion of bounded structural knowl-
edge we describe next.

2.4 Adversary model based on structural signatures

We now describe the adversary model that we will use
throughout the paper. It is based on a class of knowl-
edge queries, of increasing power, which report on the
local structure of the graph around a node. These queries
are inspired by iterative vertex refinement, a technique
originally developed to efficiently test for the existence
of graph isomorphisms [10]. In Section 2.5, we discuss
alternative adversary models.

The queries are denoted Hi for i = 0, 1, 2, The
weakest knowledge query, H0, simply returns the label
of the node. (We consider here unlabeled graphs, so H0

returns � on all input nodes.) The queries are successively
more descriptive: H1(x) returns the degree of x, H2(x)
returns the multiset of each neighbors’ degree, and so
on. The queries can be defined iteratively, where Hi(x)
returns the multiset of values which are the result of
evaluating Hi−1 on the set of nodes adjacent to x:

Hi(x) = {Hi−1(z1),Hi−1(z2) . . . ,Hi−1(zm)}

where z1 . . . zm are the nodes adjacent to x.

Example 4 Figure 2 contains the same graph from Fig-
ure 1 along with the computation of H0, H1, and H2 for
each node. For example: H0 is uniformly �. H1(Bob) =
{�, �, �, �}, which we abbreviate in the table simply as
4. Using this abbreviation, H2(Bob) = {1, 1, 4, 4} which
represents Bob’s neighbors’ degrees.

In practice, we might expect that if an adversary can
learn the degrees of the target’s neighbors, he would also

5

be able to learn about edges in the neighborhood. In
this case, instead of learning Hi, the adversary would
learn a subgraph where the subgraph is induced by the
edges adjacent to nodes that lie within at most i−1 edge
traversals of the target. This additional knowledge would
make the adversary more powerful, and thus the Hi sig-
nature is a more conservative model. The Hi signatures
have the advantage that they are efficient to evaluate,
whereas measuring subgraph knowledge requires check-
ing for subgraph isomorphisms, an NP-Hard problem.
Thus, the Hi signature can be viewed as an efficient way
to calculate a lower bound on the risk of the subgraph ad-
versary. In Section 2.5, we discuss prior work, including
our own, that has considered models based on knowledge
of subgraphs surrounding the target.

For each query Hi, we define an equivalence relation
on nodes in the graph in the natural way.

Definition 3 (Relative equivalence) Two nodes x, y
in a graph are equivalent relative to Hi, denoted x ≡Hi y,
if and only if Hi(x) = Hi(y).

Example 5 Figure 2(c) lists the equivalence classes of
nodes according to relations ≡H0 ,≡H1 , and ≡H2 . All
nodes are equivalent relative to H0 (for an unlabeled
graph). As i increases, the values for Hi contain suc-
cessively more precise structural information, and as a
result, equivalence classes are divided.

To an adversary limited to knowledge queryHi, nodes
equivalent with respect to Hi are indistinguishable. The
following proposition formalizes this intuition:

Proposition 1 Let x, x�
∈ V . If x ≡Hi x

� then candHi(x) =
candHi(x

�).

Iterative computation of H continues until no new
vertices are distinguished. We call this query H

∗. In the
example of Figure 2, H∗ = H2. The vertex refinement
technique is the basis of efficient graph isomorphism algo-
rithms which can be shown to work for almost all graphs
[3]. In our setting, this means that equivalence under H∗

is very likely to coincide with automorphic equivalence.

2.5 Alternative adversary models

Throughout the paper, we use the structural signatures
described above as a parameterized model of external
information that can capture the power of a range of ad-
versaries. Our structural signatures have the advantage
that they are efficient to evaluate even on large graphs,
are amenable to theoretical analysis, and they are con-
servative model of structural knowledge.

One of our guiding principles is that adversary knowl-
edge tends to be local to the targeted node, with more
powerful adversaries capable of exploring the neighbor-
hood around a node with increasing diameter.

In practice, external information about a published
social network may be acquired through malicious ac-
tions by the adversary or from public information sources.
In addition, a participant in the network, with some in-
nate knowledge of entities and their relationships, may be
acting as an adversary in an attempt to uncover unknown
information. A legitimate privacy objective in some set-
tings is to publish a graph in which participating individ-
uals cannot re-identify themselves. For the participant-
adversary, whose knowledge is based on their participa-
tion in the network, existing research about institutional
communication networks suggests that there is a horizon
of awareness of about distance two around most individ-
uals [15].

Other work on network anonymity has also focused
on adversaries whose structural knowledge is based on a
local neighborhood around a target node [8,30,50,51,52].
An exception is the recent work by Narayanan et al. [34],
which uses an auxiliary network to attack a target net-
work, and work by Zou et al. [53], which protects against
an adversary with unbounded structural knowledge.

In previous work [19], we considered alternative mod-
els of adversary knowledge, including partial subgraphs
and signatures determined by connections to hubs. In
evaluating adversaries with knowledge of partial sub-
graphs around a target, re-identification risk is generally
lower than with degree signatures, but depends on how
complete the known subgraph is. It is also computation-
ally difficult to compute candidate sets because testing a
potential candidate requires looking for a subgraph iso-
morphism.

Hubs are highly connected nodes observed in many
network datasets. In a Web graph, a hub may be a highly
visited website. In a graph of email connections, hubs of-
ten represent influential individuals. Because hubs are
often outliers in a graph’s degree distribution, the true
identity of hub nodes is often apparent in a naively-
anonymized graph. In addition, an individual’s connec-
tions to hubs may be publicly known or easily deduced.
We found that on real networks, the rate of re-identification
using knowledge of hub connections was relatively low.

As mentioned above, the focus of this paper is on
supporting the topological analysis of graphs. We there-
fore assume that attributes are not used to aid in re-
identification, and our assessment of utility does not in-
clude analyses that depend on attribute values. Other
authors have proposed anonymization schemes that pro-
tect against re-identification using attributes [8,9,52].

3 Empirical risk assessment

In this section we evaluate the risk of publishing the naive
anonymization of a network through an empirical assess-
ment on several real and synthetic network datasets.

For each dataset, we consider each node in turn as
a target. We assume the adversary computes the struc-
tural signature of that node, and then we compute the

6

Table 1 Descriptive statistics for the real and synthetic graphs studied.

Statistic Real Datasets Synthetic Datasets
HepTh Enron NetTrace HOT Power-Law Tree Mesh

Nodes 2510 111 4213 939 2500 3280 2500
Edges 4737 287 5507 988 7453 3279 4900
Minimum degree 1 1 1 1 2 1 2
Maximum degree 36 20 1656 91 166 4 4
Median degree 2 5 1 1 4 1 4
Average degree 3.77 5.17 2.61 2.10 5.96 1.99 3.92
Edge density 0.0007 0.0235 0.0003 0.0022 0.0024 0.0006 0.0016
Avg. cand. set size (H1) 558.5 12.0 2792.1 635.5 549.7 1821.8 2138.1
Avg. cand. set size (H2) 25.4 1.5 608.6 81.1 1.4 1659.8 1818.1
Percent re-identified (H1) 0.2 2.7 0.5 0.9 0.9 < 0.1 < 0.1
Percent re-identified (H2) 40.4 73.9 11.1 5.9 82.5 < 0.1 < 0.1

corresponding candidate set. We report the distribution
of candidate set sizes across the population of nodes
to characterize how many nodes are protected and how
many are identifiable.

We use the following seven datasets. The HepTh
dataset is a graph of coauthors in theoretical high-energy
physics. The dataset is derived from arXiv, an online
repository of papers. We extracted a subset of the au-
thors and considered them connected if they wrote at
least two papers together.

The Enron dataset is derived from a corpus of email
sent to and from managers at Enron Corporation, made
public by the Federal Energy Regulatory Commission
during its investigation of the company. Two individuals
are connected if they corresponded at least 5 times.

The NetTrace dataset was derived from an IP-level
network trace collected at a major university. The trace
monitors traffic at the gateway; it produces a bipartite
graph between IP addresses internal to the institution,
and external IP addresses. We restricted the trace to 187
internal addresses from a single campus department and
the 4026 external addresses to which at least 20 packets
were sent on port 80 (http traffic).

The HOT dataset is a model of the Internet of a
single service provider (ISP). Its Heuristically Optimal
Topology (HOT) is designed to reflect the economic and
technological constraints that influence the topology. It
has a hierarchical structure with a core of interconnected
low degree (high-bandwidth) routers at its center and
high-degree (low-bandwidth) routers at its periphery [28].

The Power-Law dataset is a random graph that
is generated based on a model of growth and prefer-
ential attachment [5]. Its degree distribution follows a
power-law. In some of the experiments, we also con-
sider a slightly different dataset, Clustered Power-
Law, which is constructed using the same model except
that when edges are inserted into the graph, triangles are
formed with some probability (we set p = 0.4).

The Mesh dataset is a 50× 50 grid topology, where
each node is connected to the four adjacent nodes in the
grid. The Tree dataset is a balanced tree of arity 3.

All datasets have undirected edges, with self-loops
removed. We eliminated a small percentage of discon-
nected nodes in each dataset, focusing on the largest
connected component in the graph. Detailed statistics
for the datasets are shown in Table 1.

3.1 Node re-identification

Recall from Section 2.4 that nodes contained in the same
candidate set for knowledge Hi share the same value
for Hi, are indistinguishable according to Hi, and are
therefore protected if the candidate set size is sufficiently
large.

Figure 3 is an overview of the likelihood of re-ident-
ification under H1,H2,H3 and H4 knowledge queries.
For each Hi, the graph reports on the percentage of
nodes whose candidate sets have sizes in the following
buckets: [1] , [2, 4], [5, 10], [11, 20], [21,∞]. Nodes with
candidate set size 1 have been uniquely identified, and
nodes with candidate sets between 2 and 4 are at high
risk for re-identification. Nodes are at fairly low risk for
re-identification if there are more than 20 nodes in their
candidate set.1 Each Hi is represented as a different
point on the x-axis.

Figure 3 shows that for the HepTh data, H1 leaves
nearly all nodes at low risk for re-identification, and it
requires H3 knowledge to uniquely re-identify a majority
of nodes. For Enron, under H1 about 15% of the nodes
have candidate sets smaller than 5, while only 19% are
protected in candidate sets greater than 20. Under H2,
re-identification jumps dramatically so that virtually all
nodes have candidate sets less than 5. These two real
graphs are roughly similar in behavior to the synthetic
Power-Law graph, as they display features similar to a
power-law graph.

NetTrace and HOT have substantially lower dis-
closure overall, with very few identified nodes under H1,

1 We do not suggest these categories as a universal privacy
standard, but merely as divisions that focus attention on the
most important part of the candidate set distribution where
serious disclosures are at risk.

7

Pe
rc

en
ta

ge
 o

f n
od

es

H1 H2 H3 H4

HepTh

0
20

40
60

80
10

0

H1 H2 H3 H4

Enron

0
20

40
60

80
10

0

H1 H2 H3 H4

NetTrace

0
20

40
60

80
10

0

H1 H2 H3 H4

HOT

0
20

40
60

80
10

0

H1 H2 H3 H4

Power−Law

0
20

40
60

80
10

0

H1 H2 H3 H4

Tree

0
20

40
60

80
10

0

H1 H2 H3 H4

Mesh

> 19
10−19
5−9
2−4
1

0
20

40
60

80
10

0

Fig. 3 The relationship between candidate set size and structural signature knowledge Hi for i = 1..4 for four real graphs
and three synthetic graphs. The trend lines show the percentage of nodes whose candidate sets have sizes in the following
buckets: [1] (black), [2, 4], [5, 10], [11, 20], [21,∞] (white).

and even H4 knowledge does not uniquely identify more
than 10% of the nodes. For NetTrace, this results from
the unique bipartite structure of the trace dataset: many
nodes in the trace have low degree, as they are unique
or rare web destinations contacted by only one internal
host. The HOT graph has high structural uniformity
because it contains many degree one nodes that are con-
nected to the same high degree node, and thus struc-
turally equivalent to one another.

The synthetic Tree and Mesh graphs display very
low re-identification under all Hi. This is obvious given
that these graphs have highly uniform structure: the nodes
in Mesh have either degree 2 or 4, the nodes in Tree
have degree 1, 3 or 4. We include them here for com-
pleteness as these graphs are studied in Section 7.

A natural precondition for publication is a very low
percentage of high-risk nodes under a reasonable assump-
tion about adversary knowledge. Three datasets meet
that requirement for H1 (HepTh, NetTrace, HOT).
Except for the extreme synthetic graphsTree andMesh,
no datasets meet that requirement for H2.

Overall, we observe that there can be significant vari-
ance across different datasets in their vulnerability to dif-
ferent adversary knowledge. However, across all datasets,
the most significant change in re-identification is from
H1 to H2, illustrating the increased power of adversaries
that can explore beyond the target’s immediate neigh-
borhood. Re-identification tends to stabilize after H3—
more information in the form of H4 does not lead to an
observable increase in re-identification in any dataset. Fi-
nally, even though there are many re-identified nodes, a
substantial number of nodes are not uniquely identified
even with H4 knowledge.

3.2 Edge disclosure

We measure the risk of edge disclosure possible under ad-
versaries with knowledge of degree signatures. Our sam-
ple datasets are sparse graphs – their edge densities are
all quite low, as reported in Table 1. This means that the
expectation of any particular edge existing in the graph
is low.

To measure the risk of edge disclosure, we consid-
ered each edge present in the original graph and consid-
ered its inferred edge likelihood under various Hi. That
is, we imagine an adversary using Hi knowledge to re-
identify the individuals participating in each edge of the
true graph, and report the inferred edge probability over
the set of all true edges. For each Hi we get a range of
inferred edge probabilities, as illustrated in Figure 4.

The results show that with H1 knowledge alone, the
risk of edge disclosure is relatively limited. In the Hep-
Th data, 80% of the edges have an inferred edge prob-
ability of less than 0.01, which constitutes a small shift
in an adversary’s certainty about the presence of those
edges. In the Enron and NetTrace data, roughly half
the edges have inferred probabilities between 0.10 and
1, which represent a significant shift in the adversary’s
expectation.

Of much more concern, however, is the fact that with
H2 knowledge (or greater) many edges are disclosed with
certainty – the inferred edge probability is 1 for a ma-
jority of edges across all datasets. It is also important
to note that even when candidate sets tend to be large
(such as in NetTrace and HOT), edges can be disclosed
with high likelihood. In NetTrace and HOT this likely
reflects a hub node with a unique degree connected to
many degree-one nodes. Even though the candidate set
of degree one nodes may be large, every node in that
candidate set is connected to the hub, and density of
connections between the candidate sets is one, resulting
in certain edge disclosure.

4 Theoretical risk assessment

The results of the previous section show that re-identifica-
tion risk varies across graphs. We want to understand
and explain this variation. In some cases, such as Tree
andMesh, the low re-identification risk can be explained
by the regular topology, which makes it hard to distin-
guish nodes by their local structure. However, across the
other graphs, the reason for diversity in risk is unclear.

In this section, to gain insight into the factors af-
fecting re-identification risk, we study random graphs.

8

Pe
rc

en
ta

ge
 o

f e
dg

es

H1 H2 H3 H4

HepTh

0
20

40
60

80
10

0

H1 H2 H3 H4

Enron

0
20

40
60

80
10

0

H1 H2 H3 H4

NetTrace

0
20

40
60

80
10

0

H1 H2 H3 H4

HOT

0
20

40
60

80
10

0

H1 H2 H3 H4

Power−Law

0
20

40
60

80
10

0

H1 H2 H3 H4

Tree

0
20

40
60

80
10

0

H1 H2 H3 H4

Mesh

0<=d<0.01
0.01<=d<0.05
0.05<=d<0.10
0.10<=d<1.00
1.00<=d

0
20

40
60

80
10

0

Fig. 4 The inferred edge probabilities resulting from attempted re-identification using structural signatures H1,H2,H3,H4.

Random graphs are governed by parameters which con-
trol some aspect of the graph’s topology; by varying the
parameters, we can measure how this property affects re-
identification risk. Here, we study how re-identification
risk is affected by two key graph properties, density and
degree distribution. To study the relationship between
graph density and anonymity, we analyze the Erdős-
Rényi (ER) model, the simplest random graph model.
Following that, we study random graphs with power-
law degree distributions. These results help us to under-
stand under what conditions distinctive structures arise
in graphs, and thus provide insight into the foundations
of anonymity for graphs.

4.1 Erdős-Rényi graphs

The ER model generates a graph by sampling each of the�n
2

�
edges independently with probability p. As the num-

ber of nodes, n, increases, these graphs exhibit different
behaviors depending on how p scales with n.

We consider three cases. In a sparse random graph
p = c/n, in a dense random graph p = c log n/n, and in
a super-dense random graph, p = c (where c is a con-
stant). The first two cases are of interest because when
c > 1, with high probability the graph includes a giant
connected component of size Θ(n) and a collection of
smaller components (in the sparse case) or the graph is
completely connected (in the dense case) [14].

To motivate the theoretical results that follow, Figure
5 shows experimental simulations on ER random graph
of 100K nodes and varying edge probabilities. The trend
lines measure the percentage of nodes uniquely identified
by H1, H2, and H3 knowledge.

The figure shows that for sparse graphs, very few
nodes are uniquely identified, even with the more pow-
erful H3 knowledge. Intuitively, nodes cannot be distin-
guished because a sparse graph lacks sufficient edge den-
sity to create diversity in structure. Because the edge
probability is p = c/n, the expected node degree, which
is p(n − 1), goes to c as n → ∞. Because the expected
degree is constant, for sufficiently large n, structural pat-
terns must repeat, leading to complete structural unifor-
mity in the limit. The following theorem formalizes this

intuition, showing that no degree of Hi knowledge can
distinguish nodes in a large sparse ER random graph.

Theorem 1 (Sparse ER random graphs) Let G be
an ER random graph containing n nodes with edge prob-
ability given by p = c/n for c > 1. (i) The expected sizes
of the equivalence classes induced by Hi are Θ(n) for
any i ≥ 0; (ii) with probability going to one, the sizes of
the equivalence classes induced by Hi are Ω(nα), for any
i ≥ 0 and any 0 < α < 1.

Proof We begin with H1. Consider a graph of size n. Let
Ni denote the degree of the i-th node, i ≤ n. As n → ∞,

P (Ni = k) →
c
k

k!
e
−c

Note that for any k = ω(1), the probability of Ni = k

goes to zero as n → ∞. Thus, it suffices only consider
the case where k is a constant.

Let M1,k(n) denote the expected size of the equiva-
lence class of H1 corresponding to node degree k when
the graph is of size n and let M1,k = limn→∞ M1,k(n).
We have

M1,k = lim
n→∞

n�

i=1

P (Ni = k)

= Θ(n)

In order to establish the second result, we restrict our-
selves to a random subset of the n nodes of size nα, where
α < 1. Note that the fraction of nodes in this subset goes
to zero as n → ∞. This allows us to show that, as n → ∞,
the degrees of the nodes in this subset are independent
random variables. Application of a Chernoff bound then

produces P [Lk ≤ (1 − δ)nα
c
k
e
−c

/k!] ≤ e
−(δ2cke−c/k!)nα

where Lk is the number of nodes in the subset having
degree k as n → ∞. As |Mi,k| ≥ Lk, we conclude that
|M1,k(n)| = Ω(nα) with probability going to one for all
k.

Similar arguments hold for Hi, i = 2, Consider a
node x. We first note that the Hi equivalence class that
x belongs to is determined by the subgraph rooted at x

that includes all nodes within distance i of it. Now, as
n → ∞, with probability going to one, this subgraph is
a tree. Moreover the probability of the above subgraph

9

Sparse

p=c/n

Dense

p = c log(n)/n

H1

H2

H3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0100%

0%

20%

40%

60%

80%

Super-dense

p = c

U
n

iq
u

e
ly

 i
d

e
n

ti
fi

e
d

Edge probability, p

Fig. 5 For H2 and H3 the number of uniquely re-identified
individuals in a classical random graph goes from zero to
100% quickly when there is sufficient edge density. But re-
gardless of the density, the number of nodes with a unique
degree is close to zero, showing that H1 is insufficient for
unique re-identification.

deviating from a tree is O(1/n). Another observation is
that every Hi induced equivalence class contains at least
one node, whose distance i subgraph is a tree in the limit
as n → ∞. This follows because any Hi consistent multi-
set can be used to construct a tree. Thus any distance i

subgraph centered at a node that is not a tree is hidden
by commonly found trees.

Consider a tree, t, of height i or less. Let N(t) be a
set containing the numbers of children for all nodes in
the tree that are at distance j = 0, 1, . . . , i− 1 from the
root. Let Gi(x) denote the distance i subgraph centered
at node x and let Ti denote the set of all possible height
i or less trees. Then

P (Gi(x) = t) =
�

k∈N(t)

c
k

k!
e
−c +O(1/n), t ∈ Ti

= Θ(1)

P (Gi(x) /∈ Ti) = O(1/n)

Note that as n grows, the distribution of the number of
children that a node within the tree has is Poisson.

Since each equivalence class contains at least one
height i or less tree in the limit as n → ∞, it follows
from the above expressions that the expected size of each
equivalence class is Θ(n). Last a similar argument as used
for H1 establishes the second property. ��

From the standpoint of protecting anonymity, this is an
encouraging result for this class of graphs, assuming we
are concerned with publishing large graphs. (In simu-
lations, we found that some re-identification occurs in
random graphs of less than 106 nodes.)

As we consider more dense ER random graphs, struc-
tural diversity increases and re-identification becomes a
near certainty very quickly. Figure 5 suggests that as
graphs become dense (p = clog(n)/n), while nodes re-
main well-hidden against H1 adversaries, H2 knowledge

is sufficient to re-identify virtually all nodes in the graph.
The following theorem supports the simulations.

Theorem 2 (Dense ER random graphs) Let G be
an ER random graph containing n nodes with edge prob-
ability given by p = c log n/n for c > 1.

1. With high probability a node belongs to an equivalence
class induced by H1 that grows to infinity as n → ∞.

2. The expected sizes of equivalence classes induced by
H2 goes to zero as n → ∞.

The second property is consistent with simulation re-
sults as the most likely cause is that the H2 signatures
are unique.

Proof As n → ∞, the degree distribution converges to
the Poisson distribution with mean c log n. Let Ni(n)
denote the degree of node i in a graph of size n and
consider degrees of the form Ni(n) = δc log n, 0 < δ.
Then, as n → ∞, we have

P [Ni = δc log n] =
1

√
2πδc log nnc(1−δ+δ log δ)

, 0 < δ

A Chernoff bound argument can be used to show that,
whp, a node’s degree lies within the range (δ0c log n, δ1c log n)
where δ0 is the largest value of δ < 0 such that c(1 −

δ + δ log δ) = 1 and δ1 is the smallest value of δ > 1
to satisfy that equation. Note that P [Ni = δc log n] de-
creases more quickly than 1/n whenever δ /∈ [δ0, δ1] and
more slowly otherwise. We focus now on the range of
degrees (δ0c log n, δ1c log n), and let Lδ denote the num-
ber of nodes with degree δc log n, δ ∈ [δ0, δ1]. Randomly
select a set of nodes of size n

α, where α is chosen such
that, c(1− δ + δ log δ) < α < 1. As in the previous theo-
rem, we can show that the degrees of these nodes become
independent random variables as n → ∞. Apply now a
Chernoff bound (as n → ∞) to obtain

P [Lδ < (1− β)nα(2πδc log n)−1
n
−c(1−δ+δ log δ)] ≤

e
−β2nα(2πδc logn)−1n−c(1−δ+δ log δ)/2

Because of the choice of α, the right hand side goes to
zero. Thus Lδ → ∞ as n → ∞ whp and therefore the size
of the equivalence class corresponding to degree δc log n
goes to infinity as n → ∞. Since a node takes its degree
from the range (δ0c log n, δ1c log n) whp, it belongs to
an equivalence class whose size goes to infinity whp as
n → ∞.

The proof of the second property is more involved.
We sketch the proof. Consider a node with degree k, we
need only consider k ∈ (δ0c log n, δ1c log n). Moreover, we
need only consider degrees of the neighbors in the same
range. Furthermore, we can assume that the degrees of
the neighbors are independent of each other as n → ∞.
Application of a straightforward generalization of The-
orem 5.7 in [33] to the case of a non-uniformly random
balls and urns problem allows us to write

P [X1 = k1, . . . , Xs = ks] ≤

10

e
�
δc log n

s�

i=1

(piδc log n)
ki

ki!
e
−piδc logn

where pi is the probability that a neighbor selects degree
i. Here (X1, . . . , Xs) constitutes the H2 signature of the
node. Now, it is easy to argue using Chernoff bounds that
neighbors only choose degrees clustered around c log n
(c log n+ l, l = 0,±1,±2, . . .). Hence

P [X1 = k1, . . . , Xs = ks] ≤

e
�
δc log n

(pc lognδc log n)
δc logn

�s
i=1 ki!

e
−pc log nδc logn

≤

a((log n)−1/2)δc logn(e−b(logn)−1/2

)δc logn

Where a is a constant. The second inequality follows
from

�
i ki > 1. Now consider the expected number of

nodes with signature (k1, . . . , ks), Mk1,...,ks . It is upper
bounded by

Mk1,...,ks ≤ an((log n)−1/2)δc logn(e−b(logn)−1/2

)δc logn

which goes to zero as n → ∞. ��

Lastly, we include a known result for the case of a
super-dense graph where p = 1/2. The following theo-
rem, originally due to Babai and Kucera [3] and rephrased
below, shows that with high probability every node will
be uniquely identified using H3 knowledge:

Theorem 3 (Super-dense ER random graphs) Let
G be an ER random graph on n nodes with edge proba-
bility p = 1/2. The probability that there exist two nodes
x, y ∈ V such that x ≡H3 y is less than 2−cn for constant
value c > 0.

This result provides a sufficient condition for unique
re-identification of the entire population in a graph.

Theorems 2 and 3 are disappointing from an anonym-
ity perspective. However, most social and communication
networks appear to be sparse, and so Theorem 1 may be
more applicable. Furthermore, real networks often have
heavy-tailed degree distributions, which is not the case
for ER graphs. To capture the heavy-tailed degree distri-
bution, we also study re-identification risk in power-law
graphs.

4.2 Power-law graphs

Several graph models have been proposed that exhibit
the heavy-tailed degree distributions often observed in
real networks, including the power law random graph
(PLRG) model [1]. In this model, a graph is constructed
by first assigning a degree to each node, where the degree
is sampled from a power law distribution. Edges are in-
serted by randomly choosing endpoints until every node
has as many edges as its specified degree. (This can result
in self-loops or multiple edges between a pair of nodes,
which are often removed to form a simple graph that
closely approximates the original degree distribution.)

The PLRG, and other power-law models, generate
graphs with constant average degree as the number of
nodes increases. Thus the edge density is low, and despite
the skew in node degree, we find that the structural di-
versity is insufficient for re-identification. We state this
formally for PLRG because it is the easiest power-law
graph model to analyze.

Theorem 4 (Power-law random graphs) Let G be
a PLRG on n nodes. With probability going to one, the
expected sizes of the equivalence classes induced by Hi is
Θ(n), for any i ≥ 0.

Proof The proof of Theorem 4 proceeds in a similar man-
ner to the proof of Theorem 1 except that the Poisson
distribution is replaced by P (Ni = k) = ak

−α
> 0, k =

0, 1, . . . where a is a constant such that
�

∞

k=0 P (Ni =
k) = 1. ��

4.3 Discussion

The theoretical results of this section complement the
empirical results of the previous section. We see that re-
identification risk depends on graph size: the empirical
results for the 2500 node Power-Law graph show high
re-identification risk; however, Theorem 4 shows that
once a power-law graph is sufficiently large, nodes will
be anonymous.

In fact, the critical factor determining re-identification
risk in large random graphs is not the degree distribu-
tion, but density. Sparse graphs (including power law
graphs) have low re-identification risk, whereas dense
graphs have high re-identification risk. This is an im-
portant finding as it shows that even in extremely large
graphs, nodes are not necessarily well hidden. It depends
on the topological properties of the graph. This one rea-
son why the Hi structural signatures can be a valuable
tool for data owners, as they allow them to efficiently
assess re-identification risk even on large graphs.

5 Mitigating re-identification risk

The previous two sections were about risk assessment.
The main finding was that there is considerable risk
in publishing the naive anonymization of a graph be-
cause informed adversaries can use their knowledge to re-
identify nodes and in some cases, infer particular edges.

The next three sections are about risk mitigation. In
this section, we first introduce a new condition, graph
k-anonymity, which is a bound on re-identification risk.
Then we relate it to other privacy definitions proposed in
the literature. In Section 6, we present an algorithm that
achieves graph k-anonymity by transforming the graph
through a process called graph generalization. The ben-
efit of generalization is reduced risk, but the cost is that
the generalized graph is an approximation of the original

11

graph and therefore less useful to the analyst. Finally in
Section 7, we present the results of experiments where we
measure how generalization affects several graph proper-
ties commonly measured by analysts. Also in that sec-
tion, we compare the proposed algorithm against state
of the art graph anonymization algorithms in terms of
both privacy risk and utility.

5.1 Structural anonymity

In the previous sections, the size of the candidate set
is used as a measure of re-identification risk. This is a
natural measure for naive anonymization. A node can be
a candidate only if its local graph structure is an exact
match to the adversary’s knowledge. Therefore each can-
didate is an equally plausible guess for the target. How-
ever, as we move beyond naive anonymization to consider
strategies that alter the graph structure, the size of the
candidate set is no longer an appropriate measure of risk.

If the graph structure has been altered by the anon-
ymization process, the alterations may have changed the
structure around the target. Therefore a candidate may
include not only exact matches in the published graph,
but also partial matches. In addition, not all matches are
equally likely. The probability of a candidate depends on
the adversary’s prior belief about the structure around
the target, and on the likelihood that the algorithm al-
tered that structure to produce the observed output.

We introduce a new privacy condition to account for
these differences. Invariably, the first step of any algo-
rithm is to perform naive anonymization to create un-
certainty about the true identities of the nodes. Recall
Π : V → Va, the secret mapping between identifiers in
the original graph and the synthetic identifiers in the
anonymized graph. The adversary’s goal is to learn this
mapping; the data owner’s goal is to sufficiently alter the
graph so that the adversary fails to achieve its goal.

Our privacy definition is a condition on the adver-
sary’s posterior belief after having seen the published
graph. The posterior belief depends on the published
graph, the algorithm that produced the published graph,
and the adversary’s prior belief. A successful anonymiz-
ation is one that meets the following definition:

Definition 4 (Graph k-anonymity under Q) Let Q
be a structural knowledge query. An anonymized graph
Ga satisfies graph k-anonymity with respect to Q if

∀x ∈ V, ∀y ∈ Va : Pr[Π(x) = y | Ga] ≤ 1/k

where the probability depends on the randomness of the
algorithm that produced Ga and the adversary’s prior
probability over input graphs G.

If we make the natural assumption that the adversary
has no other external information other than Q, then the
adversary’s prior probability is uniform over all graphs G
such that in G, the structure around x agrees with Q(x).

Revisiting naive anonymization, there is a relation-
ship between graph k-anonymity and our previously used
measure of risk, the size of the candidate set. If the prob-
ability distribution over candidates is uniform, this con-
dition simply requires at least k candidates: a naive anon-
ymization satisfies graph k-anonymity under Q if for any
x, |candQ(x)| ≥ k.

Finally, as we will see in Section 6, some anonymiza-
tions are graph k-anonymous with respect to any Q. We
simply say in this case that the output satisfies graph
k-anonymity.

5.2 Relation to alternative privacy conditions and

limitations

The above condition of graph k-anonymity is similar to,
and in some sense encompasses other definitions recently
proposed for graph data. Liu and Terzi [30] propose a
condition which requires that in the published graph each
degree in the graph occurs at least k times. Such an
output satisfies graph k-anonymity with respect to H1

(i.e., degree). Zhou and Pei [52] require that in the pub-
lished graph each neighborhood (the subgraph induced
by a node and its neighbors) be isomorphic to at least
k−1 others. Such an output satisfies graph k-anonymity
with respect to N where N is the knowledge query that
returns the neighborhood subgraph of a node. Note it
also satisfies graph k-anonymity with respect to H1 since
query N also reveals node degree.

The above definitions are graph analogues of k-anon-
ymity [41,42,44], a privacy condition defined for tables.
Each assumes the adversary has some knowledge about
a target entity (analogous to knowledge of the quasi-
identifier) and the anonymity condition requires that this
knowledge cannot be used to distinguish entities in the
published data. The graph data privacy conditions dif-
fer on how much knowledge the adversary is assumed
to have (node degree, neighborhood, etc.); analogous to
differences in the choice of quasi-identifier.

Like k-anonymity, the above definitions also have lim-
itations. In a homogeneity attack, while the adversary is
not able to distinguish among a set of candidates, all of
the candidates share a common property. Because the
candidates are homogenous, the adversary has learned
something about the target, even though re-identification
did not occur. In tabular data, definitions such as �-
diversity [31] and t-closeness [29] have been introduced
to counter the threat of homogeneity attacks.

An instance of the homogeneity attack is edge dis-
closure (Section 2). A published graph which is graph
k-anonymous may still be vulnerable to edge disclosure.
To address the threat of edge disclosure, Cormode et
al. [8] introduce an edge safety condition (described in
Section 7.1 of this paper). While this prevents edge dis-
closure, it appears to do so at a significant expense to
utility, based on the experimental results in Section 7.3.
In addition, we measure the risk of edge disclosure of

12

our proposed algorithm and find in practice it is low for
reasonable k (Section 7.5).

Other attacks have been proposed on tabular data
anonymizations, and analogues of these attacks may ap-
ply to graph anonymization. Attacks include the com-
position attack [17], the minimality attack [48], and the
deFinetti attack [23]. While some of these attacks can
be remedied by imposing additional conditions (e.g., m-
invariance [49] defends against the composition of multi-
ple releases of a dynamic table), developing data publi-
cation techniques that resist all of them is an open prob-
lem, not only for graph data, but for tabular data as
well. Differential privacy [13] ensures protection from all
of the above attacks, but it remains unclear whether ef-
ficient and accurate data publication is possible under
differential privacy [12]. As discussed in Section 8, some
differentially private algorithms for graph data have been
developed, but they output answers to particular queries
and do not publish a graph.

6 Graph generalization algorithm

In this section we describe an anonymization technique
that protects against re-identification by generalizing the
input graph. We generalize a graph by grouping nodes
into partitions, and then publishing the number of nodes
in each partition, along with the density of edges that ex-
ist within and across partitions. The adversary attempts
re-identification in the generalized graph, while the ana-
lyst uses it to study properties of the original graph.

6.1 Graph generalization

To generalize a naively-anonymized graphGa = (Va, Ea),
we partition its nodes into disjoint sets. The elements of a
partitioning V are subsets of Va. They can be thought of
as supernodes since they contain nodes from Ga, but are
themselves the nodes of a undirected generalized graph
G = (V, E). The superedges of E include self-loops and
are labeled with non-negative weights by the function
d : E → Z

∗. GV is a generalization of Ga under a parti-
tioning V if the edge labels report the density of edges
(in Ga) that exist within and across the partitions:

Definition 5 (Generalization of graph) Let V be
the supernodes of Va. G is a generalization of Ga un-
der V if, for all X,Y ∈ V, d(X,Y) = |{(x, y) ∈ Ea|

x ∈ X, y ∈ Y }|.

G summarizes the structure of Ga, but the accuracy
of that summary depends on the partitioning. For any
generalization G of Ga, we denote by W(G), the set of
possible worlds (graphs over Va) that are consistent with
G. Intuitively, this set of graphs is generated by consid-
ering each supernode X and choosing exactly d(X,X)
edges between its elements, then considering each pair of

supernodes (X,Y) and choosing exactly d(X,Y) edges
between elements of X and elements of Y . The size of
W(G) is a measure of the accuracy of G as a summary of
Ga.

The partitioning of nodes is chosen so that the gener-
alized graph satisfies privacy goals and maximizes utility,
as explained in Sections 6.2 and 6.3 respectively. In the
extreme case that all partitions contain a single node,
then the graph generalization G does not provide any
additional anonymity: W(G) contains just the graph Ga

(the function d encodes its adjacency matrix). At the
other extreme, if all nodes are grouped into a single par-
tition, then G consists of a single supernode with a self-
loop labeled with |Ea| (the total number of edges in the
original graph). W(G) is thus the set of all graphs over
Va with |Ea| edges. In this case the generalization pro-
vides anonymity, but is unlikely to be useful to the ana-
lyst since it reflects only the edge density of the original
graph.

In studying a generalized graph, the analyst can sam-
ple a single random graph from W(G) and then per-
form standard graph analysis on this synthetic graph.
Repeated sampling can improve the accuracy of analysis.
We study in Section 7 the bias and variance of estimates
of graph properties based on graphs sampled from W(G).

6.2 Anonymity of generalized graphs

To ensure anonymity we require that the adversary have
a minimum level of uncertainty about the identity of any
target node in V . We use the size of a partition to provide
a basic guarantee against re-identification and require
that each partition have size at least k. This ensures that
the output satisfies graph k-anonymity with respect to
any structural query Q.

Proposition 2 Let G be a generalized graph such that
each supernode X has at least k nodes. Then G satisfies
graph k-anonymity.

Proof The intuition for this claim is that the general-
ized graph summarizes the graph in terms of supernodes
and contains no information that allows the adversary to
distinguish between two nodes in the same supernode.
Therefore, each of the k or more nodes in the same su-
pernode must be equally likely candidates and the prob-
ability of any one node being the target is at most 1/k.

We now give a formal proof. Given an input graph
G, there are two key steps to producing a generalized
graph: (a) first the nodes of the graph are relabeled, as
with naive anonymization; and then (b) the nodes are
partitioned into groups. We assume the algorithm that
chooses the partition does not depend on the particular
labels on the nodes; since it receives a naive anonymiza-
tion, the labels are arbitrary. Therefore we can commute
these two operations without affecting the final output.
Without loss of generality, we can assume that the nodes
are relabeled after the partition is chosen.

13

Let Π : V → Va denote the function which relabels
nodes. Let P denote the partition of V into groups. The
output G is completely determined by G, Π, and P . For
convenience, let f be the function that takes as input
G,Π, P and outputs G.

To show graph k-anonymity, we must show that an
adversary cannot use G to re-identify a target node x.
Formally, we must show that for any x ∈ V and any
y ∈ Va, Pr[Π(x) = y | G] ≤ 1/k where the probability
comes from the randomness in the algorithm and the
adversary’s prior belief.

To prove this, we will show that

Pr[Π(x) = y|G] = Pr[Π(x) = y
�
|G]

for any two nodes y and y
� that are in the same supernode

of G. Since there are at least k nodes in each supernode,
this implies Pr[Π(x) = y|G] ≤ 1/k for any y.

Since the conditional probability Pr[Π(x) = y|G] =
Pr[Π(x) = y,G]/Pr[G] and the denominator does not
depend on y, it suffices to show that Pr[Π(x) = y,G] =
Pr[Π(x) = y

�
,G].

We can write Pr[Π(x) = y,G] as:

Pr[Π(x) = y,G]

=
�

π:π(x)=y

Pr[Π = π,G]

=
�

π,g,p:
G=f(g,π,p)
and π(x)=y

Pr[Π = π, G = g, P = p]

=
�

π,g,p:
G=f(g,π,p)
and π(x)=y

Pr[P = p|G = g]Pr[Π = π]Pr[G = g]

where Pr[P = p|G = g] is the probability the algorithm
outputs partition p given the input graph g; Pr[Π = π] is
the probability of a particular relabeling, which is equal
to 1/|V |! for any π; and Pr[G = g] is the adversary’s
prior belief that the input graph is g.

Consider one term in the above summation by fixing
the input graph g, the partition p, and the map π. Let x�

denote the node that maps to y
� under π, i.e., π(x�) = y

�.
Construct an alternate mapping πalt such that the map-
ping for x and x

� are flipped and all other mappings
are unchanged: πalt(x) = π(x�) and πalt(x

�) = π(x)
and πalt(x

��) = π(x��) for all x
��

�∈ {x, x
�
}. There is a

corresponding term in the summation for Pr[Π(x) =
y
�
,G] where π is replaced with πalt. Since x and x

� ap-
pear in the same partition, we can permute their re-
labelings without changing the generalized graph; i.e.,
f(g,π, p) = f(g,πalt, p). Since each term in the above
summation for Pr[Π(x) = y,G] can be paired with an
equal term in the summation for Pr[Π(x) = y

�
,G], then

Pr[Π(x) = y,G] = Pr[Π(x) = y
�
,G] and this completes

the proof. ��

Requiring a minimum supernode size of k only im-
poses an upper bound on the adversary’s confidence in

the true identity of his target. For some graphs and some
adversaries, the adversary’s confidence may be much less
than 1/k.

For example, consider an adversary who knows only
the degree of its target. The candidates for the target
include any node such that in some possible world, its
degree matches the target’s degree. For each supern-
ode, we can determine a range of degrees such that for
each degree in that range and each node in that supern-
ode, there exists a possible world where that node ob-
tains that degree. For supernode X, the range is de-
termined by mindegree and maxdegree, which are de-
fined as mindegree(X) = max(0, d(X,X) −

�
|X|−1

2

�
) +�

Y ∈V
max(0, d(X,Y)−(|X|−1)|Y |) and maxdegree(X) =

min(|X|− 1, d(X,X)) +
�

Y ∈V
min(|Y |, d(X,Y)).

The degree range of each supernode determines the
candidates, however, not all candidates are equally likely.
Intuitively, a node is more likely if there are more possible
worlds in which its degree matches the target.

In general, it may be computationally hard to deter-
mine the adversary’s posterior probability of a candidate
being the target. The brute force solution—enumerating
all possible worlds and computing candidate set in each
one—requires exponential time. We conservatively re-
quire k-sized partitions but observe that in practice this
may provide much stronger protection than that implied
by the value of k.

6.3 Algorithm description

We now present the graph generalization algorithm, which
we call GraphGen. The input to the GraphGen is Ga and
privacy parameter k. The output is a generalized graph
G. Pseudocode for the algorithm is given in Algorithm 1.

Subject to the privacy constraint, which requires the
supernodes of G to be of size at least k, we would like to
find the generalized graph that best fits the input graph.
We estimate fitness via a maximum likelihood approach.
We consider a uniform probability distribution over the
possible worlds W(G). For a graph g ∈ W(G) we define
PrG [g] = 1/|W(G)| where the number of possible worlds
is:

|W(G)| =
�

X∈V

�
1
2 |X|(|X|− 1)

d(X,X)

�
�

X,Y ∈V

�
|X||Y |

d(X,Y)

�

Without regard to the anonymity condition, the gen-
eralized graph that maximizes likelihood is the one with
each node in a separate partition. Then, as explained
above, |W(G)| = 1 and PrG [Ga] = 1. In general, like-
lihood is greater with more supernodes because each
supernodes introduces more parameters to fit a fixed
amount of data. But subject to the minimum size con-
straint, generalized graphs can vary greatly in their fit to
the input graph. GraphGen uses local search to explore
the exponential number of generalized graphs.

14

Algorithm 1 GraphGen, an algorithm that generalizes

a graph to ensure anonymity.

Input: Ga = (Va, Ea), graph to generalize
k, minimum supernode size

Output: G, a generalized graph such that each supernode
contains at least k nodes

1: G ← Initialize(Ga) {All nodes in one partition.}
2: tcycle ← 5|Va|

3: for t ← 1 to ∞ do

4: T ← Schedule(t) {Temperature T cools as t increases.}
5: S ← Successors(G, k)
6: G� ← argmaxG�∈S

1
|W(G�)|

{Find max likelihood suc-

cessor}
7: �L ←

1
|W(G�)|

−
1

|W(G)|
{Change in likelihood}

8: if �L > 0 then

9: G ← G�

10: else

11: G ← G� with probability e
�L/T

12: end if

13: if G updated less than 0.02% of last tcycle steps then
14: return G

15: end if

16: end for

Successors subroutine returns a set of generalized
graphs that can be derived from G by making a small
change, such as splitting or merging a supernode in
G.

Input: G, current generalized graph
k, minimum supernode size

Output: a set of generalized graphs, the successors to G

1: S ← ∅ {The set of successors}
2: u ← Choose random node
3: X ← Find supernode that contains u

4: if |X| > 2k then

5: G� ← Split(X,G) {Choose greedy split of X}

6: S ← S ∪ {G�}

7: end if

8: for Y such that X, Y are neighbors or share a neighbor
do

9: if |X| > k then

10: G� ← MoveNode(u,X, Y,G)
11: S ← S ∪ {G�}

12: end if

13: G� ← MergeAndSplit(X,Y,G)
14: S ← S ∪ {G�}

15: end for

16: return S

The design of the search algorithm is based on tech-
niques for solving a related social network analysis prob-
lem: stochastic block-modeling [35]. The objective of stochas-
tic block-modeling is to cluster the nodes of the graph
so that nodes in the same group play a similar “social
role” in the graph. While the high-level idea is the same,
there are a few key distinctions from our work. First, our
differing motivations result in different likelihood func-
tions. In stochastic block-modeling, the goal is to build
a predictive model of the data and so the likelihood in-
cludes a penalty term for model complexity; in contrast,
our goal is to fit the original graph as closely as possible
given the anonymity condition. Second, the anonymity

condition imposes a new constraint on the search space,
which makes search more complex.

To find the generalized graph that maximizes the like-
lihood function, GraphGen searches using simulated an-
nealing [40]. Each valid generalized graph (i.e., those such
that each supernode at least k nodes) is a state in the
search space. Starting with a generalized graph that has
a single partition (i.e., supernode) containing all nodes,
GraphGen proposes a change of state, by splitting a par-
tition, merging two partitions, or moving a node to a
different partition. The proposal of changing the current
state from generalized graph G to some new generalized
graph G

� is evaluated based on the change in likelihood
that results. The proposal is always accepted if it im-
proves the likelihood and accepted with some probability
if it decreases the likelihood. The acceptance probability
starts high and is cooled slowly until, as it approaches
zero, a move is accepted only if it increases the likelihood.
We terminate search when fewer than 0.02% of proposals
are accepted.

GraphGen may return a partitioning that is only lo-
cally maximal. Whether this happens depends in part
on the cooling schedule of simulated annealing; if cooled
slowly enough, it will return the global maximum with
high probability [40]. Nevertheless, finding the globally
optimal partition is an intractable problem, and we can-
not quantify how close the output is to the optimum.
In experimental results not shown, we did a more sys-
tematic exploration of the search space using random
restarts. On the Enron graph with k = 3, the log-
likelihood of the output partition ranged from −362.6
to −353.3; in contrast, a greedy algorithm returns a par-
tition with log-likelihood of only −511.5.

To make search more efficient, we cache the statis-
tics needed to compute likelihood. We maintain a cache
of edge counts d(X,Y) to facilitate computing the like-
lihood. Furthermore, when considering a move in search
space, it is only necessary to compute the change in like-
lihood, which is more efficient since a move only affects a
subset of terms in the likelihood equation. For example,
to split supernode X into X

� and X
��, the only affected

terms are the ones involving X. There is a term for each
neighbor Y of X (i.e., Y such that d(X,Y) > 0). Since
the input graphs are typically sparse, X has few neigh-
bors, resulting in only a small number of affected terms.
In the worst-case, computing the change in likelihood
requires time that is linear in the size of the input graph.

We also made a few design choices that make search
more efficient. A supernode is split in a greedy fashion: a
randomly chosen node is moved from X to a new group
X

�, and then for each of the next k−1 nodes, we select the
node that maximizes the likelihood when moved from X

toX
�. Second, when we consider merging two supernodes

or moving a node between supernodes, we only consider
supernodes X,Y that are neighbors or share a neighbor.
This is locally optimal, in that if Y does not satisfy this
condition, then merging X and Y can only decrease the
likelihood of the current generalized graph. While these

15

choices may exclude the optimal assignment, results indi-
cate that they are effective heuristics: they greatly reduce
runtime without any decrease in likelihood.

6.4 Capitalizing on limited adversaries

The GraphGen algorithm places each node in a supern-
ode with at least k−1 other nodes. This is a conservative
approach in that it ignores the fact that some nodes may
be structurally well-hidden in the original graph. Nodes
may be automorphically equivalent, or so similar that
only an adversary with substantial structural knowledge
can distinguish them.

Such a conservative approach has consequences for
utility, as graph structure is coarsened to the supernode
level. We would like an approach that can take advantage
of situations in which the adversary is known to have
limited knowledge of graph structure or where the graphs
contain many structurally homogenous nodes.

We propose an extension of GraphGen that anonym-
izes the graph with respect to a fixed model of adversary
knowledge. The idea is to only anonymize nodes that are
vulnerable to re-identification by the given adversary. By
focusing the anonymization on the vulnerable nodes, it
may be possible to preserve more of the structure of the
input graph.

To incorporate into the algorithm, the first step is to
identify the vulnerable nodes. Given adversary model Q
and group size k, a node x is vulnerable if |candQ(x)| <
k. For example, if Q is H1, then the only nodes that are
vulnerable are the ones whose degree occurs less than
k times. Then, the privacy condition on the generalized
graph is altered so that the only requirement is that if a
supernode contains a vulnerable node, then its size must
be at least k. This means that an invulnerable node can
be placed in a supernode of size 1.

This relaxed privacy condition can be incorporated
into the search procedure by allowing state changes that
place invulnerable nodes into supernodes of size less than
k. Alternatively, the search can execute as described above,
and then supernodes that contain only invulnerable nodes
can be replaced with individual supernodes for each in-
vulnerable node. (Supernodes containing a mixture of
vulnerable and invulnerable nodes must remain intact
to ensure that the vulnerable nodes are protected.) In
Section 7.4, we evaluate the latter approach for the H1

and H2 adversary models and measure the improvement
in utility that results. We refer to these variants of the
algorithm as GraphGen(H1) and GraphGen(H2) respec-
tively. The pseudocode is shown in Algorithm 2.

These alternative anonymization algorithms satisfy
graph k-anonymity, but for restricted adversaries.

Corollary 1 The output of GraphGen(H1) satisfies graph
k-anonymity with respect to H1. Similarly, the output of
GraphGen(H2) satisfies graph k-anonymity with respect
to H2.

Algorithm 2 GraphGen(Q) a modification of Algo-

rithm 1 that protects against Q adversaries.

Input: Ga = (Va, Ea), graph to generalize
k, minimum supernode size
Q knowledge query representing adversary capability

Output: G, a generalized graph that satisfies graph k-
anonymity with respect to Q adversaries.

1: S ← {u ∈ Va | |candQ(u)| < k} {Vulnerable nodes}
2: G ← GraphGen(Ga, k)

{Replace supernodes that contain only invulnerable
nodes}

3: for supernode X in G do

4: if X ∩ S = ∅ then

5: replace X with a supernode for each u ∈ X

6: end if

7: end for

8: return G

This follows from Proposition 2: vulnerable nodes re-
main in groups of size k and are therefore protected, and
invulnerable nodes are by definition nodes that the ad-
versary cannot re-identify with confidence greater than
1/k and therefore it is not necessary to generalize them.

7 Evaluating graph anonymization algorithms

We now present an extensive empirical evaluation of the
GraphGen algorithm. We evaluate its utility, compare it
to competing techniques, and measure the effectiveness
of the utility enhancements proposed in Section 6.4.

The first goal of our experimental evaluation is to as-
sess the overall utility of anonymized graphs. We would
like to quantify the extent to which the anonymized graphs
produced by GraphGen (and competing techniques) can
serve as an accurate approximation of the original pri-
vate graph. This is challenging because there are no well-
defined metrics to determine the similarity of two graphs.
As methods for producing anonymized networks emerge,
it is becoming increasingly important to develop a reli-
able means for assessing their utility.

Our basic approach is to consider a suite of graph
properties, measure both the original graph and the an-
onymized graph and compare the difference. If the an-
onymized graph differs from the original for some graph
property, as it often does, an essential question is whether
the difference is substantial. To help answer this ques-
tion, we include, as a reference point, a random graph of
the same size and density as the original graph. With re-
spect to a particular measure, if the original graph looks
very different from a random graph, then it is useful to
compare the anonymized graph to both the original and
the random graph. The more closely the anonymized
graph resembles a random graph, the less useful it is.
With the GraphGen approach, as group size k increases,
the anonymized graph converges on a random graph, and
we can measure the rate of convergence by varying k. On
the other hand, when the original graph and a random

16

graph appear similar, then the measured property does
not distinguish the original from a random graph and
thus cannot be used to assess whether anonymization
has preserved the structure of the original graph.

As another yardstick for measuring the loss in util-
ity, we evaluate the anonymization algorithms on some
carefully chosen combinations of metrics and synthetic
graphs. Inspired by research in the networking commu-
nity [2,45], we consider a few graphs that have a delib-
erately engineered structure and then use metrics that
capture how well this structure is preserved in the anon-
ymized graph. For instance, we consider a graph that is a
tree and measure the extent to which the graph remains
tree-like after anonymization. While some of these graphs
are unlikely to arise in practice, we find the experiments
give useful insights into the effect of anonymization and
help distinguish the behavior of competing techniques. It
is also important given that real technological networks
are often highly structured and poorly approximated by
random graphs [27].

The second goal of the experimental evaluation is to
compare GraphGen against competing techniques. One
challenge is that the privacy guarantees are not always
compatible and so an “apples to apples” comparison is
not straightforward. We attempt to address these dis-
parities in privacy guarantees by aligning our technique
with others so that privacy conditions are comparable
(Section 7.4), and by assessing the extent to which our
approach is vulnerable to attacks (Section 7.5). Despite
the incompatible privacy semantics in some cases, we
believe that comparisons of the algorithms are still use-
ful: their strengths and weaknesses are exposed and their
tendency to bias graph measures is revealed.

We note that the goal of publishing an anonymized
graph is not only to support the specific graph properties
studied here. The hope is that the released dataset can
be used for a wide range of investigations determined by
graph topology. If measuring a specific graph property is
the final objective of an analyst, alternative mechanisms
for releasing that property alone should be considered
(see discussion of some techniques in Section 8). At any
rate, many analyses cannot be distilled into simple graph
properties, and analysts often require sample datasets to
refine their algorithms or interpret results.

7.1 Compared anonymization algorithms

In the first set of experiments, we compare the GraphGen
algorithm described in Section 6 against two other algo-
rithms for graph anonymization: the algorithm of Cor-
mode et al. [8], denoted BCKS, and the algorithm of Liu
and Terzi [30], denoted LT.

The BCKS algorithm is similar to GraphGen in that
it partitions nodes into supernodes and outputs a gen-
eralized graph. However, in addition to preventing re-
identification, the resulting generalized graph is also guar-
anteed to prevent edge disclosure. The privacy condition

ensures that each supernode contains at least k nodes
and that edge disclosure is bounded by 1/k. This is done
by requiring that the supernodes satisfy an additional
safety condition, which states that if two nodes share a
neighbor, they must be placed in separate supernodes.
The GraphGen algorithm may not prevent edge disclo-
sure, especially at small k (see Section 7.5).

Another important difference is that the BCKS al-
gorithm’s strategy for choosing supernodes is guided by
privacy concerns—partitions are chosen to ensure low
edge disclosure risk—whereas the strategy of GraphGen
is guided by utility. As one might expect, we find that
GraphGen achieves higher utility than BCKS.

It should also be mentioned that the approaches pro-
posed by Cormode et al. [8] can handle richer graph data
representations, including attributes on nodes and edges
and multiple edge types. The focus of the empirical eval-
uation in [8] is on queries that involve attributes and
short path queries. The focus of our study is to measure
the effects of anonymization on graph topology.

The LT algorithm alters the graph through the inser-
tion and removal of edges with the goal of making nodes
more structurally uniform. The output is a single graph,
not a generalized graph. The algorithm alters the graph
until each node degree occurs at least k times. This pre-
vents re-identification by an adversary whose knowledge
is limited to node degree (i.e., an H1 adversary). It may
not protect against a more powerful adversary (e.g., an
H2 adversary). Given the weaker privacy condition, the
LT can achieve better utility than BCKS and GraphGen
on some measures.

The LT algorithm anonymizes the graph in a two-
stage process. First, it finds the minimum change to the
degree sequence such that the privacy condition is satis-
fied (each degree must appear at least k times), and the
degree sequence can be realized (the sequence of integers
must satisfy certain graph theoretic constraints). Then,
it attempts to transform the original graph into a new
graph that matches this degree sequence.

This second stage is non-trivial and Liu and Terzi [30]
consider several alternative algorithms. We implement
and compare against SimultaneousSwap. This algorithm
is the only one that allows both edge insertions and dele-
tions and appears to perform better than some of the
alternative approaches proposed in [30] that only allow
edge insertions. It is a greedy algorithm that starts with
a canonical graph conforming to the anonymized degree
sequence and rewires it in such a way that preserves its
degree sequence but increases the edge overlap with the
original graph.

7.2 Overview of experiments

To assess how anonymization impacts utility, we com-
pare the original graph to the anonymized output based
on several important graph properties (described below).
For each property, we measure it on the original graph

17

and on the anonymized output. For the algorithms that
output a single graph, we simply measure the property
on the output graph. For the algorithms that output a
generalized graph G, we estimate the graph property by
drawing 100 sample graphs from W(G), measuring the
property of each sample, and then aggregating measure-
ments across samples. We report the average and show
the standard deviation using error bars. The error bars
give a sense of how much variation there is among the
graphs in W(G).

If the samples are drawn uniformly from W(G), this
models an analyst who believes that each graph in W(G)
is equiprobable. In these experiments, we perform biased
sampling taking samples uniformly from W(G) subject
to the constraint that the minimum degree is one. This
makes it more likely that the sampled graph will contain
a large connected component. All of the input graphs
contain a single connected component, and we assume
this fact is revealed to the analyst.

As a baseline, we also measure the property on a sam-
ple of 100 random graphs that are the same density as
the original graph. We refer to this baseline as Random.
Note this baseline is equivalent to applying a graph gen-
eralization algorithm where k = |V |. It has maximum
privacy, but low utility as the only property of the orig-
inal revealed is the number of nodes and edges.

We repeat this procedure for each graph and each
setting of k ∈ {2, 5, 10, 20}. Note that while k is a com-
mon parameter across the algorithms that controls the
size of the group, the resulting privacy is not the same:
while GraphGen and BCKS ensure graph k-anonymity,
LT ensures only graph k-anonymity with respect to de-
gree (H1).

We report results on the datasets that were described
earlier in Section 3.

7.3 Results

We now present a comparison of the algorithms across
several different graph metrics. Results are presented one
metric at a time. We conclude with a general discussion
of the findings in Section 7.3.5.

The results of the experiments are shown in Fig-
ures 6-8. Each figure presents the results for a single
graph metric. The value of the metric for the true graph
is shown as a dashed black line. As a reference point,
the light gray region shows the value of the metric for a
random graph. It is a region because it depicts a range
of ±1 standard deviation around the average value over
conforming random graphs. Note that for each measure,
the scales of the y-axis vary across datasets, so in some
cases, while the gap between lines is large, the numerical
difference is quite small.

7.3.1 Paths

We consider several measures related to paths.

Connectedness Each of the anonymization algorithms
may alter the connectivity of the graph, either dividing a
connected component or merging two components. Each
of the input graphs contains a single connected compo-
nent, so we evaluate whether anonymization divides it.
Figure 6(a) shows the results. Generally, the anonym-
ized graphs contain a single large component, encom-
passing about 95% or more of the nodes. However, on
the sparsest graphs—NetTrace, HOT, and Tree—the
largest connected component of the anonymized graphs
can contain as few as 70% of the nodes.

Shortest Path Lengths We evaluate how anonymization
affects path lengths in the graph. We measure the length
of a shortest path between a pair of randomly chosen
nodes and compute the average length over 200 random
pairs. When the graph contains multiple connected com-
ponents, we only sample pairs from the largest connected
component. Since the measure itself is random, there can
be variation due to sampling. We measured this variation
and found it small compared to the bias introduced by
anonymization and so for presentation purposes we only
report the average from a single sample.

Figure 6(b) shows the results. The effect of anonymiz-
ation varies greatly across datasets. The greatest change
occurs on Mesh where path lengths are dramatically
shortened. In fact, for LT and BCKS, path lengths are
much closer to those of a random graph than to the orig-
inal graph. With the GraphGen graphs, while paths are
shortened, they remain considerably longer. GraphGen
tends to group neighboring nodes together, thus it does
not introduce as many shortcut paths that can connect
distant regions of the mesh graph.

The distortion of path lengths on Mesh is perhaps
not too surprising. For highly-structured graphs such as
a mesh or a lattice, even a small amount of perturbation
can greatly shorten paths by introducing a few shortcuts
paths that can connect distant regions of the mesh with
only a few hops [47] and meshes [24].

Generally, across all input graphs, the average path
lengths of an BCKS graph appears to converge to those
of Random as k increases. Convergence sometimes occurs
at small k (e.g., Mesh, Enron, HepTh). Convergence
occurs whether or not path lengths are shorter or longer
in random graphs than with the original.

LT produces graphs with shorter path lengths than
the original graph. It is very accurate on some graphs
(NetTrace, Power-Law).

There are no consistent trends for GraphGen. Some-
times paths are shorter, sometimes longer. Increasing k

does not have a consistent effect on path lengths. On
some graphs, particularly Tree, the path lengths can be
considerably longer than on the original graph.

Tree-like shortest paths We also include a graph theo-
retic measure called distortion, which in some sense cap-
tures how closely a graph resembles a tree [45]. To com-
pute distortion of G, we first construct a spanning tree

18

Hepth

2 5 10 20

0.
6

0.
8

1.
0

k

● ● ● ●

0.
6

0.
8

1.
0

Si
ze

 o
f g

ia
nt

 c
om

po
ne

nt Enron

2 5 10 20

0.
6

0.
8

1.
0

k

● ●
● ●

Nettrace

2 5 10 20

0.
6

0.
8

1.
0

k

● ● ● ●

Hot

2 5 10 20

0.
6

0.
8

1.
0

k

●

●

●

●

Power−Law

2 5 10 20

0.
6

0.
8

1.
0

k

● ● ● ●
Tree

2 5 10 20

0.
6

0.
8

1.
0

k

●

●

● ●

Mesh

2 5 10 20

0.
6

0.
8

1.
0

k

● ● ● ●
● GraphGen

BCKS
LT
Original
Random

(a) Size of largest (giant) connected component.

Hepth

2 5 10 205.
0

5.
5

6.
0

6.
5

k

●
●

●

●

5.
0

5.
5

6.
0

6.
5

Av
g.

 p
at

h
le

ng
th

s

Enron

2 5 10 20

3.
0

3.
4

3.
8

k

●

● ●

●

Nettrace

2 5 10 20

4
5

6
7

8

k

●
● ● ●

Hot

2 5 10 20

5.
5

6.
5

7.
5

8.
5

k

●

●

●

●

Power−Law

2 5 10 20

3.
8

4.
0

4.
2

4.
4

4.
6

k

●

●

●
●

Tree

2 5 10 20

12
16

20

k

●

●

●
●

Mesh

2 5 10 20

5
15

25
35

k

●

● ●
●

● GraphGen
BCKS
LT
Original
Random

(b) Average shortest path length.

Hepth

2 5 10 20

6
8

12
16

k

●
●

●

●

6
8

12
16

D
is
to
rti
on

Enron

2 5 10 20

4
5

6
7

k

●
●

●
●

Nettrace

2 5 10 20

4
6

8
12

k

● ● ●
●

Hot

2 5 10 20

1
2

3
4

k

●

● ●
●

Power−Law

2 5 10 20
10

15
20

25
k

● ● ●
●

Tree

2 5 10 20

1
2

3
4

5
6

7

k

● ●
● ●

Mesh

2 5 10 20

10
15

20
25

k

● ●
● ●

● GraphGen
BCKS
LT
Original
Random

(c) Distortion of paths in minimum spanning tree.

Fig. 6 The effect of anonymization on three graph measures related to paths. The results for three algorithms are compared,
with varying privacy parameter k, on seven different graphs. The value of the given measure on the true graph is shown as
a black dotted line. The value of the measure for sampled random graphs matching the density of the original is shown as a
gray region.

T . Then for each edge (u, v) in G, we compute the dis-
tance between u and v in T . The distortion is the average
distance over all edges in G. Thus, it measures how path
lengths of G are distorted (i.e., lengthened) if we are re-
stricted to only traversing edges in tree T . If G is a tree,
then distortion is 1. A random graph has a distortion of
approximately log n.

Figure 6(c) shows the distortion of the anonymized
graphs. We focus on Tree, because the original graph
is in fact a tree and so its distortion is 1. Anonymized
graphs have a distortion measure exceeding 1, indicating
the anonymized graphs are no longer tree-like. Distortion
is high for LT and BCKS across all k. In fact, the dis-
tortion measure of the anonymized graphs is often closer
to a random graph than the original tree. For GraphGen
graphs, while distortion increases with k, it is very low
at small k. Thus, it appears as though GraphGen more
accurately preserves the tree-like structure of Tree.

In the other graphs, anonymization tends to produce
graphs with higher distortion than the original graph. LT
performs comparably to GraphGen, except on Mesh,
where the distortion of GraphGen is much lower and
closer to the original graph. On HOT, which has low
distortion indicating tree-like structure, both GraphGen
and LT preserve its tree-like structure at small k.

7.3.2 Degree-related measures

The degree distribution of a graph is an important prop-
erty of a graph. We look at several different metrics that
capture how anonymization affects degree distributions.

Mallows distance First, we compare the distributions
using Mallows distance, a standard metric for comparing
two distributions. Let d = d1, . . . , dn be the degree se-
quence of the original graph G where di corresponds to
the i

th largest node degree in G. Let d� be the degree se-
quence of an anonymized graph. Mallows distance (also
known as Earth Mover’s distance [26]) is the Lp distance
between the two sequences

Mallowsp(d, d
�) =

� 1
n

n�

i=1

��di − d
�

i

��p
�1/p

We use p = 1. Thus, the Mallows distance captures how
much, on average, each node degree is altered by anon-
ymization. E.g., a distance of 1 means each node’s degree
is changed on average by ±1.

Figure 7(a) shows some trends across datasets and
k. Mallows distance tends to increase with k, though
sometimes inconsistently for GraphGen. The anonym-
ized graphs tend to have lower Mallows distance than
Random, indicating that the degree sequence of the an-
onymized graph preserves some of the “structure” of the
original degree sequence.

In comparing algorithms, BCKS performs worse than
the other approaches, with Mallows distance rapidly ap-
proaching that of Random with increasing k. LT almost
always has the lowest Mallows distance, which is ex-
pected given that the LT algorithm explicitly tries to
minimize the change to the degree sequence. On graphs
where the original graph has nearly uniform degree—
Mesh and Tree—the LT alters the degree sequence only

19

Hepth

2 5 10 20

0.
0

0.
5

1.
0

1.
5

k

●

● ●
●

0.
0

0.
5

1.
0

1.
5

M
al

lo
w

 d
is

ta
nc

e

Enron

2 5 10 20

0.
0

0.
4

0.
8

1.
2

k

●
●

●

●

Nettrace

2 5 10 20

0.
0

1.
0

2.
0

k

●

●
●

●

Hot

2 5 10 20

0.
0

0.
4

0.
8

1.
2

k

●
●

●
●

Power−Law

2 5 10 20

0.
0

1.
0

2.
0

k

●

● ●
●

Tree

2 5 10 20

0.
0

0.
2

0.
4

0.
6

k

● ●
● ●

Mesh

2 5 10 20

0.
0

0.
5

1.
0

1.
5

k

●

●
●

● ● GraphGen
BCKS
LT
Original
Random

(a) Error in degree distribution, measured by Mallows distance

Hepth

2 5 10 20

15
25

35

k

●

● ●
●

15
25

35
M

ax
 d

eg
re

e

Enron

2 5 10 20

10
14

18

k

●
●

● ●

Nettrace

2 5 10 20

0
50

0
15

00

k

●

●

●
●

Hot

2 5 10 20

20
40

60
80

k

●

●
●

●

Power−Law

2 5 10 20

50
10

0
15

0

k

●

●

●

●

Tree

2 5 10 20

4
5

6
7

8
9

k

●

●
●

●

Mesh

2 5 10 20

4
6

8
10

12

k

●

●

●
●

● GraphGen
BCKS
LT
Original
Random

(b) Maximum degree

Hepth

2 5 10 200.
5

0.
7

0.
9

1.
1

k

●

●
●

●

0.
5

0.
7

0.
9

1.
1

D
eg

re
e

di
ve

rs
ity

Enron

2 5 10 200.
45

0.
55

0.
65

0.
75

k

●

●
●

●

Nettrace

2 5 10 20

2
4

6
8

12

k

●

●

●

●

Hot

2 5 10 20

0.
8

1.
2

1.
6

2.
0

k

●

●
●

●

Power−Law

2 5 10 200.
4

0.
8

1.
2

k

●
●

● ●

Tree

2 5 10 20

0.
62

0.
66

0.
70

k

●

●
●

●

Mesh

2 5 10 20

0.
1

0.
3

0.
5

k

●

●
●

● ● GraphGen
BCKS
LT
Original
Random

(c) Diversity of degree distribution

Hepth

2 5 10 20

0.
2

0.
6

1.
0

k

●

● ● ●

0.
2

0.
6

1.
0

D
eg

re
e

co
rre

la
tio

n

Enron

2 5 10 20

0.
2

0.
6

1.
0

k

● ● ● ●

Nettrace

2 5 10 20

0.
2

0.
6

1.
0

k

●

●
● ●

Hot

2 5 10 20

0.
2

0.
6

1.
0

k

●
● ●

●

Power−Law

2 5 10 20

0.
2

0.
6

1.
0

k

●
●

● ●

Tree

2 5 10 20

0.
2

0.
6

1.
0

k

●
● ● ●

Mesh

2 5 10 20

0.
2

0.
6

1.
0

k

●
● ● ● ● GraphGen

BCKS
LT
Original
Random

(d) Degree correlations

Fig. 7 The effect of anonymization on four measures related to the degree distribution. Again, the results for three algorithms
are compared, with varying privacy parameter k, on seven different graphs. The value of the given measure on the true graph
is shown as a black dotted line. The value of the measure for sampled random graphs matching the density of the original is
shown as a gray region.

slightly to satisfy its privacy condition, resulting in a
Mallows distance of zero or near zero on these graphs.
GraphGen is typically between LT and BCKS.

Maximum degree Figure 7(b) compares the maximum
degree of the original graph with the maximum degree
in the anonymized graph. The figure shows a clear trend:
as k increases, the maximum degree of each anonymized
graph converges to the maximum degree of Random. On
Mesh and Tree, the max degree is higher in Random
and the max degree of anonymized graphs increase (ex-
cept for LT which stays constant). For the other graphs,
the max degree of Random is lower than that of the
original, sometimes much lower. For example, on Net-
Trace, the maximum degree is 1656 but Random has
a max degree of around 10. For all approaches, anon-
ymization reduces the max degree by more than half at
k = 5. When the maximum degree is an outlier, such
distortion is in some sense inevitable given the privacy
condition: each node degree must be homogenous with at
least k−1 other node degree. Nevertheless, such a signif-
icant change in degree suggests that the graph structure
has been significantly altered.

While all approaches converge to Random, their rates
of convergence differ. The max degree of BCKS changes
the most rapidly with k. Surprisingly, on the graphs
where the maximum degree is larger than that of a ran-
dom graph, the max degree of GraphGen decreases less
rapidly than LT.

Degree variability In addition to measuring the maxi-
mum degree, we also measure the variation in the degree
distribution. The coefficient of variation CV (d) measures
the diversity of degree distribution d. It is defined as
CV (d) = σ(d)/�d� where �d� is the average degree and
σ(d) =

�n
i=1(di − �d�)2/(n − 1). Graphs with homoge-

nous degrees have low CV and graphs with diverse degree
sequences, such as power-law graphs, have high CV [2].

Figure 7(c) shows that, like maximum degree, the CV

of anonymized graphs converges towards random graphs
as k increases, except on Power-Law, where diversity
remains high at k = 20. The comparison between algo-
rithms is similar as it is with max degree.

Degree correlations We also measure degree correlations—
i.e., the correlation between a node’s degree and the de-
grees of its neighbors. It is an important property that

20

influences processes on networks [11]. We measure cor-
relations using the s metric. For graph G = (V,E) it is
defined as s(G) =

�
(u,v)∈E d(u)d(v) where d(u) is the

degree of node u. A high s(G) indicates that high de-
gree nodes are connected to one another. We report a
normalized s measure s(G)/smax(G) where smax(G) is
the maximum possible s of any graph with the same de-
gree sequence as G. (In practice, it is computationally
intensive to find the true maximum, so we approximate
it with the Havel-Hakimi graph [6], which is efficient to
construct and tends to have very high s.)

This measure is particularly interesting on the HOT
graph. The HOT graph is explicitly engineered so that
high degree nodes are at the periphery of the graph con-
nected to low degree nodes, resulting in a low s(G) mea-
sure. In contrast, in a random graph, high degree nodes
are likely to be connected to each other, resulting in a
high s measure [2].

Figure 7(d) shows that in the anonymized version
of HOT, increasing k results in an increased s mea-
sure. GraphGen preserves the low s measure better than
LT and substantially better than BCKS. On the other
graphs, the performance varies considerably, with cor-
relations sometimes tending to Random (e.g., HepTh),
sometimes diverging from it (e.g.,NetTrace), and some-
times remaining constant (e.g., Tree).

7.3.3 Clustering

Clustering coefficient measures the likelihood that two
neighbors of a node are themselves connected (in a social
network, whether a friend of a friend is also a friend). It

is defined as C(G) = 1
n

�
u

�(u)
(d(u)(d(u)−1))/2 where �(u)

is the number of triangles (cliques of size 3) containing
u and d(u) is the degree of u.

We report on graphs that have substantial cluster-
ing (C(G) > 0.15). For the graphs where clustering co-
efficient is low, the anonymization tends to preserve the
low clustering coefficient (they never exceeded 0.15). The
graphs with high clustering include Enron and HepTh.
We also include a synthetic graph, Clustered Power-
Law, which is similar to Power-Law except that the
random graph generation process is biased to introduce
triangles [22]. We set the probability of triangle forma-
tion to be 0.4.

Hepth

2 5 10 20

0.
00

0.
10

0.
20

0.
30

k

●

●

●

●

0.
00

0.
10

0.
20

0.
30

C
lu

st
er

in
g

co
ef

fic
ie

nt

Enron

2 5 10 20

0.
00

0.
10

0.
20

0.
30

k

●

●

●

●

Clustered Power−Law

2 5 10 20

0.
00

0.
10

0.
20

0.
30

k

●

●

●
●

● GraphGen
BCKS
LT
Original
Random

Fig. 8 The effect of anonymization on clustering coefficient.

Figure 8 shows how anonymization reduces the clus-
tering coefficient of clustered graphs. Even at k = 2, the

BCKS has substantially lower clustering coefficient than
the original graph. At larger k, all anonymized graphs
have substantially reduced clustering. At small k, Graph-
Gen preserves the greatest amount of clustering.

With GraphGen, it is difficult to preserve clustering
coefficient, especially at large k. The process of randomly
sampling from W(G) tends to destroy clustering coeffi-
cient. The sampled structure within each supernode is
simply a random graph with a density determined by
the weight of the supernode’s self edge. Unless they are
very dense, random graphs have low clustering coeffi-
cient. Real world graphs, are typically very sparse, and so
as k increases the density within a supernode decreases.

7.3.4 Runtime

We also measure the runtime of the different algorithms.
We report results on one of the largest graphs, Net-
Trace; runtimes on the other graphs are qualitatively
similar. While GraphGen is considerably slower than the
alternative algorithms, runtime is a secondary concern as
the algorithms are run “offline” by the data owner.

Table 2 shows that the runtime of BCKS does not
depend on group size, agreeing with previous theoreti-
cal analysis [8]. The runtime of the LT algorithm varies
across k: its runtime is dominated by the graph construc-
tion process, which depends on the number of rewiring
iterations, something that varies considerably depending
on the particular instance, leading to variation in run-
time. Finally, the runtime of GraphGen appears to de-
crease with k. This is due to the fact that when groups
are large, the supergraph is comparably more sparse.
Therefore, the number of the successors (see Algorithm 1)
is smaller, and so each step in the search runs faster.

Table 2 OnNetTrace, a comparison of runtimes (seconds).

Algorithm k = 2 k = 5 k = 10 k = 20
BCKS 0.2 0.3 0.2 0.2
LT 43.4 29.6 74.2 52.7
GraphGen 3628.8 3171.9 15311.1 1560.1

7.3.5 Discussion

The experiments give insight into how the topological
properties of graphs are affected by anonymization. Path
lengths tend to more closely resemble path lengths in a
random graph, whether they are shorter or longer than
the original graph. Highly variable degree distributions
(as occurs in power-law graphs) tend to become more
uniform and high degree nodes have their degrees re-
duced. In graphs that are highly clustered, the effect of
anonymization is to substantially reduce the clustering
coefficient. However, the results also show that it is pos-
sible to provide privacy and still preserve some aspects
of the original graph.

For graphs with a deliberately engineered structure
(such as Mesh, Tree, and also HOT), anonymization

21

can introduce significant distortion. The GraphGen algo-
rithm, because it explicitly accounts for structure in its
anonymization, preserves these qualities relatively well.
For example, paths remain long in Mesh, Tree remains
tree-like, and degree correlation of HOT remains low.

In terms of comparing the different algorithms, we
find that LT and GraphGen perform consistently bet-
ter than BCKS. While LT clearly has an advantage over
GraphGen on some metrics, the performance of Graph-
Gen is often comparable and sometimes better than the
performance of LT. In the next section, we resolve the
difference in the privacy standards between these algo-
rithms and present an more apples-to-apples comparison.

Recall that the error bars around the measures for
GraphGen and BCKS measure the variability across sam-
ples from the W(G). Since the original graph G is a mem-
ber W(G), one might expect that the error bars would
overlap the measure recorded on G. This does not always
occur, suggesting that while G is a possible world that is
consistent with G, it is unlikely to be sampled by chance.
It may be possible to bias the sampling to make G more
likely, but it is not clear how this impacts privacy.

As mentioned earlier, the GraphGen and BCKS ap-
proaches differ in how the generalized graph is constructed;
in GraphGen it is guided by utility concerns and in BCKS
it is guided by privacy concerns. The edge safety condi-
tion of BCKS requires two neighbors of a node to be
placed into separate supernodes. However, the Graph-
Gen often places a node’s neighbors together and it ap-
pears to lead to better utility. It may be that the edge
safety condition, while it ensures that the output does
not allow edge disclosures, may conflict with some of the
utility metrics considered here.

7.4 Utility of enhanced graph generalization algorithm

In this section, we evaluate the proposed enhancements
to GraphGen described in Section 6.4. By focusing the
anonymization only on the nodes that are vulnerable to
re-identification, we hypothesize that we can improve
the utility of GraphGen, which conservatively general-
izes all nodes. We compare GraphGen against two alter-
natives: GraphGen(H1) which guards against H1 adver-
saries, and GraphGen(H2) which protects against the
stronger H2 adversary. Since GraphGen(H1) provides
the same privacy guarantee as LT, we also include a di-
rect comparison of those approaches.

Based on our earlier assessment in Section 3, we ex-
pect that GraphGen(H1) will alter the input graph much
less than GraphGen, as most nodes are naturally well-
hidden against an H1 adversary. For GraphGen(H2), it
will depend on the dataset. Many nodes are vulnerable
in HepTh and almost all nodes are vulnerable in Enron
and Power-Law, so we may not expect much improve-
ment on those datasets. For the other datasets, many
nodes are well hidden at H2 and so GraphGen(H2) may
generalize these graphs much less than GraphGen.

We summarize the performance difference between
GraphGen and its variants using a suitably normalized
measure of each of the properties described in in Sec-
tion 7.3. We normalize each measure in terms of the dis-
tance between between GraphGen and the original graph
G. Let P denote a graph property and P (g) denote the
evaluation of P on graph g. The normalized score of an-
onymized graph A is defined as |P (A)−P (G)|

|P (GraphGen)−P (G)| . A
score of less than 1 indicates that algorithm A preserves
the property more accurately than GraphGen.

Since GraphGen(H1) and GraphGen(H2) guard against
weaker adversaries than GraphGen, the expectation is
that the normalized score will be closer to zero, indicat-
ing closer agreement with the original graph.

Table 3 shows the results for GraphGen(H1). The
results show in general that by targeting the anonymiz-
ation to protect against H1 adversaries, it is possible to
improve utility. The magnitude of the improvement is not
consistent across datasets, with datasets such Tree and
Mesh seeing large gains and Enron seeing relatively
small gains. Sometimes utility degrades (a normalized
score exceeding one). Generally this is when the original
GraphGen algorithm is a very accurate approximation
of the original graph (e.g., distortion on Mesh), so the
denominator of the normalized measure is small. Table 4
shows that utility improves with GraphGen(H2), but the
improvement is much less than with GraphGen(H1).

Comparison between GraphGen(H1) and LT While the
utility of LT was compared against BCKS and GraphGen
in Section 7.3, these algorithms are not directly compa-
rable in terms of their privacy guarantees because LT
places restrictions on the adversary’s knowledge. How-
ever, we can directly compare LT with GraphGen(H1)
because they both provide equal privacy protection.

Table 5 compares LT and GraphGen(H1) using a
measure which is normalized to LT. Thus a score less
than 1 indicates that GraphGen(H1) more accurately
approximates the original graph, and a score exceed-
ing 1 indicates that LT is more accurate. (A dash in-
dicates that LT matches the original, so the normalized
score is undefined; and a 0* indicates that both LT and
GraphGen(H1) perfectly match the original.) The results
suggest that the approaches perform somewhat compa-
rably. There is only one measure (distortion) in which
one algorithm is consistently more accurate across the
datasets, and there is no dataset where one algorithm is
consistently more accurate.

7.5 Assessing edge disclosure in generalized graphs

Recall our assessment (Section 3.2) of edge disclosure
under naive anonymization, which showed that it is pos-
sible for a knowledgeable adversary to accurately deter-
mine whether two nodes are connected. We revisit edge
disclosure here, measuring the extent to which graph gen-
eralization reduces the risk of edge disclosure.

22

Table 3 A comparison of utility of GraphGen(H1) and GraphGen at k = 10. Numbers are normalized scores where less than
1 indicates GraphGen(H1) is more accurate than GraphGen.

Statistic HepTh Enron NetTrace HOT Power-Law Tree Mesh
Size of giant component 0.014 0.348 0.19 0.695 0 0.333 0.086
Avg. path lengths 1.369 6.174 1.016 0.919 0.002 0.431 0.046
Distortion 0.648 0.973 0.972 0.624 0.665 0.006 0.483
Mallows distance 0.54 0.959 0.946 0.653 0.256 0.005 0.009
Max. degree 1.023 0.982 1.001 0.994 0.997 0.349 0.398
Degree diversity 0.584 1.015 1 0.95 0.911 0.006 0.034
Degree correlation 0.712 0.972 1.039 1.013 0.403 0.065 0.015
Clustering coefficient 0.508 0.869 0.223 0.318 0.954 0.002 0.023

Table 4 A comparison of utility of GraphGen(H2) and GraphGen at k = 10. Numbers are normalized scores where a number
less than 1 indicates GraphGen(H2) is more accurate than GraphGen.

Statistic HepTh Enron NetTrace HOT Power-Law Tree Mesh
Size of giant component 0.921 1.03 0.926 0.923 1.079 0.772 0.086
Avg. path lengths 0.947 0.793 1.031 0.818 1.098 0.671 0.046
Distortion 0.964 1.31 1.02 0.822 1.24 0.018 0.483
Mallows distance 0.996 1.005 0.996 0.841 0.998 0.014 0.009
Max. degree 1.018 0.998 0.999 0.983 1.004 0.481 0.398
Degree diversity 0.997 0.999 1 0.973 1.002 0.004 0.034
Degree correlation 1.004 1.018 1.002 1.013 0.97 0.075 0.015
Clustering coefficient 0.995 1.009 0.93 0.643 0.926 0.006 0.023

Table 5 A comparison of utility of GraphGen(H1) and LT at k = 10. Numbers are normalized scores where a number less
than 1 indicates GraphGen(H1) is more accurate than LT. (A dash indicates that LT perfectly matched the original, so the
normalized score is undefined. A 0* indicates that both LT and GraphGen(H1) perfectly matched the original.)

Statistic HepTh Enron NetTrace HOT Power-Law Tree Mesh
Size of giant component 0.003 - 0.007 1.195 0* 0.423 0*
Avg. path lengths 0.242 0.151 1.484 0.296 0.016 3.438 0.032
Distortion 0.473 0.55 1.425 0.661 0.84 0.002 0.039
Mallows distance 9.555 0.872 0.958 0.934 1.323 0.643 3.465
Max. degree 1.48 0.92 0.937 0.775 0.807 - -
Degree diversity 46.66 8.311 0.928 1.016 1.482 0.273 8.151
Degree correlation 2.483 12.204 0.71 0.112 0.803 0.051 0.871
Clustering coefficient 0.492 1.025 0.002 1.684 0.579 0.138 0.556

While graph generalization prevents re-identification
(Section 6.2), edge disclosure may still be possible. For
example, if an adversary can determine which supernode
contains Alice and which supernode contains Bob he can
estimate the likelihood of an edge between Alice and Bob
based on the weight of the superedge between their re-
spective supernodes. The weight reveals the number of
edges in the original graph between the nodes in Alice’s
supernode and the nodes in Bob’s supernode. A higher
weight increases the likelihood they are connected.

To assess the risk of edge disclosure, we conserva-
tively assume that the adversary can successfully identify
the supernode of each target node. In practice, we expect
that this will be difficult for an adversary with limited
knowledge, so our results may exaggerate the risk. Given
two target nodes u and v in G, the adversary computes
the likelihood of edge between u and v by first identify-
ing their supernodes in G, denoted X and Y respectively,
and then observing the superedge weight, d(X,Y). The

likelihood of edge (u, v) is d(X,Y)/|X||Y | or, in the case
when X = Y—i.e., the targets share a supernode—the
edge likelihood is 2d(X,X)/|X|(|X|− 1).

Our experiment is as follows. Given a graph G and
a setting of k, we produce a generalized graph Gk and
measure its edge disclosure risk. For each edge in the
original graph G, we measure its likelihood given Gk.
Each edge likelihood � is a number in [0, 1] which we
discretize into five categories from “low” (� ∈ [0, 0.10))
to “high” (� = 1.0). We report the percentage of edges
in each category. This is similar to the experiments in
Section 3.2 except rather than vary adversary knowledge,
we assume a powerful adversary who knows the mapping
of nodes to supernodes.

Figure 9 shows the results across several input graphs
and settings of k. (Note the grayscale used here differs
from the one used in Figure 4.) The results show that
when k = 2, some edges are disclosed in all datasets. This
is not surprising because at k = 2, whenever two neigh-

23

Pe
rc

en
ta

ge
 o

f e
dg

es
 in

 G

k = 2 5 10 20

HepTh

0
20

40
60

80
10

0

k = 2 5 10 20

Enron

0
20

40
60

80
10

0

k = 2 5 10 20

NetTrace

0
20

40
60

80
10

0

k = 2 5 10 20

HOT

0
20

40
60

80
10

0

k = 2 5 10 20

Power−Law

0
20

40
60

80
10

0

k = 2 5 10 20

Tree

0
20

40
60

80
10

0

k = 2 5 10 20

Mesh

[0, 0.10)
[0.10, 0.25)
[0.25, 0.50)
[0.50, 1.00)
[1.00]

0
20

40
60

80
10

0

Fig. 9 Risk of edge disclosure in generalized graphs across different datasets and settings of k.

bors are placed into the same supernode, the edge be-
tween them is disclosed—the weight of the self-superedge
is either 1 (if they are connected) or 0 (if they are not).

At k = 5, a small portion of edges is disclosed in
two graphs, HepTh (2.1%) and Enron (6.9%), but for
the other graphs no edges are disclosed. Overall, edge
disclosure diminishes rapidly with increasing k. By k =
20, edge likelihoods are less than half across all graphs.

The experiments show that for reasonable settings
of k, the process of graph generalization greatly reduces
the threat of edge disclosure. Our assessment is conserva-
tive and may overstate the threat. To prevent disclosure
even at small k, one must explicitly place neighboring
nodes in separate supernodes. This is done in the BCKS
algorithm, which uses a safety condition to ensure that
superedge weights are bounded by 1/k. However, this ad-
ditional safety condition has considerable cost in utility
as shown in Section 7.3.

8 Related work

8.1 Attacks

Backstrom et al. [4] were the first to propose an at-
tack on anonymized networks, demonstrating that naive
anonymization does not ensure privacy. Their main re-
sult concerns an active attack, where the adversary is
capable of adding nodes and edges prior to anonymiza-
tion. The attack re-identifies an arbitrary set of targets
by inserting a random subgraph that will be unique with
high probability (independent of the input graph) and
then connecting the subgraph to the targets.

Passive attacks—where the adversary attacks an al-
ready published network—have been more extensively
studied. We first introduced the passive attack based
on Hi degree signatures in Hay et al. [19,20]. We also
studied adversaries with knowledge of partial subgraph
patterns around a target, and knowledge of connections
to hubs in the network. Narayanan and Shmatikov [34]
propose a passive attack in which the adversary exploits
access to an auxiliary network whose membership over-
laps with the anonymized network. Such an attack can
lead to breaches of privacy if for instance the anonymized

network includes sensitive attributes or additional edges
absent from the auxiliary network.

Singh and Zhan [43] measure the vulnerability to at-
tack as a function of well known topological properties
of the graph, and Wang et al. [46] propose a measure of
anonymity based on description logic.

8.2 Network anonymization algorithms

In [20], we proposed an anonymization technique for graphs,
a technique based on random edge deletions and inser-
tions, which resisted attacks of an H1 adversary, but at a
significant cost in graph utility [20]. Edge randomization
is further explored by Ying and Wu [50] who propose
randomization strategy that biases the randomization to
preserve key spectral properties of the graph. This im-
proves utility, but they do not evaluate the impact that
biasing the randomization has on privacy.

Liu and Terzi [30] propose several algorithms for an-
onymizing a graph through the insertion and removal of
edges, altering the graph so that nodes cannot be distin-
guished by degree. We compare against their Simultane-
ousSwap algorithm in Section 7.

Zhou and Pei [52] present an anonymization algo-
rithm for graphs that allows for labels on the nodes.
They consider an adversary who knows the local neigh-
borhood of a target (the induced subgraph of the target
and its neighbors) and anonymize the graph by gener-
alizing node labels and inserting edges until each neigh-
borhood is isomorphic to at least k − 1 others. Zou et
al. [53] consider a similar approach, except require each
node to be automorphically equivalent with k− 1 others.

In their initial work on graph anonymization, Cor-
mode et al. [9] consider bipartite graph data—representing,
for example, associations between people and products
they purchase—and propose an anonymization algorithm
that breaks the association between identifying attributes
and nodes in the graph. The main threat considered is an
adversary with knowledge of node attributes, and so the
anonymization leaves the structure of the graph intact.
This approach is extended in [8] to handle a richer class
of data, such as social networks with multiple edge types
and attributes on nodes and edges. They also consider
an approach which protects against an adversary with

24

knowledge of graph structure. They propose a partition-
ing based approach that we compare against in Section 7.

Zheleva et al. [51] consider graphs with labeled edges
and an adversary with a predictive model for edges and
knowledge of constraints on connections in the graph; the
goal of anonymization is to prevent accurate prediction
of a class of sensitive edges. The data model, threats
considered, and adversary capabilities differ significantly
from those treated here.

Rastogi et al. [39] present a mechanism for tables that
has a natural interpretation for graphs. They randomly
remove a fraction of original edges and randomly add a
fraction of new edges. The resulting table is released in
its entirety. They show that the parameters of the ran-
dom process can be chosen to ensure strong protection
against edge disclosure while allowing a class of counting
queries to estimated accurately. Unfortunately it does
not address queries that require joins on the edge table,
which are crucial to network analysis.

8.3 Query answering approaches

Dwork et al. [13] introduce a strong notion of privacy
called differential privacy and present an interactive algo-
rithm – where users pose queries and the data owner re-
turns randomly perturbed answers – that achieves strong
privacy guarantees and can guarantee high utility for
some queries. Differential privacy has been an area of
active research (for a survey, see Dwork [12]). The pri-
vacy definition extends naturally to data publication, but
most work considers interactive approaches.

Some work has considered how differential privacy
can be applied to network data [13,18,36,38]. The proper
interpretation of differential privacy for networks is not
immediate, as the sensitive entity could be considered an
edge, a set of edges, or a node along with its edges [18].

Under node-differential privacy, a node and all of its
incident edges are protected; however, with such a rig-
orous privacy standard, basic network properties such
as degree distribution cannot be accurately estimated.
Under edge-differential privacy, which prevents the dis-
closure of individual edges, the degree distribution [18,
21] and other network analyses have low sensitivity and
can be answered accurately [13].

However, even under edge-differential privacy, some
common network analyses have high sensitivity and can-
not be answered accurately. For example, measures of
transitivity have O(n) sensitivity, rendering noisy esti-
mates useless. Nissim et al. [36] propose a relaxation
of differential privacy and provide algorithms for query
answering where the amount of noise depends on the
particular input database. Among other application, this
technique can be used to accurately estimate transitivity
on some graphs. Rastogi et al. [38] propose an alterna-
tive weakening of differential privacy for queries involving
joins on a relationship table, allowing transitivity to be

estimated accurately along with a more general class of
subgraph counting queries.

8.4 Other graph privacy work

The anonymization of existing networks is not the only
privacy problem that arises with network data. Frikken
and Golle [16] designed a protocol for privately assem-
bling a graph that is distributed among a large num-
ber of parties. The output of the protocol is a naively-
anonymized graph. Korolova et al. [25] consider an ad-
versary who tries to re-assemble the graph from a set of
views of local neighborhoods (obtained, for example, by
breaking into user accounts of an online social network).

9 Conclusion

We have focused on what we believe to be one of the
most basic and distinctive challenges for protecting pri-
vacy in network datasets—understanding the extent to
which graph structure acts as an identifier. We have for-
malized adversary knowledge and evaluated their impact
on real and synthetic networks as well as models of ran-
dom graphs. We proposed anonymizing a graph by gen-
eralizing it: partitioning the nodes and summarizing the
graph at the partition level. We show that a wide range
of important graph analyses can be performed accurately
on the generalized graphs published. An important area
for future investigation is to develop bounds on the dis-
tortion introduced by anonymization. Analytical bounds
could be developed through analysis of the generalized
graphs, or empirical bounds could inferred through care-
ful sampling of the possible worlds implied by the gen-
eralized graphs. We also hope to investigate techniques
that will safely permit the analyst to sample higher qual-
ity representatives from the set of possible worlds, for
example, by biasing sampling towards the true graph.

10 Acknowledgments

Hay and Jensen were supported by the Air Force Re-
search Laboratory and the Intelligence Advanced Re-
search Projects Activity, under agreement number FA8750-
07-2-0158. Hay, Miklau, Li, and Towsley were supported
by NSF CNS 0627642. The U.S. Government is autho-
rized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation
thereon. The views and conclusion contained herein are
those of the authors and should not be interpreted as
necessarily representing the official policies or endorse-
ments, either expressed or implied, of the Air Force Re-
search Laboratory and the Intelligence Advanced Re-
search Projects Activity, or the U.S. Government.

25

References

1. W. Aiello, F. R. K. Chung, and L. Lu. A random graph
model for massive graphs. In Proceedings of the Thirty-

second Annual ACM Symposium on Theory of Comput-

ing, pages 171–180, Portland, OR, May 2000. ACM Press,
New York, NY.

2. D. L. Alderson and L. Li. Diversity of graphs with highly
variable connectivity. Physical Review E, 75(4):046102,
Apr 2007.

3. L. Babai and L. Kucera. Canonical labelling of graphs in
linear average time. In Proceedings of the Twentieth An-

nual Symposium on Foundations of Computer Science,
pages 39–46, San Juan, Puerto Rico, October 1979. IEEE
Computer Society.

4. L. Backstrom, C. Dwork, and J. M. Kleinberg. Wherefore
art thou R3579X? Anonymized social networks, hidden
patterns and structural steganography. In Proceedings

of the Sixteenth International World Wide Web Con-

ference, pages 181–190, Banff, AB, Canada, 2007. ACM
Press, New York, NY.

5. A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, October
1999.

6. J. Blitzstein and P. Diaconis. A sequential importance
sampling algorithm for generating random graphs with
prescribed degrees. Unpublished, 2006.

7. W. W. Cohen. Enron email dataset.
http://www.cs.cmu.edu/˜enron/, 2005.

8. G. Cormode, D. Srivastava, S. Bhagat, and B. Krish-
namurthy. Class-based graph anonymization for social
network data. Proceedings of the VLDB Endowment,
2(1):766–777, 2009.

9. G. Cormode, D. Srivastava, T. Yu, and Q. Zhang. Anon-
ymizing bipartite graph data using safe groupings. Pro-

ceedings of the VLDB Endowment, 1(1):833–844, 2008.
10. D. G. Corneil and C. C. Gotlieb. An efficient algorithm

for graph isomorphism. Journal of the ACM, 17:51–64,
January 1970.

11. L. Costa, F. Rodrigues, G. Travieso, and P. Boas. Char-
acterization of complex networks: A survey of measure-
ments. Advances in Physics, 56(1):167–242, 2007.

12. C. Dwork. Differential privacy: A survey of results. In
Proceedings of the Theory and Applications of Models

of Computation Fifth International Conference, number
4978 in Lecture Notes in Computer Science, pages 1–19,
Xi’an, China, April 25–29, 2008. Springer.

13. C. Dwork, F. McSherry, K. Nissim, and A. Smith. Cal-
ibrating noise to sensitivity in private data analysis. In
Proceedings of the Third Theory of Cryptography Con-

ference, number 3876 in Lecture Notes in Computer Sci-
ence, pages 265–284, New York, NY, March 4–7, 2006.
Springer.

14. P. Erdös and A. Rényi. On the evolution of random
graphs. Bulletin of the Institute of International Statis-

tics, 38:343–347, 1961.
15. N. Friedkin. Horizons of observability and limits of infor-

mal control in organizations. Social Forces, 62(1):54–77,
1983.

16. K. B. Frikken and P. Golle. Private social network anal-
ysis: How to assemble pieces of a graph privately. In
Proceedings of the ACM Workshop on Privacy in the

Electronic Society, pages 89–98, Alexandria, VA, Octo-
ber 30 2006. ACM Press.

17. S. R. Ganta, S. P. Kasiviswanathan, and A. Smith. Com-
position attacks and auxiliary information in data pri-
vacy. In Proceedings of the Fourteenth ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, pages 265–273, New York, NY, USA, 2008.
ACM.

18. M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate es-
timation of the degree distribution of private networks.
In Proceedings of the IEEE International Conference on

Data Mining, pages 169–178, Los Alamitos, CA, USA,
2009. IEEE Computer Society.

19. M. Hay, G. Miklau, D. D. Jensen, D. F. Towsley, and
P. Weis. Resisting structural re-identification in anon-
ymized social networks. Proceedings of the VLDB En-

dowment, 1(1):102–114, August 2008.
20. M. Hay, G. Miklau, D. D. Jensen, P. Weis, and S. Sri-

vastava. Anonymizing social networks. Technical Report
UM-CS-2007-19, Department of Computer Science, Uni-
versity of Massachusetts, Amherst, MA, 2007.

21. M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting
the accuracy of differentially-private histograms through
consistency. Proceedings of the VLDB Endowment,
3(1):1021–1032, September 2010.

22. P. Holme and B. J. Kim. Growing scale-free net-
works with tunable clustering. Physical Review E,
65(2):026107, Jan 2002.

23. D. Kifer. Attacks on privacy and de Finetti’s theorem.
In Proceedings of the Thirty-fifth SIGMOD International

Conference on Management of Data, pages 127–138, New
York, NY, USA, 2009. ACM.

24. J. M. Kleinberg. Navigation in a small world. Nature,
406(6798):845, August 2000.

25. A. Korolova, R. Motwani, S. U. Nabar, and Y. Xu. Link
privacy in social networks. In Proceedings of the Seven-

teenth ACM Conference on Information and Knowledge

Management, pages 289–298, Napa Valley, CA, October
26–30, 2008. ACM Press.

26. E. Levina and P. Bickel. The earth mover’s distance is the
mallows distance: some insights from statistics. In Pro-

ceedings of the Eighth IEEE International Conference on

Computer Vision, volume 2, pages 251–256, 2001.
27. L. Li, D. Alderson, J. Doyle, and W. Willinger. Towards

a theory of scale-free graphs: Definition, properties, and
implications. Internet Mathematics, 2(4):431–523, 2005.

28. L. Li, D. Alderson, W. Willinger, and J. Doyle. A
first-principles approach to understanding the internet’s
router-level topology. In Proceedings of the 2004 Con-

ference on Applications, technologies, architectures, and

protocols for computer communications, pages 3–14, New
York, NY, USA, 2004. ACM.

29. N. Li, T. Li, and S. Venkatasubramanian. t-closeness:
Privacy beyond k-anonymity and �-diversity. In Pro-

ceedings of the Twenty-third International Conference

on Data Engineering, pages 106–115, Istanbul, Turkey,
April 2007. IEEE Computer Society.

30. K. Liu and E. Terzi. Towards identity anonymization
on graphs. In Proceedings of the ACM SIGMOD In-

ternational Conference on Management of Data, pages
93–106, Vancouver, BC, June 10–12, 2008. ACM Press,
New York, NY.

31. A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venki-
tasubramaniam. �-diversity: Privacy beyond k-
anonymity. In Proceedings of the Twenty-second Inter-

national Conference on Data Engineering, page 24, At-
lanta, GA, April 2006. IEEE Computer Society.

32. D. J. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke,
and J. Y. Halpern. Worst-case background knowledge
for privacy-preserving data publishing. In Proceedings of

the Twenty-third International Conference on Data En-

gineering, pages 126–135, Istanbul, Turkey, April 2007.
IEEE Computer Society.

26

33. M. Mitzenmacher and E. Upfal. Probability and comput-

ing: Randomized algorithms and probabilistic analysis.
Cambridge University Press, 2005.

34. A. Narayanan and V. Shmatikov. De-anonymizing social
networks. In Proceedings of the IEEE Symposium on

Security and Privacy, pages 173–187, Oakland, CA, May
17–20 2009. IEEE Computer Society.

35. M. E. J. Newman. The structure and function of complex
networks. SIAM Review, 45(2):167–256, 2003.

36. K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In Pro-

ceedings of the Thirty-ninth Annual ACM Symposium on

Theory of Computing, pages 75–84, San Diego, CA, June
11–13, 2007. ACM Press, New York, NY.

37. J. J. Potterat, L. Phillips-Plummer, S. Q. Muth, R. B.
Rothenberg, D. E. Woodhouse, T. S. Maldonado-Long,
H. P. Zimmerman, and J. B. Muth. Risk network struc-
ture in the early epidemic phase of HIV transmission
in Colorado Springs. Sexually Transmitted Infections,
78(Suppl. 1):i159–i163, 2002.

38. V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Rela-
tionship privacy: Output perturbation for queries with
joins. In Proceedings of the Twenty-Eighth ACM

SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, pages 107–116, Providence, RI,
June 29–July 2, 2009. ACM Press.

39. V. Rastogi, S. Hong, and D. Suciu. The boundary be-
tween privacy and utility in data publishing. In Pro-

ceedings of the Thirty-third International Conference on

Very Large Data Bases, pages 531–542, Vienna, Austria,
September 2007. ACM Press, New York, NY.

40. S. J. Russell and P. Norvig. Artificial Intelligence: A

Modern Approach. Prentice Hall, Upper Saddle River,
NJ, 2nd edition, 2003.

41. P. Samarati. Protecting respondents’ privacy in micro-
data release. IEEE Transactions on Knowledge and Data

Engineering, 13(6):1010–1027, November 2001.
42. P. Samarati and L. Sweeney. Protecting privacy when

disclosing information: k-anonymity and its enforcement
through generalization and suppression. Technical Re-
port SRI-CSL-98-04, Computer Science Laboratory, SRI
International, 1998.

43. L. Singh and J. Zhan. Measuring topological anonym-
ity in social networks. In Proceedings of the IEEE In-

ternational Conference on Granular Computing, pages
770–770, November 2007.

44. L. Sweeney. K-anonymity: A model for protecting pri-
vacy. International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems, 10(5):557–570, 2002.
45. H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker,

and W. Willinger. Network topology generators: degree-
based vs. structural. In Proceedings of the 2002 con-

ference on Applications, technologies, architectures, and

protocols for computer communications, pages 147–159,
New York, NY, USA, 2002. ACM.

46. D.-W. Wang, C.-J. Liau, and T. sheng Hsu. Privacy pro-
tection in social network data disclosure based on granu-
lar computing. In Proceedings of the IEEE International

Conference on Fuzzy Systems, pages 997–1003, 2006.
47. D. J. Watts and S. H. Strogatz. Collective dynamics of

‘small-world’ networks. Nature, 393(6684):409–410, June
1998.

48. R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei.
Minimality attack in privacy preserving data publishing.
In Proceedings of the 33rd International Conference on

Very Large Data Bases, pages 543–554. VLDB Endow-
ment, 2007.

49. X. Xiao and Y. Tao. M-invariance: towards privacy pre-
serving re-publication of dynamic datasets. In Proceed-

ings of the 2007 ACM SIGMOD International Confer-

ence on Management of Data, pages 689–700, New York,
NY, USA, 2007. ACM.

50. X. Ying and X. Wu. Randomizing social networks: A
spectrum preserving approach. In Proceedings of the

SIAM International Conference on Data Mining, pages
739–750, Atlanta, GA, April 24–26 2008. Society for In-
dustrial and Applied Mathematics.

51. E. Zheleva and L. Getoor. Preserving the privacy of sensi-
tive relationships in graph data. In First ACM SIGKDD

International Workshop on Privacy, Security, and Trust

in KDD, Revised Selected Papers, number 4890 in Lec-
ture Notes in Computer Science, pages 153–171, San Jose,
CA, August 2007. Springer.

52. B. Zhou and J. Pei. Preserving privacy in social net-
works against neighborhood attacks. In Proceedings of

the Twenty-fourth International Conference on Data En-

gineering, pages 506–515, Cancun, Mexico, April 2008.
IEEE Computer Society.

53. L. Zou, L. Chen, and M. T. Özsu. K-Automorphism: A
general framework for privacy preserving network publi-
cation. Proceedings of the VLDB Endowment, 2(1):946–
957, 2009.

