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Personal data has value to both its owner and to institutions who would like to analyze it. Privacy mech-
anisms protect the owner’s data while releasing to analysts noisy versions of aggregate query results. But
such strict protections of individual’s data have not yet found wide use in practice. Instead, Internet com-
panies, for example, commonly provide free services in return for valuable sensitive information from users,
which they exploit and sometimes sell to third parties.

As the awareness of the value of the personal data increases, so has the drive to compensate the end
user for her private information. The idea of monetizing private data can improve over the narrower view of
hiding private data, since it empowers individuals to control their data through financial means.

In this paper we propose a theoretical framework for assigning prices to noisy query answers, as a func-
tion of their accuracy, and for dividing the price amongst data owners who deserve compensation for their
loss of privacy. Our framework adopts and extends key principles from both differential privacy and query
pricing in data markets. We identify essential properties of the pricing function and micro-payments, and
characterize valid solutions.
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1. INTRODUCTION
Personal data has value to both its owner and to institutions who would like to analyze
it. The interests of individuals and institutions with respect to personal data are often
at odds and a rich literature on privacy-preserving data publishing techniques [Fung
et al. 2010; Chen et al. 2010] has tried to devise technical methods for negotiating
these competing interests. Broadly construed, privacy refers to an individual’s right to
control how her private data will be used, and was originally phrased as an individual’s
right to be protected against gossip and slander [Danezis and Gürses 2010]. Research
on privacy-preserving data publishing has focused more narrowly on privacy as data
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confidentiality. For example, in perturbation-based data privacy, the goal is to protect
an individual’s personal data while releasing to legitimate users the result of aggregate
computations over a large population [Dwork 2011].

To date, this goal has remained elusive. One important result from that line of work
is that any mechanism providing reasonable privacy must strictly limit the number of
query answers that can be accurately released [Dinur and Nissim 2003], thus impos-
ing a strict privacy budget for any legitimate user of the data [McSherry 2010]. Re-
searchers are actively investigating formal notions of privacy and their implications
for effective data analysis. Yet, with rare exception [Kifer et al. 2008], perturbation-
based privacy mechanisms have not been deployed in practice.

Instead, many Internet companies have followed a simple formula to acquire per-
sonal data. They offer a free service, attract users who provide their data, and then
monetize the personal data by selling it, or by selling information derived from it,
to third parties. A recent study by JPMorgan Chase [Brustein 2012] found that each
unique user is worth approximately $4 to Facebook and $24 to Google.

Currently, many users are willing to provide their private data in return for access
to online services. But as individuals become more aware of the use of their data by
corporate entities, of the potential consequences of disclosure, and of the ultimate value
of their personal data, there has been a drive to compensate them directly [Forum
2011]. In fact, startup companies are currently developing infrastructure to support
this trend. For example, www.personal.com creates personal data vaults, each of which
may contain thousands of data points about its users. Businesses pay for this data, and
the data owners are appropriately compensated.

Monetizing private data is an improvement over the narrow view of privacy as data
confidentiality because it empowers individuals to control their data through finan-
cial means. In this paper we propose a framework for assigning prices to queries in
order to compensate the data owners for their loss of privacy. Our framework borrows
from, and extends, key principles from both differential privacy [Dwork 2011] and data
markets [Koutris et al. 2012; Li and Miklau 2012]; a preliminary abstract of this pa-
per appeared in [Li et al. 2013]. There are three actors in our setting: individuals,
or data owners, contribute their personal data; a buyer submits an aggregate query
over many owners’ data; and a market maker, trusted to answer queries on behalf of
owners, charges the buyer and compensates the owners. Our framework makes three
important connections:

Perturbation and Price. In response to a buyer’s query, the market maker computes
the true query answer, adds random noise, and returns a perturbed result. While un-
der differential privacy perturbation is always necessary, here query answers could be
sold unperturbed, but the price would be high because each data owner contributing
to an aggregate query needs to be compensated. By adding perturbation to the query
answer, the price can be lowered: the more perturbation, the lower the price. The buyer
specifies how much accuracy he is willing to pay for when issuing the query. Unper-
turbed query answers are very expensive, but at the other extreme, query answers are
almost free if the noise added is the same as in differential privacy [Dwork 2011] with
conservative privacy parameters. The relationship between the accuracy of a query re-
sult and its cost depends on the query and the preferences of contributing data owners.
Formalizing this relationship is one of the goals of this paper.

Arbitrage and Perturbation. Arbitrage is an undesirable property of a set of priced
queries that allows a buyer to obtain the answer to a query more cheaply than its ad-
vertised price by deriving the answer from a less expensive alternative set of queries.
As a simple example, suppose that a given query is sold with two options for perturba-
tion, measured by variance: a variance of 10 for $5 and a variance of 1 for $200. A savvy
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buyer who seeks a variance of 1 would never pay $200. Instead, he would purchase the
first query 10 times, receive 10 noisy answers, and compute their average. Since the
noise is added independently, the variance of the resulting average is 1, and the total
cost is only $50. Arbitrage opportunities result from inconsistencies in the pricing of
queries which must be avoided and perturbing query answers makes this significantly
more challenging. Avoiding arbitrage in data markets has been considered before only
in the absence of perturbation [Balazinska et al. 2011; Koutris et al. 2012; Li and Mik-
lau 2012]. Formalizing arbitrage for noisy queries is a second goal of this paper. While,
in theory, achieving arbitrage-freeness requires imposing a lower bound on the ratio
between the price of low accuracy and high accuracy queries, we will show that it is
possible to design quite flexible arbitrage-free pricing functions.

Privacy-loss and Payments. Given a randomized mechanism for answering a query
q, a common measure of privacy loss to an individual is defined by differential privacy:
it is the maximum ratio between the probability of returning some fixed output with
and without that individual’s data. Differential privacy imposes a bound of eε on this
quantity, where ε is a small constant, presumed acceptable to all individuals in the
population. Our framework contrasts with this in several ways. First, the privacy loss
is not limited a priori, but depends on the buyer’s request. If the buyer asks for a
query with low variance, then the privacy loss to individuals will be high. These data
owners must be compensated for their privacy loss through the buyer’s payment. At
an extreme, if the query answer is exact (unperturbed), then the privacy loss to some
individuals could be total and they must be compensated appropriately. Also, we allow
each data owner to value their privacy loss separately, by demanding greater or lesser
payments. Formalizing the relationship between privacy loss and payments to the data
owners is a third goal of this paper.

By charging buyers for access to private data we overcome a fundamental limita-
tion of perturbation-based privacy preserving mechanisms, namely the privacy budget.
This term refers to a limit on the quantity and/or accuracy of queries that any buyer
can ask, in order to prevent an unacceptable disclosure of the data. For example, if a
differentially-private mechanism adds Laplacian noise with variance v, then by asking
the same query n times the buyer can reduce the variance to v/n. Even if queries are
restricted to aggregate queries, there exist sequences of queries that can reveal the
private data for most individuals in the database [Dinur and Nissim 2003] and en-
forcing the privacy budget must prevent this. In contrast, when private data is priced,
full disclosure is possible only if the buyer pays a high price. For example, in order to
reduce the variance to v/n, the buyer would have to purchase the query n times, thus
paying n times more than for a single query. In order to perform the attacks in [Dwork
and Yekhanin 2008] he would have to pay for (roughly) n queries.

Thus, the burden of the market maker is no longer to guard the privacy budget,
but instead to ensure that prices are set such that, whatever disclosure is obtained
by the buyer, all contributing individuals are properly compensated. In particular, if a
sequence of queries can indeed reveal the private data for most individuals, its price
must approach the total cost for the entire database.

The paper is organized as follows. We describe the basic framework for pricing pri-
vate data in Sect. 2. In Sect. 3, we discuss the main required properties for pricing
functions, developing notions of answerability for perturbed query answers and char-
acterizing arbitrage-free pricing functions. At the end of this section, in Sec. Sect. 3.7,
we discuss key assumptions about query answerability and adversary capabilities that
we have made in this work. In Sect. 4 we develop a notion of personalized privacy loss
for individuals, based on differential privacy.
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Fig. 1. The pricing framework has three components: (A) Pricing and purchase: the buyer asks a query
Q = (q, v) and must pay its price, π(Q); (B) Privacy loss: by answering Q, the market maker leaks some
information ε about the private data of the data owners to the buyer; (C) Compensation: the market maker
must compensate each data owner for their privacy loss with micro-payments; µi(Q) is the total amount of
micro-payments for all users in bucket i. The pricing framework is balanced if the price π(Q) is sufficient to
cover all micro-payments µi and the micro-payments µi compensate the owners for their privacy loss ε.

In Sec. Sect. 5 we first define micro payment functions using this measure of privacy
loss and then defined balanced frameworks, bringing together query prices, privacy
loss, and micro-payments. We discuss three future challenges for pricing private data
in Sect. 6: disclosures that could result from an individual’s privacy valuations alone,
how to set the price for “asking price” and incentives for data owners to honestly re-
veal the valuations of their data. We discuss related work and conclude in Sect. 7 and
Sect. 8.

2. BASIC CONCEPTS
In this section we describe the basic architecture of the private data pricing framework,
illustrated in Fig. 1.

2.1. The Main Actors
We describe below the main actors in our proposed marketplace: data owners who
contribute data, query buyers, and a market maker negotiating between the two:

The Market Maker.. The market maker is trusted by the buyer and by each of the
data owners. He collects data from the owners and sells it in the form of queries. When
a buyer decides to purchase a query, the market maker collects payment, computes
the answer to the query, adds noise as appropriate, returns the result to the buyer,
and finally distributes individual payments to the data owners. The market maker
may retain a fraction of the price as profit.

The Owner and Her Data.. Each owner contributes a single tuple conforming to a
relational schema R(A), with attributes A = {A1, A2, . . . , Ak}. The crossproduct of the
attribute domains, written dom(A), is the set of all possible tuples that could occur. For
a fixed k, its size, n = |dom(A)|, is polynomial in the number of users; n grows expo-
nentially with k. Having collected tuples from each owner, the market maker forms a
relational table I, an instance of R(A).

The Buyer and His Queries.. The buyer is a data analyst who wishes to compute
some queries over the data. We restrict our attention to linear aggregation queries
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over instance I, a common class of queries that has received considerable attention
from the privacy community [Li et al. 2010; Yuan et al. 2012; Hardt et al. 2012].

To express linear queries, we first represent the instance I by a finite data vector
x consisting of non-negative integral counts. For each element t ∈ dom(A), the vector
x has one entry that reports the number of individuals whose tuple matches t. We
assume that dom(A) is ordered, and denote xi the i’th entry in the vector x. In other
words, xi represents the number of individuals whose attribute values match the i’th
entry in dom(A). Notice that, although the size n of the vector x can be large, since it
is exponential in the number of attributes, the vector is sparse, having nonzero counts
only for tuples present in I. In practice one avoids fully materializing x, and retains
only the relational representation of I.

DEFINITION 2.1 (LINEAR QUERY). A linear query is a real-valued vector q =
(q1, q2 . . . qn). The answer q(x) to a linear query on x is the vector product qx =
q1x1 + · · ·+ qnxn.

A linear query with only coefficients of zero or one can express any predicate count-
ing query, counting the number of individuals satisfying any boolean predicate over
the attributes in the schema. This includes many common statistical queries such as
histogram counts, data cube queries, and marginals. With more general coefficients,
linear queries can express differences, weighted counts, and averages over discrete do-
mains. While the query vector q is large, in practice queries are expressed compactly,
directly over the relational representation of the data, in a query language like SQL.

EXAMPLE 2.2. Consider a competition between candidates A and B that is decided
by a population of voters. The ratings and descriptive fields of voters are sensitive and
should be compensated properly if used in any way. Imagine that users contribute their
gender and age along with two numerical ratings, each consisting of a values from
the domain {0, 1, 2, 3, 4, 5}. Thus Alice’s tuple may be (‘Female′, 39, 0, 5) if she strongly
favors candidate B over candidate A. If the domain for the age attribute is [1..120], then
the database vector will have size 2× 120× 6× 6 = 8640.

Examples of linear queries include: the total of all ratings for candidate A; the num-
ber of female voters over 40 who gave candidate A a rating of 5; the number of voters
whose rating for candidate A exceeds that for candidate B.

We make two comments about our framework. First, although the vector x removes
personal identifiable information, since xi does not represent an individual user but
the total number of users with a particular combination of attribute values, queries
can still leak information about individual users. Continuing our example, a buyer
may know that Alice is 39 years old. Then, he could issue 36 linear queries, requesting
the counts for all entries of the form (‘Female′, 39, a, b), for all combinations of values
a, b: if the database has only a small number of female users of age 39, then most of the
36 answers are zero, and the buyer has a pretty good guess of Alice’s possible votes.
Research on differential privacy is concerned with preventing such leaks.

Second, we assume that the buyer is allowed to issue multiple queries, which means
that he can combine information derived from multiple queries to infer answers to
other queries not explicitly requested. This presents a challenge we must address:
to ensure that the buyer pays for any information that he might derive directly or
indirectly.

2.2. Balanced Pricing Framework
The market maker enters two contracts: (1) It promises to answer buyer’s queries
according to an agreed price, π, (Sect. 3) (2) it promises to compensate the data owners
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with a micro-payments µi(ε) whenever they suffer a privacy loss ε in response to a
buyer’s query (Sect. 5).

In the contract with the buyer, the market maker allows the buyer to specify, for
each linear query q, an amount of noise v that he is willing to tolerate in the answer.
Adding noise reduces the price. Thus, the buyer’s query is a pair Q = (q, v), where q
is a linear query and v ≥ 0 represents an upper bound on the variance, and the price
depends on both, π(Q) = π(q, v) ≥ 0. The market maker answers by first computing
the exact answer q(x), then adding noise sampled from a distribution with mean 0
and variance at most v. This feature gives the buyer more pricing options because, by
increasing v, he can lower his price. Notice that the price depends only on the variance
v, and not on the type of noise.

In the contract with the data owners, the market maker promises to compensate
her with a micro-payment. We denote µi(ε) the sum of all micropayments to all users
whose attributes match the i’th entry to the vector, where ε is the privacy loss incurred
by answering the query Q. The privacy loss depends both on the variance, and on the
type of noise that the market maker uses to answer queries: in Sect. 4 we will restrict
the noise to the Laplace distribution, for which there exists an explicit formula con-
necting the privacy loss ε to the variance. In that case the micro-payment depends
on the buyer’s query, µi(Q). For the pricing framework to be balanced, we must have∑n
i=1 µi(Q) ≤ π(Q). Note that µi(Q) needs to be further split among all users partici-

pating in the i’th bucket of the data x.

EXAMPLE 2.3. Continuing Example 2.2, suppose that there are 1000 voters, and
that Bob, the buyer, wants to compute the sum of ratings for candidate A. Assume that
each voter requires $10 for each raw vote. For an accurate answer to the query, Bob
needs to pay $10, 000, which is, arguably, too expensive.

Assume Bob is willing to buy the query perturbed with variance v = 5, 000, which
gives an error1 of ±300 with 94% confidence. The market maker should charge Bob a
much lower price; to see how low, we need to consider how the market maker compen-
sates the data owners. We assume that he uses Laplacian noise for the perturbation, and
therefore the answer to the query is ε-differentially private2, with ε = 0.1, which offers
reasonably good privacy to all data owners: each will be happy to accept only $0.001 for
basically no loss of privacy, and Bob pays only $1 for the entire query. The challenge
is to design the prices in between. For example, suppose the data owner wants to buy
more accuracy, say a variance v = 50 (to reduce the error to ±30), what should the price
be now? We will answer this in Example 3.17. For now, let us observe that the price
cannot exceed $100. If it did, then a savvy buyer would never pay that price, instead
he would purchase the $1 query 100 times, compute the average, and obtain the answer
with a variance of 5000/100 = 50. This is an example of arbitrage and the market maker
should define a pricing function that avoids it.

While in the contract with the buyer the price depends only on the variance and not
on the type of perturbation, the contract with the data owner is highly sensitive to the
type of noise. For example, consider this noise P (0) = 1 − 2/m, P (±m) = 1/m, where
m = 1064 (mean 0, variance 2m) is a poor choice. On one hand, it has a high variance,
which implies a low price π. On the other hand, it returns an accurate answer with
extremely high probability, leading to huge privacy losses εi, and, consequently, to huge
micro-payments. The market maker will not be able to recover his costs. Thus, in order

1Pr
(
|q̂ − q| ≥ 3

√
2 · σ

)
≤ 1/18 = 0.056 (Chebyshev’s inequality), where σ =

√
v = 50

√
2. Thus, the error is

≤ 3
√

2 · σ = 300 with probability ≤ 5.6%.
2ε =

√
2 · sensitivity(q)/σ = 5

√
2/50

√
2 = 0.1
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to design a balanced pricing framework, we need to have a perturbation mechanism
where the privacy loss is given by an explicit function in the variance; in Sect. 5.1 we
will only consider the Laplacian mechanism, where such a function exists.

3. PRICING QUERIES
In this section we describe the first component of the framework in Fig. 1: the pricing
function π(Q) = π(q, v). We denote R+ = [0,∞) and R̄+ = R+ ∪ {∞}.

DEFINITION 3.1. A pricing function is π : Rn × R̄+ → R̄+.

In our framework, the buyer is allowed to issue multiple queries. As a consequence, an
important concern is that the buyer may combine answers from multiple queries and
derive an answer to a new query, without paying the full price for the latter, a situation
we call arbitrage. A reasonable pricing function must guarantee that no arbitrage is
possible, in which case we call it arbitrage-free. Such a pricing function ensures that
the market maker receives proper payment for each query by removing any incentive
for the buyer to “game” the system by asking a set of cheaper queries in order to obtain
the desired answer. In this section we formally define arbitrage-free pricing functions,
study their properties, and discuss a how to construct arbitrage-free pricing functions.

3.1. Queries and Answers
A randomized mechanism means a random function K, with some input x, denoted
K(x). For a given query Q = (q, v), the market maker answers it using a randomized
mechanism KQ, with the property that, for any x, E (KQ(x)) = q(x) and Var (KQ(x)) ≤
v. In other words, when the buyer’s asks for a query Q, the market maker samples one
value from the distribution KQ and returns it to the buyer, in exchange for payment
π(Q). We abbreviate KQ with K when Q is clear from the context.

DEFINITION 3.2. We say that a random function K(x) answers the query Q = (q, v)
on the database x if its expectation is q(x) and its variance is less than or equal to v.

Other options for answering queries are possible, and we briefly discuss them in
Sect. 3.7.

To illustrate with a simple example, consider the mechanism KQ which, on input x
first computes the query q(x), then adds a random noise with mean 0 and variance
v. In this section we do not impose any restrictions on the type of perturbation used
in answering the query. The contract between the buyer and the market maker refers
only to the variance: the buyer pays for a certain variance, and the market maker
must answer with at most that variance. The inherent assumption is that the buyer
only cares about the variance and is indifferent to other properties of the perturbation.
However, the market maker also has a contract with the data providers, and needs to
compensate them according to their privacy loss. Different mechanisms with the same
variance will lead to different privacy losses; in Sect. 4 we will restrict the perturbation
to consists of a Laplacian noise, which offers a bound on the privacy loss that depends
only on the variance.

We assume that the market maker is stateless: he does not keep a log of previous
users, their queries, or of released answers. As a consequence, each query is answered
using an independent random variable. If the same buyer issues the same query re-
peatedly, the market maker answers using independent samples from the random
function K. Of course, the buyer would have to pay for each query separately.

3.2. Answerability and Determinacy
Before investigating arbitrage we establish the key concept of query answerability.
This notion is well studied for deterministic queries and views [Halevy 2001; Nash
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et al. 2010], but, in our setting, the query answers are random variables, and it re-
quires a precise definition. Our definition below directly extends the traditional defini-
tion from deterministic to randomized queries.

DEFINITION 3.3 (ANSWERABILITY). A query Q is answerable from a multi-set of
queries S={Q1, . . . ,Qk} if there exists a function f : Rk → R such that, for any mecha-
nisms K1, . . ., Kk, that answer the queries Q1, . . . ,Qk, the composite mechanism defined
as K(x)

def
= f(K1(x), . . . ,Kk(x)) answers the query Q.

We say that Q is linearly answerable from Q1,. . . ,Qk if the function f is linear.

In other words, we want to compute q(x) with variance v, and have access to some
other query results (estimates) y1 = K1, . . . , yk = Kk. We simply apply a function f to
these results, and return y = f(y1, . . . , yk); this result must be an unbiased estimate
of q(x), and must have variance ≤ v. For a simple example, consider queries Q1 =
(q1, v1) and Q2 = (q2, v2) and mechanisms K1 and K2 that answer them. The query
Q3 = ((q1 + q2)/2, (v1 + v2)/4) is answerable from Q1 and Q2 because we can simply
sum and scale the answers returned by the two mechanisms, and E ((K1 +K2)/2) =
(E (K1)+E (K2))/2, and Var ((K1 +K2)/2) = (Var (K1)+Var (K2))/4. Since the function
is linear, we say that the query is linearly answerable.

When k = 1, then, with some abuse of notation we denote the singleton set S = {Q1}
as Q1. When k = 0, then Q = (q, v) is answerable from S iff q is a constant, and this
happens iff q = 0 (because q is a linear query).

How do we check if a query can be answered from a given set of queries? In this
paper we give a partial answer, by characterizing when a query is linearly answerable.

DEFINITION 3.4 (DETERMINACY). The determinacy relation is a relation between
a query Q and a multi-set of queries S = {Q1, . . . ,Qk}, denoted S→ Q, and defined by
the following rules:

Summation. {(q1, v1), . . . , (qk, vk)} → (q1 + . . .+ qk, v1 + . . .+ vk);
Scalar multiplication. ∀c ∈ R, (q, v)→ (cq, c2v);
Relaxation. (q, v)→ (q, v′), where v ≤ v′;
Transitivity. If S1→Q1, . . . ,Sk→Qk and {Q1, . . . ,Qk} → Q, then

⋃k
i=1 Sk → Q.

The following proposition gives a characterization of linear answerability:

PROPOSITION 3.5. Let S = {(q1, v1), . . . , (qm, vm)} be a multi-set of queries, and
Q = (q, v) be a query. Then the following conditions are equivalent.

(1) Q is linearly answerable from S.
(2) S→ Q.
(3) There exists c1, . . . , cm such that c1q1 + . . .+ cmqm = q and c21v1 + . . .+ c2mvm ≤ v.

PROOF. (1⇔ 3): Follows from the definition of linear answerability.
(2 ⇒ 3): It is clear that in the rules of the determinacy relation, summation, scalar
multiplication and relaxation are special cases of 3. For the transitivity rule, for each
i = 1, . . . , k, let fi be a linear function such that fi(Si) = qi with variance no more
than vi. Let f be a linear function such that f(q1, . . . ,qk) = q with variance no more
than v. Then f0 = f(f1(S1), . . . , fk(Sk)) is a linear function of

⋃k
i=1 Sk and the variance

introduced is no more than v.
(3⇒ 2): Since

(qi, vi)→ (ciqi, c
2
i vi),

{(c1q1, c
2
1v1), . . . , (cmqm, c

2
mvm)} → (c1q1+. . .+cmqm, c

2
1v1+. . .+c2mvm) = (q, c21v1+. . .+c2mvm),
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and

(q, c21v1 + . . .+ c2mvm)→ (q, v),

we obtain S→ Q.

Thus, determinacy fully characterizes linear answerability.
In this paper we restrict our discussion to linear answerability; in other words, we

assume that the buyer will attempt to derive new answers from existing queries only
by computing linear combinations. This is a limitation, and we discuss some of its
implications (good and bad) in Sect. 3.7. Thus, in the rest of the paper we will use
interchangeably the determinacy relation S→ Q instead of linear answerability.

Deciding determinacy, S → Q, can be done in polynomial time using a quadratic
program. The program first determines whether q can be represented as a linear com-
bination of queries in S. If the answer is yes, the quadratic program further checks
whether there is a linear combination such that the variance of answering q is at most
v.

PROPOSITION 3.6. Verifying whether a multi-set S of m queries determines a query
Q can be done in PTIME(m,n).

PROOF. Given a multi-set S = {(q1, v1), . . . , (qm, vm)} and a query (q, v), the fol-
lowing quadratic program outputs the minimum possible variance to answer q using
linear combinations of queries in S.

Given: q,q1, . . . ,qm, v1, . . . , vm,

Minimize: c21v1 + . . .+ c2mvm,

Subject to: c1q1 + . . .+ cmqm = q. (1)

Once the quadratic program is solved, one can compare c21v1 + . . . + c2mvm with v. Ac-
cording to the Prop. 3.5 S → (q, v) if and only if c21v1 + . . . + c2mvm ≤ v. Since the
quadratic program above has m variables and the constraints are a linear equation
on n-dimensional vectors, it can be solved in PTIME(m,n) [Boyd and Vandenberghe
2004]. Thus the verification process can be done in PTIME(m,n) as well.

Our main use of determinacy is in the definition of arbitrage (which we will introduce
next): an adversary uses determinacy to attempt to answer the query (q, v) at a lower
price. We note that PTIME(m,n) is not necessarily practical for the adversary, because
the number of constraints in the quadratic program, Eq.(1), is n, which is exponential
in the number of attributes (Sect. 2). If the relational table I where known, then one
could reduce the number of constraints to |I|, since we only need one constraint in
Eq.(1) for each combination of attribute values in I, but, of course, I is unknown to
an adversary. Nevertheless, we will assume that an adversary is powerful enough to
check determinacy, and will design pricing functions that prevent arbitrage.

3.3. Arbitrage-free Pricing Functions: Definition
Arbitrage is possible when the answer to a query Q can be obtained more cheaply than
the advertised price π(Q) from an alternative set of priced queries. When arbitrage is
possible it complicates the interface between the buyer and market maker: the buyer
may need to reason carefully about his queries to achieve the lowest price, while at
the same time the market maker may not achieve the revenue intended by some of
his advertised prices. Thus, arbitrage is undesirable, and we want to design pricing
functions that are arbitrage-free.
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DEFINITION 3.7 (ARBITRAGE-FREE). A pricing function π(Q) is arbitrage-free if,
for every multi-set S = {Q1, . . . ,Qm}, if S→ Q then

π(Q) ≤
m∑
i=1

π(Qi).

The intuition is this: if π does have arbitrage, π(Q) >
∑m
i=1 π(Qi), then a buyer

would never pay the full price π(Q): instead he would purchase Q1, . . . ,Qm and use
those answers to compute Q.

EXAMPLE 3.8. Consider a query (q, v) offered for price π(q, v). A buyer who wishes
to improve the accuracy of the query may ask the same query n times, (q, v), (q, v), . . .,
(q, v), at a total cost of n · π(q, v). The buyer then computes the average of the query an-
swers to get an estimated answer with a much lower variance, namely v/n. The pricing
function must ensure that the total payment collected from the buyer covers the cost of
this lower variance, in other words n ·π(q, v) ≥ π(q, v/n). If π is arbitrage free, then it is
easy to check that this condition holds. Indeed, {(q, v), . . . , (q, v)} → (nq, nv)→ (q, v/n),
and arbitrage-freeness implies π(q, v/n) ≤ π(q, v) + . . .+ π(q, v) = n · π(q, v).

We prove that any arbitrage-free pricing function satisfies the following simple prop-
erties:

PROPOSITION 3.9. Let π be an arbitrage-free pricing function. Then:

(1) The zero query is free: π(0, v) = 0.
(2) Higher variance is cheaper: v ≤ v′ implies π(q, v) ≥ π(q, v′).
(3) The zero-variance query is the most expensive3: π(q, 0)≥ π(q, v) for all v ≥ 0.
(4) Infinite noise is free: if π is continuous at q = 0, then π(q,∞) = 0.

PROOF. For (1), we have ∅ → (0, 0) by the first rule of Def. 3.4 (taking k = 0, i.e. S =
∅) and (0, 0)→ (0, v) by the third rule; hence π(0, v) = 0. (2) follows from (q, v)→ (q, v′)
when v ≤ v′. (3) follows immediately from (2), since all variances are v ≥ 0. For (4), we
use the second rule to derive (1/c · q, v)→ (q, c2 · v), hence

π(q,∞) = lim
c→∞

π(q, c2 · v) ≤ lim
c→∞

π(1/c · q, v) = π(0, v) = 0.

Arbitrage-free pricing functions have been studied before [Koutris et al. 2012; Li
and Miklau 2012], but only in the context of deterministic (i.e. unperturbed) query
answers. Our definition extends those in [Koutris et al. 2012; Li and Miklau 2012] to
queries with perturbed answers.

3.4. Arbitrage-free Pricing Functions: Synthesis
The zero-cost pricing function π(Q) = 0, for all Q, is arbitrage-free; this is a trivial
price, under which every query is free. It is not clear whether non-trivial arbitrage-
free pricing function exists at all. For example, we note that the constant-price pricing
function is not arbitrage-free. More precisely, fix any constant c > 0; the market-maker
charges the fixed price π(Q) = c for every query Q. This function has arbitrage. In-
deed, here the market maker also intents to charge the price c > 0 for the zero-query
q(x) = 0. But the zero-query should be free, because any buyer can derive it himself
(using m = 0 in Def. 3.7); this is also stated in Prop. 3.9 (1). Thus, it is not clear at
all how to construct any non-trivial arbitrage-free pricing function. In this section we

3It is possible that π(q, 0) =∞.
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prove that non-trivial arbitrage-free pricing functions exists, and give some sufficient
rules for synthesizing such functions; in Sect. 3.5 we extend these rules to allow the
pricing function to set a finite price for the raw, unperturbed data; and in Sect. 3.6 we
show that general construction of arbitrage-free pricing functions remains a difficult
problem.

We start by analyzing how an arbitrage-free pricing function π(q, v) depends on the
variance v. We already know that it is monotonically decreasing in v (Prop. 3.9 (2)), and
that, assuming it is continuous and non-trivial, it cannot be independent of v (Prop. 3.9
(4 )). The next proposition shows that it cannot decrease faster than 1/v:

PROPOSITION 3.10. For any arbitrage-free pricing function π and any linear query
q, π(q, v) = Ω(1/v).

PROOF. Suppose the contrary: there exists a linear query q and a sequence {vi}∞i=1
such that limi→∞ vi = +∞ and limi→∞ viπ(q, vi) = 0. Select i0 such that vi0 > 1 and
vi0π(q, vi0) < π(q, 1)/2. Then, we can answer π(q, 1) by asking the query π(q, vi0) at
most dvi0e times and computing the average. For these dvi0e queries we pay:

dvi0eπ(q, vi0) ≤ (vi0 + 1)π(q, vi0) < 2vi0π(q, vi0) < π(q, 1),

which implies that we have arbitrage, a contradiction.

The first arbitrage-free pricing function that we synthesize is π(q, v) = f2(q)/v, for
some positive function f that depends only on q. We prove that π is arbitrage-free
iff f is a semi-norm. This gives us an entire class of arbitrage-free pricing functions,
as well as a complete characterization of those functions whose dependency on v is
Θ(1/v). Recall that a semi-norm is a function f : Rn → R that satisfies the following
properties4:

— For any c ∈ R and any q ∈ Rn, f(cq) = |c|f(q).
— For any q1, q2 ∈ Rn, f(q1 + q2) ≤ f(q1) + f(q2).

We prove:

THEOREM 3.11. Let π(q, v) be a pricing function s.t. π(q, v) = f2(q)/v for some
function f .5 Then π(q, v) is arbitrage-free iff f(q) is a semi-norm.

PROOF. (⇐) : Suppose π(q, v) = f2(q)/v and f(q) is a semi-norm. According
to Prop. 3.5, {(q1, v1), . . . , (qm, vm)} → (q, v) if and only if there exists c1, . . . , cm such
that c1q1 + . . .+ cmqm = q and c21v1 + . . .+ c2mvm ≤ v. Then,

m∑
i=1

π(qi, vi) =

m∑
i=1

f2(qi)

vi
=

(
∑m
i=1

f2(qi)
vi

)(
∑m
i=1 c

2
i vi)∑m

i=1 c
2
i vi

≥
(
∑m
i=1 |ci|f(qi))

2∑m
i=1 c

2
i vi

=
(
∑m
i=1 f(ciqi))

2∑m
i=1 c

2
i vi

≥ f(q)2

v
= π(q, v),

where the first inequality follows from the Cauchy-Schwarz inequality and the second
comes from the sub-additivity of the semi-norm.

4It follows that f(0) = 0 (by taking c = 0 in the first property); if the converse holds, f(q) = 0 ⇒ q = 0,
then f is called a norm. Also, recall that any semi-norm satisfies f(q) ≥ 0, by the triangle inequality.
5In other words, f(q) =

√
π(q, v)v is independent of v.
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(⇒) : Assuming π is arbitrage-free, we prove that f is a semi-norm. For c 6= 0, by the
second rule of Def. 3.4, we have both:

(q, v)→(cq, c2v)

(cq, c2v)→(
1

c
× cq, (1

c
)2 × c2v)→ (q, v)

Therefore both π(q, v) ≤ π(cq, c2v) and π(q, v) ≥ π(cq, c2v) hold, thus π(q, v) =
π(cq, c2v). This implies that, if c 6= 0,

f(cq) =
√
π(cq, c2v)c2v = |c|

√
π(q, v)v = |c|f(q).

If c = 0, we also have f(cq) =
√
π(cq, c2v)c2v = 0 = |c|f(q).

Next we prove that f(q1 + q2) ≤ f(q1) + f(q2). Set the variances v1 = f(q1) and
v2 = f(q2); then we have f(q1) = π(q1, v1) and f(q2) = π(q2, v2). By the first rule in
Def. 3.4 we have {(q1, v1), (q2, v2)} → (q1 + q2, v1 + v2), and therefore:

f2(q1 + q2)

f(q1) + f(q2)
=π(q1 + q2, v1 + v2)

≤π(q1, v1) + π(q2, v2) = f(q1) + f(q2)

which proves the claim.

As an immediate application of the theorem, let us instantiate f to be one of the
norms L2, L∞, Lp, or a weighted L2 norm. This implies that the following four functions
are arbitrage-free:

π(q, v) =||q||22/v =
∑
i

q2
i /v (2)

π(q, v) =||q||2∞/v = max
i
q2
i /v (3)

π(q, v) =||q||2p/v = (
∑
i

qpi )2/p/v p ≥ 1 (4)

π(q, v) =(
∑
i

wi · q2
i )/v w1, . . . , wn ≥ 0 (5)

Next, we give a general method for synthesizing new arbitrage-free pricing functions
from existing ones. Recall that a function f : (R̄+)k → R̄+ is called subadditive if
for any two vectors x,y ∈ (R̄+)k, f(x + y) ≤ f(x) + f(y); the function is called non-
decreasing if x ≤ y implies f(x) ≤ f(y).

PROPOSITION 3.12. Let f : (R̄+)k → R̄+ be a subadditive, non-decreasing
function. For any arbitrage-free pricing functions π1, . . . , πk, the function π(Q) =
f(π1(Q), . . . , πk(Q)) is also arbitrage-free.

PROOF. For any query Q, let π̄(Q) = (π1(Q), . . . , πk(Q)). Assume
{(q1, v1), . . . , (qm, vm)} → (q, v). We have:

π̄(Q) ≤
∑
i

π̄(Qi) because each πj is arbitrage-free

f(π̄(Q)) ≤f(
∑
i

π̄(Qi)) because f is non-decreasing

≤
∑
i

f(π̄(Qi)) because f is sub-additive
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Prop. 3.12 allows us to synthesize new arbitrage-free pricing function from existing
arbitrage-free pricing functions. As an application we obtain:

COROLLARY 3.13. If π1, . . . , πk are arbitrage-free pricing functions, then so are the
following functions:

— Linear combination: c1π1 + . . .+ ckπk, for c1, . . . , ck ≥ 0.
— Maximum: max(π1, . . . , πk);
— Cut-off: min(π1, c), where c ≥ 0;
— Power: πc1 where 0 < c ≤ 1;
— Logarithmic: log(π1 + 1);
— Geometric mean:

√
π1 · π2.

PROOF. It is clear that all the functions above are monotonically increasing. One
can check directly that maximum and cut-off functions are sub-additive. Sub-additivity
for the rest follows from the following:

LEMMA 3.14. Let f : (R̄+)k → R̄+ be a non-decreasing, continuous and twice differ-
entiable function s.t. f(0) = 0. Then, if ∂2f/∂xi∂xj ≤ 0 for all i, j = 1, . . . , k, then f is
sub-additive.

PROOF. Denote fi = ∂f/∂xi and fij = ∂2f/∂xi∂xj . We apply twice the first-order
Taylor approximation f(x)− f(0) =

∑
i(∂f/∂xi)(ξ) · xi, once to g(y) = f(x + y)− f(y),

and the second time to h(x) =
∑
j(fj(x + ξ)− fj(ξ)) · yj :

f(x) + f(y)− f(x + y) = [f(x)− f(0)] + [f(x + y)− f(y)]

= g(0)− g(y) = −
∑
j

gj(ξ) · yj

= −
∑
j

(fj(x + ξ)− fj(ξ)) · yj = −
∑
ij

fij(η + ξ) · xi · yj ≥ 0

EXAMPLE 3.15. For a simple illustration we will prove that the pricing function
π(q, v) = maxi |qi|/

√
v is arbitrage free. Start from π1(q, v) = maxi q

2
i /v, which is

arbitrage-free by Eq. 3, then notice that π = (π1)1/2, hence π is arbitrage-free by Corol-
lary 3.13.

3.5. Raw Private Data at a Finite Price
While under differential privacy perturbation is always necessary, in data markets the
data being sold is usually unperturbed. Perturbation is only a tool to reduce the price
for the buyer. Therefore, a reasonable pricing function π(q, v) needs to give a finite price
for a zero variance; all functions that we described in Sect. 3.4, with the exception of
the cut-off function, charge an infinite price for the raw data. In this section we discuss
pricing functions that set a finite price for the raw private data.

For that, we simply use sub-additive, non-decreasing functions that are bounded,
and apply Prop. 3.12. In addition to the cut-off function, we can use sigmoid curves
(popular in the machine learning community), and inverse trigonometric functions:

COROLLARY 3.16. Given an arbitrage-free pricing function π, each of the following
functions is also arbitrage-free and bounded: atan(π), tanh(π), π/

√
π2 + 1.
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PROOF. By Lemma 3.14 it suffices to check that all first derivatives are ≥ 0 and all
second derivatives are ≤ 0, for all x ≥ 0:

d

dx
atan(x) =

1

1 + x2
> 0;

d2

dx2
atan(x) = − 2x

(1 + x2)2
≤ 0;

d

dx
tanh(x) =

1

cosh2(x)
> 0;

d2

dx2
tanh(x) = −2tanh(x)

cosh2(x)
≤ 0;

d

dx

x√
1 + x2

= (1 + x2)−
3
2 > 0;

d2

dx2

x√
1 + x2

= −3x(1 + x2)−
5
2 ≤ 0.

EXAMPLE 3.17. Suppose we want to charge a price p for the true, unperturbed result
of a query q. Assume ||q||22 = n, and let π1(q, v) = ||q||22/v = n/v be the pricing function
in Eq. 2. It follows that the function6

π(q, v) =
2p

Π
· atan(c · π1(q, v)) =

2p

Π
· atan(c

n

v
)

is arbitrage-free. Here c > 0 is a parameter. For example, suppose the buyer cannot
afford the unperturbed query (v = 0), and settles instead for a variance v = Θ(n) (it
corresponds to a standard deviation

√
n, which is sufficient for some applications); for

concreteness, assume v = 5n. Then π(q, v) = 2p
Π ·atan(c/5). To make this price affordable,

we choose c � 1, in which case the price becomes π ≈ 2 · c · p/(5 · Π) = 0.13 · c · p. In
Example 2.3 the price of the unperturbed query was p = $10, 000, and we wanted to
charge $1 for the variance v = 5n = 5000: for that we can use the pricing function π
above, with c = 1/(0.13·p) = 7.85·10−4. We can now answer the question in Example 2.3:
the cost of the query with variance v = 50 is π(q, v) = 2p

Π · atan(100 · c/5) = $99.94.

3.6. Deriving Pricing Functions from Price Points
We discuss here a more flexible framework for defining an arbitrage-free pricing func-
tion: the market maker defines the price for a finite set of queries called views, then
the system automatically extrapolates this to a pricing function on all queries.

DEFINITION 3.18. A price point is a pair (V, p), where V = (q, v) is a query (called
a view) and p ∈ R+ is a fixed price.

[Koutris et al. 2012] introduce a pricing framework where the market-maker de-
fines a set of price points V = ((V1, p1), . . . , (Vm, pm)), and the system synthesizes an
arbitrage-free pricing function π that agrees with all price points. This is an ideal way
to set prices; [Koutris et al. 2012] give necessary and sufficient conditions for such
a pricing function to exists, but only for relational queries, without perturbation. In
our framework, the queries are linear, and include random noise; we show here that

6We use Π for the constant 3.1415 . . . to avoid confusion with the pricing function π.
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the techniques in [Koutris et al. 2012] can be adapted to our setting, and prove that
computing a price function given by a set of price points is NP-complete.

We started with the following definition, adapted from [Koutris et al. 2012]:

DEFINITION 3.19. Given a set of price points V = ((V1, p1), . . . , (Vm, pm)), we say
that a pricing function π is valid w.r.t. V if (a) π is arbitrage-free, and (b) ∀(Vi, pi) ∈ V ,
π(Vi) = pi.

In general, there may not exists a valid pricing function. For example, assume that
V1, . . . ,Vm−1 determine Vm, and assume that pm > p1 + . . . + pm−1. Then, there is
no valid pricing function, because we would have a contradiction: condition (b) implies
π(Vm) = pm, while (a) implies pm = π(Vm) ≤

∑
i=1,m−1 π(Vi) =

∑
i=1,m−1 pi.

If a valid pricing function exists, then we say that V is consistent.
Note that if V is consistent, then it cannot contain the same query twice with differ-

ent prices: if (V, pi), (V, pj) ∈ V and pi 6= pj then there is arbitrage. We will assume
w.l.o.g. that the queries V1, . . . ,Vm are distinct.

The key to designing a valid pricing function is to compute, for any given query Q,
the cheapest plan to answer Q from the views in V . A procurement plan is a plan for
answering Q that specifies how many times to purchase from the market maker each
query Vi.

DEFINITION 3.20 (PROCUREMENT PLAN). Consider an ordered set of price points,
V = {(V1, p1), (V2, p2), . . . , (Vm, pm)}. A procurement plan is an ordered multi-set of
non-negative integers, B = {b1, b2, . . . , bm}, such that, the multiset VB = {Vb1

1 , . . . ,V
bm
m }

(where each query Vi occurs bi times) determines Q: VB → Q. The cost of the procure-
ment plan is cost(B) =

∑
i bipi.

V and B need to be ordered in order to establish a one-to-one correspondence be-
tween (Vi, pi) and bi. For a trivial example, let V = {((q, 100), $5)} consists of a single
price point that charges $5 for some query with variance 100. The buyer wants to pur-
chase Q = (q, 25); a procurement plan is b1 = 4, in other words we must purchase
the query 4 times, and compute the average, in order to reduce the variance to 25.
Obviously, this is the cheapest procurement plan for Q.

Unlike in the definition of answerability S→ Q (Def. 3.3), where we had one output
for each query in S and could only use those outputs to answer Q, in a procurement
plan we can buy a view Vi as many times as we want, for example in order to reduce
its variance. Of course, we have to pay for it, and this is captured by cost. A query
Q = (q, v) has a procurement plan iff q is a linear combination, and this can be checked
by solving a system of linear equations; in other words, the variance doesn’t matter for
the existence of a procurement plan, since we can always compute the query repeatedly
and take the average, thus reducing the variance.7 Of course, we want to find the
procurement plan of lowest cost, which justifies:

DEFINITION 3.21. Given a set of price-points V , the arbitrage pricing function is:

πV(Q) = min{cost(B) | VB → Q}
The arbitrage function is very intuitive. It takes as input a query Q and finds the

cheapest procurement plan B for Q; in effect, it performs “arbitrage” in order to answer
Q. Then returns the cost of that plan. Note that, by definition, if Q is not answerable
from V , then the arbitrage price is πV(Q) =∞.

7The only exception is when the query has variance zero, v = 0. Since averaging can only reduce the variance
but never make it zero, in that case we can only use the views in V whose variance is zero. In other words,
a procurement plan exists iff q is a linear combination of those views in V that have a zero variance.
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The following theorem extends a similar property in [Koutris et al. 2012, Th.2.15].

THEOREM 3.22. Let V be a set of price points and πV its arbitrage function. Then
(a) πV is arbitrage-free, (b) if π is any valid pricing function for V , then π(Q) ≤ πV(Q)
for all queries Q, and (c) V is consistent iff for all (Vi, pi) ∈ V , pi ≤ πV(Vi).

PROOF. (a) Suppose {Q1,Q2,Q3, . . . ,Qk} → Q; we prove that
∑
i=1,k πV(Qi) ≥

πV(Q). By definition, πV(Q) = minB:VB→Q

∑
j=1,m bjpj , and πV(Qi) =

minB:VB→Qi

∑
j=1,m bjpj , i ∈ {1, 2, . . . , k}.

Let Bi = argminB:VB→Qi

∑
j=1,m bjpj . Then we know that VBi → Qi. Since

{Q1,Q2,Q3, . . . ,Qk} → Q, by the transitivity rule in Def. 3.4, ∪iVBi → Q; here ∪iVBi

represents multi-set union. Let
∑
iBi denote the procurement plan that adds the mul-

tiplicities of all Bi’s, component-wise; then ∪iVBi = V
∑

i Bi , and therefore
∑
iBi is

a procurement plan for Q, with cost(
∑
iBi) =

∑
i cost(Bi) =

∑
i πV(Qi). By the def-

inition of the arbitrage-function, we have πV(Q) ≤ cost(
∑
iBi), which proves claim

(a).
(b) For any query Q, let B be the lowest cost procurement plan; thus πV(Q) =

cost(B). Since VB → Q, for any valid pricing function π we must have π(Q) ≤
b1π(V1) + . . .+ bmπ(Vm) (since π is arbitrage-free), therefore π(Q) ≤ b1p1 + . . . bmpm =
cost(B) (since π is valid), and claim (b) follows from cost(B) = πV(Q).

(c) We note that for all (Vi, pi) ∈ V , πV(Vi) ≤ pi, because there exists a trivial
procurement plan for Vi that purchases Vi exactly once, and its cost is pi. Therefore,
if pi ≤ πV(Vi), then πV is valid for V , proving that V is consistent. Conversely, if V is
consistent then there exists a valid pricing function π, and by (b) we have pi = π(Vi) ≤
πV(Q).

This suggests a simple method for a market maker to set almost arbitrary prices: the
market maker defines a set of price points, V = {(Vi, pi) | i = 1,m}, the system checks
consistency by checking pi ≤ πV(Vi) for all i, then the market maker sells every query
Q at price πV(Q). Unfortunately, we show that this procedure has high complexity,
both during the consistency check step, and during the price computation step.

THEOREM 3.23. The following problem: “given a set of price points V , a query Q,
and budget p > 0, decide whether Q is answerable from V within a budget p (in other
words, check πV(Q) ≤ p)”, is NP-complete.

Before we prove the theorem, we make two comments. First, it is interesting to
contrast the theorem to Prop. 3.6. There, we have shown that checking determinacy is
in PTIME(m,n). The difference is that in that case we had a fixed set of answers to the
queries in S, and the problem reduced to a quadratic program. Now, we also need to
decide how many times to purchase each view in V , and the problem is a combinatorial
optimization. Second, we contrast this to the complexity of computing the arbitrage
function for relational queries in [Koutris et al. 2012]. While the complexity was also
high in that setting, the problem became tractable by imposing natural restrictions on
the query language. In our case the queries are already very simple (linear queries),
and there are no obvious restrictions to make the problem tractable.

In the rest of this section we give the proof of the theorem. We use a a reduction to
the following NP-complete problem:

DEFINITION 3.24 (EXACT COVER BY 3-SETS).
Instance: Set X with |X| = 3d and a collection C of 3-element subsets of X.
Problem: Does C contain an exact cover for X, i.e., a subcollection C′ ⊆ C such that
every element of X occurs in exactly one member of C′?
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The Exact Cover by 3-Sets problem (X3C) is shown to be NP-complete [Garey and
Johnson 1979].

PROOF. First we show that the problem is in NP. Given a procurement plan B, one
can check VB → Q in PTIME(m,n) by Prop. 3.6. The claim follows by observing that
each number bi in the procurement plan is bounded by bp/pic, when the variance vi > 0,
and by 1 when vi = 0 (since we only need to purchase once any zero-variance query).

We prove NP-hardness by reduction from the Exact Cover by 3-Sets problem.
Consider an instance of the Exact Cover by 3-Sets problem, X = {x1, x2, . . . , xn}, with

n = 3d, and a collection C = {C1,C2, . . . ,Cm} of 3-element subsets of X, we transform
it into an instance of the budget-constraint answerability problem as follows.

To each subset Cj , j = 1, . . . ,m, we associate a query qj , which is an n-dimensional
vector whose i’th dimension is 1 if xi belongs to Cj , and 0 otherwise. Define the price
points V = {((qj , 0), 1) | j = 1, . . . ,m}: it contains each query qj , with variance 0, and
price 1. Let q = (1, 1, . . . , 1) be an n-dimensional vector of all 1’s, Q = (q, 0), and p =
d+ 0.5.

We will show that X has an exact cover if and only if Q is answerable from V within
a budget p.

(Budget-constraint answerability to Exact Cover by 3-Sets): If Q is answerable from
V within a budget p, then there is a procurement plan B = (b1, b2, . . . , bm), contain-
ing exactly k non-zero entries bi1 , bi2 , . . . , bik , and proper assignments to ci1 , ci2 , . . . , cik ,
such that ci1qi1+ci2qi2+. . .+cikqik = q, and pi1bi1+pi2bi2+. . .+pikbik ≤ p = d+0.5. Since
the quantity on the left is an integer, it must be ≤ d. On the other hand, due to the fact
that each Cj , j ∈ {1, . . . ,m}, only has 3 elements and ci1qi1 + ci2qi2 + . . . + cikqik = q,
we have k ≥ d. Therefore, k = d, and ci1 = ci2 = . . . = cik = 1. In other words,
qi1 + qi2 + . . .+ qik = q, meaning Ci1 ,Ci2 , . . . ,Cik can exactly cover X.

(Exact Cover by 3-Sets to Budget-constraint answerability): If there is an exact cover
of 3-sets for X, say Ci1 ,Ci2 , . . . ,Cid , then qi1 + qi2 + . . . + qid = q. The procurement
plan defined by bi1 = bi2 = . . . = bid = 1 and bi = 0 for all i 6∈ {i1, . . . , id} has cost d ≤ p,
proving the claim.

3.7. Discussion
We discuss here two important restrictions of our framework, which we hope may be
relaxed in future work on the topic. First, we have assumed that users are interested
only in unbiased estimators. The market maker is required to answer queries using an
unbiased estimator (Def. 3.2) and arbitrage-freeness only prevents an adversary from
deriving an unbiased estimator of a query using cheaper queries (Def. 3.3). Yet the
literature contains several examples of biased estimators that perform better than un-
biased ones, for example SQ learning algorithms [Blum 2003], or the Hardt-Rothblum
estimators for linear queries [Hardt and Rothblum 2010].

A more general approach would be to relax Def. 3.2 to allow queries to be answered
using biased or unbiased estimators. This would provide the market-maker with a
stronger guarantee against arbitrage. However it would likely make reasoning about
determinacy and arbitrage-free pricing more difficult, and it would further restrict the
set of arbitrage-free pricing functions available to the market maker. In other words, a
more powerful notion of arbitrage would lead to more restrictive pricing functions, po-
tentially limiting the ability of the market maker to set prices. Exploring these trade-
offs for biased answerability is an important direction for future work and may be a
requirement for practical instances of our framework.

Second, we have considered a restricted notion of answerability, limiting our atten-
tion to adversaries that only consider queries computed by linear functions of other
queries. A real adversary may be able to answer a query using a non-linear function of
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pre-computed queries, or may use external information to compute the answer. Again,
this assumption limits the class of adversaries against which the arbitrage-free prop-
erty is guaranteed to hold. For example, there exists an unbiased non-linear estimator
whose variance is smaller than linear estimators [Knautz 1999] when the noise dis-
tribution is not Gaussian. We made this assumption primarily for technical reasons
(because we can currently characterize only linear answerability).

As above, relaxing this assumption would further limit the available pricing func-
tions, which, we have shown, are already difficult to synthesize. At the same time, we
have granted considerable power to the adversary reasoning about linear answerabil-
ity since deciding answerability is exponential in the number of dimensions of the data
(see the proof of Prop. 3.6).

We believe our initial assumptions are reasonable restrictions that allow us to make
initial progress on the pricing of private data in our proposed framework. However
ongoing work should address these assumptions and the tradeoffs between the benefits
to the market-maker of considering more powerful adversaries and stronger notions of
arbitrage and the practical feasibility of query pricing. Such work will need to consider
the potential risks and costs of arbitrage, the complexity (for the market-maker) of
reasoning about arbitrage, as well as the complexity (for the adversary) of successfully
discovering and exploiting arbitrage opportunities that may exist.

4. PRIVACY LOSS
In this section we describe the second component of the pricing framework in Fig. 1:
the privacy loss for each owner, denoted by ε. Recall that, for each buyer’s query Q =
(q, v), the market maker defines a random function KQ, such that, for any database
instance x, the random variable KQ(x) has expectation q(x) and variance less than
or equal to v. By answering the query through this mechanism, the market maker
leaks some information about each owner’s data, and owners expect to be compensated
appropriately. In this section we define formally the privacy loss, and establish a few of
its properties. In the next section we will relate the privacy loss to the micro-payment
that the owner expects.

Our definition of privacy loss is adapted from differential privacy, which compares
the output of a mechanism with and without the contribution of one individual. Given
the database vector x, denote by x(j) the database vector that results from adding one
count to entry j and leaving all other values unchanged. That is, x(j) represents the
database with one more individual whose value matches entry j. In the differential
privacy literature, pairs of such databases are referred to as neighbors.

DEFINITION 4.1. Let K be any mechanism (meaning: for any database instance x,
K(x) is a random variable). The privacy loss to each user, in notation ε(K) ∈ R̄+ is
defined as:

ε(K) =supS,x,j

∣∣∣∣∣log
Pr (K(x) ∈ S)

Pr
(
K(x(j)) ∈ S

) ∣∣∣∣∣
where x ranges over all possible databases and S ranges over measurable sets of R.

Revealing that one individual’s tuple matches entry j leads to privacy loss, and so
does revealing that an individual’s value is not j. Hence one individual’s privacy loss is
measured by comparing the mechanism output on two data vectors that differ in any
one entry. It follows that for any query that is not the zero query, the privacy loss is
equivalent for all users, whether or not their tuple in any particular database instance
matches the query terms. We explain the connection to differential privacy in the next
section. For now, we derive some simple properties of the privacy loss function.
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PROPOSITION 4.2. Suppose K is a deterministic mechanism. Then ε(K) is either 0
when K is independent of the input x, or∞, when K depends on the input x.

The following is well-known [Dwork et al. 2006]:

PROPOSITION 4.3. Let K1, . . . ,Km, be mechanisms with privacy losses ε1, . . . , εm.
Let K = f(K1, . . . ,Km) be a new mechanism. Then its privacy loss ε(K) ≤ ε1 + . . .+ εm.

In Sect. 3 we have defined the price π(Q) to depend only on the variance, and not on
the mechanism used to answer the query. The privacy loss (Def. 4.1) however, depends
on the actual mechanism K, and there is no general upper bound that depends only
on the variance. For that purpose we will follow the techniques developed for differen-
tial privacy and will restrict the mechanism to be a Laplacian noise. In that case the
privacy loss can be given as a function of the variance, and of a property that depends
only the query, called query sensitivity.

DEFINITION 4.4 (SENSITIVITY). The sensitivity sq of a query q = (q1, q2 . . . qn) is
defined as:

sq = supx,j |q(x)− q(x(j))| = maxj∈{1,...,n}|qj |,

where x ranges over all possible databases and j ranges from 1 to n.

We let Lap(b) denote the one-dimensional Laplacian distribution centered at 0 with
scale b and the corresponding probability density function g(x) = 1

2·be
− |x|

b .

DEFINITION 4.5. The Laplacian Mechanism, denoted L, is a differentially private
mechanism defined as follows: for a given query Q = (q, v) and database instance x,
the mechanism returns LQ(x) = q(x) + ρ, where ρ is noise with distribution Lap(b) and
b =

√
v/2.

The following is known from the work on differential privacy [Dwork et al. 2006].

PROPOSITION 4.6. Let L be the Laplacian mechanism, Q = (q, v) be a query, and
sq the sensitivity of q. Then, the privacy loss of each individual is bounded by:

ε(LQ) ≤ sq√
v/2

.

5. BALANCED PRICING FRAMEWORKS
In this section we define formally when a pricing framework is balanced and we pro-
vide a general procedure for designing a balanced pricing framework. The concept of
balance brings together the three components in Fig. 1: the query price π, the privacy
loss ε, and the micro-payments µi. We begin with a description of micro-payments.

5.1. Micro-Payments to Data Owners
By answering a buyer’s query Q, using some mechanism KQ, the market maker leaks
some of the private data of the data owners. He must compensate each data owner
with a some micro-payment. Recall that µi(Q) denotes the sum of all micro-payments
due to data owner whose attributes match xi, the i’th entry in the data vector. The
micro-payments close the loop in Fig. 1: they must be covered by the buyer’s payment
π, and must also be a function of the degree of the privacy loss ε. Micro-payments must
satisfy the following basic property.

DEFINITION 5.1. Let µi be a micro-payment function. µi is micro arbitrage-free if,
for each i, µi(Q) is an arbitrage-free pricing function.
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Micro arbitrage-freeness is a promise that the owner’s loss of privacy will be com-
pensated, and that there is no way for the buyer to circumvent the due micro-payment
by asking other queries and combining their answers. The definition is identical to the
that of arbitrage-freeness of π.

5.2. Balanced Pricing Frameworks: Definition
The contract between data owner i and the market-maker consists of a non-decreasing
function Wi : R̄+ → R̄+, s.t. Wi(0) = 0. Here R̄+ = R+∪{+∞}. This function represents
a guarantee to the data owners contributing to the i’s bucket xi will be compensated
with at least µi ≥ Wi(ε) in the event of a privacy loss ε. We denote W = (W1, . . . ,Wn)
the set of contracts between the market-maker and all data owners.

The connection between the micro-payments µi, the query price π and the privacy
loss εi is captured by the following definition.

DEFINITION 5.2. We say that the micro-payment functions µi, i = 1, . . . , n are cost-
recovering for a pricing function π if, for any query Q, π(Q) ≥

∑
i µi(Q).

Fix a query answering mechanism K. We say that a micro-payment function µi is
compensating for a contract function Wi, if for any query Q, µi(Q) ≥Wi(ε(KQ)).

The market maker will insist that the micro-payment functions is cost-recovering:
otherwise, he will not be able to pay the data owners from the buyer’s payment. A data
owner will insist that the micro-payment function is compensating: this enforces the
contract between her and the market-maker, guaranteeing that she will be compen-
sated at least Wi(ε), in the event of a privacy loss ε.

Fix a query answering mechanism K. We denote a pricing framework (π, ε, µ,W),
where π(Q), µi(Q) are the buyer’s price and the micro-payments, ε = (ε1, . . . , εn) where
εi(KQ) is the privacy loss corresponding to the mechanism K, and Wi(ε) is the contract
with the data owner i.

DEFINITION 5.3. A pricing framework (π, ε, µ,W) is balanced if (1) π is arbitrage-
free and (2) the micro-payment functions µ are micro arbitrage-free, cost-recovering for
π, and compensating for W.

We explain how the contract between the data owner and the market maker differs
from that in privacy-preserving mechanisms. Let ε > 0 be a small constant. A mecha-
nism K is called differentially private [Dwork et al. 2006] if, for any measurable set S,
any database vector x and for any entry j of x:

Pr (K(x) ∈ S) ≤ eε × Pr
(
K(x(j)) ∈ S

)
In differential privacy, the basic contract between the mechanism and the data owner
is the promise to every user that her privacy loss is no larger than ε. In our frame-
work for pricing private data we turn this contract around. Now, privacy is lost, and
Def. 4.1 quantifies this loss. The contract is that the users are compensated according
to their privacy loss. At an extreme, if the mechanism is ε-differentially private for a
tiny ε, then each user will receive only a tiny micro-payment Wi(ε); as her privacy loss
increases, she will be compensated more.

The micro-payments circumvent a common limitation of differentially-private mech-
anisms. In differential privacy, the data analyst typically has a fixed budget, ε, granted
by the data curator, for all queries that he may ever ask. In order to issue N queries,
he needs to divide the privacy budget among these queries, and, as a result, each
query will be perturbed with a higher noise; after issuing these N queries, he can no
longer query the database, because otherwise the contract with the data owner would
be breached.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.



A Theory of Pricing Private Data 39:21

In our pricing framework there is no such hard limitation, because the buyer simply
pays for each query. The budget is now a real financial budget, and the buyer can
ask as many query as he wants, with as high accuracy as he wants, as long as he
has money to pay for them. As a consequence, it is the analyst-buyer, rather than the
data owner, who ultimately determines the actual privacy loss. A similar model was
proposed by Ghosh et al, in which the ε budget is determined by the budget of the data
analyst [Ghosh and Roth 2011].

5.3. Balanced Pricing Frameworks: Synthesis
Call (ε, µ,W) semi-balanced if all micro-payment functions are micro-arbitrage free
and compensating w.r.t. K; that is, we leave out the pricing function π and the cost-
recovering requirement. The first step is to design a semi-balanced set of micro-
payment functions.

PROPOSITION 5.4. Let L be the Laplacian Mechanism, and let the contract func-
tions be linear, Wi(ε) = ci · ε, where ci > 0 is a fixed constant, for i = 1, . . . , n. Define
the micro-payment functions µi(Q) =

maxj |qj |·ci√
v/2

, for i = 1, . . . , n. Then (ε, µ,W) is semi-

balanced.

PROOF. By Eq. 3, the function πi(Q) =
2(maxj |qj |)2·c2i

v is arbitrage free. By Corol-
lary 3.13, the function µi(Q) = (πi(Q))

1/2 is also arbitrage-free, which means that µi is
micro-arbitrage free. Finally, by Prop. 4.6, we have Wi(ε(LQ)) = ci · ε(LQ) ≤ ci

sq√
v/2

=

ci
maxj |qj |√

v/2
= µi(Q), proving that µi is compensating.

Next, we show how to derive new semi-balanced micro-payments from existing ones.

PROPOSITION 5.5. Suppose that (ε, µj ,Wj) is semi-balanced, for j = 1, . . . , k

(where µj = (µj1, . . . , µ
j
n), and Wj = (W j

1 , . . . ,W
j
n), for j = 1, . . . , k), and let fi : (R̄+)k →

R̄+, i = 1, . . . , n, be n non-decreasing, sub-additive functions s.t. fi(0) = 0, for all
i = 1, . . . , n. Define µi = fi(µ

1
i , . . . , µ

k
i ), and Wi = fi(W

1
i , . . . ,W

k
i ), for each i = 1, . . . , n.

Then, (ε, µ,W) is also semi-balanced, where µ = (µ1, . . . , µn) and W = (W1, . . . ,Wn).

PROOF. By Prop. 3.12, each µi is arbitrage-free. Finally, each µi is compensating for
Wi, because the functions fi are non-decreasing, and each µji is compensating for W j

i ,
hence fi(µ1

i (Q), . . . , µki (Q)≥fi(W 1
i (ε(KQ)), . . . ,W k

i (ε(KQ))) = Wi(ε(KQ)).

We can use this proposition to design micro-payment functions that allow the true
private data of an individual to be disclosed, as in Sect. 3.5. We illustrate this with an
example.

EXAMPLE 5.6. Consider Example 2.2, where several voters give a rating in
{0, 1, 2, 3, 4, 5} to each of two candidates A and B. Thus, x1, x2 represent the ratings
of voter 1, x3, x4 of voter 2, etc. Suppose voter 1 values her privacy highly, and would
never accept a total disclosure: we choose linear contract functions W1(ε) = W2(ε) =
c · ε for her two votes respectively, and define the micro-payments as in Prop. 5.4,
µi(Q) =

maxj |qj |c√
v/2

for i = 1, 2. On the other hand, voter 2 is less concerned about her

privacy, and is willing to sell the true values of each of her votes, at some high price
d > 0: then we choose bounded contract functions W3(ε) = W4(ε) = 2 · d/Π · atan(ε)
(which is sub-additive, by Corollary 3.16), and define the micro-payments accordingly,
µi(Q) = 2 · d/Π · atan(

maxj |qj |√
v/2

), for i = 3, 4. By Prop. 5.5 this function is also compensat-
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ing and micro arbitrage-free, and, moreover, it is bounded by µi ≤ d, where the upper
bound d is reached by the total-disclosure query (v = 0).

Finally, we choose a payment function such as to ensure that the micro-payments
are cost-recovering.

PROPOSITION 5.7. (1) Suppose that (ε, µ,W) is semi-balanced, and define π(Q) =∑
i µi(Q). Then, (π, ε, µ,W) is balanced.
(2) Suppose that (π, ε, µ,W) is balanced and π′ ≥ π is any arbitrage-free pricing

function. Then (π′, ε, µ,W) is also balanced.

PROOF. Claim (1) follows from Corollary 3.13 (the sum of arbitrage-free functions
is also arbitrage-free), while claim (2) is straighforward.

To summarize, the synthesis procedure for a pricing framework proceeds as follows.
Start with the simple micro-payment functions given by Prop. 5.4, which ensure linear
compensation for each user. Next, modify both the micro-payment and the contract
functions using Prop. 5.5, as desired, in order to adjust to the preferences of individual
users, for example, in order to allow a user to set a price for her true data. Finally,
define the query price to be the sum of all micropayments (Prop. 5.7), then increase
this price freely, by using any method in Corollary 3.13.

6. DISCUSSION
In this section, we discuss two problems in pricing private data, and show how they
affect our pricing framework. The first is how to incentivize the data owner to partici-
pate in the database and truthfully report her privacy valuations, which is reflected in
her contract function Wi: this property is called truthfulness in mechanism design. The
second concerns protection of the privacy valuations itself, meaning that the contract
Wi may also leak information to the buyer.

6.1. Truthfulness
How can we incentivize a user to participate, and to reveal her true assessment for
the privacy loss of a data item xi? All things being equal, the data owner will quote
an impossibly high price, for even a tiny loss of her privacy. In other words, she would
choose a contract function W (ε) that is as close to∞ as possible.

Incentivizing users to report their true valuation is a goal of mechanism design. This
has been studied for private data only in the restricted case of a single query, and has
been shown to be a difficult task. Ghosh and Roth [Ghosh and Roth 2011] show that
if the privacy valuations are sensitive, then it is impossible to design truthful and
individually rational direct revelation mechanisms. Fleischer et al circumvent this im-
possibility result by assuming that the privacy valuation is drawn from known prob-
ability distributions [Fleischer and Lyu 2012]. Also, according to some experimental
studies [Acquisti et al. 2009], the owner’s valuation is often complicated and difficult
for the owner to articulate and different people may have quite different valuations.
Indeed, without a context or reference, it is hard for people to understand the valua-
tion of their private data. The design of a truthful and private mechanism for private
data, even for a single query, remains an active research topic.

We propose a simpler approach, adopted directly from that introduced by Aperjis
and Huberman [Aperjis and Huberman 2012]. Instead of asking for their valuations,
users are given a fixed number of options. For example, the users may be offered a
choice between two contract functions, shown in Fig. 2, which we call Options A and B
(following [Aperjis and Huberman 2012]):
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Option A. For a small privacy loss, the amount of micro-payment is very small; for
almost total privacy loss, the payment is significant.
Option B. The amount of micro-payment is moderate, but almost constant in the
privacy loss.

While these options were initially designed for a sampling-based query answering
mechanism [Aperjis and Huberman 2012], they also work for our perturbation-based
mechanism. Risk-tolerant users will typically choose Option A, while risk-averse users
will choose Option B. Clearly, a good user interface will offer more than two options;
designing a set of options that users can easily understand is a difficult task, which we
leave to future work.

0 5 10 15 20
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A

Fig. 2. Two options for the contract function W . Option A makes a small micro-payment for small privacy
losses and a large payment for large privacy losses. Option B pays even for small privacy losses, but for large
privacy losses pays less than A. Risk-neutral users would typically choose Option A, while risk-averse users
choose Option B.

6.2. Private Valuations
When users have sufficient freedom to choose their privacy valuation (i.e. their con-
tract function Wi), then we may face another difficult problem: the privacy valuation
may be strongly correlated with the data xi itself. In that case, even releasing the price
of a query may lead to privacy loss, a factor not considered in our framework. For ex-
ample, consider a database of HIV status: value 1 means that correspond data owner
has HIV, value 0 means that she does not. Typically, users who have HIV will set a
much higher value on privacy of their value 1 than those who don’t have HIV. Then, a
savvy buyer may simply ask for the price of a query, without actually purchasing the
query, and determine with some reasonable confidence the number of users with HIV.
The problem of hiding the valuation itself is a difficult problem, which is still being
actively researched in mechanism design [Ghosh and Roth 2011; Fleischer and Lyu
2012]. Instead, we describe here a simple approach that is based on perturbing the
price itself, in the same way in which we perturb the data.

More precisely, we will assume that the contract functions are also linear Wi = ci · ε,
and therefore the price π is a linear function of the query Q. Then, we adopt our
techniques for perturbing the query answer to perturb the price itself. In other
words, both π(Q) and µi(Q) are perturbed in the same fashion as query answers,
and therefore are random variables. All three properties of arbitrage-freeness, cost-
recovery, and compensation are now defined in terms of expected values; for ex-
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ample, a randomized pricing function π(Q) is arbitrage-free if {Q1, . . . ,Qm} → Q
implies E (π(Q)) ≤

∑m
i=1 E (π(Qi)), and the micro-payments are cost-recovering if

E (π(Q)) ≥
∑
i E (µi(Q)). In this setting, queries are answered using a mechanism

K, while prices are computed using a (possibly different) mechanism K′.
The privacy loss for data item xi includes two parts. One part is due to the release of

the query answer, and the other part is due to the release of the price. Their values are
ε(K) and ε(K′) respectively. A micropayment is compensating if E (µi(Q)) ≥ ci · (ε(K) +
ε(K′)).

We describe here a balanced mechanism where data owners are compensated both
for the privacy loss of their data and for the privacy loss of the price of their data. The
idea is very simple. When the buyer asks for the price of the query π(Q), which is now
a perturbed quantity, the price itself leaks a bit of privacy, ε1. As a consequence, the
buyer needs to pay an incremental price π1 (which is

∑
i ci ∗ ε1). Once informed about

this new price, there is another leak of privacy, ε2. The buyer needs to pay another
incremental price π2. This, in turn results in another leak of privacy, ε3, etc. The sum
of all these prices is a geometric series. When it converges, then it represents a price
that pays not only for the leak of the data, but also (reflexively) for the leak of the price
itself. In the rest of this section we give the technical details for this idea.

As for the data items, we assume that the constants ci used in the contract function
are drawn from a bounded domain Y ⊆ R, and denote δ = supc∈Y |c|. Assume that both
K and K′ are Laplacian mechanisms. Given a query Q = (q, v) , set b =

√
v/2, choose

some8 b′ > δ, tunable by the market maker. K is the mechanism that, on an input x,
returns q(x) +ρ, where ρ is a noise with distribution Lap(b). K′ is the mechanism that,
on an input c, returns a noisy price b′ maxj |qj |

b·(b′−δ)
∑
i ci + ρ′, where ρ′ is a noise with distri-

bution Lap(b′). We denote the exact price, b
′ maxj |qj |
b·(b′−δ)

∑
i ci, as E (K′(c)). The sensitivity

of the mechanism K is si(K) = maxj |qj | (Def. 4.4). If we define si(K′) =
b′δmaxj |qj |
b·(b′−δ) , then

we have:

ε(K) ≤ si(K)

b
, ε(K′) ≤ si(K′)

b′
.

PROPOSITION 6.1. Let K,K′ be Laplacian mechanisms (as described above) and
Q = (q, v) be a query. Set (as above), b =

√
v/2 and b′ > δ. Define:

π(Q) =K′(c) = E (K′(c)) + ρ′

µi(Q) =(
si(K)

b
+
si(K′)
b′

) · ci +
π(Q)−E (K′(c))

n
,

∀i = 1, . . . , n

Then, (π, µ, ε,W) is a balanced mechanism.

PROOF. We show that µi is micro arbitrage-free in expectation. For each individual
i, by definition,

E (µi(Q)) =
b′ · ci ·maxj |qj |
b · (b′ − δ)

=

√
2b′ · ci
b′ − δ

maxj |qj |√
v

.

8When b′ ≤ δ, the expectation of the price π is infinite.
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By the same argument as in Prop. 5.4, E (µi(Q)) is arbitrage-free, and thus µi(Q) is
arbitrage-free in expectation.

We show that the micro-payments are cost recovering. By definition,∑
i

µi(Q) =
∑
i

(
si(K)

b
+
si(K′)
b′

)× ci + ρ′

=
∑
i

(
maxj |qj |

b
+

b′δmaxj |qj |
b·(b′−δ) )

b′
)× ci + ρ′

=
b′maxj |qj |
b · (b′ − δ)

∑
i

ci + ρ′

= π(Q),

proving the claim.
Finally, we show that µi is compensating, in expectation: For each individual i,

E (µi(Q)) = (
si(K)

b
+
si(K′)
b′

)× ci

≥ (ε(K) + ε(K′)× ci,

meaning that µi(Q) compensate user i for her loss of privacy in expectation.
By a similar argument as in Prop. 5.7, π(Q) is arbitrage-free in expectation.

7. RELATED WORK
Recent investigation of the tradeoff between privacy and utility in statistical databases
was initiated by Dinur and Nissim [Dinur and Nissim 2003], and culminated in [Dwork
et al. 2006], where Dwork, McSherry, Nissim and Smith introduced differential pri-
vacy and the Laplace mechanism. The goal of this line of research is to reveal accu-
rate statistics while preserving the privacy of the individuals. There have been two
(somewhat artificially divided) models involved: the non-interactive model, and the in-
teractive model. In this paper, we use an interactive model, in which queries arrive
on-line, one at a time, and the market maker has to charge for them appropriately
and answer them. There is a large and growing literature on differential privacy; we
refer the readers to the recent survey by Dwork [Dwork 2011]. There is privacy loss in
releasing statistics in a differentially private sense (quantified in terms of the privacy
parameter/budget ε). However, this line of research does not consider compensating
the privacy loss.

Ghosh and Roth [Ghosh and Roth 2011] initiated a study of how to incentivize indi-
viduals to contribute their private data and to truthfully report their privacy valuation
using tools of mechanism design. They consider the same problem as we do, pricing pri-
vate data, but from a different perspective: there is only one query, and the individuals’
valuations of their data are private. The goal is to design a truthful mechanism for dis-
closing the valuation. In contrast, we assume that the individuals’ valuations are pub-
lic, and focus instead on the issues arising from pricing multiple queries consistently.
Another key difference is that we require not only accuracy but also unbiasedness for
the noisy answer to a certain query, while in [Ghosh and Roth 2011] answers are not
unbiased. There have been some follow-ups to [Ghosh and Roth 2011], e.g. [Fleischer
and Lyu 2012; Ligett and Roth 2012; Roth and Schoenebeck 2012; Dandekar et al.
2011]; a good survey is [Roth 2012]. There are also other papers that consider privacy
and utility in the context of mechanism design, e.g. [Nissim et al. 2012; Chen et al.
2011].
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Economic perspectives on the regulation and control of private information have a
long history [Stigler 1980; Posner 1981]. A national information market, where per-
sonal information could be bought and sold, was proposed by Laudon [Laudon 1996].
Garfinkel et al. [Garfinkel et al. 2006] proposed a methodology for releasing approxi-
mate answers to statistical queries and compensating contributing individuals as the
basis for a market for private data. That methodology does not use a rigorous measure
of privacy loss or protection and does not address the problem of arbitrage.

Recently Balazinska, Howe and Suciu [Balazinska et al. 2011] initiated a study of
data markets in the cloud (for general-purpose data, not specifically private data). Sub-
sequently, [Koutris et al. 2012] proposed a data pricing method which first sets explicit
price points on a set of views and then computes the implied price for any query. How-
ever, they did not consider the potential privacy risks of their method. The query deter-
minacy used in [Koutris et al. 2012] is instance-based, and as a result, the adversary
could (in the worst case) learn the entire database solely by asking the prices of queries
(for free). Li and Miklau study data pricing for linear aggregation queries [Li and Mik-
lau 2012] using a notion of instance-independent query determinacy. This avoids some
privacy risks, but it is still sometimes possible to infer query answers for which the
buyer has not paid. Both of the above works consider a model in which unperturbed
query answers are exchanged for payment. In this paper we consider noisy query an-
swers and use an instance-independent notion of query determinacy, which allows us
to formally model private disclosures and assign prices accordingly.

Aperjis and Huberman [Aperjis and Huberman 2012] describe a simple strategy to
collect private data from individuals and compensate them, based on an assumption
in sociology that some people are risk averse. By doing so, buyers could compensate
individuals with relatively less money. More specifically, a buyer may access the pri-
vate data of an individual with probability 0.2, and offer her two choices: if the data is
accessed, then she would be paid $10, otherwise she would receive nothing; she would
receive $1 regardless whether her data would be used or not. Then a risk-averse person
may choose the second choice, and consequently the buyer can save $1 in expectation.
In their paper, the private data of an individual is either entirely exposed, or com-
pletely unused. In our framework, there are different levels of privacy, the privacy loss
is carefully quantified and compensated, and thus the data is better protected. Finally,
Riederer et al. [Riederer et al. 2011] propose auction methods to sell private data to
aggregators, but an owner’s data is either completely hidden or totally disclosed and
the price of data is ultimately determined by buyers without consideration of owners’
personal privacy valuations.

The current paper is based on our preliminary work [Li et al. 2013]. There, we in-
troduced the idea of using perturbation to reduce the price of private data sold to a
data analyst, but we used a simpler data model, where each record corresponds to
one user; in the current paper we replaced it with the standard vector representation
used in the literature, where each record corresponds to one combination of attributes
plus the number of users having those attributes; as a result the notion of privacy
for individuals is now different. An important question that we did not address in [Li
et al. 2013] is, given a set of view-price pairs (“price points”), can a particular query be
answered within a given budget by purchasing, possibly repeatedly, the views in the
set? This is now treated in Sect. 3.6. Several proofs omitted in [Li et al. 2013] are also
included here.

8. CONCLUSIONS
We have introduced a framework for selling private data. Buyers can purchase any
linear query, with any amount of perturbation, and need to pay accordingly. Data own-
ers, in turn, are compensated according to the privacy loss they incur for each query.
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In our framework buyers are allowed to ask an arbitrary number of queries, and we
have designed techniques for ensuring that the prices are arbitrage-free, according to
a specific definition of arbitrage-freeness, meaning that buyers are guaranteed to pay
for any information they may further extract from the queries. Our pricing framework
is balanced, in the sense that the buyer’s price covers the micro-payments to the data
owner and each micro-payment compensates the users according to their privacy loss.

An interesting open question is whether we can achieve both truthfulness (as dis-
cussed in [Ghosh and Roth 2011]) and arbitrage-freeness (as discussed in the current
paper) when pricing private data. Further, it remains to consider general notions of
answerability that go beyond linear answerability, or to bound the impact non-linear
estimation methods could have in the context of arbitrage.
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