
Analyzing Privacy in Enterprise Packet Trace Anonymization∗

Bruno Ribeiro∗, Weifeng Chen+†, Gerome Miklau∗, and Don Towsley∗

∗Computer Science Department +Department of Math and Computer Science
University of Massachusetts California University of Pennsylvania

Amherst, MA, 01003 California, PA, 15419
{ribeiro, miklau, towsley}@cs.umass.edu chen@cup.edu

Abstract

Accurate network measurement through trace collection
is critical for advancing network design and for maintain-
ing secure, reliable networks. Unfortunately, the release of
network traces to analysts is highly constrained by privacy
concerns. Several host anonymization schemes have been
proposed to address this issue. Preservation of prefix re-
lationships among anonymized addresses is an important
aspect of trace utility, but also causes a number of vulnera-
bilities in trace anonymization. In this work we present an
efficient host fingerprint attack targeting prefix-preserving
anonymized traces. The attack is general (encompassing a
range of fingerprinting host de-anonymization attacks pro-
posed by others) and flexible (it can be adapted to emerg-
ing variants of prefix-preserving anonymization). Perhaps
most importantly, we develop analysis tools that allow data
publishers to quantify the worst-case vulnerability of their
traces given assumptions about the kind of external infor-
mation that is available to the adversary. Using this analy-
sis we quantify the trade-off between privacy and utility of
alternatives to full prefix-preserving anonymization.

1 Introduction

Accurate network measurement through trace collection
is critical for advancing network design and for maintaining
secure, reliable networks. While the technological means
exist to collect and analyze traces, the release of these traces
to analysts is highly constrained by privacy concerns. Net-
work trace data can include information about individu-
als (their personal data, communication habits, evidence of
∗This research has been supported in part by the NSF under grant

awards CT-ISG0534323, CNS-0627642, ANI-0325868, and by CAPES
(Brazil). Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.
†This work was performed while Weifen Chen was with the Computer

Science Department at the John Jay College of Criminal Justice, New
York, NY, 10019

location), about an enterprise (its structure, organization,
business practices), as well as about the underlying system
(network topology, active services, security practices, etc.).

Because trace data is so sensitive, its publication and
analysis should be allowed only if the data is protected by
an anonymizing transformation over its IP addresses. A de-
sired characteristic of such transformation is to make the
trace resistant against host re-identification attacks. This
address anonymization policy is followed by a number of
public trace repositories [1–7]. Packet content is virtually
always removed since its inclusion for unencrypted com-
munication would constitute a severe privacy violation. The
next step is to obscure source and destination IP addresses.
This can be done with any one-to-one mapping, however
the utility of trace data to researchers often requires that
prefix relationships be maintained. For example, peer-
to-peer systems measurement [8], worm outbreak analy-
sis [9], the study of router forwarding caches, and prefix-
based clustering on traces all depend on address locality
and require the preservation of prefix relationships. Prefix-
preserving anonymization was first implemented as a fea-
ture of the Unix tool tcpdpriv [10]. A number of other
techniques have since been developed for efficient prefix-
preserving packet trace anonymization [11–13].

In this work we focus on enterprise IP traces; that is,
traces collected near the perimeter of the Internet, at a gate-
way owned by an enterprise or institution. This is cur-
rently the most common type of trace available (because
ISPs rarely release traces of backbone traffic). Numer-
ous enterprise IP traces have been released in anonymized
form [1–7].

Our work presents a systematic attack targeting pre-
fix preserving anonymization which can be efficiently ex-
ecuted by an adversary in possession of a modest amount
of public information about the network. The attack has a
number of advantages over others recently proposed. In
particular, we provide an analysis tool that allows data
publishers to quantify the worst-case vulnerability of their
trace given assumptions about the kind of external informa-
tion available to the adversary. We demonstrate the effec-

1

tiveness of the attack and analysis tools on real enterprise
traces.

Background

The active addresses in an enterprise network with 2k

total IP addresses can be represented as leaves in a binary
tree of height k, which we call an address tree. Figure 1(a)
(left) shows an example of an address tree in a 4-bit ad-
dress space. An anonymization function α is a bijective
function taking an IP address x to its anonymized counter-
part α(x) anywhere in the IPv4 address space. An ano-
nymization function preserves prefixes when two addresses
x and z agree on the first i bits if and only if α(x) and
α(z) also agree on their first i bits. Figure 1(a)(right) shows
one possible prefix-preserving anonymization of the origi-
nal address tree.

Attack overview Our attack focuses on the central threat
in trace publication: host de-anonymization, in which an
adversary is able to associate the actual IP address, x, with
the obscured IP address, α(x), present in a published trace.
The attack is based on the observation that if the adver-
sary can gather information about the existence of addresses
in the real network, a set of structural constraints emerge
that lead to serious disclosures. This attack is most effec-
tive when applied to the internal addresses of an enterprise
trace, which are easily distinguishable from external ad-
dresses, and whose true identity are often the most sensitive
to the enterprise.

For example, assume the adversary is able to discover
all active addresses in the real network, as illustrated in
Figure 1(a)(left). Using structural relationships alone, the
adversary can de-anonymize some of the addresses shown
in the anonymized tree. For each anonymized address, its
possible de-anonymizations are shown in Figure 1(b). Two
anonymized addresses (0010 and 1110) are uniquely de-
anonymized based on the structure of the network alone. In-
tuitively, address 1110 is distinguishable because it is alone
in its 2 bit subtree, but it is adjacent to a complete subtree
of 4 nodes. For other addresses, unique de-anonymization
is not possible and a set of possible candidates remain,
as shown in Figure 1(b). For each anonymized address
y in the {1000, 1001, 1010, 1011}, its de-anonymization
α−1(y) must be one of {0000, 0001, 0010, 0011}. These
addresses remain hidden in a crowd.

Continuing the example, if the adversary has additional
information about properties of real addresses, the possible
de-anonymizations are further constrained. For example,
the adversary may know that host 0011 has port 22 open
and witnesses frequent traffic on this port. Traffic on port 22
can be observed in the trace for some hosts but not others.
The host properties (known about real hosts, observed for
trace hosts) can be represented as labels on the leaf nodes
(in Figure 1(a) the labels are simply A and B). Assuming

that only addresses with common labels should match1 the
possible de-anonymizations are further limited, as shown
in the final column of Figure 1(b). Address 1001 and its
sibling 1000, previously hidden in a crowd of size 4, are
now uniquely de-anonymized.

The effectiveness of this attack depends, first, on the
completeness and accuracy of an adversary’s external in-
formation about hosts in the real network (whether they are
active, properties of the traffic, etc.) and second, on prop-
erties of the network itself (the allocation of addresses, the
uniformity of host properties). As suggested by this exam-
ple, the adversary’s inference process involves matching the
leaves of the address trees in a way that respects constraints
imposed by the tree structure as well as the host labels. In
practice, an adversary’s information will be incorrect for
some hosts. As a result, the attack algorithm we describe is
based on cost-based approximate tree matching [14, 15].

Related Work Vulnerabilities in IP trace anonymization
are by now widely recognized. Slagell et al. [16] provide
a thorough categorization including injection attacks (in
which a recognizable pattern of traffic is introduced to the
trace by the attacker), fingerprinting attacks (in which prop-
erties of real addresses are matched to addresses exhibiting
those properties in the trace), and structure recognition (in
which, for example, the de-anonymization of one address
is used to narrow the possible de-anonymizations of other
addresses when prefix structure is preserved).

Xu et al. [12] evaluated the impact of structure recog-
nition attacks from small sets of de-anonymized hosts by
calculating the overall average number of discovered bits
in the anonymization. Brekne et al. [17] describe both fin-
gerprinting and injection attacks on prefix-preservation for
powerful adversaries assumed capable of forging trace traf-
fic and granted knowledge of the traffic distribution.

Despite these vulnerabilities, there are few techniques
designed to resist them. One notable exception is the work
of Pang et al. [18], in which scans are removed from traces
to mitigate injection attacks, and prefixes are not preserved
for addresses internal to the enterprise. The choice to forgo
full prefix-preservation for internal addresses sacrifices the
utility of the trace in order to resist attacks like the one pre-
sented in this work and others mentioned above. Instead
of pure prefix preservation, the subnet and host portions of
each address are anonymized separately, but subnet rela-
tionships are preserved. We refer to this as an example of
partial prefix preservation.

Recently, Coull et. al. [19] discussed attacks on this pre-
sumably safer anonymization. They describe a fingerprint-
ing attack which creates a behavioral profile for hosts using
public information sources (e.g., DNS or web search engine
queries), the perceived popularity of the target host, and its

1This assumption does not always hold. We consider consider this
issue fully in Section 3.

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
1
1

1
0
0
0

1
0
1
1

1
1
1
1

0
0
1
0

0
1
0
1

1
0
0
0

1
0
1
1

1
1
1
0

1
0
0
1

1
0
1
0

0
1
1
1

A A A B A A B B ABB A B A A A

Real addresses Anonymized addresses

(a)

Anonymized Possible de-anonymizations, α−1(y)
address y structure alone structure and labels

0010 {1111} {1111}
0101 {1000,1011} {1011}
0111 {1000,1011} {1000}
1000 {0000,0001,0010,0011} {0010}
1001 {0000,0001,0010,0011} {0011}
1010 {0000,0001,0010,0011} {0000,0001}
1011 {0000,0001,0010,0011} {0000,0001}
1110 {0111} {0111}

(b)

Figure 1. (a) A four-bit address space: (left) an address tree representing active hosts; (right) an
anonymized address tree with prefixes preserved. (b) Anonymized addresses along with the set
of possible de-anonymizations which can be inferred using structure alone (column 2) and using
structure and attribute labels (column 3).

possible locations within the network topology. Some parts
of the network topology hidden by the anonymization are
recovered and some distinguished public servers are identi-
fied.

The literature also presents fingerprint attacks that
complement host de-anonymization attacks and profile
anonymized flows for traffic fingerprints. Koukis et.
al. [20] identifies if an anonymized flow is related to a given
set of known Web server contents and Coull et. al. [21]
identifies if a given anonymized flow contains specific Web
pages from a pre-defined set of Web sites. Note that these
last two works are not host de-anonymization attacks and,
therefore, are out of the scope of our work.

Concurrently with our work, Coull et al. [22] recently
proposed a new de-anonymization technique. Trace and
external fingerprint attributes used in [22] are represented
by random variables and can capture a richer set of traffic
characteristics than the fingerprints presented in Section 3.
However, the de-anonymization algorithm in [22] is not
provably optimal. This differs from our de-anonymization
algorithm which is guaranteed to reach an optimal solution.
It is a topic of future work to include the fingerprints de-
scribed in [22] into our framework.

Contributions The existing fingerprint attacks on prefix-
preserving anonymization for host de-anonymization suf-
fer from two shortcomings which our techniques address.
First, they attempt re-identification on each host indepen-
dently, without reasoning collectively over the entire trace.
Different from these attacks, which are more general and do
not assume prefix preservation, our attack takes advantage
of the constraints imposed by the prefix order to increase
attack efficiency. Second, the effectiveness of the attacks is
highly dependent on adversary knowledge which is nearly
impossible for trace publishers to estimate. We make the

following main contributions to address these issues:

• We provide a unified formal framework for host finger-
print assisted de-anonymization attacks. This frame-
work considers prefix-preservation address mapping
constraints for more efficient host de-anonymization.
Our attack (described in Section 2) systematically
combines fingerprinting and structure recognition at-
tacks. It can easily accommodate any form of exter-
nal information (by representing it as labels on address
nodes) including information acquired through injec-
tion attacks. It can be applied to both full or partial
prefix preservation, and the attack is efficient: it takes
a few minutes on common hardware to execute the at-
tack on a class B network.

• In Section 3 we perform a thorough experimental eval-
uation of the attack on a trace collected at a large uni-
versity. We show that an adversary, using probes of
9 distinct TCP port numbers, can uniquely re-identify
17% of the active hosts in the trace, while about 50%
of the hosts have candidate sets of size no greater than
4.

• Our work is the first to provide a tool that has the po-
tential to help data publishers release more useful and
secure traces. This tool comes from the formal analy-
sis of our attack in Section 4. Given a set of (assumed)
observable host properties as its sole input, this tool
identifies all addresses vulnerable to a fingerprint at-
tack. Note that, in spite of our ignorance on how the
most skillful adversary attacks the trace, we are still
capable of assessing the worst-case de-anonymization
damage this adversary makes.

• In Section 5 we evaluate the impact of the partial prefix
preservation recommended in [18]. Our techniques al-
low us to quantify the improvement in privacy gained

through this technique, but we also show that one as-
pect of it (randomization of subnets) sacrifices trace
utility without increasing privacy.

The worst-case analysis of our generic fingerprinting at-
tack has important practical consequences. It can form the
basis for an efficient tool that data publishers can use to
conservatively assess the risk of publishing traces for their
particular network, to identify the most vulnerable hosts, or
even to guide address allocation within their network.

2 De-anonymization attack

In this section we describe our attack on prefix-
preserving anonymization and its connection with approx-
imate tree matching algorithms. We assume in this section
that the attack is applied to full prefix preservation and re-
turn to partial prefix preservation in Section 5. The attack
consists of three major steps:

Step I The adversary derives traffic fingerprints for each
host in the anonymized trace.

Step II The adversary collects information from external
public sources to construct fingerprints for network
hosts.

Step III The adversary uses the fingerprints obtained in
steps I and II above to recover the anonymization func-
tion, α, in part or in full.

2.1 Attack description

Step I: Deriving trace fingerprints. There are many
types of traffic information that can be recovered from an
anonymized packet trace. For instance, an address y is “ac-
tive” when the trace contains at least one packet with source
address y. Adversaries can also gather information about
which TCP services address y provides by examining the
trace for packets with source address y from well known
service port numbers. Information on host operating sys-
tem types can also be obtained [23]. Other types of infor-
mation include flow sizes, packet sizes, and packet inter-
departure times. Appendix A includes more details on such
attributes. We refer to the collection of traffic information
about an anonymized address y as the trace fingerprint of
y.

Step II: Mining external fingerprints. In this second step,
the adversary gathers external information about the real
network of hosts believed to be present in the trace. The
host properties collected are similar to the those presented
in Step I. The adversary may gather information from re-
verse DNS queries, URL analysis, Web-crawling, active
probing, or other public sources. Network service port sta-
tus, such as active/inactive Web and E-mail TCP ports, are

among the easiest types of external information to gather
from a network. Such information can be obtained by prob-
ing the network with TCP SYN packets sent to ports such
as 25 (E-mail) or 80 (Web). The adversary infers that IP ad-
dress x runs a network service at the Web server port when
x replies with a TCP SYN ACK when probed on port 80.

In what follows we provide a formal definition of the
above fingerprints. We associate a fingerprint, F (y), with
each anonymized address y. Here F (y) is a tuple F (y) =
(Y1(y), . . . , Yk(y)) where Yi(y) takes a value from a fi-
nite set Γi, i = 1, . . . , k. For instance, Γi = {A,I} and
Yi(y) = A when y is “active” or Yi(y) = I when y is “in-
active”. Let A be the set of all anonymized addresses and
F = {(y, F (y)) : ∀y ∈ A} be the set of all fingerprints of
a trace. Let x be an un-anonymized address of the network.
External fingerprints Σ(x) = (X1(x), . . . , Xk(x)) are con-
structed in the same way as F (y). Throughout this work
we assume that Xi and Yi refer to the same network char-
acteristic such as “active address” or “TCP Web service”.

Inaccuracy of external fingerprints. In a real world
scenario, an adversary is unlikely to collect perfectly ac-
curate external fingerprints. We say that an adversary is
able to obtain perfect external fingerprints when for all x,
Σ(x) = F (α(x)); otherwise, fingerprints are imperfect.
Firewalls and changes to the network are among the most
common reasons for these mismatches. Firewalls can pre-
vent adversaries from collecting reliable address attributes
using active probing. Because we do not assume adversary
probing is synchronized with trace collection, changes to
the network can occur. Appendix B presents a compilation
of fingerprint inconsistencies, each of them with a possi-
ble counter-measure that can be taken by an adversary. The
compilation in Appendix B is far from complete but gives
an idea of the challenges that an adversary faces.

Further, imperfect external fingerprints require that we
perform an approximate matching between trace and exter-
nal fingerprints. As a consequence, it is necessary to define
a cost function which is applied to pairs of fingerprint at-
tributes and acts as a measure of the adversary’s certainty
about the association between a trace and an external fin-
gerprint.

Definition 2.1 (Cost function). Let c(Σ(x), F (y)) ≥ 0 be
a cost function that is zero when Σ(x) = F (y).

Step III: Recovering the anonymization function. The
basic idea behind our attack is to find a set of de-
anonymization functions that are “optimal approximations”
to the correct de-anonymization function α−1. In what fol-
lows we formally define this as the adversary’s objective.
Throughout the remainder of this paper we omit the depen-
dency on F and Σ to simplify the notation.

Definition 2.2 (Adversary’s objective). Let A be the set
of all valid de-anonymization functions. For de-

AAABANNN

A AA N ANNB

AA AB ANNN

AAAB ANNN

T(Fe) Label A
Label B

e1

e2 e3

e5e4 e6 e7

e8 e9 e10 e11 e12 e13 e15e14

No label

(a)

AAABANNN

A AB A NNNA

AA AB ANNN

AAAB ANNN

T(Ft)
Label A
Label B

t1

t2 t3

t5t4 t6 t7

t8 t9 t10 t11 t12 t13 t15t14

No label

(b)

Figure 2. (a) External fingerprint tree T (Σ) obtained from Figure 1(a)(left) example; (b) Trace finger-
print tree T (F) obtained from Figure 1(a)(right) example. Symbols A and B represent the labels of
Figure 1(a) and symbol N represents an address with no label.

anonymization function τ ∈ A,

γ(τ, c) =
∑
∀y∈A

c(Σ(τ(y)), F (y)) (1)

is the cost of matching fingerprint F (y) to its
de-anonymized counterpart Σ(τ(y)). The objec-
tive of the adversary is to find the set of all de-
anonymization functions B(c) ⊆ A that have the
smallest cost γ for fingerprints Σ and F ; or

B(c) = {τ : γ(τ, c) = min
τ ′

γ(τ ′, c)}. (2)

Note that the success of the adversary (in finding a “op-
timal” approximation to α−1) depends on both the finger-
prints obtained from Steps I and II (F and Σ respectively),
and c (Definition 2.1). We can measure the adversary’s
success in attacking an anonymized address y using finger-
prints Σ, F and function c using

β(y, c) = {τ(y) : ∀τ ∈ B(c)}, (3)

which is the set of optimal matches of y (or the match
set of y) with respect to cost function c. In what follows
we present an algorithm that computes B(c) (equation (2)).
Note that B(c) ⊆ A and therefore B(c) contains only valid
de-anonymization functions. Thus, Step III must enforce
matchings to be consistent with the (full or partial) prefix-
preserving order. For this we introduce the use of finger-
print trees.

Definition 2.3 (Fingerprint tree). Let F be a set of finger-
prints. A fingerprint tree T (F) of a set of fingerprints F
is an address-space tree in which each node is assigned a
label. The label of the leaf corresponding to address y is
a string of symbols f(y) = Y1(y) . . . Yk(y). Inner vertex
labels are defined by the following recursion: Let y and
z be two sibling vertices in the fingerprint tree and a be
their parent. Vertex a is labeled

f(a) =
{
f(y) · f(z) if f(y) <LEX f(z),
f(z) · f(y) otherwise,

where “·” represents a string concatenation and a <LEX b
if a is less than b in lexicographical order. We call inner
vertex a “white” if f(y) = f(z), otherwise it is called
“black”.

There are two types of fingerprint trees: trace finger-
print trees, T (F), and external fingerprint trees, T (Σ). We
exemplify these two fingerprint trees by constructing them
from the labels given in Figure 1(a). Figure 2(a) shows the
subtree of T (Σ) that encompasses addresses 0000 to 0111
of Figure 1(a)(left). Figure 2(b) shows their corresponding
trace fingerprints. Inner vertices of these fingerprint trees
are painted white and black according to the vertex denom-
ination given in Definition 2.3.

2.2 Attack algorithm

Let T (F) and T (Σ) denote trace and external finger-
print trees created using fingerprints F and Σ respectively.
T (F), T (Σ), and a cost function c are given as inputs to
Step III, which outputs β(y, c) for all anonymized addresses
in the trace. The attack is quite straightforward. The above
problem can be formulated as a trivial extension of a con-
strained tree edit distance problem for unordered trees, de-
scribed as follows. Consider relabeling tree T (Σ) such as
to make the complete binary trees T (F) and T (Σ) isomor-
phic. Now consider that each leaf relabeling operation has
a non-negative cost associated with it and relabeling of in-
ner vertices have cost zero. Tree edit distance algorithms
find all sets of relabeling operations over T (Σ) with min-
imum total cost as to make T (F) and T (Σ) isomorphic.
Using the above formulation, our problem is an instance
of the tree alignment distance problem [15]. Our problem
also has more specific constraints that can be used to opti-
mize the minimum cost search. These other constraints are:
T (F) and T (Σ) are complete binary trees and edit opera-
tions are restricted to relabeling operations (no insertion or
removal of vertices). Using these restrictions we provide a
fairly efficient algorithm for instances of the problem that
the adversary is likely to encounter. Appendix C carries

an example of how our algorithm works. The Java source
code of our implementation of the above algorithm is also
available for download.2

In the following section we apply our attack against real
anonymized traces of a large university network. The fol-
lowing results were obtained for a network with 65536 ad-
dresses. In our experiments the algorithm typically finishes
within a couple of minutes on a 1.83GHz Intel Centrino
Duo processor.

A remark on the choice of cost function A cost function
that works well in spite of the level of external fingerprint
inaccuracy is likely to require knowledge of α beforehand,
which is exactly what our attack is looking for. However,
it is possible to learn better editing costs during the search
for the edit distance matches [24]. The algorithm presented
in [24] is exponential on the size of the network and thus
unfit for our purposes. Further research is need to determine
whether learning editing costs can be made practical for our
setting.

3 Experimental results

The attack presented in Section 2 has three parameters:
F , the trace fingerprints, Σ, the external fingerprints, and c,
the cost function. This section explores the effectiveness of
our attack and the importance of these parameters for real
prefix-preserved anonymized traces. The following exper-
iments are performed over full prefix-preserved traces col-
lected at an university Internet gateway. The observed net-
work has 65536 addresses. The external fingerprints, Σ, are
gathered through network probing from an external host.
Note that our fingerprint attack is not an injection attack as
we do not assume that the anonymized trace contains any
information about our probes. Although network probing
is used in the following example, our attack can also be
made passive, i.e., external fingerprints can be taken from
sources such a address allocation maps, DNS updates, or
known public Web server addresses. Throughout this sec-
tion we focus solely on the de-anonymization of addresses
that are internal to the network.

Trace fingerprints Our traces were collected at an Inter-
net gateway of a class B university network. The univer-
sity has two other gateways connected to the Internet that
were not monitored. We attack five 24 hour traces collected
between June 18th to June 22nd, 2007 from 12:00AM to
11:59PM each. In this section we present the representative
results of the June 18th trace, named here Trace-0618. This
trace has 573,037,780 packets, 9097 active internal network
addresses, and was anonymized using prefix-preserving an-
onymization before its release.

2http://www-net.cs.umass.edu/˜ribeiro/
deanonymization/

Following Step I of our attack, we derive the following
fingerprint attributes for each address in the trace. The “Ac-
tive” attribute is set “true” for an address y if the trace has
at least one packet with source address y. Nine more at-
tributes are derived from the existence of at least one TCP
SYN ACK packet for address y on ports corresponding to
common services: FTP, SSH, Telnet, E-mail, Time, DNS,
HTTP, POP3, and SOCKS. A final attribute (TTL) is de-
rived from the time-to-live IP field of traffic for address
y. Popular host operating systems have distinct initial TTL
values, and we distinguish between four main TTL initial
values: Windows, Linux, MacOS, and “Other”. Any incon-
clusive labels are assigned “undefined”. Thus we consider
11 fingerprint attributes in total. Others are of course possi-
ble.

External fingerprints Following Step II of our attack,
we actively probe all addresses in network from an external
host (in Brazil). We do not assume the adversary knows
when traces are being taken, so in general there will be
a temporal mismatch between the time of trace collection
and the time of adversary probing. In order to test the
impact of time in the accuracy of the de-anonymization,
we collect fingerprints on June 14th (External-0614), June
15th (External-0615), June 18th (External-0618), July 19th
(External-0719), and August 27th (External-0827) of 2007.
We were careful to remove the probes of External-0618
from the trace Trace-0618 in order to avoid introducing a
bias into our measurements. External fingerprint attributes
correspond directly to trace fingerprint attributes and rep-
resent the network characteristics “Active”, FTP, SSH, Tel-
net, E-mail, Time, DNS, HTTP, POP3, SOCKS, and initial
TTL value. The attribute “Active” represents the absence
or presence of any response to the probes from a particular
address.

Cost function Unless stated otherwise, we use a cost
function where the cost of editing Yi(y) into Xi(τ(y)) de-
pends on the value of Yi(y). We define this type of cost
function as an asymmetric cost function. Our cost func-
tion reflects the natural belief that, for example, it is more
likely to find an open port 80 when probing α−1(y) without
recorded traffic on port 80 in the trace, than finding traffic
on port 80 in the trace with port 80 closed during the prob-
ing. The cost of editing each attribute is 1. The cost of edit-
ing an “undefined” attribute is zero. Our experiments do not
indicate significant sensitivity to symmetric or asymmetric
costs. For lack of space we omit the experiments demon-
strating stability under these variations of the cost function.

The above choice of cost function is very naive. We use
this cost function to show that full prefix-preservation is
vulnerable even to a naive cost function. The choice of cost
function may be decisive to the success of the attack. Later
in this section we set the cost of editing all but “Active”

and “SSH” attributes to zero and show that this new cost
function significantly impacts our results. The following
(realistic) scenario exemplifies the importance of the cost
function. Consider a network of N subnets, of which only
M < N are captured in the trace data. Certain fingerprints,
like the number of active addresses, may not help to dif-
ferentiate the M trace recorded subnets from the N −M
non-trace recorded subnets if, in their external fingerprints,
all these subnets have many active addresses. Thus, a good
cost function is likely to have the cost of active fingerprints
weighted less than the cost of more unique fingerprints,
such as e-mail servers3.

3.1 Analysis of results

To assess the overall quality of the de-anonymization we
use two metrics. The first metric is the set M(K), which
measures which addresses y have match sets (β(y, c)) of
size no greater than K. More formally let Aa be the set of
anonymized addresses in the trace that are active then

M(K) = {y : ∀y ∈ Aa; and |β(y, c)| ≤ K}.

As Σ can have imperfect information, some of the addresses
in M can have match sets that do not contain the correct
de-anonymized address, i.e., α−1(y) 6∈ β(y, c). Thus, we
would also like to know which addresses in M have match
sets that contain the correct de-anonymized address. For
this we introduce a second metric

V (K) = {y : ∀y ∈M(K); and α−1(y) ∈ β(y, c)}. (4)

We refer to V (K) as the set of K-vulnerable anonymized
addresses with respect to parameters Σ, F , and c. Note
that |M(K) − V (K)| shows the number of “errors” our
attack makes. Also note that M and V are cumulative, i.e.,
V (K) ⊆ V (K + 1). Ideally we would like to have V (K)
large with M(K) − V (K) small for any value of K. In
what follows we omit the dependency of V and M on F ,
Σ, and c. The choices of F , Σ, and c are clear from the
context.

Following Step III, our first experiment uses external
fingerprints obtained from External-0618 and trace finger-
prints obtained from Trace-0618. Figure 3(a) shows the
values of |M(K)| and |V (K)| of this experiment. We ob-
served that V (1) = 1620, i.e., 1620 active anonymized ad-
dresses, 17% of the number of active addresses in the trace,
had their real addresses disclosed. The number of errors is
|M(1) − V (1)| = 264 from which we conclude that our
attack is fairly accurate. In this experiment, all active ad-
dresses had match sets of size at most 1024. A little more
than 50% of the active addresses had matches of size no

3We would like to thank our anonymous reviewers for this nice exam-
ple

greater than 4. Among these matches, 85% of them are cor-
rect, i.e., α−1(y) ∈ β(y, c).

Note that although the percentage of hosts uniquely
identified is a small portion of the total trace nodes, this
represents a very significant vulnerability. Trace anonym-
ization is intended to conceal the true identity of all nodes
present in the trace. Instead, a significant portion of them
are uniquely identified, and it is possible for the adversary
to identify a small set of candidate matches for a much
larger percentage of nodes. If an attacker wishes to re-
identify a specific trace host, reducing the set of feasible
candidates to 8 or even 16 may be more than sufficient.
The attacker could then acquire more specific informa-
tion to refine their fingerprints and also eliminate any false
re-identifications that may be present. Overall, these re-
sults show that prefix-preserving anonymization is not safe
against this type of attack. In the next two subsections we
analyze the relative impact of different fingerprint attributes
and the impact of collecting external fingerprints before or
after trace collection.

3.2 Importance of distinct cost functions

In what follows we look at the sensitivity of our attack
against distinct cost functions. The following analysis also
quantifies the importance of a number of fingerprint at-
tributes. We extract some traffic attributes from Trace-0618
and External-0618 and present the attack results using these
attributes as fingerprints at Figure 3(b). Figure 3(b) shows
five curves. The two solid areas show the curves of Fig-
ure 3(a). The curve “|M(K)| Act+SSH” shows results of
the same attack where all attribute editing costs are set to
zero except for the Active and SSH attributes. Note that
setting all attribute costs other than Active and SSH to zero
tend to increase the size of the matches. However, from
|V (K)| we see that the fraction of matches that are cor-
rect is much higher in this scenario (95% of the matches of
M(1) are correct, against 85% obtained with all attributes).
Further analysis of our data reveals that adding the TTL
type attribute to the fingerprint (with editing cost of 1) sig-
nificantly increases M(K) but also increases the fraction
of errors for small values of K. All other attributes cause
minor impacts on M and V . From our analysis we con-
clude that high TTL attribute costs (relative to other costs)
are likely to degrade the overall accuracy of our attack.
Here we also compare our results to the case where ex-
ternal fingerprints are perfect, i.e., Σ = F . The curve
“|V (k)|, Σ = F (All attr.)” shows the case where external
fingerprints are perfect. We study this case in detail in Sec-
tion 4. Note that in this case M(K) = V (K). We can see
that the noise introduced by imperfect external fingerprints
significantly reduces the accuracy of our attack.

(10%) 1000

(21%) 2000

(32%) 3000

(43%) 4000

(54%) 5000

(65%) 6000

(76%) 7000

(87%) 8000

(100%) 9097

 1 2 4 8 16 32 64 128 256 512 1024

N
um

be
r (

fra
ct

io
n)

 o
f a

ct
iv

e
ho

st
s

in
 th

e
tra

ce

K

Ft from June 18th trace fingerprints
Fe from June 18th external fingerprints

| M(K) |
| V(K) |

(a)

(10%) 1000

(21%) 2000

(32%) 3000

(43%) 4000

(54%) 5000

(65%) 6000

(76%) 7000

(87%) 8000

(100%) 9097

 1 2 4 8 16 32 64 128 256 512 1024

N
um

be
r

(f
ra

ct
io

n)
 o

f a
ct

iv
e

ho
st

s
in

 th
e

tr
ac

e

K

Ft from June 18th trace fingerprints
Fe from June 18th external fingerprints

|M(K)|, All attr.
|V(K)|, All attr.

|M(K)|, Act+SSH
|V(K)|, Act+SSH

|V(K)|,Fe=Ft (All attr.)

(b)

Figure 3. (a) The x-axis of our graph shows K, the size of the match sets. The lighter area shows
|V (K)| and the darker area shows |M(K)|. |M(K)−V (K)| is the number of de-anonymization errors;
(b) This figure shows five curves. The two solid areas show the curves of Figure 3(a). The curve
“|V (k)|, Σ = F (All attr.)” considers the case where external fingerprints are perfect. The remaining
curves consider fingerprints with attributes “active” and “SSH”.

3.3 Attack sensitivity to late or early probing

Because the adversary does not know the date and time
of trace collection, their fingerprint gathering will not nec-
essarily occur near that time. The passage of time can affect
accuracy because of changes to hosts, services running on
hosts, or to address allocation policies. We find in our ex-
periments that probing for external fingerprints as long as
a month after trace collection leads to reasonable results
but that accuracy does noticeably decline after about two
months.

In the following experiments we use external finger-
prints (all fingerprints except the initial TTL attribute)
from External-0615, External-0618, External-0719, and
External-0827. We drop the “TTL” attribute and use only
the most perfect external attributes in order to study the im-
pact of the passage of time on our results. Figures 4(a)
and 4(b) plot |V (K)| againstK for the external fingerprints
obtained at these dates. We start comparing the matching
results from External-0618 (day 0) and External-0615 (day
-3). Probing 3 days before the trace was collected increases
the number of matching errors (match sets without the cor-
rect de-anonymized address) but does not reduce the num-
ber of correct matches. However, considering only small
match sets (e.g. K = 1), the absolute number of matching
errors is still small. Thus the attack is still fairly accurate.
Comparing the matching results from External-0618 (day
0) and External-0719 (day 29) we see that probing 29 days
after the trace is collected significantly increases the num-
ber of matching errors. It also slightly reduces the num-
ber of correct matches. Once again the absolute number of
matching errors is still fairly small for small values of K
and |M(K)| is still high. Again, the attack is still fairly ef-
ficient. Comparing External-0618 and External-0827 (Fig-

ure 4(b)) shows that matching errors are four or more times
greater when external fingerprints are probed 71 days after
the trace is collected. The absolute number of small match
sizes also reduces. The fraction of matches that are incor-
rect with K = 1 is still small, a little less than 20%, and
|M(1)| = 917 is still large. These results suggest that the
adversary has a fairly large time window to collect useful
external fingerprints.

4 Worst case analysis of host de-
anonymization

The experimental results presented in the previous sec-
tion show that the effectiveness of the attack depends on
cost function and the accuracy of the external fingerprints
collected by the adversary. For hosts that remain hidden,
it is not clear whether their anonymity is due to the trace
transformation techniques, or due to the weakness on the
part of the adversary. In this section we make the following
assumptions about the data publisher:

• The data publisher has access to the set of trace finger-
print attributes used by the adversary.

• The data publisher does not have access to the cost
function or external fingerprints used by the adversary.

Under these circumstances we present a tool that allows
data publishers to efficiently calculate, prior to publication,
the worst-case disclosure for a given trace and to pinpoint
vulnerable addresses.

We apply this analysis to the experimental trace from the
last section showing the unique de-anonymizations jump
from 17% to 44% of trace nodes. In addition, we apply

(10%) 1000

(21%) 2000

(32%) 3000

(43%) 4000

(54%) 5000

(65%) 6000

(76%) 7000

(87%) 8000

(100%) 9097

 1 2 4 8 16 32 64 128 256 512 1024

N
um

be
r (

fra
ct

io
n)

 o
f a

ct
iv

e
ho

st
s

in
 th

e
tra

ce

K

Ft from June 18th trace fingerprints (no TTL attr.)
Fe from June 15th, June 18th, or July 19th external fingerprints (no TTL attr.)

| M(K) |, Fe=06/18 (day 0)
| V(K) |, Fe=06/18 (day 0)

| M(K) |, Fe=07/19 (day 29)
| V(K) |, Fe=07/19 (day 29)
| M(K) |, Fe=06/15 (day -3)
| V(K) |, Fe=06/15 (day -3)

(a)

(10%) 1000

(21%) 2000

(32%) 3000

(43%) 4000

(54%) 5000

(65%) 6000

(76%) 7000

(87%) 8000

(100%) 9097

 1 2 4 8 16 32 64 128 256 512 1024

N
um

be
r (

fra
ct

io
n)

 o
f a

ct
iv

e
ho

st
s

in
 th

e
tra

ce

K

Ft from June 18th trace fingerprints (no TTL attr.)
Fe from June 18th, July 19th, or August 27th external fingerprints (no TTL attr.)

| M(K) |, Fe=06/18 (day 0)
| V(K) |, Fe=06/18 (day 0)

| M(K) |, Fe=07/19 (day 29)
| V(K) |, Fe=07/19 (day 29)
| M(K) |, Fe=08/27 (day 71)
| V(K) |, Fe=08/27 (day 71)

(b)

Figure 4. (a) These six curves show the values of |M(K)| and |V (K)| for all attributes except “TTL”.
The two solid areas represent external fingerprints collected at the day of the trace collection (“day
0”). External fingerprints of the remaining two pairs of curves were collected three days before
the trace collection (“day -3”) and 29 days after the trace collection (“day 29”) respectively; (b) This
figure complements Figure 4 (a) with external fingerprints collected 71 days after (“day 71”) the trace
collection.

the worst-case analysis to partial prefix preservation, with
some surprising consequences.

4.1 Calculating worst-case de-anonymization

To formalize the worst case de-anonymization, we wish
to find the largest set of all anonymized addresses that are
K-vulnerable when attacked using trace fingerprints F . We
refer to this set as V ?(K), and note that any set of K-
vulnerable addresses obtainable by any de-anonymization
technique using trace fingerprints F , (including the one
presented by Coull et al. [19]) is a subset of V ?(K). We
present a very efficient algorithm that computes V ?(K)
given F .

Recall that V (K,Σ, F, c) consists of all match sets
with size less than K and which contain the correct de-
anonymization. In what follows we use V (K,Σ, F, c) as
a metric and look for the worst-case attack for a given set
of trace fingerprints F .

We introduce the following cost function

c?(Σ(x), F (y)) =
{

0 if Σ(x) = F (y),
ε for ε > 0, otherwise. (5)

We state the following theorem whose proof is found
in [25].

Theorem 4.1. V (K,Σ, F, c) ⊆ V (K,F, F, c?) for any ex-
ternal fingerprints Σ and cost function c.

The calculation4 of V ?(K) = V (K,F, F, c?), and thus
the evaluation of worst-case de-anonymization, is even

4A Java source code of an algorithm that computes V ?(K) is available
for download at
http://www-net.cs.umass.edu/˜ribeiro/
deanonymization/

more efficient than the execution of the attack described
in Section 2. Because fingerprints are assumed perfect,
cost based tree-matching is not needed. In fact, the en-
tire computation can be performed on the trace fingerprint
tree so that it is possible to compute V ?(K) in linear time
(O(|A|)).

More specifically, [25] shows that the worst-case match
sets for a host are determined by the number of “white”
nodes in the fingerprint tree: the size of the match set for
host y is 2W (y) where W (y) is the number of white nodes
on the path from leaf y to the root of T (F). As an example,
Figure 5(a) shows trace fingerprint tree T1 with two marked
leaves a and b and trace fingerprint tree T2 with two marked
leaves c and d (a, b, c, and d are the leaves pointed by an
arrow). Note that here T (F) is also the external fingerprint
tree. Leaf a has one “white” vertex on its path to the root
and thus |β(“a”, c?)| = 21. Leaf b has no “white” vertex
on its path to the root and thus |β(“b”, c?)| = 20. Leaf
c has two “white” vertices on its path to the root and thus
|β(“c”, c?)| = 22.

4.2 Worst-case K-vulnerability under full prefix
preservation

We can now apply the worst-case analysis to the trace
studied experimentally in Section 3. Figure 5(b) shows the
worst-case K-vulnerable hosts, |V ?(K)|, for K = 1, 2, 4, 8
applied to Trace-0618. The bars labeled “All attr.” repre-
sent all attributes seen in Section 3. This graph shows that a
well informed adversary can do significantly more damage
to the anonymization function: 44% of the addresses are 1-
vulnerable (uniquely identifiable), compared with 17% us-
ing external fingerprints obtained by probing the network.

A I I I A A A I A I A I I A I A

T1 T2

AI

AIII

AAAIAIII

II AA AI AI AI AI AI

AIAI

AIAIAIAI

AIAIAAAI

c dba
(a)

(10%) 1000

(32%) 3000

(54%) 5000

(76%) 7000

(100%) 9097

1 2 4 8

|
V

*
(K

)
|

K

All attr.
All attr.-TTL
Active+SSH

(b)

Figure 5. (a) Example of two fingerprint trees, T1 and T2, for two distinct prefix-preserved anonymized
traces; (b) K-vulnerability of trace Trace-0618 with respect to Section 3 fingerprint attributes.

...

... ...
...

Root

Subnet1 ...

...

Anon. Root
Anonymization

Subnet2 Subnet N Subnet1

a1 a2a3

Original addresses Anonymized addresses

...

Subnet M

a3
a2

a1

...

...

Subnet N

(a)

(1%) 100

(2%) 200

(3%) 300

(4%) 400

(5%) 500

(6%) 600

1 2 4 8

|
V

*
(K

)
|

K

All attr.
All attr.-TTL

(b)

Figure 6. (a) Example of partial prefix preservation. The network administrator defines N subnets.
Addresses sharing the same subnet in the original address space also share the same subnet
after the anonymization; (b) K-vulnerability of trace Trace-0618 using partial prefix preservation with
respect to Section 3 fingerprint attributes.

Figure 5(b) also shows the worst case for other sets of
attributes: “All attr. - TTL”, which includes all attributes
except TTL, and “Active + SSH”, which includes only host
activity and SSH traffic. It is clear from the graph that the
TTL attribute only significantly increases the number of 1-
vulnerable addresses. The “Active + SSH” bars show that
other TCP port attributes besides “SSH” can significantly
increase the precision of the de-anonymization. Figure 3(b)
compares the “All attr.” upper bound with the results ob-
tained with external fingerprints from External-0618. We
can see that the perfect fingerprints perform at least two
times better than the probed external fingerprints.

5 Analysis of partial prefix preservation

Given the vulnerability of traces to fingerprinting at-
tacks like ours and others noted in the literature, it is nat-
ural to consider sacrificing the utility of the trace to in-
crease privacy. We refer to such techniques as partial prefix
preservation, because some prefix relationships are not pre-
served, replaced instead by unconstrained randomization of
addresses or parts of addresses.

Pang et al. proposed a version of partial prefix preserva-
tion for internal addresses in their enterprise trace anonym-
ization scheme [18]. There the subnet and host portions of
an address are treated independently. Each subnet is com-
prised of a group of addresses that share the same 32 − b

most significant bits.5 If two addresses share the first 32−b
significant bits in the original trace then they also share the
same first 32 − b significant bits in the anonymized trace.
Within subnets sufixes are not preserved; instead addresses
are randomized within the subnet. Figure 6(a) illustrates
this method. In this figure we label three hosts a1, a2, and
a3. Note that a1, a2, and a3 are just host labels, not the
anonymized or unanonymized addresses of the hosts. Fig-
ure 6(a) shows both the original and the anonymized partial
address-space trees. Note that a1, a2, and a3 are consecu-
tive addresses at the original address space. However, after
the anonymization, the only address relation preserved is
that a1, a2, and a3 still belong to the same subnet. The
subnet changed its address from “Subnet 1” to “Subnet M”.

Worst-case analysis of partial prefix preservation
While this technique seems sensible, Pang et al. do not
provide an analysis justifying this choice of partial prefix
preservation. Attacks against this technique have since been
demonstrated [19]. We now apply our analysis tools to eval-
uate the impact of partial prefix preservation on our sample
trace.

The calculation of V ? under partial prefix preservation
requires a modest variation of the technique described in

5In [18] the value of b is not necessarily constant among subnets; for
the sake of simplicity we consider a constant value of b for all subnets.

the last section (details can be found in [25]). The results
of the analysis appear in Figure 6(b) which plots |V ?(K)|
against K = 1, 2, 4, 8 for a subnet size of b = 8 bits. Once
the change in the y-axis has been noted, Figure 6(b) and
Figure 5(b) (full prefix preservation) can be compared. We
see that partial prefix preservation is much safer than full
prefix preservation, reducing the unique de-anonymizations
from about 4000 (44%) to 345 hosts (just under 4%). Par-
tial prefix preservation also achieves much smaller values
of |V ?(K)| for K = 2, 4, 8.

Another interesting result comes from removing some
attributes from the fingerprints. Figure 6(b) also plots the
value of |V ?(K)| for attributes “All attr.-TTL”. Note that
unlike full prefix preservation, the TTL attribute also sig-
nificantly increases the number of 2 and 4-vulnerable ad-
dresses. Fingerprint attributes “Active+SSH” are not shown
in Figure 6(b) as |V ?(1)| = |V ?(2)| = 0 and |V ?(4)| =
|V ?(8)| = 7. It is interesting to note that a fingerprint (“Ac-
tive+SSH”) which is highly efficient for full prefix preser-
vation is highly inefficient for partial prefix preservation.
There is a simple explanation for the bad performance of
fingerprint “Active+SSH” in partial prefix preservation: in
our trace we found that most addresses with SSH traffic
were clustered within a small number of subnets.

We also found that the size of the subnet, defined by
b, can be varied with somewhat predictable results. When
b = 4 bits, |V ?(1)| = 1039, or 11% of hosts. When b is in-
creased to 11 bits, few prefixes are preserved and |V ?(1)| =
106, or just 1%. Larger b improves host anonymity at the
cost of host prefix information.

Trading-off privacy and utility

Overall, for our trace, we find that partial prefix preser-
vation as described by Pang et al. has a significant positive
impact on trace anonymity. At the same time, 345 uniquely
disclosed hosts may still be a concern to some publishers.
In addition, these unique de-anonymizations confirm and
help to explain the attack result found by Coull et al [19] in
which a small number of distinctive servers are re-identified
despite partial prefix preservation.

Interestingly, we found that it was possible to identify
randomized subnets with very high likelihood. The concept
of K-vulnerability can be applied not only to anonymized
addresses but also to anonymized subnets. Consider the ex-
ample in Figure 6(a). An adversary may be able to uniquely
map anonymized “Subnet M” into its unanonymized coun-
terpart “Subnet 1”. Note that this does not mean that an
addresses inside anonymized “Subnet M” is also uniquely
matched to an address inside unanonymized “Subnet 1”. In
the following experiment we use b = 8 bits and fingerprints
“All attr.-TTL” obtained from Trace-0618. We choose fin-
gerprint attributes “All attr.-TTL” instead of “All attr.” fol-
lowing Pang et al. [18] which removes TTL values from

the trace. This experiment shows that 96% of all subnets,
that have more than one active host, are 1-vulnerable and
the remaining 4% are 2-vulnerable. When b = 4 bits we
find 17% of the subnets to be 2-vulnerable (of which 13%
are 1-vulnerable). And when b = 11 bits all subnets are 1-
vulnerable. These results suggest that as subnets get larger
their corresponding fingerprint are more likely to be unique.

In the light of these results we propose a change to the
subnet anonymization scheme of Pang et al. [18]. In [18] all
prefix information from the subnet level up to the root is re-
moved. We propose that for large enough values of b (such
that most subnets 1-identifiable), one can increase trace
utility (keeping the same upper bound anonymity level) by
applying full prefix preservation from the subnet level up to
the root.

Note finally that our upper bound also allows data pub-
lishers to reduce trace utility (e.g. removal of TCP port
information for a given address) when it is absolutely nec-
essary to ensure anonymity against a set of fingerprint at-
tributes. This can be seen as an improvement over a previ-
ous recommendation [19] which advocates for the removal
of TCP port numbers from all records in the trace. Our
results also show that an attacker is able to achieve signifi-
cantly more damage when address fingerprints contain TTL
attributes. This result corroborates the notion in [18] that
TTL attributes should not be published in the trace.

6 Conclusion and Future work

We have analyzed a novel attack on prefix-preserving
trace anonymization that encompasses other proposed at-
tacks, and can be adapted to partial prefix preservation and
to alternative information sources. We demonstrated the
effectiveness of this attack on a real trace, and measured
experimentally the impact of the accuracy of information
on the adversary’s success. Past works describing attacks
on trace anonymization have left trace publishers without
methods to evaluate the risks of publication for their traces
and with few mitigation techniques. Our analysis tech-
niques allow trace publishers to compute an upper bound
for the risk of host de-anonymization in the context of ad-
versaries assumed capable of collecting a given class of ex-
ternal information. In the future we hope to use these tech-
niques to formally evaluate partial prefix preservation al-
ternatives which can maximize utility relative to a desired
level of trace privacy. We would also like to consider the
application of this kind of attack to the external hosts in the
trace. The challenges are that for external addresses struc-
tural information is less informative, and that probing must
be limited to some known set of popular destinations since
exhaustive probing of internet addresses would be infeasi-
ble.

7 Acknowledgments

We would like to thank our anonymous reviewers for
their insightful comments and our shepherd Niels Provos
for helping us with the final version of this paper.

References

[1] “Gateway link measurements at umass amherst,”
http://www-net.cs.umass.edu/dag/.

[2] “Enterprise tracing project,”
http://www.icir.org/enterprise-tracing/.

[3] “The passive measurement and analysis project,”
http://pma.nlanr.net/.

[4] “The skitter project,” http://www.caida.org
/tools/measurement/skitter/.

[5] “The internet traffic archive,”
http://ita.ee.lbl.gov/, Apr. 2000.

[6] “Network tools and traffic traces at university of
napoli federico ii,”
http://www.grid.unina.it/Traffic/.

[7] T. McGregor, H. Braun, and J. Brown, “The NLANR
network analysis infrastructure,” IEEE Communica-
tions Magazine, vol. 38, no. 5, pp. 122–128, May
2000.

[8] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang,
“Location-aware topology matching in P2P systems,”
Proceding of the IEEE INFOCOM 2004, vol. 4, pp.
2220–2230, 2004.

[9] M. Rajab, F. Monrose, and A. Terzis, “Fast and Eva-
sive Attacks: Highlighting the challenges ahead,”
in Proceedings of the 9th International Symposium
on Recent Advances in Intrusion Detection (RAID),
Hamburg, Germany, Sept. 2006.

[10] “Tcpdpriv,” http://ita.ee.lbl.gov/html
/contrib/tcpdpriv.html.

[11] R. Pang and V. Paxson, “A High-Level Program-
ming Environment for Packet Trace Anonymization
and Transformation,” in Proceedings of the ACM SIG-
COMM Conference, August 2003.

[12] J. Xu, J. Fan, M. Ammar, and S. Moon, “Prefix-
preserving IP address anonymization: Measurement-
based security evaluation and a new cryptography-
based scheme,” in Proceedings of the 10th IEEE
International Conference on Network Protocols
(ICNP’02), Paris, France, November 2002.

[13] R. Ramaswamy and T. Wolf, “High-speed prefix-
preserving IP address anonymization for passive mea-
surement systems,” IEEE/ACM Transactions on Net-
working, vol. 15, no. 1, January 2007.

[14] K. Tai, “The tree-to-tree correction problem,” Journal
of the Association for Computing Machinery (JACM),
vol. 26, no. 3, pp. 422–433, 1979.

[15] P. Bille, “A survey on tree edit distance and related
problems,” Theor. Comput. Sci., vol. 337, no. 1-3, pp.
217–239, 2005.

[16] A. Slagell and W. Yurcik, “Sharing Computer Net-
work Logs for Security and Privacy: A Motivation
for New Methodologies of Anonymization.” in Pro-
ceedings of SECOVAL: The Workshop on the Value of
Security through Collaboration, September 2005.

[17] T. Brekne, A. Årnes, and A. Øslebø, “Anonymization
of IP Traffic Monitoring Data: Attacks on Two Prefix-
preserving Anonymization Schemes and Some Pro-
posed Remedies,” in Proceedings of the Workshop
on Privacy Enhancing Technologies (PET 05), May
2005.

[18] R. Pang, M. Allman, V. Paxson, and J. Lee, “The devil
and packet trace anonymization,” SIGCOMM Com-
put. Commun. Rev., vol. 36, no. 1, pp. 29–38, 2006.

[19] S. Coull, C. Wright, F. Monrose, M. Collins, and
M. Reiter, “Playing devil’s advocate: Inferring sen-
sitive information from anonymized network traces,”
in Proceedings of the Network and Distributed System
Security Symposium, 2007.

[20] D. Koukis, S. Antonatos, and K. Anagnostakis, “On
The Privacy Risks of Publishing Anonymized IP Net-
work Traces,” in Proceedings of the 10th IFIP Open
Conference on Communications and Multimedia Se-
curity, October 2006.

[21] S. Coull, M. Collins, C. Wright, F. Monrose, and
M. Reiter, “On Web browsing privacy in anonymized
NetFlows,” in Proceedings of the 16th USENIX Secu-
rity Symposium, August 2007, p. 339352.

[22] S. E. Coull, C. V. Wright, A. D. Keromytisz, F. Mon-
rose, and M. K. Reiter, “Taming the devil: Techniques
for evaluating anonymized network data,” in Proceed-
ings of the 15th Network and Distributed Systems Se-
curity Symposium, to appear, 2008.

[23] M. Z. et al., “http://lcamtuf.coredump.cx/
p0f.shtml.”

[24] M. Neuhaus and H. Bunke, “Automatic learning of
cost functions for graph edit distance.” Information
Sciences, vol. 177, no. 1, pp. 239–247, 2007.

[25] B. Ribeiro, W. Chen, G. Miklau, and D. Towsley, “On
the loss of privacy in packet trace anonymization,”
Department of Computer Science, University of Mas-
sachusetts at Amherst, Tech. Rep. TR–07, Jun. 2007.

[26] S. M. Bellovin, “A technique for counting NATed
hosts,” in IMW ’02: Proceedings of the 2nd ACM SIG-
COMM Workshop on Internet measurment, 2002, pp.
267–272.

APPENDIX

A Obtaining external information address
fingerprints

In what follows we compile a small list of possible ex-
ternal fingerprint attributes.

• TCP port attribute (Web, FTP, ...). (Active probing)
To test whether a address could have TCP activity on
a given port one can simply try to use TCP to connect
to that port.

• Traffic volume. Traffic volume can be divided into lev-
els. For instance, all main network servers (main web
servers, main e-mail servers and so on) may be in-
ferred as the busiest ones for that type of service. The
number of levels depends on the adversary’s knowl-
edge of network servers traffic loads.

• Flow sizes. Many file transfers over the Internet have
very specific flow size signatures.

• Packet timing. Internet activities (such as browsing
the Web) can have easily identifiable packet inter-
departure signatures.

• Network changes. Networks normally evolve with
time. Such evolution can be available to the adver-
sary. Abnormal traffic patterns or scheduled changes
to the network that are known to the adversary creates
the possibility of a new fingerprint attribute. Here even
a harmless 4pm weekly department-wide coffee-break
can result in a fingerprint attribute.

B Sources of fingerprint attribute mis-
matches and their counter-measures

The following list is a short but representative compila-
tion of the troubles that adversaries face:

• Change in address fingerprints. It is possible that
some hosts/services are active (inactive) during the

time of trace collection and inactive (active) when the
adversary obtains address fingerprints. Under such cir-
cumstances it is likely that some address fingerprints
appearing in the trace are distinct from their corre-
sponding external information fingerprints. A good
representative of this class are IP addresses allocated
using the DHCP protocol (dynamic allocation).

• Host or host service is active but had no traffic
recorded. Some hosts or host services may be active
at the time of the trace collection but have no traffic
recorded in the trace. This creates a fingerprint mis-
match as the adversary sees a potential source of traffic
that is not present in the trace.

• Firewalls, IDS. Firewalls and Intrusion Detection Sys-
tems (IDS) may limit the adversary’s ability to deter-
mine address fingerprints or even masquerade them.

• NAT boxes. Many distinct hosts can share an unique IP
address which may induce contradictory fingerprints
attributes at the same IP address.

Attenuating fingerprint attribute mismatches. Each item of
the aforementioned list can be attenuated if the adversary
takes the following precautions:

• Dynamic IP address allocation. An adversary that has
access to a trace that spans over a long time frame may
use it to obtain which portions of the address space
may have temporal fingerprint changes. Information
on which portions of the address space are more “dy-
namic” can actually help the adversary if the adversary
has this type of external information (e.g., which por-
tions of the network use DHCP). Another way to use
such fingerprint is to mark the main e-mail server of
a network as “stationary” and the rest of the e-mail
servers as potentially “dynamic”.

• Host or host service is active but had no traffic
recorded. A service or a host that sees has almost no
recorded traffic in the trace is likely to .

• Firewalls, IDS. This is the hardest mismatch to cope
with. Here the adversary cannot trust some fingerprint
attributes and must resort to other types of external
information, such as personal web-traffic preferences.
For instance, Google.com flow sizes vary according to
user language settings.

• NAT boxes. Might be detected in the trace [26]. If the
adversary knows the true address of some NAT boxes,
it can be used in the adversary’s advantage as a new
“true, false or undefined” fingerprint attribute: “is it a
NAT box?”.

C Sample attack

Let T (Ft) and T (Fe) denote the trace and external fin-
gerprint trees depicted in Figures 2(b) and 2(a), respec-
tively. In this example we use the edit cost function c?

(equation (5)). Let’s follow the disclosure of address t15
of Figure 2(b). The algorithm works on the fingerprint
trees in a deep-first-search-similar order, starting from the
root of T (Fe). It first decides which vertex of T (Ft), t2
or t3, is the best match for vertex e2 of T (Fe). Here, in-
ner vertex fingerprints can help us decide which match is
the most likely one. The fingerprint of e2 is AAAI and the
fingerprints of t2 and t3 are AAII and AAAI respectively.
The algorithm decides that t3 is the most likely match for
e2. The match (e2, t3) forces the match (e3, t2) due to the
prefix preservation of the anonymization. The above illus-
trates our main optimization over the brute force search.
Since f(e2) = f(t3), f(e3) = f(t2), f(e2) 6= f(t2), and
f(e3) 6= f(t3), the minimum cost of the match (e2, t3)
is zero rather than the minimum cost of (e2, t2) which is
2ε (for simplicity, we use (e, t) to denote that vertex e is
de-anonymized or matched to vertex t). If later in the pro-
cess we believe for some reason that this decision was in-
correct, we backtrack and follow the opposite match. But

if the cost of matching the leaves of the (e2, t3) match is
still zero (as predicted), then there is no need to verify the
match (e2, t3). The next step is to decide if the best match
for e4 is t6 or t7. Again we use fingerprints to decide the
most likely match: (e4,t6). Next we have to decide if e8
matches t12 or t13. In this case we could go either way.
The reason we cannot decide is that both t12 and t13 have
the same labels. In this case we say that e8 is in the match
set of t12 and t13, or more formally: e8 ∈ β(t12, Fe, Ft, c?)
and e8 ∈ β(t13, Fe, Ft, c?). In the next step we find that
t15 is a good match to e10 (thus e11 is a good match to
t14). If we continue the algorithm we find that the edit dis-
tance is zero and that β(t15, Fe, Ft, c?) = {e10}. After
finishing the match (e2, t3), we follow the match branch
(e3, t2). As f(e4) = f(t5) and f(e4) 6= f(t4), we first
follow the match (e4, t5), from which we conclude that
β(t10, Fe, Ft, c?) = β(t11, Fe, Ft, c?) = {e14, e15}. Like-
wise, we also find β(t8, Fe, Ft, c?) = β(t9, Fe, Ft, c?) =
{e12, e13}. Note that we find all matches that have added
costs (eq. 1) zero. The edit distance is therefore zero. How-
ever, when external fingerprints are imperfect, the edit dis-
tance may not be zero. More details of this algorithm can
be found in [25].

