
Containment and Equivalence for a Fragment of XPath

GEROME MIKLAU AND DAN SUCIU

University of Washington, Seattle, Washington

Abstract. XPath is a language for navigating an XML document and selecting a set of element nodes.
XPath expressions are used to query XML data, describe key constraints, express transformations,
and reference elements in remote documents. This article studies the containment and equivalence
problems for a fragment of the XPath query language, with applications in all these contexts.

In particular, we study a class of XPath queries that contain branching, label wildcards and can
express descendant relationships between nodes. Prior work has shown that languages that combine
any two of these three features have efficient containment algorithms. However, we show that for the
combination of features, containment is coNP-complete. We provide a sound and complete algorithm
for containment that runs in exponential time, and study parameterized PTIME special cases. While
we identify one parameterized class of queries for which containment can be decided efficiently, we
also show that even with some bounded parameters, containment remains coNP-complete. In response
to these negative results, we describe a sound algorithm that is efficient for all queries, but may return
false negatives in some cases.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; H.2.3 [Database Management]: Languages

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Tree pattern matching, XPath expressions, query containment,
query equivalence

1. Introduction

XPath is a simple language for navigating an XML tree and returning a set of answer
nodes. XPath expressions are ubiquitous in XML applications. They are used in
XQuery [Chamberlin et al. 2001] to bind variables; in XML Schema [XSch 1999]
to define keys; in XLink [DeRose et al. 2001] and XPointer [DeRose et al. 1999]
to reference elements in external documents; in XSLT as match expressions, and in
content-based packet routing [Snoeren et al. 2001] as filter expressions. Instances of
the containment problem for XPath expressions occur in each of these applications,
and others. For example, inference of keys described by XPath expressions requires

G. Miklau and D. Suciu were partially supported by NSF Grant IIS-0140493.
D. Suciu was partially supported by the NSF CAREER Grant 0092955, a gift from Microsoft, and an
Alfred P. Sloan Research Fellowship.
Authors’ address: Computer Science and Engineering, University of Washington, Box 352350, Seattle,
WA 98195-2350, e-mail: {suciu;miklau}@cs.washington.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0004-5411/04/0100–0002 $5.00

Journal of the ACM, Vol. 51, No. 1, January 2004, pp. 2–45.

Containment and Equivalence for a Fragment of XPath 3

FIG. 1. A simple tree pattern with return node x marked. It corresponds to the XPath expression
a// ∗ [b//d][c].

a test for containment, and similarly certain optimization methods for XQuery
require an XPath containment test.

The focus of this article is the complexity of the containment problem for a
simple fragment of XPath which is used frequently in practice. This fragment
consists of: node tests, the child axis (/), the descendant axis (//), wildcards (*), and
predicates (or filters, denoted [. . .]). Isolating the three most important features,
we call this class of queries XP{[],∗,//}. It is a rather robust subset of XPath: many
applications use only expressions in this fragment. Further restrictions, on the other
hand, seem impractical since each of the constructs mentioned occur often. An
expression in XP{[],∗,//} is best represented as a tree pattern. For example, the
expression a// ∗ [b//d][c] is represented by the tree pattern pictured in Figure 1
where double-lines represent descendant edges, ∗ is a label wildcard, and x marks
the return node. Starting at the root, this pattern first checks if the root node is
labeled a. If not, it returns the empty set; otherwise, it returns all its descendants
that have both a b-child with a d-descendant, and a c-child: the b and c children
may occur in any order.

For a given XPath expression p and input tree t , we denote by p(t) the set of
nodes in t returned by the evaluation of p. Two expressions p, p′ are contained,
denoted p ⊆ p′, if ∀t.p(t) ⊆ p′(t). Two expressions are equivalent if p ⊆ p′ and
p′ ⊆ p. We show in Section 2 that these two problems are mutually reducible, and
focus our attention on the containment problem.

Our first result is that the containment problem for XP{[],∗,//} expressions is co-
NP complete. This is rather surprising in light of prior results on the complexity
of XPath containment, which have shown that for any combination of two of the
constructs *, // and [. . .] the containment problem is in PTIME. In the absence of
descendant edges, a PTIME containment algorithm for the fragment XP{[],∗} fol-
lows from classic results on acyclic conjunctive queries [Yannakakis 1981]. With-
out label wildcards, the fragment XP{[],//} was recently found to have a
polynomial time containment algorithm [Amer-Yahia et al. 2001]. And for XP{∗,//},
patterns do not have branching, and are therefore closely related to a fragment of
regular string expressions. A result in Milo and Suciu [1999] shows that the con-
tainment problem for this fragment is also in PTIME. We show that containment
is coNP-complete if branching, label wildcards, and descendant edges are consi-
dered together.

4 G. MIKLAU AND D. SUCIU

This result creates a new challenge: find practical algorithms for checking con-
tainment. We pursue two goals: (i) to find an efficient, sound algorithm, and show
that it is complete in particular cases; and (ii) to find a sound and complete algo-
rithm and show that it is efficient in particular cases. We answer (i) by describing a
simple algorithm (Algorithm 4), which always runs in PTIME and proving that it
is complete when the containing query has no branching.

Our second class of results deal with problem (ii), which is more difficult than (i).
It is not hard to describe a sound and complete algorithm that runs in exponential
time, but the challenge consists in improving it to run in PTIME in nontrivial
special cases. In particular, we considered special cases that generalize those where
containment was known to be in PTIME: (a) bound the number of//’s by a constant,
(b) bound the number of *’s by a constant, and (c) bound the number of branches
by a constant. We give a positive answer to (a): containment can be checked in
PTIME whenever the number of //’s in p is bounded by some number d (d will
be the degree of the polynomial describing the running time). However, (b) and (c)
have negative answers. More precisely, the containment of XP{[],∗,//} expressions is
coNP-complete even when p has no ∗’s and p′ contains only two ∗’s, which answers
(b) negatively. For (c), the containment of XP{[],∗,//} expressions is coNP-complete
even when p has five branches and p′ has three branches. As our answer to problem
(ii), we describe a containment algorithm that runs in exponential time in general,
but runs in PTIME in some special cases of practical interest (Algorithm 2).

In summary, the results in this article characterize the cases when the XPath
containment problem is in PTIME and those when it is co-NP complete. The article
also describes two algorithm for containment, a PTIME incomplete algorithm, and
an exponential-time complete algorithm, and proves formal properties justifying
their usage in practice.

A Note to the Practitioner. The reader interested in implementing a containment
algorithm may first read Algorithm 4 (Section 3.2), and the associated Algorithm 3
for finding a homomorphism. It checks containment of two XPath expressions1

p and p′ in time O(|p||p′|), and has two advantages over an ad-hoc approach: it
is more efficient (an ad-hoc approach runs in time O(|p|2|p′|)), and returns fewer
false negatives. Still, this algorithm may return some false negatives, that is, may
fail to detect containment for certain XPath expressions p and p′. Such cases are
rare, and for many applications this simple containment algorithm is sufficient. To
see an example where the algorithm fails, the reader may want to look at Figure 10.
For applications where such XPath expressions may occur, and where it is important
to detect containment in all cases, the reader is advised to consider Algorithm 2, in
Section 3.1. While more complex, this algorithm always determines containment
correctly, and can be quite efficient in certain special cases. In general, however,
the algorithm runs in exponential time.

Article Organization. The organization of the article is as follows: Section 2
contains the definition of tree patterns, their semantics and evaluation, and the rela-
tionship between tree patterns and XPath expressions. Section 3 discusses two ways
of reasoning about containment: canonical models and pattern homomorphisms,

1The algorithm is expressed in terms of tree patterns. Section 2 describes the correspondence between
tree patterns and XPath expressions.

Containment and Equivalence for a Fragment of XPath 5

respectively. Canonical models result in a complete algorithm for checking con-
tainment whose worst case running time is exponential (Section 3.1), while homo-
morphisms lead to a polynomial-time algorithm for checking containment that is
incomplete (Section 3.2). We state and prove the co-NP hardness results in Section 4.
Section 5 discuss a number of assorted issues: disjunction in patterns, connections
to computation tree logic, and the special case when the alphabet is finite. Section 6
discusses related work, and Section 7 concludes.

2. Definitions and Background

We review here the basic definitions of XML trees, XPath queries, and their seman-
tics. Then we introduce an alternative query formalism, called tree pattern, which is
equivalent to XPath queries, and prove that for the purpose of the containment and
equivalence of XPath queries it is sufficient to consider only the containment prob-
lem for Boolean tree patterns. Finally, we describe an algorithm for the evaluation
of a Boolean tree pattern on an XML tree.

2.1. TREES AND PATTERNS

2.1.1. XML Trees. We model an XML document as a tree with nodes labeled
from an infinite alphabet �. The symbols in � represent the element labels, attribute
labels, and text values that can occur in XML documents. By requiring this set to
be infinite we ensure that no XPath expression contains all possible labels: all our
results on containment of XPath expressions depend critically on this assumption,
and we will briefly discuss the case when � is finite in Section 5. Notice that
the XML trees we consider are unordered and unranked. We denote the set of all
trees with T� . For a tree t ∈ T� we denote NODES(t) and EDGES(t) the sets of
nodes and edges, respectively, by ROOT(t) its root node, and write LABEL(x) for the
label on node x , LABEL(x) ∈ �. We also denote EDGES+(t) the transitive closure of
EDGES(t): EDGES+(t) = EDGES(t)∪EDGES(t)◦EDGES+(t), and denote EDGES∗(t) the
reflexive and transitive closure of EDGES(t): EDGES∗(t) = NODES2(t) ∪ EDGES+(t).
Define the distance between two nodes (x, y) ∈ EDGES∗(t) to be: d(x, x) = 0,
d(x, y) = 1 when (x, y) ∈ EDGES(t) and d(x, y) = 1 + d(z, y) when ∃z, (x, z) ∈
EDGES(t), (z, y) ∈ EDGES+(t). Finally, we define the size of a tree t , in notation |t |,
to be the number of edges in t .

2.1.2. XPath Queries. We study a fragment of XPath, denoted XP{[],∗,//}, con-
sisting of expressions given by the following grammar:

q → n | ∗ | . | q / q | q // q | q [q] (1)

Here n ∈ � is any label, ∗ denotes a label wildcard, and . denotes the “current node.”
The constructions/ and//mean child and descendant navigation respectively, while
[] denotes a predicate. Our discussion will focus on the three constructs [], //, ∗ and
the notation XP{[],∗,//} signifies that all three are allowed. We will denote XP{[],∗},
XP{[],//}, XP{∗,//} the subsets of XPath expressions restricted to only two of the
three constructs.

The meaning of an expression q ∈ XP{[],∗,//} on a tree t ∈ T� , in notation q(t),
is a set of nodes in t . We adapt the formal semantics from Wadler [1999], fixing
the root as context node: that is, q(t) = q(ROOT(t)), where q(x) for x ∈ NODES(t)

6 G. MIKLAU AND D. SUCIU

is defined below, by induction on the structure of q:

n(x) = {y | (x, y) ∈ EDGES(t), LABEL(y) = n}
∗(x) = {y | (x, y) ∈ EDGES(t)}
.(x) = {x}

(q1/q2)(x) = {z | y ∈ q1(x), z ∈ q2(y)}
(q1//q2)(x) = {z | y ∈ q1(x), (y, u) ∈ EDGES∗(t), z ∈ q2(u)}

q1[q2](x) = {y | y ∈ q1(x), q2(y) �= ∅}
Notice that the definition of q(t) never inspects the label of the root node, ROOT(t).

For example if a ∈ �, then a(t) returns the children of ROOT(t) that are labeled a,
and ignores the root label. This follows standard XML semantics, where ROOT(t)
corresponds to the document node and is unlabeled.

We need to include the current node construct in our fragment in order to use it
in contexts like a/b[.//c]. It can sometimes be eliminated (for example, a/./b is
equivalent to a/b), however, in other cases it cannot. For example, the semantics
of a//. is that of the union between a and a//∗. While most of the results we
discuss in this article extend to a language which has explicit union, we prefer
to keep the discussion simple and restrict the usage of . to a context immediately
inside a predicate []. Thus, a construction like a[.//b] is allowed, while a//.
is not.

Two expressions q, q ′ in XP{[],∗,//} are contained, in notation q ⊆ q ′, if their
result sets are contained for every tree: q(t) ⊆ q(t ′), ∀t ∈ T� . Two expressions are
equivalent if their result sets are equal.

2.1.3. Tree Patterns. We use an alternative, and more general representation
of queries as tree patterns. A tree pattern of arity k, k ≥ 0 is a tree p whose
nodes are labeled with symbols from � ∪ {∗}, with a distinguished subset of edges
called descendant edges, and a k-tuple of nodes called the distinguished nodes.
We use the same notations NODES(p), EDGES(p), ROOT(p) and LABEL(x) for x ∈
NODES(p) as before. The set of descendant edges is denoted EDGES//(p), while
the other edges are called child edges and their set is denoted EDGES/(p); thus
EDGES(p) = EDGES//(p) ∪ EDGES/(p). In diagrams we represent descendant edges
with double lines and child edges with single lines. Figure 1 illustrates a tree pattern
of arity 1; another tree pattern of arity 1 is shown in Figure 2(b). In both figures the
distinguished node is indicated with an x .

The set of all tree patterns is denoted P{[],∗,//}. We define the following three
subclasses: P{[],∗} denotes all patterns without descendant edges, P{[],//} denotes
patters without ∗ labels, and P{∗,//} denotes linear patterns, that is, where every
node has at most one child. As before, the size of a tree pattern, |p|, is defined to
be the number of edges in p.

Every tree t ∈ T� is automatically a tree pattern of arity 0: just define EDGES/(t) =
EDGES(t) and EDGES//(t) = ∅.

Given a tree pattern p and a tree t , define an embedding from p to t to be a
function e : NODES(p) → NODES(t) which satisfies the following conditions:

Root-preserving. e(ROOT(p)) = ROOT(t),
Label-preserving. For each x ∈ NODES(p), LABEL(x) = ∗ or LABEL(x) =

LABEL(e(x)),

Containment and Equivalence for a Fragment of XPath 7

FIG. 2. (a) Tree instance t , (b) pattern p and an embedding from p to t .

Child-edge-preserving. For each (x, y) ∈ EDGES/(p), (e(x), e(y)) ∈ EDGES(t),
and

Descendant-edge-preserving. For each (x, y) ∈ EDGES//(p), (e(x), e(y)) ∈
EDGES+(t).

An embedding does not need to be an injective function. An example of an
embedding is pictured in Figure 2(a) and (b).

Finally, denoting x̄ = (x1, x2, . . . , xk) the k-tuple of distinguished nodes in p,
we define the meaning of a tree pattern p on a tree t to be the following subset of
NODESk(t):

p(t) = {e(x̄) | e is an embedding from p to t}
2.2. FROM XPATH TO TREE PATTERNS. Every XPath expression can be trans-

lated into a tree pattern of arity 1, and vice-versa, while preserving semantics. The
only subtlety is that XPath expressions ignore the label of the root node, while tree
patterns do not. To account for that, given some tree t ∈ T� and a label r ∈ �, we
denote r/t a tree whose root node is labeled r and has a single subtree, t . Then,
every XPath expression q can be translated into a tree pattern q̄ of arity one, such
that ∀t ∈ T� , q(r/t) = q̄(t); and, conversely, every tree pattern p of arity one can
be translated into an XPath expression p̄ such that ∀t ∈ T� , we have p(t) = p̄(r/t).
We omit the tedious, but straightforward translation, and only illustrate with two
examples: Figure 1 shows the tree pattern for a//*[b//d][c], and Figure 2(b)
shows the tree pattern for the XPath expression a[a]//*[b]//c. The containment
problems for XPath expressions and for unary tree patterns are thus equivalent.
Moreover, the translation also preserves the fragments of interest to us; XP{[],∗}

corresponds to P{[],∗}, XP{[],//} corresponds to P{[],//} and XP{∗,//} corresponds
to P{∗,//} respectively. Thus, from now on, we shall consider tree patterns only,
that is, P{[],∗,//} and its fragments, but it should be clear that all results apply also to
XPath expressions.

Tree patterns are actually more general, since they can have arities other than 1.
This makes them applicable, for example, to the optimization of the FOR clause of
an XQuery expression [Chamberlin et al. 2001]: there, multiple XPath expressions
are used to bind multiple variables, and they can be combined into a single tree

8 G. MIKLAU AND D. SUCIU

FIG. 3. A tree pattern p of arity 3, with the distinguished nodes x1, x2, x3, and its translation to a
Boolean pattern p0, used in Proposition 1: p0 has three extra nodes labeled s1, s2, s3.

pattern whose distinguished nodes correspond to those variables. For the study of
containment, however, arity is not an important consideration, as we explain next.

2.3. BOOLEAN PATTERNS. For the purpose of the containment problem, it suf-
fices to limit our discussion to tree patterns with arity zero, which we call Boolean
patterns. When p is Boolean, then p(t) is either ∅ or {()}: in the first case, we say
that p(t) is false; in the latter, we say it is true. For Boolean patterns, containment
means implication: p ⊆ p′ if and only if ∀t.p(t) ⇒ p′(t). The next proposition
shows how a solution to containment of Boolean patterns can be used to solve
containment for k-ary patterns.

PROPOSITION 1. Let s1, . . . , sk be k labels that are not in �. There is a trans-
lation of k-ary patterns over the alphabet �, to Boolean patterns over the alphabet
� ∪ {s1, s2, . . . , sk}, such that for any k-ary patterns p, p′, and their translations
p0, p′

0, we have p ⊆ p′ if and only if p0 ⊆ p′
0.

The translation of p into p0 consists of adding k extra nodes, labeled s1, . . . , sk
and making them children of the k distinguished nodes in p. Figure 3 illustrates
this construction. Intuitively, p ⊆ p′ ⇐⇒ p0 ⊆ p′

0 because the extra nodes in p0
and p′

0 have to match exactly, implying that the distinguished nodes in p and p′
match too. A formal proof based on this argument is given in the Appendix.

Thus, all results about containment of Boolean patterns immediately apply to k-
ary patterns, for any k ≥ 0. Notice that the translation from p to p0 in Proposition 1
preserves both fragments P{[],//} and P{[],∗}, hence all results for Boolean patterns in
these two fragments also hold for k-ary patterns in the same fragments. However,
the translation does not preserve P{∗,//}, since p0 may have extra branches. For the
positive results to carry from Boolean patterns in P{∗,//} to k-ary patterns, we need a
different encoding, which we describe here briefly. Assume first that p and p′ have
no output nodes labeled with ∗’s. Then we construct the Boolean tree patterns p0
and p′

0 by replacing each label a on some node x with a new label consisting of a
and followed by those symbols si that correspond to the positions in the output tuple
where x occurs. For example, assuming the output tuple to be (x, y, x, x, z, y), then
node x will have its label a replaced with (a, s1, s3, s4), node y will have its label
b replaced with (b, s2, s6), and node z will have its label c replaced with (c, s5).
All other nodes have their labels unchanged. Doing this in both p and p′ results in

Containment and Equivalence for a Fragment of XPath 9

the Boolean patterns p0, p′
0, over the alphabet � ×P({s1, . . . , sk}). The new labels

ensure that output nodes in p′
0 can only be mapped to corresponding output nodes

in p0. But, in general, this technique fails because it prevents us from mapping a
nonoutput node in p′

0 to an output node in p0. Still, the technique works for the case
when p′ is a linear pattern, since then any embedding from p′ is injective, and we
never need to map a nonoutput node to an output node. It remains now to consider
the case when p and p′ have ∗’s. Here the observation is that an output node must
be mapped to the correspondingly labeled output node: hence, if it is labeled with
∗, we may as well relabel it with the label of the corresponding output node in p: if
the latter is also ∗, then relabel it first with a fresh symbol in �. This eliminates all
∗’s from output nodes, and we apply the construction above. We leave the details
to the reader. As a consequence, all results discussed in the article for Boolean
patterns also apply to k-ary patterns, for arbitrary k.

In the rest of the article, we will assume all tree patterns to be Boolean tree
patterns, unless otherwise stated.

2.4. MUTUAL REDUCIBILITY OF CONTAINMENT AND EQUIVALENCE. The con-
tainment and equivalence problems are mutually reducible in polynomial time.
Equivalence is simply two-way containment. In addition, given two Boolean pat-
terns p and p′, and an algorithm for equivalence, we can decide containment.
First, form a new tree pattern p0 from p and p′ by fusing their roots. If con-
tainment is to hold, either LABEL(ROOT(p)) = LABEL(ROOT(p′)) or for some
a ∈ �, LABEL(ROOT(p)) = a while LABEL(ROOT(p′)) = ∗. In the former case,
LABEL(ROOT(p0)) is their common label; in the latter LABEL(ROOT(p0)) = a. Pat-
tern p0 is a Boolean pattern such that, for any input tree t , p0(t) is true if and only
if p(t) ∧ p′(t) is true. Then it follows that p ⊆ p′ if and only if p is equivalent to
p0. We discuss only containment in the remainder of the paper.

2.5. TREE PATTERN EVALUATION. We give below an algorithm that, given a
Boolean pattern p and tree t , checks whether p(t) is true. The algorithm deploys a
standard dynamic programming method, computing a Boolean matrix C(x, y) for
x ∈ NODES(t), y ∈ NODES(p) such that C(x, y) is true if there exists an embed-
ding from the subpattern rooted at y to the subtree rooted at x . An improvement,
suggested by N. Dalvi and S. Sanghai (2002, personal communication), allows the
algorithm to run in time O(|p‖t |), by computing a second matrix D, whose entry
D(x, y) is true if there exists an embedding from the subpattern rooted at y to some
subtree of t whose root is either x or a descendant of x . Recall that |t | denotes the
number of edges in t , and |p| the number of edges in p.

PROPOSITION 2. Algorithm 1 decides for any tree pattern p, and input tree t
whether p(t) is true, and runs in time O(|p‖t |).
Algorithm 1. Find embedding p → t
1: forx in NODES(t) do {The iteration proceeds bottom up on nodes of t}
2: fory in NODES(p) do {The iteration proceeds bottom up on nodes of p}
3: compute C(x, y) = (LABEL(y) = ∗ ∨ LABEL(y) = LABEL(x))∧
4:

∧
(y,y′)∈EDGES/(p)(

∨
(x,x ′)∈EDGES(t) C(x ′, y′))∧

5:
∧

(y,y′)∈EDGES//(p)(
∨

(x,x ′)∈EDGES(t) D(x ′, y′))
6: compute D(x, y) = C(x, y) ∨ ∨

(x,x ′)∈EDGES(t) D(x ′, y)
7: return C(ROOT(t), ROOT(p))

10 G. MIKLAU AND D. SUCIU

PROOF. The inner loop consists of lines 4, 5, and 6. The condition C(x ′, y′)
in line 4 is checked once for every pair of edges (y, y′) ∈ EDGES/(p) and
(x, x ′) ∈ EDGES(t). The condition D(x ′, y′) is checked once for every pair of edges
(y, y′) ∈ EDGES//(p) and (x, x ′) ∈ EDGES(t). The total number of times that these
two conditions are checked is thus no more than |EDGES(p)||EDGES(t)| = |p||t |.
The condition D(x ′, y) in line 6 is checked once for every node y ∈ NODES(p) and
every edge in EDGES(t). The total running time is thus O(|p‖t |).

2.6. OTHER NOTIONS OF PATTERN MATCHING. The study of tree pattern match-
ing problems has a long history that has focused primarily on the problem of
evaluation of patterns, not containment. Nevertheless, it is illuminating to con-
sider the differences between the semantics of our patterns and other match-
ing problems.

Two pattern matching problems are especially related to ours. The first, some-
times called classical tree pattern matching, involves a more restrictive embedding
[Hoffmann and O’Donnell 1982]. Here both the patterns and the trees are or-
dered, and the patterns are Boolean, and without descendant edges. An embedding
is required to be order preserving, but not necessarily root preserving. A simple
extension of the Algorithm 1 to account for the node order runs in time O(mn)
for a pattern with m nodes and a tree with n nodes. Improving this bound was
a long-time open problem, first solved in Kosaraju [1989] to attain a bound of
O(nm0.75polylog(m)). The best algorithm to date is O(n log3 m)[Cole et al. 1999].

The second related problem was defined in Kilpelainen and Mannila [1995] as
unordered tree inclusion. The simplest statement of the problem is: given a pattern
and input tree, can the pattern tree be obtained from the input tree by node deletions.
It turns out that this problem is equivalent to evaluating a pattern in our formalism
where all edges are descendant edges, where the embedding e is required to map
two distinct children of a node x ∈ NODES(p) into two different subtrees of e(x).
In particular, e is injective. This subtle difference results in an increased evaluation
complexity and it is shown in Kilpelainen and Mannila [1995] that unordered tree
inclusion is NP-complete.

3. Checking Containment

How does one check containment p ⊆ p′ for two Boolean patterns? Based on
its definition, is not even clear that this is decidable, since we need to check that
p(t) ⇒ p′(t) holds for all trees t , and there are infinitely many trees. One approach
is to show that it suffices to check only finitely many trees: in fact one can restrict
the search to “canonical” trees t , which “look like” p and are “no bigger” than p′.
We pursue this idea in Section 3.1, and arrive at an exponential-time algorithm for
checking containment, and a proof that containment is in co-NP.

The second approach we discuss here uses a different concept to reason about
containment: find a pattern homomorphism from p′ to p. This leads us in Section 3.2
to a polynomial time containment algorithms that is sound, but not always complete.
We show however that this procedure is also complete in certain cases.

3.1. CHECKING CONTAINMENT WITH CANONICAL MODELS. A model of a
Boolean pattern p is a tree t ∈ T� on which p evaluates to true. We denote with

Containment and Equivalence for a Fragment of XPath 11

FIG. 4. A pattern p, the extension pattern p[0, 2], and the canonical model t = sz(p[0, 2]).

Mod(p) the set of models:

Mod(p) = {t ∈ T� | p(t) is true}.
Containment of Boolean patterns can be restated in terms of models: p ⊆ p′ if and
only if Mod(p) ⊆ Mod(p′).

Consider the containment problem: given p, p′, check if p ⊆ p′. One way to
approach the problem is to search for a tree t such that p(t) is true and p′(t) is false,
because this implies noncontainment, p �⊆ p′. If such a tree t exists, we call it a
witness. Thus, to solve the containment problem it suffices to search for a witness
tree, or to establish that none exists. Since there are infinitely many trees, we need to
reduce the space of witnesses. Clearly, it suffices to search the witness t in Mod(p),
but the latter is still an infinite set. To further restrict this set we introduce canonical
models next.

Let p be a tree pattern, p ∈ P{[],∗,//}. The canonical models for p are obtained
in two steps: first eliminate all descendant edges, by replacing each edge // with a
sequence of wildcards ∗/∗/ . . . /∗, second replace each wild card with a symbol z.
The resulting trees are the canonical models for p. We describe this formally next.

Suppose p has d descendant edges, EDGES//(p) = {r1, . . . , rd}. Given d numbers
ū = (u1, . . . , ud), u1 ≥ 0, . . . , ud ≥ 0, define the ū-extension of p, in notation
p[ū], to be the pattern obtained from p by replacing every descendant edge ri with
a chain of ui new nodes, labeled ∗ and connected with child edges. Thus, p[ū] is
a pattern obtained by replacing each descendant edge with a sequence of ∗’s. If
ri = (x, y) is the i th descendant edge in p, then the distance in p[ū] from x to y
is d(x, y) = ui + 1 (see the definition of the distance function in Section 2). We
call the new nodes in NODES(p[ū]) extension nodes. For an illustration, consider
the pattern in Figure 4(a) and the extension p[0, 2] in Figure 4(b); there are two
extension nodes. We have the following:

LEMMA 1. Let e : p → t be an embedding from the tree pattern p to the tree t.
There exists a unique extension p[ū] and a unique embedding e′ : p[ū] → t such
that ∀x ∈ NODES(p), e(x) = e′(x).

PROOF. For each i = 1, . . . , d, the embedding e maps the descendant edge ri =
(xi , yi) ∈ EDGES//(p) into a pair of nodes (e(xi), e(yi)) ∈ EDGES+(t). Define ui =
d(e(xi), e(yi)) − 1 where d is the distance function in t , and let ū = (u1, . . . , ud).
Extend e to e′ : p[ū] → t by mapping the extension nodes between xi and yi to
the nodes connecting e(xi) to e(yi).

12 G. MIKLAU AND D. SUCIU

The second step is to replace the ∗’s with some symbol. Given a pattern p
and a symbol z ∈ �, denote sz(p) the tree pattern obtained by substituting each
occurrence of ∗ in p with z. Hence, sz(p) ∈ P{[],//}. We can now define canonical
models formally:

Definition 1. Let z ∈ � be some symbol, and p ∈ P{[],∗,//} be a Boolean tree
pattern with d descendant edges. A canonical model for p is a tree of the form
sz(p[ū]), for some ū = (u1, . . . , ud), u1 ≥ 0, . . . , ud ≥ 0. We denote modz(p) the
set of canonical models:

modz(p) = {sz(p[ū]) | ū = (u1, . . . , ud), 0 ≤ u1, . . . , 0 ≤ ud} (2)

Also, given a number n ≥ 0, we define the set of bounded canonical models:

modz
n(p) = {sz(p[ū]) | ū = (u1, . . . , ud), 0 ≤ u1 ≤ n, . . . , 0 ≤ ud ≤ n}

One should think of a canonical model as some tree t that “looks like” p. The
symbol z is just some arbitrary symbol to substitute ∗. For an illustration, Figure 4(c)
shows the canonical model sz(p[0, 2]) for the pattern p in Figure 4(a).

For every canonical model t = sz(p[ū]), the function et : NODES(p) → NODES(t)
defined as et (x) = x, ∀x ∈ NODES(p) is an embedding, which we call the canonical
embedding. Hence, a canonical model is indeed a model and modz

n(p) ⊆ modz(p) ⊆
Mod(p). When p has at least one descendant edge, then modz(p) is infinite. The set
modz

n(p) is always finite, for any tree pattern p and any n ≥ 0. The main property
of a canonical model is that, in order to find a witness t for p �⊆ p′, it suffices to
restrict the search to t ∈ modz

n(p), where z ∈ � is any symbol that does not occur
in p′ and n depends only on p′. We show now how to construct this number n from
p′.

Define the star length of a pattern q to be the largest number w such that there
exists a sequence of w nodes, x1, . . . , xw , labeled with ∗’s and connected by child
edges: that is, (xi−1, xi) ∈ EDGES/(q), ∀i = 2, . . . , w , and LABEL(xi) = ∗, for
i = 1, . . . , w .

PROPOSITION 3. Let p and p′ be two Boolean tree patterns, z ∈ � be a symbol
that does not appear in p′, and w ′ be the star length of p′. Then, the following are
equivalent: (1) p ⊆ p′, (2) modz(p) ⊆ Mod(p′), (3) modz

n(p) ⊆ Mod(p′), where
n = w ′ + 1.

PROOF. Statement (1) is equivalent to Mod(p) ⊆ Mod(p′); hence, the impli-
cations (1) ⇒ (2) and (2) ⇒ (3), are obvious. We prove now (3) ⇒ (1). Suppose
p �⊆ p′, and let t ∈ T� be a witness, that is, p(t) is true and p′(t) is false. Since
p(t) is true, there exists an embedding e : p → t . It follows from Lemma 1
that there exists an embedding from some p[ū] to t , e′ : p[ū] → t , which
agrees with e on the nodes of p. Consider the canonical model t1 = sz(p[ū]);
we show that t1 is still a witness, that is, p′(t1) is false. Indeed, suppose p′(t1) were
true. Then there exists an embedding e1 : p′ → t1, and we define the function
f : NODES(p′) → NODES(t) by composing e1 : p′ → t1 with e′ : p[ū] → t : this is
possible since NODES(t1) = NODES(p[ū]). We show that f is an embedding, con-
tradicting the fact that p′(t) is false. Clearly f preserves the structure (root, edges)
since both e1 and e′ do so, and the structure of t1 is identical to that of p[ū]. We show
that f also preserves the labels. The only case where the labels in t1 = sz(p[ū])
and p[ū] differ is at nodes y that are labeled z in t1. So let x ∈ NODES(p′) such

Containment and Equivalence for a Fragment of XPath 13

that the label of y = e1(x) in t1 is z. In that case LABEL(x) = ∗, because z does not
occur in p′, which implies that f is label preserving at node x . This ends the proof
of the fact that t1 = sz(p[ū]) ∈ modz(p) is a witness, that is, p(t1) is true while
p′(t1) is false.

We now construct some canonical model t2 ∈ modz
n(p) that is still a witness.

This follows directly from the next lemma.

LEMMA 2. Let p and p′ be two Boolean tree patterns, z ∈ � be a symbol
that does not appear in p′, and w ′ be the star length of p′. Let t1 = sz(p[ū])
be a canonical model such that p′(t1) is false. Define v̄ = (v1, . . . , vd) to be
vi = min(ui , n), for i = 1, . . . , d, where n = w ′ + 1, and t2 = sz(p[v̄]). Then
p′(t2) is false.

The intuition for the lemma is that, if p′(t2) were true, then we can stretch the
chains of extra nodes in t2 to obtain t1, and we still have p′(t1) true. This is because
the chains we need to stretch from t2 to t1 are too long for any chain child-connected
of ∗’s in p′ to cover them completely, hence p′ maps descendant edges to those
chains, allowing us to stretch them. A formal proof is given in the appendix. To
conclude the proof of Proposition 3, we notice that t2 is still a witness for p �⊆ p′
and that t2 ∈ modz

n(p).

PROPOSITION 4. The following problem is in coNP: given two tree patterns
p, p′ ∈ P{[],∗,//}, decide whether p ⊆ p′.

PROOF. This is a consequence of Proposition 3. In order to check p �⊆ p′ it
suffices to guess d numbers u1, . . . , ud , each ui ≤ w ′ + 1, where w ′ is the star
length of p′, and construct canonical model t = sz(p[u1, . . . , ud]), then check in
polynomial time that p′(t) is false.

Proposition 3 also gives a naive algorithm for checking containment: simply
iterate over all t ∈ modz

w ′+1(p) and check p′(t), which requires O(|t | |p′|) steps
using Algorithm 1 (Section 2.5). Recall that |p| denotes the number of edges in p.
We compute now the total running time of this naive algorithm. Given a d-tuple
ū = (u1, . . . , ud), the size of the canonical model sz(p[ū]) is:

|sz(p[ū])| = |p| + u1 + · · · + ud

Checking p′(sz(p[ū])) thus takes O(|sz(p[ū])| × |p′|) steps, and the total running
time of the naive algorithm is:

∑
0≤u1≤w ′+1,... ,0≤ud≤w ′+1

(|p| + u1 + · · · + ud) × |p′|

= (|p|(w ′ + 2)d + d(w ′ + 2)d−1 (w ′ + 1)(w ′ + 2)

2
) × |p′|

≤ |p|(w ′ + 2)d+1|p′|
We used here the fact that d ≤ |p| and 1 + (w ′ + 1)/2 < w ′ + 2. Thus, one can
decide p ∈ p′ in time O(|p| |p′|(w ′ + 2)(d+1)).

This naive algorithm is not practical, however, since much of the work in evalu-
ating p′(t) is repeated for various canonical models t .

3.1.1. An Algorithm for Checking Containment. We present now an improve-
ment of the naive algorithm for checking containment of two patterns, p ⊆ p′,

14 G. MIKLAU AND D. SUCIU

FIG. 5. A pattern p (a); Another tree pattern p′ and its seven subpatterns (b).

which is complete, and which avoids repeated computations. The algorithm may
seem complex, at a first look: the need for this complexity is best appreciated after
reading Section 3.2, where a much simpler and efficient algorithm turns out to be
incomplete. This section can be skipped at a first reading.

We start with some definitions and notations.

Match Sets. Let t be a tree. Each node and each edge in t defines a subtree,
as follows. A node x ∈ NODES(t) defines the subtree tx consisting of the node x
and all descendants of x ; in particular, ROOT(tx) = x , and tROOT(t) = t . An edge
(x, y) ∈ EDGES(t) defines the subtree tx,y consisting of ty plus the node x and the
edge (x, y). We denote S(t) the set of all subtrees associated to nodes and edges.
If |t | denotes the number of edges, then S(t) has 2|t | + 1 subtrees. We apply the
same definition to patterns p, and denote S(p) the set of subpatterns. Figure 5(b)
shows a pattern p′ with three edges, where the set S(p′) has seven subpatterns (two
of which are identical to p′, and are not repeated).

For a pattern q, denote q∗ the pattern obtained by relabeling q’s root node with ∗.
We now introduce the notion of a match set, which is adapted from Hoffmann

and O’Donnell [1982]. We fix a tree pattern p′ for the remainder of this section.
Let t ∈ T� a tree. The match set, ms(t) ∈ P(S(p′)), is the set defined by:

ms(t) = {p′
x | x ∈ NODES(p′), p′

x (t) = true} ∪
{p′

x,y | (x, y) ∈ EDGES/(p′), p′
x,y(t) = true} (3)

{p′
x,y | (x, y) ∈ EDGES//(p′), (p′

x,y)∗(t) = true} (4)

The definition treats descendant-edge subpatterns slightly differently in that it ig-
nores the label of their root node, for reasons that will become clear below.

For the pattern p′ in Figure 5(b), consider the linear tree t1 = /a/b/c: then
ms(t1) = {p′

x , p′
x,y, p′

y,u, p′
u}. In particular p′

y,u is in the match set because (y, u) is
a descendant edge in p′ and we ignore the root label b treating it like ∗. Consider now
the linear tree t2 = /a/b/z/c (here z is another symbol). Then ms(t2) = {p′

y,u, p′
u}.

We now describe the main idea behind Algorithm 2. We know that p �⊆ p′ iff
there exists a canonical tree t ∈ modz(p) such that p′(t) is false. Hence, if we
computed ms(t), it suffices to check whether p′

ROOT(p′) �∈ ms(t). Of course, we don’t
know for which canonical tree t to compute ms(t), so the idea is to compute the set

Containment and Equivalence for a Fragment of XPath 15

closeMS(ms, a) = ms ∪ {p′
x | (LABEL(x) = a ∨ LABEL(x) = ∗) ∧ (∀(x, y) ∈ EDGES(p′).p′

x,y ∈ ms})
nodeMS(ms1, . . . , msk , a) = closeMS(ms1 ∪ . . . ∪ msk , a)
edgeMS(ms, a) = closeMS({p′

x,y | (x, y) ∈ EDGES/(p′), p′
y ∈ ms, LABEL(x) = a}∪

{p′
x,y | (x, y) ∈ EDGES//(p′), p′

y ∈ ms}∪
{p′

x,y | (x, y) ∈ EDGES//(p′), p′
x,y ∈ ms}, a)

inflateMS(ms) = {ms′ | ms′ = edgeMS(. . . edgeMS(ms, ∗), . . . , ∗)︸ ︷︷ ︸
k times

, 0 ≤ k ≤ w ′ + 1}

FIG. 6. Auxiliary functions used in Algorithm 2. All functions return a match set, with the exception
of inflateMS which returns a set of match sets.

of all match sets, MS[p] = {ms(t) | t ∈ modz(p)}. This is done in lines 1–12 of
Algorithm 2, as we explain below, and it is in general more efficient than computing
ms(t) for every canonical tree, because many match sets are identical. Finally, once
we have MS[p], it suffices to check the condition ∃ms ∈ MS[p], p′

ROOT(p′) �∈ ms
to determine that p �⊆ p′: this is done in lines 13–16 of Algorithm 2.

For an illustration, consider the patterns p and p′ in Figure 5. We haveMS[p] =
{{p′

x , p′
x,y, p′

y,u, p′
u}, {p′

y,u, p′
u}}. Indeed, t1 and t2 illustrated earlier are canonical

trees for p, hence, both ms(t1) and ms(t2) are in MS[p]. Moreover, any other
canonical tree is of the form t = a/b/z/ · · · /z/c, that is, has at least 2 z’s, and
m(t) = m(t2). Here, the containment test fails, because for ms = {p′

y,u, p′
u} we

have ms ∈ MS[p] and p′ = p′
x �∈ ms.

Notice that, while a match set ms is an element of P(S(p′)), the set of matchsets
MS[p] is an element of P(P(S(p′))). MS[p] has at most as many elements as
canonical trees in modz

w ′+1(p), where w ′ is the star length of p′. This follows from
Proposition 3. But MS[p] may be much smaller than modz

w ′+1(p), because many
canonical trees t may produce the same match set.

By focusing on match sets rather than canonical trees, we avoid the repeated
computations in the naive algorithm. So all we need is to explain how MS[p] is
computed in the first part of Algorithm 2. In order to do that, we need to examine
how to compute simple match sets first.

Computing Match Sets. As a warm-up, we show how to compute ms(t). In fact,
we don’t need to compute it in the algorithm, but the notations introduced here will
be useful in computing MS[p]. To compute ms(t), one can proceed inductively, by
computing ms(tu) and ms(tu,v) for all node- and edge-subtrees of t . The functions
we need for that are shown in Figure 6. We explain them here.

First, suppose we have computed the set ms ⊆ S(p′) consisting of the edge
subpatterns matching t (the second and third line in the definition of ms(t), that is,
Eqs. (3) and (4)). Then we can find the node subpatterns matching t by computing:

ms(t) = closeMS(ms, LABEL(ROOT(t))),

where closeMS is in Figure 6. That is, it suffices to add all node subpatterns p′
x which

match the root label in t and for which all outgoing child-subpatterns p′
x,y are in

ms. Notice that, if ms = ∅ then closeMS(ms, a) returns the set of node-subpatterns
p′

x for which x is a leaf and LABEL(x) matches a.
Now consider a node u of t , and assume we want to compute ms(tu). Let v1, . . . , vk

be all children of u. Then:

ms(tu) = nodeMS(ms(tu,v1), . . . , ms(tu,vk), LABEL(u)),

16 G. MIKLAU AND D. SUCIU

where nodeMS is shown in Figure 6. Thus, all edge subpatterns in any ms(tu,vi),
for i = 1, . . . , k, are included in ms(tu), while closeMS may add some extra node
subpatterns.

Similarly, lets compute ms(tu,v) from ms(tv):

ms(tu,v) = edgeMS(ms(tv), LABEL(u)),

where edgeMS is shown in Figure 6. This function requires some discussion. The
first two lines should be clear: we just move one edge up, in all subpatterns in ms.
The third line is justified as follows. If (x, y) is a descendant edge and p′

x,y is in
ms(tv), then it should also be in ms(tu). To enable this simple inductive definition,
we had to ignore the label on the root node of p′

x,y: that label will be checked later,
in closeMS.

Computing Sets of Match Sets. We can now describe how to compute MS[p].
To the previous inductive computations, we only need to add an inductive computa-
tion for a descendant edge in p. Recall that such an edge is replaced by a sequence
of up to w ′ +1 symbols z. This justifies the function inflateMS(ms) in Figure 6. The
function applies edgeMS(−, ∗) repeatedly, thus simulating the effect of an edge
labeled z (z and ∗ can be used interchangeably in edgeMS, since z does not occur in
p′). That is, inflateMS(ms) returns the set {ms0, ms1, ms2, . . . } where ms0 = ms and
msk = edgeMS(msk−1, ∗). This set can be computed in at most w ′ + 1 iterations,
but we may stop earlier when we find msk = msk−1.

To compute MS[p] we will compute inductively MS[q] for all node- and
edge-subpatterns q of p. For a node u in p, we denote v1, . . . , vk its children.

MS[pu] = {nodeMS(ms1, . . . , msk, LABEL(u)) | ms1 ∈ MS[pu,v1], . . . , msk

∈ MS[pu,vk]}
MS[pu,v] = {edgeMS(ms, LABEL(u)) | ms ∈ MS[pv]}

when (u, v) ∈ EDGES/(p)
MS[pu,v] = {edgeMS(ms, LABEL(u)) | ms0 ∈ MS[pv], ms ∈ inflateMS(ms0)}

when (u, v) ∈ EDGES//(p).

These expressions justify Lines 1–12 in the Algorithm 2.

Algorithm 2. Check containment p ⊆ p′: a sound and complete algorithm. The auxiliary functions
are shown in Figure 6.

1: for u in NODES(p), (u, v) in EDGES(p) do {The iteration proceeds bottom up on nodes u and edges
(u, v) of p}

2:
3: To process a node u:
4: let a = LABEL(u), v1, . . . , vk = children(u)
5: compute MS[pu] = {nodeMS(ms1, . . . , msk, a) | ms1 ∈ MS[pu,v1], . . . , msk ∈ MS[pu,vk]}
6:
7: To process an edge (u, v):
8: let a = LABEL(u), and MS = MS[pv]
9: if (u, v) ∈ EDGES//(p) then

10: let MS = ⋃{inflateMS(ms) | ms ∈ MS}
11: compute MS[pu,v] = {edgeMS(ms, a) | ms ∈ MS}
12:

Containment and Equivalence for a Fragment of XPath 17

13: for ms ∈ MS[pROOT(p)] do
14: ifp′

ROOT(p′) �∈ ms then
15: return false
16: return true

Running Time. We compute now the running time of Algorithm 2. A sub-
pattern in S(p′) can be represented as either a node or an edge. We assume that
nodes and edges in p′ have unique identifiers, for example, an integer in the range
0, 1, . . . , 2|p′|. A match set, ms ∈ P(S(p′)) can be represented as a Boolean
array2 of length 2|p′| + 1. A union, ms1 ∪ ms2, or an equality test, ms1 = ms2
can thus be performed in O(|p′|) time. A set of matchsets, M S ∈ P(P(S(p′))),
is represented as a trie. Insertions, and membership tests also take O(|p′|). To
compute the running time of the algorithm it is important to notice that there ex-
ists a many-to-one correspondence between canonical databases in modz

w ′+1(q)
and match sets in MS[q], for any subpattern q of p. In particular, |MS[q]| ≤
|modz

w ′+1(q)| ≤ |modz
w ′+1(p)| = (w ′ + 2)d , where d is the number of descendant

edges in p. It follows that the two computation of entries in MS, that is, lines 5,
and 11 in the algorithm, take O(|p′|(w ′ + 2)d) time. For example, in line 5, we
notice that each of the match sets ms1, . . . , msk corresponds to a canonical tree
t1 ∈ modz

w ′+1(pu,v1), . . . , tk ∈ modz
w ′+1(pu,vk). In turn, the k-tuple (t1, . . . , tk) cor-

responds to a canonical tree t ∈ modz
w ′+1(pu), hence the total number of steps done

in line 5 is no more than |modz
w ′+1(pu)|; moreover, each takes O(|p′|) time.

Thus, we have:

THEOREM 1. Algorithm 2 is sound and complete for checking containment of
two tree patterns p, p′. It runs in time O(|p||p′|(w ′ + 2)d).

Special Cases. While the running time is only marginally better than the naive
algorithm discussed earlier, it can be much better in practice, because the number
of matchsets in MS[q] is often much smaller than the number of canonical trees
for q. We discuss here two special cases.

First, consider the case when p has no descendant edges, that is, d = 0. While
Theorem 1 already gives us a running time of O(|p||p′|), it is instructive to see
how this happens exactly. In this case all entries MS[pu] and MS[pu,v] con-
tain a single match set. This is because the function inflateMS is never called,
and this (line 10) is the only place in the algorithm where we may generate
more than one match set in MS[−]. Thus, MS[−] can be viewed as a relation
from the nodes and edges in p to the nodes and edges in p′. It is interesting to
see the analogy to Algorithm 1 (Section 2.5), which computes an embedding from
a pattern to a tree, by computing two relations C[−, −] andD[−, −]. For two nodes
u, x we have p′

x ∈ ms ∈ MS[pu] iff C[u, x] is true, and for a descendant edge
(x, y) ∈ EDGES//(p′) we have p′

x,y ∈ ms ∈ MS[pu] iff u has some child v such
that D[v, y] is true. Thus, Algorithm 2 corresponds to Algorithm 1, in the special
case when p has no descendant edges.

Next, consider another simple case, when every symbol in p′ occurs only once.
That is, if x, y are two distinct nodes in p′, then LABEL(x) �= LABEL(y); we assume
for simplicity that p′ does not contain ∗. Let u be a node in p and a = LABEL(u).

2 A bitmap can be used in practice.

18 G. MIKLAU AND D. SUCIU

FIG. 7. Two patterns p, p′ on which Algorithm 2 takes exponential time to determine that p �⊆ p′.

Then any match set ms ∈ MS[pu] may contain at most one node-subpattern p′
x ,

namely that one for which LABEL(x) = a, and at most d ′ edge-subpatterns p′
x,y ,

namely the descendant edges in p′, where d ′ = |EDGES//(p′)|. Thus, there are at
most 2d ′+1 different matchsets that can be included in MS[pu]. The running time
is then O(|p||p′|2kmax(d ′+1)), where kmax is the maximum out-degree of a node in p.
This can be seen by examining line 5 of Algorithm 2, which iterates over ≤ kmax

sets, each with ≤ 2d ′+1 elements.
Finally, we illustrate in Figure 7 one interesting example where the algorithm

runs in exponential time. Both pattern are relatively simple, that is, with no ∗’s, and
p′ has no descendant edges. But p′ has n occurrences of the same label b; hence,
it does not fall under the previous special case. In this example, MS[pv] contains
2n match sets, namely all possible subsets of {p′

y1
, . . . , p′

yn
}; hence, the running

time is exponential in n. At the next level, MS[pa] also contains 2n sets: one is
{p′

x , p′
x,y1

, . . . , p′
x,yn

} (i.e., here closeMS has added p′
x) while the others are all

subsets of size ≤ n −1 of {p′
x,y1

, . . . , p′
x,yn

} (i.e., without p′
x). Hence, the algorithm

concludes that p �⊆ p′, but takes exponential time to do that.
We will illustrate Algorithm 2 on a more complex case in Example 1.

3.2. CHECKING CONTAINMENT WITH PATTERN HOMOMORPHISMS. The second
technique that we use to reason about containment is a homomorphism between
patterns. As a first attempt, let us define a homomorphism h : p′ → p to be a
function from NODES(p′) to NODES(p) that satisfies the definition of an embedding
(given in Section 2), with the following strengthening of the child-edge preser-
vation condition: if the edge (x, y) is in EDGES/(p′) then (h(x), h(y)) must be in
EDGES/(p) (i.e., it is not allowed to be in EDGES//(p)). Figure 8 illustrates such a
homomorphism. We will show that, given two patterns p, p′, one can determine in
time O(|p||p′|) whether a homomorphism p′ → p exists. Moreover, if it exists,
then we can show that p ⊆ p′. Thus, an efficient practical algorithm for checking
containment is to search for a homomorphism. However, this algorithm is not al-
ways complete. The challenge is to make it as complete as possible, at least in the
cases for which efficient containment algorithms were already known.

3.2.1. Motivation for Adornment. The problem with the naive definition for
a homomorphism above is that it fails to be a necessary criterion for patterns in
P{∗,//} (i.e., no branches). This was already observed in Milo and Suciu [1999],

Containment and Equivalence for a Fragment of XPath 19

FIG. 8. Two tree patterns p, p′ and a homomorphism from p′ to p, proving p ⊆ p′.

FIG. 9. (a) Two equivalent queries p, p′ with no homomorphism from p′ to p; (b) same queries
represented differently, and a homomorphism between them.

and is illustrated here in Figure 9(a). The two tree patterns here correspond to the
XPath expressions p=a/*//b, p′=a//*/b. Although p, p′ are equivalent, there is
no homomorphism from p′ to p because there is no destination for the wildcard in
p′: for example we cannot map ∗ to ∗ because then the child edge (∗, b) would be
mapped into a descendant edge. The solution is to eliminate the ∗ node and adorn
the descendant edge with “≥1”, meaning that there is at least one intermediate node
on this paths. This is shown in Figure 9(b), which also illustrates a homomorphism
from the adorned tree pattern. When introducing the adornments, every descendant
edge is initially adorned with ≥0, then adjacent edges sharing a ∗ node are combined
into descendant edge with a higher adornment. Only ∗ nodes that have a unique
child may be eliminated this way, that is, if a ∗ node has two or more outgoing edges
then we cannot eliminate it. This process can be described as a a set of rewrite rules,

20 G. MIKLAU AND D. SUCIU

using XPath-like syntax:

// → //≥0

//≥m ∗ / → //≥m+1

/ ∗ //≥n → //≥n+1 (5)
//≥m ∗ //≥n → //≥m+n+1.

For example, p′ = a//*/*/b/*/c//d is rewritten to p′′ = a//≥2 b/*/c//≥0d.
Now the homomorphism is defined from the adorned pattern p′′ to p, and its
existence is shown in Milo and Suciu [1999] to be a necessary and sufficient condi-
tion for containment when both patterns are linear. To illustrate on our example in
Figure 9, the pattern p′ reduces to the adorned pattern p′′ in (b), making a homomor-
phism possible.

3.2.2. Adorned Patterns and Homomorphisms. We now define formally
adorned tree patterns and homomorphisms between adorned tree patterns. An
adorned tree pattern is a tree pattern p with an adornment function α :
EDGES//(p) → N . Using the notations in Section 2, given two nodes (x, y) ∈
EDGES∗(p) we define their distance, d(x, y), as follows:

d(x, x) = 0
d(x, y) = 1 if (x, y) ∈ EDGES/(p)
d(x, y) = 1 + α(x, y) if (x, y) ∈ EDGES//(p)
d(x, y) = d(x, z) + d(z, y) if (x, z) ∈ EDGES(p), (z, y) ∈ EDGES+(p)

Definition 2. A homomorphism h : p′ → p is a function h : NODES(p′) →
NODES(p) satisfying the following four conditions:

(1) h(ROOT(p′)) = ROOT(p),
(2) if x ∈ NODES(p′), then LABEL(x) = ∗ or LABEL(x) = LABEL(h(x)),
(3) if (x, y) ∈ EDGES/(p′), then (h(x), h(y)) ∈ EDGES/(p), and
(4) if (x, y) ∈ EDGES//(p′), then (h(x), h(y)) ∈ EDGES+(p) and 1 + α(x, y) ≤

d(h(x), h(y)).

It follows that for any two nodes (x, y) ∈ EDGES∗(p′), we have (h(x), h(y)) ∈
EDGES∗(p) and d(h(x), h(y)) ≥ d(x, y). Figure 8 and Figure 9(b) show two exam-
ples of homomorphisms.

Every (unadorned) tree pattern p admits a trivial adornment by setting α(x, y) =
0, for every (x, y) ∈ EDGES//(p), hence our discussion in the remainder of this
section also applies to unadorned patterns.

Given a tree t and an adorned pattern p, an embedding e : p → t is defined to
be a homomorphism from p to t , where t is viewed as a pattern. Obviously, this
coincides with the definition of an embedding in Section 2 when p is unadorned.

3.2.3. Computing a Homomorphism. Algorithm 3 takes two adorned tree pat-
terns p, p′ and checks if there exists a homomorphism from p′ to p. The algorithm
runs in time O(|p‖p′|), and generalizes the algorithm for finding an embedding
(presented in Section 2). It proceeds bottom up in both p and p′, and computes
two tables C(x, y) and D′(x, y) with x ∈ NODES(p), y ∈ NODES(p′). The meaning
of these tables is the following: C(x, y) is a Boolean value denoting whether there
exists a homomorphism from the subpattern rooted at y to the subpattern rooted at

Containment and Equivalence for a Fragment of XPath 21

Algorithm 3. Find homomorphism p′ → p
1: for x in NODES(p) do {The iteration proceeds bottom up on nodes of p}
2: for y in NODES(p′) do {The iteration proceeds bottom up on nodes of p′}
3: compute C(x, y) = (LABEL(y) = “ ∗′′ ∨LABEL(x) = LABEL(y))∧
4:

∧
(y,y′) ∈ EDGES/(p′)(

∨
(x,x ′) ∈ EDGES/(p) C(x ′, y′))∧

5:
∧

(y,y′) ∈ EDGES//(p′)(D′(x, y′) ≥ 1 + α(y, y′))
6: if C(x, y) then
7: d = 0;
8: else
9: d = −∞

10: compute D′(x, y) = max(d, 1 + max(x,x ′) ∈ EDGES/(p) D′(x ′, y),
11: 1 + max(x,x ′) ∈ EDGES//(p)(α(x, x ′) + D′(x ′, y)))
12: return C(ROOT(p), ROOT(p′))

Algorithm 4. Check containment p ⊆ p′: a sound, incomplete algorithm
1: Add shadow leaf symbols to p and p′

Connect them with descendant edges to the old leaves
and label them with the same symbol a ∈ �.

2: Apply the re-writing rules (5) to p′, repeatedly, until it reduces to p′′

3: Find homomorphism from p′′ to p (using Algorithm 3)
if found then return true else return false

x . D′(x, y) is defined to be max{d(x, x ′) | (x, x ′) ∈ EDGES∗(p) ∧ C(x ′, y) = true}.
We take maximum of an empty set to be −∞, hence D′(x, y) is either ≥ 0, or −∞.
The algorithm computes both tables bottom up in an obvious way.

PROPOSITION 5. Algorithm 3 decides whether there exists a homomorphism
from p′ to p and runs in time O(|p‖p′|).

PROOF. The proof for the running time is identical to that for the Algorithm 1.
The inner loops are the test C(x ′, y′) in line 4, the test D′(x, y′) ≥ · · · in line 5, and
the computation of D′(x ′, y) in lines 10 and 11. These are executed at most once
for every pair of edges, in p and in p′ respectively, hence the total number of steps
is O(|p||p′|).

3.2.4. Checking Containment. We now turn to our main question: checking
containment of two patterns, by using homomorphisms. Algorithm 4 checks con-
tainment of two tree patterns, p ⊆ p′. It is sound, and runs in time O(|p‖p′|), but,
as we shall see, is not necessarily complete. Line 1 modifies p and p′ by adding a
shadow leaf to each leaf and labeling it with some symbol a ∈ �: more precisely,
for each leaf node x in p (and similarly in p′) create a shadow leaf x ′, label it with
the symbol a ∈ � and insert a new edge (x, x ′) into EDGES//(p) (or EDGES//(p′)
respectively). There are no restrictions on the choice of the symbol a except that
all shadow leaves must be labeled with the same symbol. This step at most doubles
the size of p and p′, and preserves the containment relationship between p and p′.
The purpose of this step is to remove dangling tails in p′. For example, consider
p = b/ ∗ //c and p′ = b//∗. Here p ⊆ p′ (recall that they are Boolean patterns),
but no homomorphism exists from p′ to p: the rewritings in Line 2 are useless here
because the dangling ∗ in p′ has no outgoing edge, hence cannot be eliminated.

22 G. MIKLAU AND D. SUCIU

FIG. 10. Two patterns such that p ⊆ p′ but where no homomorphism exists from p′ to p. Algorithm 4
fails to detect containment.

However, by transforming both p and p′ as in Line 1 we get p = b/ ∗ //c//a
p′ = b// ∗ //a, and now p′ reduces to p′′ = b//≥1a, and there exists an obvious
homomorphism from p′′ to p.

Line 2 applies repeatedly the reductions (5) to p′. In effect, this step replaces
a chain of nodes x1, x2, . . . , xn in p′ with a single descendant edge (x1, xn) and
adorns it such that the distance d(x1, xn) is preserved, provided that all nodes
x2, . . . , xn−1 are labeled with ∗, each node xi−1 has only one outgoing edge,
namely to xi , for i = 2, . . . , n, and there exists at least one descendant edge
among (x1, x2), (x2, x3), . . . , (xn−1, xn). We have seen in Figure 9 that, without this
step, the algorithm would be incomplete on linear patterns.

Line 3 checks for a homomorphism from p′′ to p and reports the result.
We prove now the main properties of this algorithm. The soundness and the

running time follow immediately from our discussions above:

THEOREM 2. Algorithm 3 is sound (i.e. if it returns true then p ⊆ p′) and runs
in time O(|p‖p′|).

In general the algorithm is incomplete, as shown by the following example.

Example 1. This example illustrates two patterns p, p′ such that p ⊆ p′ but
no homomorphism exists from p′ to p. In particular, Algorithm 4 returns false,
although p ⊆ p′. The two patterns are shown in Figure 10. Pattern p′ reduces
to a pattern p′′ where the right branch has the adornment “≥1”; p′′ is not shown,
because it is not relevant to our discussion. Intuitively, the three branches in p and
the two branches in p′ impose certain conditions on the number of intermediate
nodes between the c node and the d node: it should be either =0, or ≥0 (i.e., no
condition), or ≥1: this is noted under each branch.3 There is no homomorphism

3 These are not adornments.

Containment and Equivalence for a Fragment of XPath 23

from p′ to p (and neither from p′′ to p). Since the two b nodes in p′ are connected
with a child edge, (y1, y2), a homomorphism can map the two branches either to the
first two (y2 → v3, y1 → v2), or the last two branches in p (y2 → v2, y1 → v1):
but this is not possible since none of the branches in p′ can be mapped to the middle
branch: no edge in p′ can be mapped to the edge (w2, t) in p. (The same argument
applies to the reduced pattern, p′′, which we omit.) However, p ⊆ p′, as we show
next. Let t ∈ modz(p) and consider the middle branch in t . If the there are no nodes
between c and d then we can embed p′ to t by mapping it to the second and third
branch in t(y2 → v2, y1 → v1). If there is at least one node between c and d then
we embed p′ to t by mapping it to the first and second branch (y2 → v3, y1 → v2).
Thus, to check containment we need to “reason by cases,” and the homomorphism
is an incomplete test.

By contrast, it is interesting to see how Algorithm 2 (Section 3.1.1) detects
that p ⊆ p′. This is done by having two match sets in MS[pw2], MS[pv2], and
MS[pv1]. This way, Algorithm 2 keeps track of the two cases. As the match sets
continue to be computed bottom up, when we reach MS[p(u,v1)] the two match
sets become identical, that is, MS[p(u,v1)] and MS[pu] have only one match set:
the reason is that the two cases have now merged, and all canonical trees at p(u,v1)
and pu match the same subpatterns in p′. A fragment of the match sets computed
by the algorithm is given below:

MS[pv3] = {{
p′

y2
, p′

(y2,z2), p′
s, p′

(s,s1)

}}

MS
[

p(v2,v3)
] = {{

p′
(y1,y2), p′

s, p′
(s,s1)

}}

MS[pt] = {{p′
s2
, p′

s1
}}

MS[pw2] = MS
[

p(w2,t)
] = {{

p′
z2
, p′

s, p′
(s,s1)

}
,
{

p′
z1
, p′

s, p′
(s,s1)

}}

MS
[

p(v2,w2)
] = {{

p′
y2
, p′

(y2,z2), p′
s, p′

(s,s1)

}
,
{

p′
(y1,z1), p′

s, p′
(s,s1)

}}

MS[pv2] = {{
p′

(y1,y2), p′
y2
, p′

(y2,z2), p′
s, p′

(s,s1)

}
,
{

p′
y1
, p′

(y1,y2),

p′
(y1,z1), p′

s, p′
(s,s1)

}}

MS
[

p(v1,w1)
] = {{

p′
(y1,z1), p′

s, p′
(s,s1)

}}

MS
[

p(v1,v2)
] = {{

p′
(y1,y2), p′

s, p′
(s,s1)

}
,
{

p′
(x,y1), p′

s, p′
(s,s1)

}}

MS[pv1] = {{
p′

y1
, p′

(y1,z1), p′
(y1,y2), p′

s, p′
(s,s1)

}
,
{

p′
(x,y1), p′

(y1,z1),

p′
s, p′

(s,s1)

}}

MS
[

p(u,v1)
] = {{

p′
x , p′

(x,y1), p′
s, p′

(s,s1)

}}

MS[pu] = {{
p′

x , p′
(x,y1), p′

s, p′
(s,s1)

}}

Since p′(= p′
x) belongs to the unique match set inMS[pu], Algorithm 2 concludes

that p ⊆ p′.

Thus, Algorithm 4 is incomplete in general, but we prove next that it is complete
in four important special cases. The first three are rather simple, and essentially
show that the algorithm unifies and generalizes techniques from Yannakakis [1981],
Wood [2001], and Amer-Yahia et al. [2001]. The fourth case is nontrivial, and is a
significant generalization of the result in Milo and Suciu [1999].

24 G. MIKLAU AND D. SUCIU

THEOREM 3. Algorithm 3 for checking containment p ⊆ p′ is complete in each
of the following cases:

(1) p ∈ P{[],∗}, or
(2) p′ ∈ P{[],∗}, or
(3) p′ ∈ P{[],//}, or
(4) p′ ∈ P{∗,//}.

Clearly, as the previous example shows, the theorem cannot be generalized further
in any significant way. Before giving the proof, we discuss the method used. All four
cases are proved as follows: assuming no homomorphism exists from p′ to p, we
construct some canonical “witness” t ∈ modz(p) such that there is no embedding
from p′ to t , proving that p �⊆ p′. The first three cases in the theorem are rather easy,
since the witness is obtained in a generic way, independently on p′. The last case
is the most interesting and difficult one, because there is no generic witness, but
depends on p′. In this witness, some descendant edges in p need to be extended to
long chains z/z/ · · · /z, while others to short chains, and the exact choice depends
on p′ in a subtle way. This is illustrated by the example below.

Example 2. This example illustrates two linear patterns p, p′ ∈ P{∗,//} such
that there exists no homomorphism p′ → p, but the witness t ∈ modz(p) for which
p′(t) is false can only be obtained in a complex way. Consider:

p = a/b/s//c/b/s/c//d

p′ = a//b/*/c//*/d.

Here a, b, c, d, s ∈ � and p has two descendant edges, denote them r1 and r2.
There is no homomorphism from p′′ (= a//≥0 b/*/c//≥1 d) to p, and a witness
t ∈ modz(p) is obtained by taking ū = (1, 0); that is, by some abuse of notation,
the witness is:

t = sz(p[ū]) = a/b/s/z/c/b/s/c/d

One can verify that there exists no embedding from p′ to t . But the two obvious
choices for canonical models for p, when all chains are short or all chains are long,
do not serve as witness. If we take all chains to be short, ū = (0, 0), then:

t = a/b/s/c/b/s/c/d

and p′(t) is true: the embedding p′ → t maps the b node in p′ to the first b in t . If
we make all chains long, say ū = (1, 1), then

t = a/b/s/z/c/b/s/c/z/d

and p′(t) is also true: the embedding maps the b node in p′ to the second b in t . In
fact, it is easy to see that the only witnesses are of the form ū = (k, 0), for k ≥ 1,
that is, the first chain must be long and the second must be short.

PROOF (OF THEOREM 3). We assume that p, p′ have been processed accord-
ing to Step 1 of the algorithm, and p′ has been reduced to p′′ (Step 2). To simplify the
discussion we assume that p is unadorned, that is, ∀e ∈ EDGES//(p), α(e) = 0: the
extension to adorned patterns is trivial, and not really important for us, since
the main purpose of the adornments is to be used in p′, not in p.

Containment and Equivalence for a Fragment of XPath 25

(1) Let p ∈ P{[],∗}. In this case, there is a single canonical model for p, modz(p) =
{t}, which is isomorphic to p except that every ∗ is replaced with z. Pick t to be
the witness. Any embedding e : p′′ → t immediately yields a homomorphism
p′′ → p. Steps (1) and (2) are not need for the algorithm to be complete in this
case.

(2) Let p′ ∈ P{[],∗}. Step (1) is needed here, so assume that all leaves in p′ are
labeled with symbols in �, not with ∗. In this case, no reductions are possible,
hence p′′ = p′. Let w ′ be the star length of p′ (i.e., longest sequence of ∗’s,
Section 3.1), and let n = w ′ + 1. Define ū = (n, n, . . . , n), and choose as
witness the canonical database t = sz(p[ū]). Let e : p′ → t be an embedding.
We observe that none of the extension nodes in t is in the image of e. Suppose
it were, that is, there are nodes y ∈ NODES(p′) and x = e(y) ∈ NODES(t)
such that LABEL(x) = z and x is an extension node, hence belongs to a chain
of n extension nodes. Clearly, LABEL(y) = ∗, and going in both directions
up and down from y we must find nodes y′, y′′ such that LABEL(y′) �= ∗,
LABEL(y′′) �= ∗, and d(y′, y′′) ≤ w ′ + 1 = n, because the star length of p′
is w ′. But this implies that d(e(y′), e(y′′)) = d(y′, y′′) ≤ n and none of e(y′)
and e(y′′) is labeled z: this contradicts the fact that e(y) is part of a chain of n
consecutive z’s.

(3) Let p′ ∈ P{[],//}. This case is rather similar to the previous one. Here too p′′ = p′.
Define 1̄ = (1, 1, . . . , 1), and let the witness be t = sz(p[1̄]). Let e : p′ → t
be an embedding. None of the nodes in p′ is mapped to any z symbol, hence
only descendant edges in p′ can be mapped over the z’s. It follows that e is
also a homomorphism from p′ to p. Steps (1) and (2) are not needed for the
algorithm to be complete in this case.

(4) Let p′ ∈ P{∗,//}. In this case we need Steps (1) and (2) in order for the algorithm
to be complete, so we assume that p′ has been reduced to p′′. We will further
assume here, without loss of generality, that the root nodes in both p and p′′
are labeled with a symbol a ∈ � that does not occur anywhere else in p or
p′′: otherwise, we replace p and p′′ with a/p and a/p′′ respectively, where a
is a fresh symbol in �. Given that p′′ is a linear pattern, it follows that it has a
special structure that we describe next. We need the following:

Definition 3. A block is a linear pattern b ∈ P{∗} (i.e., with no branches
and no descendant edges), where the first and last nodes are labeled
with symbols in �. That is, NODES(b) = {x0, x1, . . . , xn}, EDGES/(b) =
{(x0, x1), (x1, x2), . . . , (xn−1, xn)}, EDGES//(b) = ∅, and LABEL(x0),
LABEL(xn) ∈ �. The size of the block b is n (the number of edges).

The special structure of p′′ is that it consists of a sequence of blocks, in which
every two consecutive blocks are connected by a descendant edge. That is,

p′′ = b0//
≥k1b1//

≥k2 · · · //≥km bm (6)

where b0, . . . , bm are blocks. Indeed, Step (1) plus our assumption about the
root nodes ensures that the first and last node in p′′ are labeled with symbols
in �. Step (2) ensures that any descendant edge connects two nodes that are
labeled with symbols in �.

For the proof of this case, it is convenient to consider homomorphisms (and
embeddings) that do not necessarily map the root node to the root node, but

26 G. MIKLAU AND D. SUCIU

otherwise satisfy all the conditions of the homomorphism. In other words they
are defined by conditions (2), (3), (4) of the homomorphism in Definition 2.
We call them unrooted homomorphism, and unrooted embedding, respectively.
Then we prove the following Proposition:

PROPOSITION 6. Suppose that there exists no unrooted homomorphism
from p′′ to p. Then there exists a “witness,” that is, a tree t ∈ modz(p) such
that there exists no unrooted embedding from p′′ to t .

We give here the intuition behind the proposition, and defer a formal proof
to the appendix. Referring to the structure of p′′ given by Eq. (6), we attempt
to find an unrooted homomorphism from b0 to p, searching p top-down, along
all its branches, starting at the root. All descendant edges that we traverse while
searching for this unrooted homomorphism we expand to a long chain, that is,
take ui = n, where n is the size of b0. Continuing from where we managed to
map b0 to p, we attempt to map the descendant edge //≥k1 , along all possible
branches in p: all descendant edges in p that we traverse this way we expand
to short chains, that is, ui = 0. Finally, we proceed recursively, for the pattern
b1//

≥k2 · · · //km bm , along all branches in p where we succeeded in mapping
both b0 and //≥k1 . The formal argument is given in the appendix.

Finally, we can complete the proof of Theorem 3. Suppose that for every
tree t ∈ modz(p) there exists an embedding e : p′′ → t ; in particular e is also
an un-rooted embedding. Hence, by Proposition 6, there exists an unrooted
homomorphism h : p′′ → p. Since both p′′ and p have their roots labeled with
some symbol a ∈ � that does not occur elsewhere in p, h must be a (rooted)
homomorphism.

4. coNP Hardness of Containment

We prove here that the containment problem for two tree patterns p, p′ ∈ P{[],∗,//}
is coNP hard, thus justifying the limitations of the algorithms in Section 3. This
result is in sharp contrast with the fact that containment is in PTIME for each of
the three restricted classes P{[],∗}, P{[],//}, P{∗,//}; hence, we ask whether containment
remains in PTIME if we impose some arbitrary bound on the number of occurrences
of descendant edges, or wildcards, or branches. We know already from Theorem 1
that the answer is positive for descendant edges: for any d ≥ 0, the containment
problem p ⊆ p′ is in PTIME, where p has at most d descendant edges. We prove
here that the answer is negative for the other two. Containment remains coNP hard
even when we allow at most two wildcards, and, similarly, remains coNP hard even
if we allow at most five branches in p and at most three branches in p′.

Technically, the first coNP hardness theorem is subsumed by any of the following
two. We include it here, however, for the sake of the proof technique, which is
simpler than that of the other two theorems.

4.1. MAIN CONP-HARDNESS. We start with a preliminary result, which is of
independent interest. Define containment of a Boolean pattern p in a union of
patterns as follows: p ⊆ p1 ∪ · · · ∪ pk holds if, for all trees t , p(t) ⇒ p1(t) ∨
p2(t) ∨ · · · ∨ pk(t).

LEMMA 3. Given patterns p and p1, p2, . . . , pk in P{[],∗,//}, there exist patterns
q, q ′ in P{[],∗,//} such that p ⊆ p1 ∪ · · · ∪ pk if and only if q ⊆ q ′. Furthermore, q

Containment and Equivalence for a Fragment of XPath 27

FIG. 11. Patterns q and q ′ from Lemma 3, constructed from p, p1, p2, . . . , pk so that q ⊆
q ′ if and only if p ⊆ p1 ∪ · · · ∪ pk

and q ′ are polynomial in the sizes of p, p1, p2, . . . , pk, and q and q ′ have no more
label wildcards than those present in p, p1, p2, . . . , pk.

PROOF. We assume without loss of generality that all patterns p, p1, . . . , pk
have the roots labeled with the same symbol a ∈ �: if not, we transform the patterns
into p′, p′

1, . . . , p′
k by adding another root node labeled a to each pattern, and we

have p ⊆ p1 ∪ · · · ∪ pk iff p′ ⊆ p′
1 ∪ · · · ∪ p′

k .
The construction of q and q ′ is shown in Figure 11. Pattern q ′ consists of a spine

of the k subtrees p1, p2, . . . , pk connected to a root node by a descendant edge.
Pattern p consists of a longer spine, at the center of which sits a subtree equal to
pattern p. The pattern subtree V , which is repeated in q, has no wildcards and no
descendant edges, and is chosen so that for any j , V ⊆ p j . This can be achieved
by fusing the (common) roots of the pi subtrees (this is possible because their roots
have the same label), and replacing all label wildcards in the pi with an arbitrary
letter, and all descendant edges with child edges.

With this construction, the canonical models of q are completely determined by
a choice of canonical model for q’s subtree p: for each t ∈ modz(q) we denote
tp ∈ modz(p) the subtree corresponding to p (see Figure 11).

We assume first that p ⊆ p1 ∪ · · · ∪ pk , and show that for every t ∈ modz(q),
we have q ′(t) is true, which proves q ⊆ q ′. Given t ∈ modz(q), clearly p(tp) is
true, hence pi (tp) is true, for some i = 1, . . . , k. We prove that q ′(t) is true by
constructing the following embedding e : q ′ → t : e maps the subpattern pi to tp
(this is possible since pi (tp) is true); e maps every other p j to a corresponding V
(this is possible since V ⊆ p j , and there enough V ’s both above tp and below tp,
namely k − 1 both above and below); finally, e maps the root of q ′ to the root of t .

Conversely, we assume q ⊆ q ′ and show that ∀tp ∈ modz(p), p1(tp)∨· · ·∨pk(tp):
one can show that the latter implies p ⊆ p1∪· · ·∪ pk , using with the same argument

28 G. MIKLAU AND D. SUCIU

FIG. 12. The canonical models of A encode truth assignments to the literals y1, y2, . . . , yn of ψ based
on the lengths of the branches. Tree pattern Ci is constructed from clause ci = (¬y j ∨ yk ∨ ¬yl).

as in Proposition 3. Let tp ∈ modz(p), and denote with t its extension to a tree
t ∈ modz(q), by adding the spine and k − 1 copies of V above and below tp in
an obvious way. Since q(t) is true we have q ′(t) also true, hence there exists an
embedding e : q ′ → t . This embedding must map the spine in q ′ to the spine in
t . Let x be the spine node in t that is right above tp. At least one spine node in q ′
must be mapped to x : this is because there are only k −1 spine nodes above x , only
k − 1 spine nodes below, and the spine in q ′ has k nodes and no descendant edges:
hence e cannot avoid mapping some node y into x . Let pi be the pattern below y:
it follows that pi (tp) is true.

THEOREM 4 (CONP COMPLETENESS). The problem whether p ⊆ p′, for two
tree patterns p ∈ P{[],//} and p′ ∈ P{[],∗,//}, is coNP-complete.

PROOF. We already know that it is in coNP (Proposition 4). Let ψ be a 3-CNF
formula with n propositional variables y1, y2, . . . , yn , and k clauses c1, c2, . . . , ck .
We construct patterns A, C1, . . . , Ck , pictured in Figure 12, such that ψ is not
satisfiable iff A ⊆ C1 ∪ · · · ∪ Ck . Tree pattern A is constructed so that its canonical
models, modz(A), encode truth assignments to the n variables of ψ . Tree pattern
Ci is constructed so that the following property holds:

(*). For every t ∈ modz(A), Ci (t) is true iff the truth assignment encoded by t
makes the clause ci false.

Property (*) is sufficient to prove coNP hardness because of the following equiv-
alences and of Lemma 3: (A ⊆ C1 ∪ · · · ∪ Ck) ⇐⇒ (for every t ∈ modz(A) there
exists i such that Ci (t) is true) ⇐⇒ (for every truth assignment there exists i such
that, ci is false under that assignment) ⇐⇒ (ψ is not satisfiable). In the remainder of
the proof, we show how to construct A, C1, . . . , Ck such as to satisfy property (*).

Pattern A has one branch for each variable yi in ψ , and the corresponding subtree
is denoted Yi in Figure 12. The figure defines Yi on the left: it consists of some
unique element of the alphabet ai , which we associated to the variable yi , connected
to some node labeled b. Consider a canonical model t ∈ modz(Yi) (see Figure 12).
If t consists only of ai followed by b, then we say that it corresponds to a truth
assignment making yi true. If t contains one or more added nodes between ai and
b, then we say t corresponds to a truth assignment making yi false. Under this
interpretation of true and false, each canonical model of A corresponds to a truth
assignment of the variables y1, . . . , yn , and all truth assignments are represented
by some canonical model.

Next we define a tree pattern Ci for each clause of ψ . We only illustrate on an ex-
ample: the general case follows immediately. Suppose clause ci = (¬y j ∨yk ∨¬yl).

Containment and Equivalence for a Fragment of XPath 29

Pattern tree Ci is pictured in Figure 12, and consists of a root node with three sub-
trees, one for each term appearing in ci . A variable like y j that appears negated in ci
results in a branch consisting of subtree T (y j). Variable yk , which does not appear
negated in ci , results in a branch containing F(yk). The trees T (−) and F(−) are
shown in Figure 12 on the left. This construction enforces property (*).

4.2. CONP-HARDNESS FOR BOUNDED WILDCARD. We strengthen here Theo-
rem 4 by showing that only two ∗’s suffice in p′, and no ∗ is needed in p.

THEOREM 5 (CONP-BOUNDED WILDCARDS). The problem whether p ⊆ p′,
for two tree patterns p ∈ P{[],//} and p′ ∈ P{[],∗,//}, where p′ has at most 2 label
wildcards, is coNP-complete.

PROOF. The proof is by reduction from the complement of 01-integer linear
programming [Garey and Johnson 1979] (01-ILP) which consists of m equations
in n variables:

a11x1 + a12x2 + · · · + a1nxn = b1

...
...

am1x1 + am2x2 + · · · + amnxn = bm

where each ai j and bk are 0 or 1, and we search for a solution �x = (x1, x2, . . . , xn)
of integers greater than or equal to 0. Checking whether (01-ILP) has a solution
is NP-complete. If ai j = 1, then we say that variable x j occurs in equation i ; if
ai j = 0, then we say that the variable x j does not occur in equation i . We assume,
without loss of generality, that the bk are uniformly equal to 1. Then, we notice that
there is no solution if and only if for every vector of nonnegative integers, �x :

(1) there are xi ≥ 1 and x j ≥ 1 that occur in the same equation, for i �= j , or
(2) there is an equation j with all occurring variables equal to zero.

Given a 01-ILP problem, we construct patterns p, p′
0, p′

1, . . . , p′
m such that p ⊆

p′
0∪· · ·∪ p′

m if and only if (1) or (2) hold for every solution �x . The canonical models
of p encode solution vectors, and we design p′

0 to hold precisely on canonical models
satisfying (1), while p′

i holds on canonical models satisfying (2) for equation i .
We describe the construction of p, p′

0, p′
1, . . . , p′

m , and will illustrate in Figure 13
with an example where n = 5. Let S be the set of pairs of variables (xi , x j), i < j ,
that occur together in the same equation, and let w = |S|, w ≤ n(n − 1)/2. Pattern
p consists of a root labeled by r , followed by a chain of length w of b nodes,
followed by n main branches, each corresponding to a variable xi : see Figure 13.
Each branch contains a sequence of w nodes labeled b, connected with child edges,
then ends in the postfix d//e/ fi , where fi is a unique symbol for the variable xi .
Next, we add some side-branches, as follows. Impose some order on the pairs in
S, and consider pair number k, for each k = 1, . . . , w : let (xi , x j) ∈ S be that pair.
Add two side-branches, one in the main branch corresponding to xi , the other in the
main branch corresponding to x j . Both side-branches will hang from the kth b node
on that main branch, and one will have a node labeled c1, while the other will have
a node labeled c2. This construction is best illustrated on the example in Figure 13,
where we assumed S = {(x1, x3), (x1, x5), (x2, x3), (x1, x4)}, hence w = 4. The first
row of b’s has the two side-branches in positions 1 and 3: this corresponds to the
first pair in S, (x1, x3). The second row of b’s has the two side-branches in positions

30 G. MIKLAU AND D. SUCIU

FIG. 13. Patterns p, p′
0, and p′

j (for some equation j) used in the reduction of 01-ILP to P{[],∗,//}

containment.

1 and 5, corresponding to the pair (x1, x5), etc. This completes the construction of
p. We assume that all symbols r, b, c1, c2, e, f1, . . . , fn are distinct, and notice that
there are no ∗’s in p.

Notice that each of the n main branches in p has a single descendant edge, hence
that part of a canonical t ∈ modz(p) represents a value xi ≥ 0: hence, a canonical
model corresponds precisely to an n-tuple of non-negative numbers, �x .

Pattern p′
0 is shown in Figure 13. It consists of one descendant edge, followed

by two branches with fixed height which contain a c1 and c2 node, respectively. If
p′

0 accepts a canonical model t of p, then c1 and c2 must occur at the same level in
t , implying that some variables xi and x j occur together in an equation. Further, the
two branches are terminated with d/ ∗ //e which implies that t encodes a solution
vector in which both xi and x j are ≥1. Therefore, for any canonical model of p
accepted by p′

0, condition (1) holds for the corresponding vector �x . Notice that
there are only two wildcards in p′

0, and they are needed to check the condition ≥1
on both xi and x j . This completes the construction of p′

0, which has exactly two ∗’s.
It remains to construct p′

1, p′
2, . . . , p′

m from the m equations of the 01-ILP
instance. Suppose equation j is x1 + x4 + x5 = 1. Then we construct p′

j as shown
in Figure 13. The pattern consists of a sequence of w b nodes followed by a branch
for each variable that occurs in the equation. The terminating phrase d/e/ fi of
each branch implies that if t is a canonical model of p accepted by p′

j then each
variable occurring in equation j is zero in the solution vector encoded by t . In
other words, if p j (t) is true, then condition (2) holds for the corresponding vector
�x . This completes the construction of p′

i , which has no ∗’s.
It should be clear from the construction that ∀t ∈ modz(p), p(t) ⇒

p′
0(t)∨ p′

1(t)∨· · ·∨ p′
m(t) iff the vector �x corresponding to t satisfies either condition

(1) or (2). Hence, p ⊆ p′
0∪· · ·∪ p′

m iff the 01-ILP problem instance has no solutions.

Containment and Equivalence for a Fragment of XPath 31

FIG. 14. Patterns used in the proof of Theorem 6.

Given patterns p, p′
0, p′

1, . . . , p′
m , we use Lemma 3 to construct patterns q, q ′

such that p ⊆ p′
0 ∪ · · · ∪ p′

m if and only if q ⊆ q ′. We can then conclude that
q ⊆ q ′ if and only if for every solution vector �x either condition (1) or (2) holds.
Therefore, q ⊆ q ′ if and only if the 01-ILP instance has no solution.

It is clear that the construction of q, q ′ is polynomial in the size of the problem
instance. In addition, there are only two label wildcards in the patterns (those in
q ′ which are inherited from p′

0), so the Theorem follows.

4.3. CONP-HARDNESS FOR BOUNDED BRANCHING. Next, we strengthen
Theorem 4 in a different direction, to show that only five branches suffices in p and
only three branches in p′ for co-NP hardness. We define the number of branches
in a tree pattern to be the number of leaves: for example, linear tree patterns have
one branch.

THEOREM 6 (CONP-BOUNDED BRANCHING). The problem whether p ⊆ p′,
for two tree patterns p ∈ P{[],∗,//} and p′ ∈ P{[],∗,//}, where p has at most five
branches and p′ has at most three branches is coNP-complete.

PROOF. We show this result by reduction from the complement of satisfiability
to the containment problem. Let ψ be a formula with n literals x1, x2, . . . , xn ,
and m clauses c1, c2, . . . , cm . We first define a linear pattern W whose canonical
models represent assignments to the variables of ψ . Pattern W consists of a root
node followed by n repetitions of x//y//. In a canonical model t ∈ modz(W), each
pair of x and y nodes corresponds to a truth assignment, as follows: true is the
sequence x/z/y while false is the sequence x/y/z; see Figure 14. Hence, only
a subset of the canonical models modz(W) of W are correct encodings of a truth

32 G. MIKLAU AND D. SUCIU

assignment to the Boolean variables, the others are incorrect encodings. W also has
two extra nodes: a root labeled a and a leaf labeled x ; hence, if a canonical model
of W is a correct encoding, then it has exactly 3n + 2 nodes.

Next, we construct from each clause ci a pattern Ci , such that for every canonical
model t ∈ modz(W) that is a correct encoding, Ci (t) is true iff ci is false for the
corresponding truth assignment. Ci consists of 3n + 2 nodes, having 3 nodes for
each variable, plus a root labeled a and a leaf labeled x . We describe now the
three nodes corresponding to the Boolean variable x j . If x j occurs negated in ci ,
then these nodes are x/ ∗ /y; if x j occurs positively in ci , then the three nodes are
x/y/∗; and if x j does not occur in ci then the three nodes are x/ ∗ /∗. Figure 14
illustrates the pattern Ci for a clause ci of the form x̄1 ∨ x2 ∨ x4 ∨ x̄5 · · · (the
figure shows the nodes for x1, x2, and x3 only). It is straightforward to see that for
every correct canonical mode t ∈ modz(W), Ci (t) is true iff clause ci is false for
the corresponding truth assignment. Now define C to be linear pattern obtained by
concatenating C1, C2, . . . , Cm , in notation C1/C2/ · · · /Cm . Its length is m(3n+2).

Because C is much longer that W , we construct a pattern V which consists of
m −1 copies of a pattern A followed by W and then followed by m −1 more copies
of A. Pattern A is designed so that any Ci will be true on the (single) canonical
model of A: namely, it consists of n copies of the sequence x/y/y, plus an a
root and plus an x leaf. A canonical model of V is completely determined by the
canonical model of its W subpattern. A canonical model of V which represents a
truth assignment consists of exactly (2m − 1)(3n + 2) nodes.

At this point, we give the main intuition of the proof, before continuing with the
formal argument. Consider now the following two linear patterns (these are not the
final patterns of our reduction):

p0 = r/V
p′

0 = r//C.

Here, r is a new symbol, used for the root. For every correct canonical model
t ∈ modz(p0), p′

0(t) is true iff the formula ψ = c1 ∧ · · · ∧ cm is false on the
truth assignment corresponding to t . This is because an embedding e : p′

0 → t
can map any of the clauses C1, . . . , Cm to the portion of t corresponding to W ,
and conversely, each embedding must map some Ci to the W fragment. However,
p0 and p′

0 are not the reductions we need, because they don’t say anything about
incorrect canonical databases. In fact, p0 is not contained in p′

0, because p′
0 is false

on all incorrect canonical databases. We address the latter next.
A canonical model t ∈ modz(V) is incorrect if either of the following holds:

B1. the length of t is greater than (2m − 1)(3n + 2)
B2. t contains the substring x/y/x .

It is a simple matter to construct patterns B1 and B2 that express these condi-
tions, respectively:

B1 = a/ ∗ / ∗ · · · ∗ / ∗ there are (2m − 1)(3n + 2) + 1 nodes
B2 = a//x/y/x

Given all of the above building blocks, we are ready to construct the final queries
p and p′ pictured in Figure 15. Tree pattern p′ has a branching node u and three
branches, ending in C , B1, and B2, respectively: we denote these with C ′, B ′

1, B ′
2

Containment and Equivalence for a Fragment of XPath 33

FIG. 15. Patterns used in the proof of Theorem 6. Pattern p has five branches while p′ has three
branches. C ′ = C , B ′

1 = B1, and B ′
2 = B2. The drawing shows the leading a symbol in B1 and the

fact that B1 is one node longer than a correct canonical model in modz(V). The drawing also shows
that B2 starts with an a symbol.

to distinguish them from their isomorphic copies in p. C ′ is preceded by m(2m −
1)(3n + 2) nodes labeled ∗; B ′

2 is preceded by one additional ∗ node, while B ′
1

by two additional ∗ nodes. The tree pattern p starts with two side branches, each
consisting of two chains of m(2m − 1)(3n + 2) nodes labeled ∗ followed by C . The
branching nodes for these two side branches are called b1 and b2. Then, the main
branch continues with a chain of m(2m − 1)(3n + 2) nodes labeled ∗: we denote
v1, v2, . . . , vm the first node in each subchain of (2m −1)(3n +2) nodes. Then there
are three branches: V , and B1, B2, with the latter two preceded by ∗/a/a/a/ · · · /a.
The three way branching node is labeled a.

We prove now that p ⊆ p′ if and only if ψ is not satisfiable. Assume first that ψ
is not satisfiable. Let t ∈ modz(p) be any canonical database. To show that p′(t) is
true, we will construct an embedding e : p′ → t . There are three cases, and in each
we will explain where e maps the node u, and each of the branches C ′, B ′

1, and B ′
2.

34 G. MIKLAU AND D. SUCIU

(1) t is “incorrect” because it violates condition B1. Then we define e as follows:

u C ′ B ′
1 B ′

2
e b1 left C V B2

That is, e(u) = b1, C ′ is mapped precisely over the left C branch, B ′
1 is mapped

precisely over V , while B ′
2 is mapped to B2: the first a symbol in B ′

2 is mapped
to the three-way branching a node, while the rest of B ′

2 (which is separated from
a by a descendant edge) is mapped along the B2 branch to the appropriate depth
(i.e., x/y/x over x/y/x). Notice that for any embedding e such that e(u) = b1,
B ′

1 cannot be mapped to either the B1 branch nor to the B2 branch, because the
first symbol in B ′

1 is a, and, when e(u) = b1, this will be mapped precisely to
the z node corresponding to the leading ∗ on either the B1 or the B2 branch,
which is impossible.

(2) t is “incorrect” because it violates condition B2. Then define e as follows:

u C ′ B ′
1 B ′

2
e b2 right C B1 branch V

Here e(u) is one level lower, and C ′ is mapped to the right C branch, which is
one level lower too. B ′

1 is mapped to the B1 branch: more precisely it will be
mapped starting to the first a node on the chain on that branch. B ′

2 is mapped
to V . Notice that for every embedding e such that e(u) = b2, e cannot map B ′

2
to either the B1 branch nor to the B2 branch in p: this is because the a symbol
in B ′

2 would be mapped to the z symbol (corresponding to the ∗).
(3) t is “correct,” and the corresponding assignment to Boolean variables makes

clause ci false. Then we define e as follows:
u C ′ B ′

1 B ′
2

e vi inside V B1 branch B2 branch

The mapping of C ′ inside V should be obvious, according to our previous
discussion. B ′

1 is mapped starting at some a along the B1 branch. Since B ′
1 only

checks that there are at least (2m−1)(3n+1)+1 nodes, the embedding is correct
as long as we have enough a’s on this branch (we need m(2m − 1)(3n + 2) + 1
such a’s, where the +1 is needed for case 2 above). Similarly, B ′

2 is correctly
mapped to the B2 branch: its a node is mapped to some a (again, we need to
have enough: in this case we need m(2m − 1)(3n + 2) a’s, that is, one less than
on the B1 branch), then its x/y/y sequence is mapped to the corresponding
x/y/y sequence in B2.

Now we prove the converse, that if p ⊆ p′, then ψ is not satisfiable. Suppose
ψ were satisfiable, and let t ∈ modz(p) be the (correct) canonical database corre-
sponding to the truth assignment that satisfies all clauses c1, c2, . . . , cm . We show
that there cannot be any embedding e : p′ → t . Indeed, suppose there were such.
We consider four cases, according to where e maps the node u:

(1) e(u) = b1. We have argued in this case that e cannot map B ′
1 to the B1 branch

or to the B2 branch. It cannot be mapped to any of the two C branches, because
they are too short. Hence, it has to be mapped to V proving that t is not “correct”
because of the violation B1. But this contradicts our assumption.

(2) e(u) = b2. We have argued already that in this case B ′
2 cannot be mapped to

either the B1 branch nor to the B2 branch. It cannot be mapped to any of the

Containment and Equivalence for a Fragment of XPath 35

two C branches, because they don’t contain the sequence x/y/x . Hence, it has
to be mapped to V , proving that t is not correct, because of the violation B2:
but this contradicts our assumption.

(3) e(u) is some node along the chain of ∗’s. Then one can see that C ′ has to be
mapped inside V (it is easy to see that it cannot be mapped to the B1 or B2
branches). Because clauses are separated by the a symbol, some C ′

i in C ′ will
be mapped precisely to W in V (see Figure 14 for the structure of C and V).
But then the truth assignment makes ci false, contradicting our assumption.

(4) e(u) is in one of the five branches. This is impossible because the branch B ′
1 is

too long to mapped below e(u).

5. Discussion

This section briefly covers additional topics of interest.

5.1. DISJUNCTION. It is easy to extend our discussion to patterns with disjunc-
tion. It turns out, however, that with disjunction, P (pattern trees) and XP (XPath
expressions) behave differently. We extend P to P{or} allowing pattern trees with
or nodes of degree two. A tree t is accepted by p if (1) there exists a choice of
“left” or “right” for each or -node in p, which transforms p into a pattern q without
or -nodes, and (2) q(t) is true. If no branches other than OR nodes are allowed, then
containment for two patterns in P{or} can be reduced in PTIME to the containment
of two patterns in P , by a simple application of Lemma 3. However, when branches
are allowed, a minor modification to the proof of Theorem 4 shows that contain-
ment for P{[],or} patterns is coNP-complete. No descendant edges are needed for
the coNP-hardness to hold: indeed, in Theorem 4, we essentially used descendant
edges to simulate disjunction, which we now get for free. On the other hand, we can
extend the grammar for XPath, Eq: (1), with q ::= q | q, and denote with P{[],∗,//,|}
this extended language. This form of disjunction is exponentially more concise than
or nodes because, for example (a1 | b1)/(a2 | b2)/ · · · /(an | bn) requires a tree
pattern of exponential size in P{or}. If we form the fragment XP{ | } by including just
the child axis and disjunction (in the absence of all other features), we can see that
the containment problem is already coNP-complete.

THEOREM 7. Given expressions p, p′ ∈ XP{ | }, deciding containment is
coNP-hard.

PROOF. In Stockmeyer and Meyer [1973], it is shown that deciding language
equivalence is coNP-complete for string languages defined using only the regular
operations of concatenation and union. (This problem is referred to as language
equivalence for star-free regular languages in Garey and Johnson [1979], although
here complement is not present, as it is in the customary understanding of “star-
free”.) Such languages, over an alphabet �, are defined by expressions in the
following simple grammar:

E → a | E .E ′ | E ∪ E ′

for a ∈ �. We can reduce equivalence of expressions in XP{ | } to this problem as
follows. If e is an expression in this grammar, we construct an XPath expression
in XP{ | } in a natural way, then add a terminal symbol t �∈ � to the end of the

36 G. MIKLAU AND D. SUCIU

expression. For instance, e = (a ∪ a.b) ∪ c is translated to p = (a | a/b) | c/t .
If p, p′ ∈ XP{ | } are translations of expressions e, e′ it’s not hard to show that
L(e) ≡ L(e′) if and only if p ≡ p′.

Containment for XP{ | } expressions is in coNP because we can define the canon-
ical models for an expression in XP{ | } (by making choices for each disjunction)
and then guess a counter example to containment (closely related to Proposition
4). In fact, it’s not hard to show that containment remains in coNP for P{[],∗,//,|},
by a similar argument. Neven and Schwentick [2003] show this result, as well as
providing complexity results for these disjunctive fragments in the case of finite
alphabets, discussed next.

5.2. FINITE ALPHABET. Throughout the article, we assumed that our alphabet �
is infinite. While this is the only scenario of interest in practice (since the alphabet
denotes XML tags), the case when � is finite is interesting from a theoretical
standpoint. All co-NP completeness results in this article hold if | � |= 2 (the idea
is that symbols from a larger alphabet can be encoded with chains, if we have at
least two symbols). But most decision procedures, including those that preceded
our work, fail. For instance, when p=a/a//b/b and p′=a//a/b//b, then p ⊆ p′
if � = {a, b} but p �⊆ p′ when � = {a, b, c}. Thus, the homomorphism criterion
in Amer-Yahia et al. [2001] no longer holds for a finite alphabet. In the presence
of disjunction, finite alphabets have a substantial impact on the complexity of
containment, since disjunction allows to express negation over label predicates.
Neven and Schwentick [2003] show a rather remarkable result: that containment is
in PSPACE for P{[],∗,//,|} and complete for PSPACE for P{//,|}.

5.3. EVALUATION ON GRAPHS. In addition to the tree structure, an XML doc-
ument has a graph structure defined by node ids and references. XPath can traverse
this graph structure. This is captured in our formalism by interpreting tree patterns
on graphs rather than trees. All results in this article apply directly to an extension
of Boolean patterns evaluated on graphs. Namely, for a graph g, define p(g) to
be true if there exists an embedding e : p → g. Then, one can show that the
containment problem on graphs is the same as the containment problem on trees:
∀g.p(g) ⇒ p′(g) iff ∀t.p(t) ⇒ p′(t). To see this, let unfold(g) be the (possibly
infinite) tree unfolding of some graph g. Then, for any pattern p, the following are
equivalent: (1) p(g) is true, (2) p(unfold(g)) is true, (3) ∃t ⊆ unfold(g), t finite
and p(t) is true. Thus, if there exists a witness graph g such that p(g) is true but
p′(g) is false, then we can construct a witness tree t such that p(t) is true and p′(t)
is false: just take t ⊆ unfold(g) as above. Notice that p′(t) cannot be true, since
any embedding from p′ to t extends to an embedding from p′ to g. This shows that
∀t.p(t) ⇒ p′(t), then ∀g.p(g) ⇒ p′(g). The other direction is trivial.

5.4. APPLICATION TO CTL. Tree patterns can be expressed in a certain fragment
of computation tree logic (CTL) [Vardi 1997] consisting of true, x = a, conjunction,
“eventually true” formulas EFφ, and “successively true” formulas EXφ. We call
this fragment conjunctive existential CTL, ECTL∧, and show that it is equivalent to
tree patterns in P{[],∗,//}. Thus, all coNP completeness results in this article apply to
this fragment of CTL as well, showing that in this fragment the implication problem
is coNP-complete.

We need to consider a few changes to our formalism, to align to the standard
definitions in CTL. We assume � to be finite in this discussion: recall that all co-NP

Containment and Equivalence for a Fragment of XPath 37

hardness results still hold in this case. We consider both finite and infinite trees:
in this section, T� denotes the set of all trees, finite and infinite. Define a complex
tree with labels from � to be a tree in T2� . Thus, nodes in complex tree are labeled
with sets of symbols from �. We define a complex tree pattern similarly: its nodes
are now labeled either with ∗ or with a set of symbols in �. We also modify the
definition of an embedding e from a tree pattern p to a tree t as follows: whenever
e(y) = x , for y ∈ NODES(p), x ∈ NODES(t), we require that either LABEL(y) = ∗
or LABEL(y) ⊆ LABEL(x). With this definition, ∗ is analogous to ∅, and is actually
not needed any more in tree patterns. Simple trees and patterns are a special case
of complex trees and patterns, where each node label set has size one, or is ∅
(representing ∗ in a tree pattern).

Definition of ECTL∧ We define here the fragment ECTL∧, which is of interest to
us, and refer the reader to Vardi [1997] for a definition of CTL. We define below both
the syntax and the semantics of formulas of ECTL∧. For the purpose of ECTL∧,
we call the elements in � propositional constants: ECTL∧ formulas are built from
these propositional constants. The semantics of a ECTL∧-formula φ is a truth value
for each (possibly infinite) complex tree t ∈ T2� and each x ∈ NODES(t): we write
(t, x) |= φ for the truth value of φ at t and x . Notice that in CTL the main interest
is interpreting formulas over graphs, or, equivalently, over their unfoldings into
infinite trees. We adopt here the same semantics for the ECTL∧ fragment, hence
allow the tree t to be infinite. The chart below defines both valid ECTL∧ formulas
and their semantics:

Formulas Semantics

a for any a ∈ � (t, x) |= a if a ∈ LABEL(x)
φ ∧ φ′ for any φ, φ′ ∈ ECTL∧ (t, x) |= φ ∧ φ′ if (t, x) |= φ and (t, x) |= φ′
EXφ for φ ∈ ECTL∧ (t, x) |= EXφ if ∃y.(x, y) ∈ EDGES(t)

and (t, y) |= φ
EFφ for φ ∈ ECTL∧ (t, x) |= EFφ if ∃x0, ∃x1, . . . , ∃xk , k ≥ 0,

with x0 = x and
(xi , xi+1) ∈ EDGES(t) for
0 ≤ i < k and (t, xk) |= φ

For any formula φ, (t, x) |= EXφ if x has a child satisfying φ, and (t, x) |= EFφ if
x has a descendant satisfying φ. The formula EFφ is an abbreviation for E(trueUφ)
in full CTL.4

Given two formulas φ, ψ ∈ ECTL∧, the implication problem asks whether for
all (infinite) trees t and nodes x , (t, x) |= φ implies (t, x) |= ψ . We prove that the
implication problem for ECTL∧ is co-NP complete, by showing that it is equivalent
to the containment problem for tree patterns. We need to handle with care the fact
that ECTL∧ implication is defined over all trees (finite and infinite) while pattern
containment is only for finite trees.

We start by showing that ECTL∧ implication is equivalent to containment of
complex tree patterns.

4 This highlights another restriction of ECTL∧ that is not evident from its name, conjunctive existential
CTL: full CTL allows formulas of the form E(ψUφ) for any ψ .

38 G. MIKLAU AND D. SUCIU

FIG. 16. ECTL∧ formula to tree pattern translation. For each of the four kinds of formulas, an
equivalent tree is pictured. The proof of Theorem 7 describes the details. The example tree pattern on
the right is equivalent to formula: a ∧ EXa ∧ EF(EXb ∧ EFc).

PROPOSITION 7. There exists a one-to-one translation from ECTL∧ to com-
plex tree patterns, φ → pφ , such that for any complex tree t (finite or infinite),
(t, ROOT(t)) |= φ if and only if pφ(t) is true.

PROOF. We describe the translation informally, by induction on the formula
φ. See Figure 16 for an illustration. For the base case, if φ = a for a ∈ �, then
pφ is the tree pattern consisting of a single (root) node labeled a. Obviously, the
theorem holds in this case. For the inductive cases, if ϕ occurs in φ we assume
we have a complex pattern pϕ satisfying the theorem. If φ = EXϕ, then pφ is the
tree pattern consisting of a ∗-labeled root node under which pϕ is rooted by a child
edge. Similarly, for φ = EFϕ, we construct pφ as a ∗-labeled node with pϕ rooted
beneath it by a descendant edge. If φ = ϕ ∧ϕ′, then we fuse the roots of pϕ and pϕ′

to form pφ , setting the label for the fused node to the union of the set-labels on the
roots pϕ and pϕ′ . Note that ∗ functions like the formula true, so, under union, it will
disappear. Under these constructions, it is fairly obvious that (t, ROOT(t)) |= φ if
and only if pφ(t) because the semantics of the formulas and our pattern embeddings
are identical.

We must also confirm that for any complex pattern, we can construct an ECTL∧
formula satisfying the theorem. It is relatively clear that any complex pattern can
be built, bottom up, from the tree construction operations applied above. Thus, it
follows that there is always an equivalent ECTL∧-formula.

Now we bridge the gap between finite trees for patterns and infinite trees
for formulas.

PROPOSITION 8. If φ,φ′ are ECTL∧-formulas, and pφ , pφ′ are their equivalent
complex patterns, then pφ ⊆ pφ′ (over all finite complex trees) if and only if φ ⇒ φ′
is valid.

PROOF. The implication φ ⇒ φ′ is valid if it is satisfied in every node of every
(finite or infinite) tree. We must also contend with the fact that the tree need not be
finite. The following equivalences prove the proposition:

pφ ⊆ pφ′ IFF pφ(t) ⇒ pφ′(t) ∀ complex, finite trees (1)
IFF pφ(t) ⇒ pφ′(t) ∀ complex, finite or infinite trees (2)
IFF (t, ROOT(t)) |= φ ∀ complex, finite or infinite trees (3)

⇒ (t, ROOT(t)) |= φ′

Line (1) is the definition of complex pattern containment. The implication (2) ⇒ (1)
is trivial. The implication (1) ⇒ (2) follows from the fact that, if there exists an

Containment and Equivalence for a Fragment of XPath 39

infinite witness t such that pφ(t) is true and pφ′(t) is false, then we can find a finite
witness, t0, by taking it to be the image of the embedding pφ → t , and we still
have pφ(t0) true and pφ′(t0) false. The equivalence of (2) and (3) follows directly
from Proposition 7.

Containment of complex tree patterns is in co-NP: this is relatively easy to see,
since all constructions in Section 3.1 extend straightforwardly to complex trees
and complex patterns. It follows that the implication problem for ECTL∧ is also in
co-NP.

To prove that the implication problem for ECTL∧ is co-NP hard, we show that,
as far as simple pattern trees are concerned, containment over complex trees is
equivalent to containment over simple trees. This proves our result, since we have
shown that containment for simple trees is coNP-hard.

PROPOSITION 9. For any simple tree patterns p and p′ in P{[],∗,//}, p(t) ⇒ p′(t)
for all complex trees if and only if p(t) ⇒ p′(t) for all simple trees.

PROOF. The forward direction of the claim is obvious: If p(t) ⇒ p′(t) for all
complex trees, then this also holds for all simple trees. For the converse, suppose
p(t) ⇒ p′(t) for all simple trees, and let t ∈ T2� be a complex tree such that p(t) is
true and p′(t) is false. Unfold t such that the embedding v from p into t becomes
injective. Construct a new simple tree t0 isomorphic to t by considering only the
image under v , and replacing each complex label of some node v(x) with the simple
label of the node x ∈ NODES(p); when x is labeled ∗, pick any label for v(x), say
z. Denote with t0 the resulting tree. Clearly, p(t0) is true, and p′(t0) is false, since
otherwise, if there exists an embedding from p′ to t0 then we can extend it to an
embedding from p′ to t .

In summary, we have shown:

THEOREM 8. The implication problem for ECTL∧ is co-NP complete.

6. Related Work

The classes of patterns that include descendant edges (P{[],//} and P{[],∗,//}) can be
expressed in datalog with recursion, for which containment is undecidable in general
[Shmueli 1993]. Wood [2000] showed, using chase techniques, that the datalog
fragment needed for P{[],∗,//} has a decidable containment problem. Containment
for P{[],//} was shown to be in PTIME in Amer-Yahia et al. [2001]. Queries in P{[],∗}
can be viewed as conjunctive queries over tree structures. In general, containment
for conjunctive queries is NP-complete [Chandra and Merlin 1977], however for
acyclic conjunctive queries containment is in PTIME [Yannakakis 1981], from
which it follows that P{[],∗} containment is solvable in PTIME. This bound for
P{[],∗} was also noted in Wood [2001].

Linear queries in P{∗,//} are a special case of regular expressions on strings, for
which there is a PSPACE-complete containment algorithm in general [Stockmeyer
and Meyer 1973]. For the fragment of regular string expressions in P{∗,//}, a linear-
time containment algorithm was announced in Milo and Suciu [1999]. A PTIME
algorithm for linear patterns in P{//} was provided in Buneman et al. [2001].

On a graph-based data model, the authors of Florescu et al. [1998] showed
that for a restricted language without wildcard, similar to P{[],//}, containment is

40 G. MIKLAU AND D. SUCIU

NP-complete. Calvanese et al. [2002] studied tree two-way regular path queries
on a graph model. In addition to a more general data model, these queries are
more expressive than ours because they allow general regular path expressions
and inverse. A PSPACE upper bound for containment is shown for this class
of queries. Deutsch and Tannen [2001] proved containment results for a host of
XPath-related languages. One closely related result applies to an extension of
P{[],∗,//}, which includes binding of variables and equality testing, for which con-
tainment is shown to be �

p
2 -hard. Neven and Schwentick [2003] show that con-

tainment of patterns in P{[],∗,//,|}, while coNP-complete for an infinite alphabet, is
in PSPACE for finite alphabets, and show that for fragment P{//,|} containment is
complete for PSPACE. In the same work, the authors also study the complexity
of containment for XPath languages that include variable bindings under two diff-
erent semantics.

Algorithm 1 is a particular evaluation algorithm of a small fragment of XPath
on XML documents. More general techniques are studied in Gottlob et al. [2002,
2003], which discuss evaluations of larger fragments of XPath.

Hoffmann and O’Donnell [1982] introduce the tree pattern matching problem,
in which a subject tree (the data) has to be matched with a set of tree patterns (the
queries). The problem was motivated by several applications, and has since spawned
a large amount of work [Cai et al. 1992; Thorup 1996; Cole et al. 1999]. Hoffmann
and O’Donnell show that the tree patterns can be preprocessed into a data structure
of exponential size, which factors out all common subpatterns, such that every
subject tree can subsequently be matched bottom-up in linear time. Algorithm 2 in
this article borrows the idea of match sets from that work.

7. Conclusion

We have studied the complexity of containment and equivalence for an important
core fragment of XPath. Many XML applications benefit from a practical decision
procedure for containment of such expressions. We show this fragment of XPath
has an intractable containment problem in general, and our results provide intuition
into the factors that contribute to its high complexity. Nevertheless, we show that
in some significant special cases, containment can be decided efficiently, and we
provide an algorithm that does so.

One direction for future work is to extend this fragment of XPath with addi-
tional features, although it is clear that it will be even more challenging to prove
efficient special cases of the problem. Another direction is to study containment
of XPath expressions over sets of documents conforming to constraints or schema
restrictions. Preliminary work shows that sufficiently expressive constraints make
this problem intractable for XPath fragments that otherwise have efficient contain-
ment problems.

Appendix A

PROOF (OF PROPOSITION 1). We introduce first a notation. Let p be either a
tree or a tree pattern, and a tuple z̄ = (z1, . . . , zk) of k nodes in p (not necessarily
distinct). We denote p[z̄/s̄] the tree or tree pattern over the alphabet �∪{s1, . . . , sk}
obtained from p as follows: Add k new nodes y1, . . . , yk , label them with s1, . . . , sk

Containment and Equivalence for a Fragment of XPath 41

respectively, and add k new edges (z1, y1), . . . , (zk, yk). We call ȳ the extra nodes
in p[z̄/s̄].

Given a pattern p of arity k we translate it into the Boolean pattern p0 = p[x̄/s̄],
where x̄ is the tuple of distinguished nodes. Thus, p0 consists of the nodes in p
plus k “extra” nodes. The relationship between p and p0 is expressed by the pro-
perty below:

∀t ∈ T�, ∀z̄ ∈ NODESk(t), z̄ ∈ p(t) ⇐⇒ p0(t[z̄/s̄]) is true.

We prove =⇒. Let e : p → t be an embedding such that e(x̄) = z̄. Then e can be
extended to an embedding from p0 (= p[x̄/s̄]) to t[z̄/s̄], by mapping the k extra
nodes in p0 to the corresponding k extra nodes in t[z̄/s̄], proving that p0(t[z̄/s̄]) is
true. The direction ⇐= is equally simple and omitted.

To prove the proposition, it remains to show that p ⊆ p′ iff p0 ⊆ p′
0, for any

two tree patterns p, p′. Assume first that p0 ⊆ p′
0, and let t ∈ T� , and z̄ ∈ p(t): we

have to show that z̄ ∈ p′(t). First, we use the property above to show that p0(t[z̄/s̄])
is true; hence, p′

0(t[z̄/s̄]) is true and hence, we can use the property again to conclude
that z̄ ∈ p′(t).

Assume now that p ⊆ p′ and let t ∈ T�∪{s1,... ,sk} be such that p0(t) is true: we
have to show that p′

0(t) is true. The problem here is that t is not necessarily of
the form t ′[z̄/s̄]; hence, we cannot apply the property immediately: we construct
first such a t ′. Let e : p0 → t be an embedding making p0(t) true, and denote
z̄ = e(x̄) the images of the distinguished nodes in p. Also denote ū the images
under e of the extra nodes in p0: thus the nodes z̄ are the parents of the nodes ū in
the tree t . Let s ∈ � be a label that does not appear in p′, and denote t ′ ∈ T� the
tree obtained from t by renaming all labels s1, . . . , sk with s. We prove that there
exists an embedding p0 → t ′[z̄/s̄]: define such an embedding to agree with e on
NODES(p), and to map the k extra nodes in p0 to the corresponding k extra nodes in
t[z̄/s̄]. It is easy to see that this is indeed an embedding. Hence, p0(t ′[z̄/s̄]) is true
and, by the property above, we have that z̄ ∈ p(t ′). It follows that z̄ ∈ p′(t ′), hence
p′

0(t ′[z̄/s̄]) is true and hence there exists an embedding e′ : p′
0 → t ′[z̄/s̄], which

maps the distinguished nodes in p′
0 to z̄. We construct now an embedding from p′

0
to t as follows: it agrees with e′ on NODES(p′), and it maps the k extra nodes in
p′

0 to ū. One can check that this is indeed an embedding. Indeed, the restriction to
NODES(p′) is an embedding since the label s does not appear in p′, so replacing it
with s1, . . . , sk in t will not result in any violations of the embedding. It maps the
extra nodes in p′

0 to nodes ū with the correct labels, s1, . . . , sk . Finally, the parents
of these extra nodes in p′

0 are precisely the distinguished nodes in p′, and the latter
are mapped to the nodes z̄: hence the k pairs (dinstinguished node, extra node) in p0
are mapped to the k pairs (zi , ui), for zi ∈ z̄, ui ∈ ū, showing that the embedding
respects the parent-child relationship for the extra nodes. Hence, p′

0(t) is true.

PROOF OF LEMMA 2. We use the following lemma. Given a tree t , define a chain
in t to be a sequence of nodes x1, x2, . . . , xn such that xi is the unique child of xi−1,
for i = 2, 3, . . . , n. That is, the nodes in the chain must have a unique child, except
for the last node.

LEMMA 4. Let t1 ∈ T� be a tree and p′ a tree pattern such that p′(t1) is
false, and let w ′ be the star length of p′. Let x1, . . . , xn be a chain in t such
that n > w ′ + 1 and none of the labels LABEL(x1), . . . , LABEL(xn) occurs in p′.

42 G. MIKLAU AND D. SUCIU

Let t2 be the tree obtained from t1 by deleting the node xn and transforming all
its children into children of xn−1: that is, NODES(t2) = NODES(t1) − {xn} and
(xn, y) ∈ EDGES(t1) ⇔ (xn−1, y) ∈ EDGES(t2), ∀y ∈ NODES(t2). Then p′(t2) is
also false.

First, we show how the lemma completes the proof of Lemma 2. Indeed, assume
without loss of generality that u1 > w ′ + 1, hence t1 = sz(p[u1, u2, . . . , ud]) has a
chain of length u1 whose nodes are labeled with z, which does not occur in p′. Since
p′(t1) is false, we can apply the lemma repeatedly and delete one by one nodes from
this chain, until we obtain a tree t2 where the chain has length w ′+1. It follows from
the lemma that t2 is still a witness, and, obviously t2 = sz(p[w ′ + 1, u2, . . . , ud]).
By repeating this process, for every ui such that ui > w ′ + 1, we finally obtain a
witness in modz

w ′+1(p).
We now prove the lemma. Let t1, p′, t2 be as in the lemma. Assume that p′(t2) is

true, and let e2 : p′ → t2 be the embedding. Denote C the set {x1, . . . , xn}. Define
the following two sets:

S = {(z0, z1) | (z0, z1) ∈ EDGES//(p′), e2(z1) ∈ C}
C ′ = {z | e2(z) ∈ C ∧ ∃(z0, z1) ∈ S, (z1, z) ∈ EDGES∗(p′)}.

The set S contains all descendant edges in p′ where the end node is mapped to the
chain C . The set C ′ consist of all nodes that are mapped to C and are below some
descedant edge in S. Now we define the following function e1 : NODES(p′) →
NODES(t1):

e1(z) = xi+1 if z ∈ C ′ and e2(z) = xi
e1(z) = e2(z) if z �∈ C ′.

We check now that e1 is indeed an embedding. It is easy to see that it is root-
preserving and label-preserving, so we only have to check that it is also child-edge
and descendant-edge preserving. Consider an edge (z, z′) ∈ EDGES(p′). One can
check that (e1(z), e1(z′)) ∈ EDGES+(t1) and that that the distance d(e1(z), e1(z′)) is
either d(e2(z), e2(z′)) or d(e2(z), e2(z′)) + 1. This is because e1 is either identical
to e2 or is one node below e2. Then clearly e1 is descendant-edge preserving, so
now we check that it is child-edge preserving. The only problem here is when
(z, z′) ∈ EDGES/(p′) and d(e1(z), e1(z′)) = 2, and this can only happen when
xn−1 = e1(z) = e2(z) and e1(z′) = e2(z′). In this case e2(z), e2(z′) are connected
by an edge in t2, while in t1 we have the node xn between them. This happens
if z �∈ C ′, that is, there is no descendant edge above it mapped to C . Consider
then the path in p′ from z to ROOT(p′): y1 = z, y2, y3, . . . , yk = ROOT(p′). We
have e2(y1) = xn−1 ∈ C and let m be the largest number such that e2(ym) ∈ C ;
hence ym+1 �∈ C ′ (there exists such m, because e2(ROOT(p′)) �∈ C ′). Consider the
path ym, ym−1, . . . , y1 in p′. All its nodes are mapped by e2 to nodes in C , hence
they are all labeled with ∗. Furthermore, all edges (yi+1, yi) are child edges, for
i = 1, 2, . . . , m, since if one where a descendant edge then z = y1 ∈ C ′, while
we have already established that z �∈ C ′. Hence, it is a sequence of ∗’s in p′, so
m ≤ w ′. On the other hand, since all edges are child edges, their image under e2
must include all nodes x1, x2, . . . , xn−1, in other words m = n − 1. This imples
that n − 1 ≤ w ′, which is a contradiction.

Containment and Equivalence for a Fragment of XPath 43

PROOF OF PROPOSITION 6. We start by proving another lemma:

LEMMA 5. Let b be a block of size n. Let q ∈ P{[],∗,//} be any tree pattern, define
ū = (n, n, . . . , n), and consider the canonical model t = sz(q[ū]) ∈ modz(q).
Then, if there exists an unrooted embedding e : b → t , then there exists an unrooted
homomorphism h : b → q, such that e = et ◦ h, where et : q → t is the canonical
embedding (Section 3.1).

PROOF. Recall that there are two kinds of nodes labeled z in t : those corre-
sponding to ∗ nodes in q, and those corresponding to extension nodes. We show
that none of the extension nodes is in the image of e. Let NODES(b) = {x0, . . . , xn}.
The two end points, x0 and xn are each labeled with some symbol in � (not ∗) which
is different from z: hence, e cannot map them to a z-node. Suppose y = e(xi) is an
extension node (hence, it is labeled with z). The node y is part of a chain of n nodes,
extending some descendant edge: let u and v the nodes before and after this chain,
hence d(u, v) = n +1. e(x0) is either u or an ancestor of u, while e(xn) is either v or
a descenant of v . Hence, d(e(x0), e(xn)) ≥ n+1, while d(x0, xn) = n. This is a con-
tradiction since the definition of an embedding requires d(e(x0), e(xn)) = d(x0, xn)
(since all edges in b are child edges). It follows that e maps all the nodes in b only
to nodes in q, and not to the extra z-nodes introduced by the extension. Then define
h(x) = e(x), ∀x ∈ NODES(b); it is easy to see that h is a homomorphism and that
e = et ◦ h.

Returning to the proof of Proposition 6, we proceed by induction on the number
of blocks in p′′. The base case, when p′′ has a single block, follows immediately
from the lemma, by taking q = p.

We prove the inductive step, and assume that p′′ has at two or more blocks.
Then we can write it as p′′ = b//≥k p′′

1 , where b is the first block and p′′
1 has

one less blocks, hence Proposition 6 holds for p′′
1 . To prove it for p′′, assume that

there is no unrooted homomorphism from p′′ to p, and we will construct a witness
t = sz(p[ū]) ∈ modz(p) such that there is no unrooted embedding from p′′ to t . All
we need in order to construct t is to define ū = (u1, . . . , ud). We will define each
ui to be either 0, or n, where n is the size of the block b (i.e. the number of edges),
or we will obtain it inductively, from some witness for p′′

1 . Given x ∈ NODES(p)
denote x ↓= {y | (x, y) ∈ EDGES+(p)} the set of its strict descenants, and given
X ⊆ NODES(p) denote X ↓= ⋃{x ↓| x ∈ X}. Let w be the last node in b,
and w ′ be the first node in p′′

1 : that is (w, w ′) ∈ EDGES//(p′′) and α(w, w ′) = k.
Then define:

H = {h | h : b → p is an unrooted homomorphism}
X = {h(w) | h ∈ H} ⊆ NODES(p)
X̄ = NODES(p) − X ↓
Y = {y | ∃x ∈ X, (x, y) ∈ EDGES+(p) ∧ d(x, y) = k + 1}
Ȳ = NODES(p) − Y ↓

Y0 = Y − Y ↓
We give the intuition first, then describe the construction formally. Imagine trying
to find an unrooted homomorphism h from the block b to p. We proceed top-down
in p, traversing every root-to-leaf path, trying to map b into that path. The set X̄
consists of all nodes that we need to visit when searching for h. If we succeed

44 G. MIKLAU AND D. SUCIU

finding h, then we stop including further nodes down that path into X̄ . If we fail,
then we end up including the entire path in X̄ . In constructing the witness t , we will
extend all descendant edges in X̄ to long chains (ui = n): this prevents “accidental”
un-rooted embeddings from b to this portion of t . Next, Ȳ consists of all nodes in X̄
plus all nodes at distance ≤ k + 1. Here, we will extend the descendant edges into
short chains, by taking ui = 0: this prevents accidental embeddings of the edge
(w, w ′) into this portion of the tree t . Finally, Y0 ⊆ Ȳ are the frontier nodes and
here we consruct the witness inductively, by applying Proposition 6 to p′′

1 . With
this basic intuition in mind, we give now the formal proof.

The sets H and X may be empty, but X̄ is always nonempty. Notice that X̄ ⊆ Ȳ
and that both X̄ , Ȳ are upwards closed: if y ∈ X̄ and (x, y) ∈ EDGES+(p), then
x ∈ X̄ , and similarly for Ȳ . Then the sets X̄ , (Ȳ − X̄), and y ↓, for y ∈ Y0 form
a partition of NODES(p): for example, to check that (y ↓) ∩ (y′ ↓) = ∅ for every
y, y′ ∈ Y0 it suffices to see that (y, y′) �∈ EDGES+(p). We will construct the witness
t differently on each such partition.

For every y ∈ Y0 denote py the subpattern of p defined by the set of nodes
{y} ∪ y ↓, that is, NODES(py) = {y} ∪ (y ↓). There is no unrooted homomorphism
from p′′

1 to py . Indeed, suppose there were one, h1 : p′′
1 → py . Let x ∈ X be

such that d(x, y) = k + 1 (given by the definition of Y), and let h ∈ H be such
that h(w) = x (given by the definition of X). Then one can easily check that h
and h1 together define an unrooted homomorphism from p′′ to p, contradicting
the assumption in Proposition 6. By induction hypothesis the lemma holds for the
pattern p′′

1 , hence, there exists a witness ty ∈ modz(py) such that there exists no un-
rooted embedding from p′′

1 to ty . Now we define the witness t as follows: Consider
each descendant edge (xi , yi) ∈ EDGES//(p). If yi ∈ X̄ , then define ui = n. If
yi ∈ (Ȳ − X̄), then define ui = 0. And if yi ∈ y ↓, for some y ∈ Y0 then define
ui as in the witness ty . We prove that there exists no unrooted embedding from
p′′ to t .

Assume e : p′′ → t is such an unrooted embedding. We first show that e(w) ∈
X ∪ X ↓. Suppose e(w) �∈ X ↓, and denote q the subpattern of p defined by the set
of nodes X̄ . Then e gives us an un-rooted embedding from b to a canonical model of
q , since w , the last node in b, is mapped into q. By Lemma 5, we also get an unrooted
homomorphism h from b to q and, moreover, h(w) = e(w). Obviously, h is also
an unrooted homomorphism from b to p, hence h ∈ H , hence x = h(w) ∈ X .
Thus, we have shown that e(w) ∈ X ∪ X ↓. Then e(w ′) ∈ Y ∪ Y ↓, because
d(w, w ′) = k + 1, and, by the definition of an embedding, d(e(w), e(w ′)) ≥ k + 1.
It follows that e maps p′′

1 entirely into the witness ty , which is a contradiction.

ACKNOWLEDGMENTS. We would like to thank Igor Tatarinov, Paul Beame, and
Moshe Vardi for their comments, and the anonymous reviewer who pointed out to
us the connection between dot (the current node in XPath) and union, and also sug-
gested the alternative technique for encoding k-ary patterns into Boolean patterns
that does not introduce extra branches.

REFERENCES

AMER-YAHIA, S., CHO, S., LAKSHMANAN, L. V. S., AND SRIVASTAVA, D. 2001. Minimization of tree
pattern queries. In Proceedings of the ACM SIGMOD. ACM, New York.

BUNEMAN, P., DAVIDSON, S., FAN, W., HARA, C., AND TAN, W. 2001. Keys for XML. In Proceedings
of the 10th WWW Conference. pp. 201–210.

Containment and Equivalence for a Fragment of XPath 45

CAI, J., PAIGE, R., AND TARJAN, R. 1992. More efficient bottom-up multi-pattern matching in trees.
Theoret. Comput. Sci. 106, 1, 21–60.

CALVANESE, D., DE GIACOMO, G., LENZERINI, M., AND VARDI, M. Y. 2002. View-based query answering
and query containment over semistructured data. In Database Programming Languages, 8th International
Workshop (DBPL 2001) (Frascati, Italy, Sept. 8–10). Lecture Notes in Computer Science, vol. 2397.
Springer-Verlag, New York, pp. 40–61.

CHAMBERLIN, D., CLARK, J., FLORESCU, D., ROBIE, J., SIMEON, J., AND STEFANASCU, M. 2001. XQuery
1.0: An XML query language. http://www.w3.org/TR/xquery/. W3C working draft.

CHANDRA, A., AND MERLIN, P. 1977. Optimal implementation of conjunctive queries in relational data
bases. In Proceedings of 9th ACM Symposium on Theory of Computing. ACM, New York, 77–90.

COLE, R., HARIHAN, R., AND INDYK, P. 1999. Tree pattern matching and subset matching in deterministic
o(nlog3n) time. In Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA).
ACM, New York, 245–254.

DEROSE, S., JR., R. D., AND MALER, E. 1999. XML pointer language (XPointer) working draft.
http://www.w3.org/TR/1999/WD-xptr-19991206.

DEROSE, S., MALER, E., AND ORCHARD, D. 2001. XML linking language (Xlink). http://www.w3.org/
TR/2000/REC-xlink-20010627.

DEUTSCH, A. AND TANNEN, V. 2001. Containment and Integrity Constraints for XPath Fragments. In
Proceedings of the 8th International Workshop on Knowledge Representation Meeting Database (KRDB)
2001 (Rome, Italy). CEUR Workshop Proceedings 45.

FLORESCU, D., LEVY, A., AND SUCIU, D. 1998. Query containment for conjunctive queries with regular
expressions. In Proceedings on the symposium on Principles of Database Systems (PODS). ACM, New
York, 139–148.

GAREY, M., AND JOHNSON, D. 1979. Computers and Intractability: A Guide to the Theory of NP-
completeness. W. H. Freeman, San Francisco, Calif.

GOTTLOB, G., KOCH, C., AND PICHLER, R. 2002. Efficient algorithms for processing xpath queries. In
Proceedings of the 28th International Conference on Very Large Data Bases (VLDB 2002).

GOTTLOB, G., KOCH, C., AND PICHLER, R. 2003. Xpath query evaluation: Improving time and space
efficiency. In Proceedings of the 19th International Conference on Data Engineering (ICDE 2003).

HOFFMANN, C., AND O’DONNELL, M. 1982. Pattern matching in trees. J. ACM 29, 1, 68–95.
KILPELAINEN, P., AND MANNILA, H. 1995. Ordered and unordered tree inclusion. SIAM J. Comput. 24,

2, 340–356.
KOSARAJU, S. R. 1989. Efficient tree pattern matching. In FOCS: IEEE Symposium on Foundations of

Computer Science (FOCS). IEEE Computer Society Press, Los Alamitos, Calif., 178–183.
MILO, T., AND SUCIU, D. 1999. Index structures for path expressions. In ICDT. 277–295.
NEVEN, F., AND SCHWENTICK, T. 2003. Xpath containment in the presence of disjunction, dtds, and

variables. In Proceedings of the 19th International Conference on Data Engineering (ICDE 2003).
SHMUELI, O. 1993. Equivalence of datalog queries is undecidable. J. Logic Prog. 15, 3 (Feb.). 231–242.
SNOEREN, A., CONLEY, K., AND GIFFORD, D. 2001. Mesh-based content routing using XML. In Pro-

ceedings of the 18th Symposium on Operating Systems Principles.
STOCKMEYER, L. J., AND MEYER, A. 1973. Word problems requiring exponential time. In Proceedings

of the 5th Annual ACM Symposium on Theory of Computing. ACM, New York, 1–9.
THORUP, M. 1996. Efficient preprocessing of simple binary pattern forests. J. Algorithms 20, 3, 602–612.
VARDI, M. 1997. Why is modal logic so robustly decidable. http://www.cs.rice.edu/∼vardi/papers/

index.html.
WADLER, P. 1999. A formal semantics of patterns in XSLT. Markup. Tech. 183–202.
WOOD, P. T. 2000. On the equivalence of XML patterns. In Proceedings of the International Conference

on Deductive and Object-Oriented Databases (DOOD). 1152–1166.
WOOD, P. T. 2001. Minimizing simple Xpath expressions. 4th International Workshop on the Web and

Databases (WebDB’2001).
XSCH 1999. XML Schema Part 1: Structures. http://www.w3.org/TR/1999/WD-xmlschema-1-

19991217/. W3C Working Draft.
YANNAKAKIS, M. 1981. Algorithms for acyclic database schemes. In Proceedings of the 7th Conference

on Very Large Databases. Morgan-Kaufman, Los Altos, Calif.

RECEIVED JANUARY 2003; REVISED JUNE 2003; ACCEPTED JULY 2003

Journal of the ACM, Vol. 51, No. 1, January 2004.

