
Auditing a Database Under Retention Restrictions
Wentian Lu 1 and Gerome Miklau 2

Department of Computer Science, University of Massachusetts
140 Governors Drive, Amherst, MA USA

1wen@cs.umass.edu
2miklau@cs.umass.edu

Abstract— Auditing the changes to a database is critical for
identifying malicious behavior, maintaining data quality, and
improving system performance. But an accurate audit log is a
historical record of the past that can also pose a serious threat to
privacy. Policies which limit data retention conflict with the goal
of accurate auditing, and data owners have to carefully balance
the need for policy compliance with the goal of accurate auditing.

In this paper, we provide a framework for auditing the changes
to a database system while respecting data retention policies. Our
framework includes a historical data model that supports flexible
audit queries, along with a language for retention policies that
hide individual attribute values or remove entire tuples from
history. Under retention policies, the audit history is partially
incomplete. We formalize the meaning of audit queries on
the protected history, which can include imprecise results. We
implement policy application and query answering efficiently in
a standard relational system, and characterize (both theoretically
and experimentally) the cases where accurate auditing can be
achieved under retention restrictions.

I. INTRODUCTION

Auditing the changes to a database is critical for identifying
malicious behavior, maintaining data quality, and improving
system performance. But an accurate audit log is a historical
record of the past that can also pose a serious threat to privacy.
In many domains, retention policies govern how long data
can be preserved by an institution. Regulations mandate the
disposal of past data and require strict retention periods to be
observed. For example, the Fair Credit Reporting Act limits
the retention, by credit reporting agencies, of personal financial
records. In addition, institutions and companies often adopt
their own retention policies, choosing to remove sensitive data
after a period of time to avoid its unintended release, or to
avoid disclosure that could be forced by subpeona. Tons of
examples show that failure in disposal of expired data might
result in serious consequences such as discovery abuse in
judgment and impact the bottom line of the business [1].

Retention restrictions conflict with the goal of accurate
auditing, and data owners therefore have to carefully bal-
ance the need for accurate auditing with the privacy goals
of retention policies. Unfortunately, current mechanisms for
auditing and managing historical records have few capabilities
for managing the balance between the two objectives. Obeying
a retention policy often means the wholesale destruction of the
audit log.

In this paper we propose a framework for auditing the
changes to a database system in the presence of retention
restrictions. We consider a historical data model and propose

two kinds of rules for selectively removing or obscuring
sensitive data from the record of the past. Despite the removal
of information, it is often still possible for an auditor to
monitor the record of actions taken on the database. We
provide an overview of the motivation and contributions of
this work through the following detailed example.

A. Example Scenario

We begin with a database storing tables belonging to a
client schema. Clients interact with the database by submitting
queries and updates, always on the current snapshot. In the
running example used throughout this paper, the client schema
consists of a single table, S, describing employees:

S(eid, name, department, salary)

The auditor is responsible for monitoring access to the
database and tracking down malicious actions after they have
occurred. Auditors typically inquire about what happened to
the database, when it happened, and who did it.1 To enable
the auditor to query the state of the database over time, the
system maintains an audit log table, LS , for each table S in the
client schema. Each modifying operation, issued by a client
on S, is recorded in LS along with additional audit fields
describing the time of modification, the type of modification
(insert, update, delete), and any other fields possibly of interest
to the auditor. Table I shows an audit log table including audit
fields recording the name of the issuing client and their IP
address.

The audit log can easily be converted to an alternative
transaction-time representation. Table II shows such a table,
denoted TS . It represents the complete data history of the
table, recording, in the from and to columns, the active period
of each tuple in the database. Throughout the paper we will
use both the log-based and transaction-time representations as
they each have benefits for expressing queries and defining
concepts.

These historical tables can support a variety of queries of
interest to the auditor. Some simple examples include:
A1. Return all employees who earned a salary of 10k at some

point in time.
A2. Return the clients who updated Bob’s salary, and the time

of update.

1We are concerned here with auditing modifications only. We do not audit
queries that read from the database.

TABLE I
THE AUDIT LOG DESCRIBING THE HISTORY OF OPERATIONS PERFORMED

ON A CLIENT TABLE WITH SCHEMA S(eid, name, dept, salary).
COLUMNS client AND IP ARE AUDIT FIELDS.

client IP time type eid name dept sal

Jack 1.1.1 0 ins 101 Bob Sales 10
Jack 2.1.1 100 upd 101 - - 12
Kate 3.1.1 200 upd 101 - Mgmt -
Kate 4.1.1 300 upd 101 - - 15
Jack 1.1.1 0 ins 201 Chris HR 8
Jack 2.1.1 300 upd 201 - Mgmt 10
Kate 4.1.1 500 del 201 - - -

TABLE II
THE TRANSACTION-TIME TABLE DESCRIBING THE DATA HISTORY OF THE

CLIENT TABLE. IT IS DERIVED FROM THE AUDIT LOG IN TABLE I
eid name dept sal from to
101 Bob Sales 10 0 100
101 Bob Sales 12 100 200
101 Bob Mgmt 12 200 300
101 Bob Mgmt 15 300 now
201 Chris HR 8 0 300
201 Chris Mgmt 10 300 500

A3. Return the clients who updated any employee’s dept, and
the time of update.

Some audit queries are conventional queries over a transaction-
time data model (such as A1). Others ask specifically about
changes, and reference the special audit fields contained in the
audit log (such as A2, A3).

The compliance officer is responsible for enforcing data
retention restrictions arising from privacy regulations or insti-
tutional policies. These policies are typically non-negotiable –
they must be respected by all users of the system, including
the auditor. We propose two kinds of declarative retention
rules for limiting the lifetime of data. Notably, these retention
policies are expressed in terms of TS , the transaction time table
describing the data history. This is the most natural choice
because retention policies refer only to the client schema, and
to the notion of time.

Our first retention rule is called redaction. When redaction
is applied to an attribute value, it removes the value but does
not hide its existence. For example, a redaction rule may
say: Hide Bob’s salary between time 0 and 250. The second
operation, called expunction, is more extreme. When a tuple is
expunged, it is completely removed, along with all evidence
of its existence. For example, an expunction rule may say:
Remove the record of all employees in the HR department
between time 0 and 300.

Applying a set of retention rules transforms the stored
history of the database.2 Table III shows a new transaction-
time table, the result of applying the retention rules to the
table TS . In applying the redaction rule, salary values have
been replaced with variables (sx, sy). We use variables as
an alternative to NULLs in order to support more accurate

2As a practical matter, retention rules may be applied physically, altering
storage of the table, or logically, in which access is restricted but hidden data
is still physically stored.

TABLE III
THE TRANSACTION TIME TABLE, TRANSFORMED UNDER THE FOLLOWING

RETENTION POLICIES: REDACTS(name = Bob, {salary}, [0, 250]) AND

EXPUNGES(dept = HR, [0, 300]). (THE GRAY ROW HAS BEEN DELETED.)
eid name dept sal from to

101 Bob Sales sx 0 100
101 Bob Sales sy 100 200
101 Bob Mgmt sy 200 250
101 Bob Mgmt 12 250 300
101 Bob Mgmt 15 300 now
201 Chris HR 8 0 300
201 Chris Mgmt 10 300 500

auditing. Also note that there is an extra row in Table III
because the time interval [200,300] in the original data has
been split into two intervals: [200,250], in which Bob’s salary
is hidden, and [250,300], in which Bob’s salary can be revealed
to be 12k. In applying the expunction rule, Chris’s membership
in the HR department has been removed from the history: he is
now only in the Mgmt department from time 300 to 500. For
illustration purposes, the expunged row is included in Table
III, but displayed with a gray background.

A main goal of this paper is provide a proper semantics
for audit queries in the presence of retention policies. Because
the transformed history has tuples removed by expunction and
values obscured by redaction, the answers to audit queries
may be uncertain or, in some cases, provide false information.
We reconsider the previous audit queries under retention
restrictions:

A1. Return all employees who earned a salary of 10k at some
point in time.
This query is a straightforward selection on the
transaction-time table. On the original data in Table II
the answer to this query is {Bob, Chris}. On Table
III, under the retention policy, the answer to this query
includes Chris as a certain answer. However, Bob is only
a possible answer because the predicate depends on the
unknown value of variables sx and sy. Our implemented
system returns both answers, labeled appropriately as
possible or certain.

A2. Return the clients who updated Bob’s salary, and the time
of update.
The answer to this query on the original data is {(Jack,
100), (Kate, 300)}. The transformed history in Table III
shows that Bob’s salary definitely changed at time 100
(from sx to sy) and at time 300 (from 12k to 15k). In
addition, it may have changed at time 250 (from sy to
12k), depending on the unknown value of variable sy.
(Note that the uncertainty about this change is crucial –
if it is possible to deduce that the change did not occur,
then it is clear that Bob’s salary was indeed 12k between
250 and 300, and the retention policy is violated.)
In order to fully answer the query, we must use the audit
log to get the names of the clients who issued the update.
Jack and Kate performed the updates at time 100 and
300, respectively, so the certain answers to this query
are: {(Jack, 100), (Kate, 300)}. A subtlety here is how

2

to return the possible answer for the update at 250, since
there is no known client that performed that update. The
possible answer that could be returned is: (NULL,250),
but not if it reveals that this is a fake update.

A3. Return the clients who updated any employee’s dept, and
the time of update.
The answer to this query on the original data is
{(Kate,200), (Jack,300)}, which can easily be computed
from the original audit log LS . In the transformed history
in Table III we find evidence of only one update to the
department field, at time 200. This is a result of the
expunction policy that removed Chris’ record from time 0
to 300. Thus, the answer to this query under the retention
policy is {(Kate,200)} and the record of Jack’s update is
lost.

Notice that the answer to query A3 is incorrect: a tuple that
is in the true answer (i.e. with respect to the original data) is
omitted from the new answer. From the auditor’s perspective
this is a worse outcome than that of A1 and A2 where the
true answer is one of the possible answers. One of the goals
of our framework is to provide answers to auditor queries that,
although imprecise, do not lead to false conclusions. Also note
that in reasoning about the answers to queries A2 and A3 we
referred to the transformed transaction-time table and used it
to infer actions that were performed on the database. Later
in the paper we make this process explicit by computing a
sanitized audit log, consistent with the retention policies, that
can be queried directly.

In summary, the main contributions of the paper are:
• We propose declarative rules for expressing retention

restrictions over a historical data model. (Section III)
• We provide a precise semantics for audit query answers

under retention restrictions, and we study theoretically
the impact of retention policies on the accuracy of audit
queries. (Section IV)

• We implement our framework as extensions to Post-
gres, showing that uncertain answers can be computed
efficiently over our incomplete historical data model.
(Section V)

• We demonstrate (through simulation on sample data) that
useful auditing can be performed in the presence retention
restrictions, despite uncertain answers. (Section VI)

Our work extends and integrates techniques from tempo-
ral databases, incomplete databases, and fine-grained access
control into a flexible framework for controlled auditing. We
distinguish our contributions from this work in Section VII.

II. DATA MODEL AND AUDIT QUERIES

In this section we describe our data model, based on backlog
and transaction-time databases [2], [3], and our language for
expressing audit queries.

A. Data model
Let (S1, . . . , Sk) be the client schema. We refer to each rela-

tion Si as a regular relation to distinguish it from transaction-
time relations defined below. We use tuples(Si) to refer to the

set of all tuples that could occur in Si (i.e., the cross-product
of the attribute domains).

Audit Log: An audit log is a complete record of the
operations on a client table over time, and we maintain an audit
log table LS for each table S of the client schema. Each row
in LS represents a transaction modifying a tuple of S. Table
I shows an example audit log table. In general, the schema of
LS is:

(〈audit-fields〉, ttime, type, 〈client-fields-from-S〉)
The audit fields may contain an arbitrary set of attributes

describing facts about the transaction. In our examples, the
audit fields record the name of the issuing client and their
IP address, but in general they may include many other fields
describing the context of the operation. ttime is a time stamp,
from a totally-ordered time domain T , reflecting the commit
time of the transaction. We assume each transaction receives
a unique time stamp. The type field describes the modification
as an insert, update, or delete. The fields of the client schema
describe the changes in data values. If the transaction is
an insert, each attribute value is included; for updates, only
modified values are included, with unchanged attributes set
to NULL; for deletes, all attribute values are NULL. This
description of an audit log is essentially a backlog database
[2] with the addition of audit fields.

We assume that each audit record refers to a unique tuple,
identified by the key of the client table. In practice, a transac-
tion may affect multiple tuples. If necessary, this relationship
can be recorded in a statement-id, relating the changes to
tuples made by a statement. Without loss of generality we
omit this.

Transaction-time relation: A transaction-time relation (a
t-relation for short) represents the sequence of states of a
relation in the client schema. Formally, a t-relation over S is
a subset of tuples(S)×T . A tuple (p1, . . . , pn, t) ∈ TS repre-
sents the fact that tuple (p1, . . . , pn) is active at time instant t.
In examples (and our implementation) we use the common
representation for t-relations in which (p1, . . . , pn, from, to)
means that (p1, . . . , pn) holds at each instant t, for from ≤
t ≤ to. Table II is an example of a t-relation.

Audit log versus T-relation: Given an audit log table LS , a
unique t-relation can be computed from it in a straightforward
way by executing each statement. After a modification, the
values of a tuple are active until the time instant of the next
operation modifying that tuple. We use exec to indicate this
procedure, and we define TS to be exec(LS) for each S in the
client schema.

It is also possible to reverse this procedure, computing an
audit log from a t-relation (although no audit fields will be
included). This procedure, denoted exec−1, computes initial
insertion transactions at the time instant a new tuple is created,
subsequent update transactions at the instant of each change
to a tuple, and (for tuples that are no longer active) delete
transactions. Notice that computing an audit log from TS

will reproduce a table similar to LS but with the audit fields
removed: Πttime,type,S(LS) = exec−1(TS).

3

The audit log LS and the t-relation TS represent similar
information. As a practical matter it is not necessary to
maintain both. However, in the formal development presented
here, each representation serves an important purpose. We will
see in the next section that retention policies are defined in
terms of TS , and can be applied directly to TS . But TS does
not include audit fields. We will also reconstruct an audit log
from the protected TS in order to make explicit the possible
inferences about changes to the database.

B. Audit queries

A variety of interesting audit queries can be expressed over
TS and LS . LS is a regular relation, but queries over t-
relation TS may use extended relation algebra operators to
cope with transaction-time . We omit a formal description of
these operators, which can be found in the literature [4], [5],
and instead present examples highlighting their features.

The example audit queries from Section I-A are expressed
as follows on TS or LS :
A1. Return all employees who earned a salary of 10k at some

point in time. Πname(σsal=10k(TS))
A2. Return the clients who updated Bob’s salary, and the time

of update.

Πclient,ttime(σtype=upd∧name=Bob∧sal #=NULL(LS))

A3. Return the clients who updated any employee’s dept, and
the time of update.

Πclient,ttime(σtype=upd∧dept#=NULL(LS))

Conventional joins on t-relations are possible, as well as
joins between a t-relation and regular relation. For example,
our audit log LS can be joined with TS on the ttime attribute.
In addition, we can use concurrent cross-product (denoted ×$)
or concurrent join (denoted "#$) as binary operators on t-
relations that combine tuples active at common time periods.
The following example query includes a concurrent self join
on TS :
A4. Return all employees who worked in the same department

as Bob at the same time.

Πname(σname′=Bob(TS "#$dept=dept′ T ′
S))

Finally, the time-slice operator restricts a t-relation to a
specified interval in time. For interval [m,n], it can be defined
as: τm..n(R) = R×${〈m,n〉} where {〈m,n〉} is a singleton t-
relation without user-defined attributes. The result of applying
the time-slice operator is a t-relation. A regular relation
representing the snapshot database at time m can be written
as πS−{from,to} (τm..m(TS)).

III. DESCRIBING AND APPLYING RETENTION POLICIES

In this section, we define the semantics of our redaction
and expunction rules, and how they are applied to the stored
history.

A. Retention policy definitions

Retention policies are used to restrict access to tuples or
attribute values in one or more historical states of the database.
The need for retention policies arises from the sensitivity
of data items in the client schema. Thus it is most natural
to express retention policies in terms of the t-relation, TS ,
which describes states of the client relation as it evolves
through time. We define our retention policies formally below
as transformations on TS .

Our first retention operation is called redaction. It sup-
presses attribute values in tuples for a specified time period.
Redaction is useful because it hides sensitive data values, but
preserves the history of modification of the tuple. Our second
retention operation is called expunction. An expunged tuple
is removed from history, and the historical record is modified
accordingly to hide its existence.

These two operators serve different purposes as they enact
value removal in the case of redaction, and existence removal
in the other. Expunction is a more extreme operation because
it does not merely suppress information, but changes the
historical record in ways that can substantially change answers
to audit queries. We believe that a variety of privacy policies
can be satisfied through the use of redaction policies alone,
which will lead to more accurate auditing.

In the definitions that follow, a Boolean condition φ, on
client relation S, is a Boolean combination of comparisons
S.A θ c, or S.A θ S.B, for any θ ∈ {=, &=, <,≤, >,≥}.

Definition 3.1 (Expunction Rule): An expunction rule, over
a client table S, is denoted E = ExpungeS(φ, [u, v]) where φ
is a Boolean condition on attributes of S, and [u, v] is a time
interval (u, v ∈ T , and u ≤ v).

An expunction rule asserts that all tuples matching condition
φ should be removed from a specified interval in time. When
an expunction rule E is applied to a t-relation TS , the intended
result is a new t-relation. Denoted E(TS), this new t-relation
consists of all facts from TS except those that satisfy φ and
have time field in [u, v]:

Definition 3.2 (Expunction Rule Application): For a client
relation S, let TS be a t-relation over S, and E =
ExpungeS(φ, [u, v]) be an expunction rule. The application of
E to TS , denoted E(TS), is a new t-relation with the same
schema: E(TS) = TS − {x ∈ TS | φ(x) ∧ x.t ∈ [u, v]}
Unlike expunction, a redaction rule does not remove tuples
from the historical record. Instead, a redaction rule asserts
that the values of certain attributes should be suppressed in all
tuples that match condition φ and are active during a specified
time interval.

Definition 3.3 (Redaction Rule): A redaction rule, over
client table S, is denoted RedactS(φ, A, [u, v]) where φ is a
Boolean condition on attributes of S, A is a subset of the
columns in S, and [u, v] is a time interval (u, v ∈ T , and
u ≤ v).

When a redaction rule R is applied to a t-relation TS , the

4

intended result is a new t-relation, denoted R(TS), in which
some attribute values have been suppressed. To formalize
R(TS) we use a suppression function supp(x, A) which re-
places attributes of A in the transaction-time tuple x with
variables. For example, if x = (101, Bob, Sales, 10k, 300)
then supp(x, {dept, salary}) = (101, Bob,dx, sx, 300). We
assume that suppressions of distinct values always use distinct
variable names, and that all instances of a value are replaced
by the same variable. The choice to use such variables instead
of NULL values sacrifices some privacy because it reveals
when two redacted values are identical. We believe this is a
worthwhile trade off, and we show in Section V that the use of
variables can substantially increase auditing accuracy for some
queries. Our results can easily be adapted to a suppression
function using NULL values.

Definition 3.4 (Redaction Rule Application): For a client
relation S, let TS be a t-relation over S, and R =
RedactS(φ, A, [s, t]) be a redaction rule. The application of
R to TS , denoted R(TS), is a new t-relation with the same
schema:

R(TS) = {supp(x, A) | x ∈ TS , φ(x), x.t ∈ [u, v]} ∪
{x | x ∈ TS ,¬φ(x) ∨ x.t &∈ [u, v]}

We assume for simplicity that A does not contain the key
for table S. If the key for R is sensitive, and subject to
retention policies, a surrogate non-sensitive key attribute can
be introduced to the schema. This means that even if all
attributes of the schema are redacted, the history of changes
to a tuple is still preserved.

Having applied a redaction policy, the resulting table R(TS)
is formally an incomplete t-relation. It is a representation
of a set of possible worlds, each resulting from a different
substitution of distinct values for the variables introduced by
the suppression of attributes. We define incomplete relations
formally in Section IV.

Retention policy composition: Retention rules can be com-
bined to form composite retention policies. A set of redaction
rules is combined by hiding any attribute value that satisfies the
selection condition and time-period of any individual redaction
rule. A set of expunction rules is combined by removing all
tuples satisfying any individual expunction rule. Expunction
rules take precedence over redaction rules: a tuple satisfying
both an expunction and redaction rule will be removed rather
than suppressed.

Example 3.5 In Section I-A, we described informally two
retention policies. The redaction rule that hides Bob’s
salary between time 0 and 250 is written formally as
R = RedactS(name=’Bob’, sal, [0, 250]). The expunction
rule that removes the record of all employees in the HR
department between time 0 and 300 is written E =
ExpungeS(dept=’HR’, [0, 300]). Table III is the t-relation that
results from applying both E and R to the original table TS

shown in Table II.

TABLE IV
A SANITIZED AUDIT LOG, P (LS) TRANSFORMED UNDER THE RETENTION

POLICIES OF SECTION I-A AND EXAMPLE 3.5.
client IP ttime type eid name dept sal

Jack 1.1.1 0 ins 101 Bob Sales sx
Jack 2.1.1 100 upd 101 - - sy
Kate 3.1.1 200 upd 101 - Mgmt -

NULL NULL 250 upd 101 - - 12
Kate 4.1.1 300 upd 101 - - 15

NULL NULL 300 ins 201 Chris Mgmt 10
Kate 4.1.1 500 del 201 - - -

LS

TS P(TS)

Original Data
Data Under

Retention Restrictions

P(LS)

exec exec
-1

Policy

Application

Fig. 1. Illustration of the relationships between original history (LS and TS)
and the history under retention policy P . P (TS) is defined directly, while
P (LS) is the sanitized log derived from P (TS) and including audit fields
from LS .

B. Sanitizing the audit log

Consider a policy P consisting of redaction and expunction
rules. According to the definitions above, we apply the policy
to TS , to get the t-relation P (TS). As we have seen in the
examples of Section I-A, the answers to audit queries are not
determined completely by the table P (TS). For one, the audit
fields in LS are not present. We must use LS in combination
with P (TS) to answer queries that reference the audit fields.
In addition, the operations applied to the database need to
be inferred from P (TS) which represents just the history of
database states. In order to combine audit field information,
and to make explicit the changes to the database that are
implied by P (TS), we compute a sanitized log consistent with
P (TS). This new log is denoted P (LS) and has the property
that running it results in P (TS), that is: exec(P (LS)) =
P (TS). The auditor, and other users, will have access to both
P (TS) and the sanitized audit log. Together we refer to these
as the sanitized history. The relationship between the audit log
and transaction-time tables in our framework is illustrated in
Figure 1.

In computing the sanitized history, we hope to satisfy the
following properties.

• A sanitized history is secret if it respects the semantics
of the policy, hiding tuples and values appropriately.
This means it is not possible to infer from the protected
history anything that is not present in P (TS) (the defined
meaning).

• A sanitized history is sound if it omits information, but
does not lead to false answers to audit queries. This
property is ensured for all queries if the possible worlds
implied by P (TS) includes the original history. In that
case, the true answer to any audit query must be a

5

possible answer under retention restrictions.
Note that for any redaction rule R and expunction rule E,

R(TS) and E(TS) are secret by definition. The challenge to
secrecy comes from integrating LS . Also note that expunction
policies necessarily violate soundness. Because an expunction
policy changes history by removing records, it produces false
answers to audit queries.

Definition 3.6 (Sanitized Log): Let P be a retention policy
consisting of redaction rules, expunction rules, or both, and
let P (TS) be the (possibly incomplete) t-relation that results
from applying P to TS . The sanitized log under P is denoted
P (LS) and is defined as follows:

1) Treating any variables present in P (TS) as concrete data
values, compute the audit log table exec−1(P (TS))

2) Let L0
S = Π〈audit-fields〉,ttime(LS)

3) P (LS) = L0
S "#=ttime exec−1(P (TS))

This procedure first uses the exec−1 to compute an audit log
from P (TS). Then we extract the audit fields and time column
from the original audit log. This table, L0

S , is then joined with
exec−1(P (TS)). We use a right outer join to preserve tuples
in exec−1(P (TS)) which may not have a match in L0

S . This
occurs when the application of a redaction policy splits the
active interval of one or more records. It suggests that an
update operation occurred in the history, but the time instant
of this update does not match any update in the original audit
log.

Example 3.7 Table IV is the sanitized audit log computed
according to the above definition, for the policy described in
Example 3.5.

Note that Definition 3.6 is not itself an attractive strategy for
computing the sanitized log. We describe our implementation
of policy application in Section V. In addition, we will see
below that policies can be “applied” logically in which case
P (LS) may never be materialized.

C. Retention policy analysis

We can show the following properties of the sanitized log.

Proposition 3.8: Let LS be an audit log, TS the t-relation
derived from it, and let P be a retention policy consisting
of a set of redaction rules R1 . . . Rn where each Ri =
RedactS(φi, Ai, [ui, vi]).

• The computation of P (LS) is sound.
• The computation of P (LS) is secret iff

ui, vi ∈ Πttime(LS) for all i.

Proof: (Sketch) Soundness follows from that fact that
P (TS) is sound, and the fact that P (LS) is consistent with
P (TS), in the sense that exec(P (LS)) = P (TS). It follows
that the original history is one possible world of P (LS). If the
condition ui, vi ∈ Πttime(LS) fails, then there are dangling
tuples in the join described in Definition 3.6. The absence
of audit fields leaks information and violates secrecy. If the
condition holds then there are no dangling tuples. Secrecy

follows from the fact that R(LS) is consistent with R(TS)
and uses only the projection, L0

S , of LS .
The sanitized log from Example 3.7 and Table IV demon-

strate the problems that result from arbitrary redaction in-
tervals. These policies split intervals and suggest phantom
updates that cannot be convincingly represented in the log. The
failure of secrecy appears not to be merely an artifact of the
semantics of redaction, but instead a fundamental difficulty in
presenting an audit log that is consistent with a redacted data
history. It is possible that secrecy could be achieved by in-
troducing additional uncertainty about phantom modifications,
but this entails a more powerful model of incompleteness,
potentially sacrificing efficiency, and degrading audit query
accuracy. Further investigation is a topic of future work.

As a practical matter, to avoid sacrificing secrecy for redac-
tion rules, the desired time interval [u, v] of each redaction
rule can be shifted, either forward or backward, to the time of
the nearest modification (to any field) in the log.

Policy/Query Independence: It is possible to decide stati-
cally, for a given policy and audit query, whether the query
answer will be unaffected by the policy. This problem is
closely related to the study of view independence of updates
[6], [7]. Here the audit query occupies the place of the view.
Our retention policies can be considered deletions (in the case
of expunction) or updates (in the case of redaction). Known
results provide sufficient conditions for determining policy-
query independence in our framework.

D. Physical v. Logical Policy Application
The discussion above has suggested the physical application

of retention policies to the audit log and derived transaction-
time table, in which record removal and attribute suppression
are reflected in the storage system. Physical sanitization is
appropriate when privacy policies mandate removal of data,
data storage is not trusted, and/or the database will be shared
with others who are subject to retention restrictions.

An alternative is logical removal, in which the audit log
is not physically changed. Instead, a logical view is com-
puted which is consistent with the retention policy. Logical
sanitization can support multiple distinct retention policies
that can be associated with users or groups of users, in
a manner very similar to an access control policy. (Under
logical log sanitization, our retention policies can be seen as
a combination of fine-grained and view-based access control
over a transaction-time database.)

In Section V we implement our policies both physically,
using an update program that transforms stored tables, and
logically, by rewriting incoming audit queries to return an-
swers in accordance with the stated policy.

IV. AUDIT QUERIES UNDER RETENTION RESTRICTIONS

Under a retention policy that includes a redaction rule, audit
queries must be evaluated over tables containing variables
in place of some concrete values. In this section we use
techniques for querying incomplete information [8], [9] to
describe precisely the answers to audit queries under retention
policies.

6

A. Incompleteness in relations and t-relations
Both regular relations and transaction-time relations can be

incomplete. There are two main features that distinguish an
incomplete relation from a concrete relation. The first is the
presence of variables in attribute values. The second is a status
column, included in the schema of every incomplete relation.
The status column is C when the tuple is certain to exist in
the relation, and P when the tuple may possibly exist.

Under a retention policy P , the inputs to our audit queries
are the audit log table P (LS) and t-relation P (TS). Both
tables may be incomplete, since they may contain variables.
In addition, each of their tuples is understood to have a status
of certain. In general, audit query answers will include both
possible and certain tuples.

An incomplete relation represents a set of possible relations.
Let R be a relation schema (regular or transaction-time) and
let IR be an incomplete relation over R. Also let IR = Ip

R∪Ic
R

where Ic
R are the certain tuples and Ip

R are the possible tuples.
If V is the set of variables appearing in R, and f is a one-to-
one function from the variables V into the domain of R, then
a possible world consists of the certain tuples under f , plus
any subset of possible tuples under f . Thus, the set of possible
worlds represented by IR, denoted rep(IR), is defined as:

rep(IR) = {f(Ic
R) ∪X | f ∈ F,X ⊆ f(Ip

R)}

where F is the set of all one-to-one functions f : V →
dom(R) and f(IR) is the relation after replacing variables
according to f .

Recall that in our framework, variables only appear in
attributes of the client schema – not in time stamps. Extending
the definition of t-relation from Section II, an incomplete
t-relation over S is a subset of tuples(S) × T × {P,C}.
A tuple (p1, . . . , pn, t, u) ∈ IS represents the fact that
tuple (p1, . . . , pn) is certainly active at time instant t (if
u = C) or possibly active at time instant t (if u =
P). Incomplete t-relations can also be represented as tuples
(p1, . . . , pn, from, to, u) which means that (p1, . . . , pn) has
status u at each instant t, for from ≤ t ≤ to.

B. Extended Relational Algebra on Incomplete Relations
Next we define the extended relational algebra operators

on incomplete relations. The semantics of these operators is
similar to the model of relational incompleteness presented by
Biskup [10], but includes extensions for transaction-time. Nat-
urally, these operators return incomplete relations, inheriting
variables from the input relations and computing the status
field appropriately for output tuples. We provide definitions
of selection, cross-product, concurrent cross-product, and set
difference. Join and concurrent-join are derived from these,
and projection, union, and the time-slice operator are defined
in a standard way.

Selection: Let IR be an incomplete relation, and E be a
selection condition that is the Boolean combination of com-
parisons of the form R.x = c (for constant c) or R.x = R.y.
Comparisons can evaluate to P, C, or False. If the arguments
are two different constants, or two different variables, the

comparison evaluates to False. The comparison of a variable
with a constant evaluates to P. If the arguments are identical
variables, or identical constants, the comparison evaluates to
the status value for the tuple. The Boolean combination of
terms is evaluated using the rules of three-valued logic where
P is interpreted as Unknown, and C is interpreted as True.

Tuples are included in the output of the selection operator
if their status evaluates to either P or C. When the condition
E has evaluated to P under the comparison of a variable with
a constant, this variable binding needs to be applied to the
output tuple. Formally we have:

σE(IR) = {〈f(r.∗), E(r)〉 | r ∈ R,E(r) = P ∨ E(r) = C}

The tuples returned have all non-status attributes (denoted r.∗)
with variables replaced under mapping f , and a new status
field E(r).

Example 4.1 Consider the selection condition R.a = 100 ∧
R.b = R.c. On the input relation {〈dx, dy, 9, C〉}, the selec-
tion operation will return {〈100, 9, 9, P 〉}.

Cartesian product: If IR and IS are two incomplete rela-
tions over schema R and S, the cartesian product IR × IS is
defined as:

IR × IS = {〈r.∗, s.∗, status〉 | r ∈ IR, s ∈ IS}

where status is set to r.status ∧ s.status.
Concurrent cartesian product: If IR and IS are two incom-

plete t-relations over schema R and S, the concurrent cartesian
product IR × IS is defined as:

IR ×$ IS = {〈r.∗, s.∗, from, to, status〉 | r ∈ IR, s ∈ IS ,

[r.from, r.to] ∩ [s.from, s.to] &= ∅}

where status is set to r.status ∧ s.status, from =
max(r.from, s.from), to = min(r.to, s.to).

Duplicate Elimination: Duplicates (on the non-status
columns of a table) can arise as a result of projection or
union, as well as selection and join (because of the substitution
for variables). If a tuple is both possible and certain, it is
only necessary to preserve the certain version of the tuple. In
general, duplicates on the non-status columns are eliminated
by preserving a single tuple with a status value equal to the
disjunction of all duplicates’ status values. That is, it will be
C if at least one duplicate had status C.

Set Difference: If IR and IS are two incomplete relations,
then in computing IR − IS , the tuple 〈r.∗, status〉 will be
removed from IR only when there exists a tuple 〈s.∗, C〉 ∈
IS where r.∗ and s.∗ shares the same value or variables
on each attribute. Otherwise, write 〈r.∗, P 〉 into result when
there exists a tuple 〈s.∗, status〉 ∈ IS where evaluation of
r.A = s.A (described in operator Selection section) is P or
C for all attributes A in the client schema. When IR and
IS are t-relations, we must expand the temporal intervals into
instants (according to our definition of t-relation), execute the
set difference, and finally coalesce them back into intervals.

7

Example 4.2 Recall from Section I-A that audit query A1
returns all employees who earned a salary of 10k at some point
in time, and can be written Πname(σsal=10k(TS)). On the
incomplete t-relation shown in Table III (for which the omitted
status column is uniformly C) we have the intermediate result
of σsal=10k(TS):
eid name dept sal from to status
101 Bob Sales 10 0 100 P
101 Bob Sales 10 100 200 P
101 Bob Mgmt 10 200 250 P
201 Chris Mgmt 10 300 500 C

and

the final result of Πname(σsal=10k(TS)):
name status
Bob P
Chris C

C. Discussion

Our representation system for incomplete relations cannot
describe constraints or correlations between the possible tu-
ples, and is therefore incomplete [11]. For example, we cannot
represent a set of possible worlds in which tuple t1 or tuple
t2 is present, but not both. Although the base relations in our
formalism never need to describe such sets of possible worlds,
the relational operators can result in correlated tuples and
these correlations will be lost by our representation system.
The loss of these correlations means less accurate query
answers, but allows for more efficient query processing and
more intuitive query answers. Through experiments, we show
in Section VI that our data model allows for useful audit
query answers over incomplete relations. We leave as future
work the investigation of a complete representation system for
transaction time relations under retention policies [12].

V. IMPLEMENTATION

The implementation of our framework, which is also de-
scribed briefly in [13], translates our historical data model into
standard relations in Postgres. Our goal is to show the practical
feasibility of our framework. We optimize our implementa-
tion using commonly-available indexing strategies and query
rewriting techniques. A fully optimized implementation might
make use of techniques specifically designed for transaction-
time data, but these are beyond the scope of our prototype.

In our implementation, the time stamp fields from and
to are combined into one attribute named trange, which
is stored as an interval type (actually a one-dimensional cube
data type in Postgres). Utilizing the cube data type simplifies
the expression of the concurrent join, and we also use an
available R-tree implementation. In each t-relation, status
is represented as a Boolean value.

In the remainder of the section we discuss the physical
application of retention policies followed by query evaluation
on physically sanitized datasets. Lastly we describe logical
application of policies.

A. Physical Application of Retention Policy
Since the policies are specified over t-relations, a policy

P with an arbitrary time condition [u, v] may require a split
of update intervals causing phantom updates in sanitized log
(as demonstrated from Example 3.7 and Table IV). To avoid
this, we adjust the redaction period to the nearest modification
period of any field.

Application of retention policies is implemented by trans-
forming the input rules into a set of update operations on orig-
inal t-relation and possibly audit log. We assume we have all
policy rules at the time of policy application. Inconsistencies
may arise if in the subsequent application of new policy rules,
which has been addressed in [14], [15]. Policy application for
all rules is accomplished in one pass, guaranteeing that all
conditions in the rules are fully evaluated on the current tuple
before removing any values from that tuple.

Redaction is implemented by replacing values with vari-
ables. As described previously, variables here preserve equality
even after redaction. That is to say, the relationship between
value and variable is a strict one-to-one mapping. In our
current implementation, we use a cryptographic hash function.

B. Audit Query Evaluation
In the following we implement in SQL the semantics of

extended relational operators over incomplete relations. We
describe the rewriting of SELECT-FROM-WHERE blocks
to accommodate incompleteness. First, we write a WHERE
clause that will select any tuple evaluating to either P or C,
eliminating all others. Second, we formulate a SELECT clause
that is used to compute the correct trange (if necessary),
the status column, and return appropriate values of variable
bindings. To return the correct variable bindings for selection
(as described in Section IV), we must rewrite those attributes
when they appear in both the SELECT list and some equality
expression in the WHERE clause. If an attribute appears in
two equality expressions in an OR operation, we may need to
break the query into parts and union their results.

In the following description, the function isvari(x) tests
if x is a variable. onevari(x,y) returns true only when
one of x and y is a variable. binds(x,y) returns x if x is
a constant, otherwise returns y. The general algorithm is as
follows:

1) Reorganize the WHERE clause as a set of disjunctive
conditions D = {D1, . . . , Dn}, where each Di = {ci}
and ci is a conjunction. Unite Di and Dj : Di = Di∪Dj

and D = D−{Dj} only if for any ci ∈ Di and cj ∈ Dj ,
there is no equality expression related to same attribute.
Finally we get D′

= {D1, . . . , Dm} and each Di ∈ D′

will be executed in a separate query.
2) For each Di ∈ D′

, create a new query, defining the
query as follows:
WHERE clause: for each conjunct c ∈ Di, c consists
of a set of conjunctive atomic expressions exp. If exp
is t.a op CON, rewrite it as t.a op CON or isvari(t.a).
If exp is t1.a op t2.a, rewrite it as t1.a op t2.a

8

or onevari(t1.a,t2.a). If there are two expressions like
t1.a=CON1 and t2.a=CON2, add a new expression in
this conjunctive term t1.a != t2.a. Finally add condition
on trange when necessary.
FROM clause: only tables involved in Di.
SELECT clause: Put Di into SELECT clause, and for
each c ∈ Di, add a conjunction of related status at-
tributes to the term computing the final status. If attribute
a of select list also appears in exp like t.a = CON ,
replace a with CON as a return value. If a appears in
t1.a = t2.a, use a special function binds(t1.a, t2.a) as
the result. Finally, compute the correct trange value if
necessary (i.e., concurrent join).

3) Union each query generated on Di.

Example 5.1 The following is an example query on complete
table emp:
SELECT name, t1.dept, t2.sal
FROM emp AS t1, emp AS t2
WHERE t1.dept=t2.dept AND

t1.sal=100 AND t2.sal=200

The algorithm above will produce the following rewritten
query if emp is incomplete:
SELECT name, binds(t1.dept,t2.dept) AS dept,

200 AS sal, (t1.dept=t2.dept AND
t1.sal=100 AND t2.sal=200 AND
t1.status AND t2.status) AS status

FORM emp t1, emp t2
WHERE (t1.dept=t2.dept

OR onevari(t1.dept, t2.dept))
AND (t1.sal=100 OR isvari(t1.sal))
AND (t2.sal=200 OR isvari(t2.sal))
AND t1.sal!=t2.sal

As discussed in section IV, duplicates may arise in the
result of operations such as union, projection and join. The
duplicate elimination process can be achieved by grouping
on all non-status columns and then aggregating the (boolean)
status column using bitwise OR.

C. Logical Solution
Our implementation above is based on the physical removal

of expired information. To implement policies logically, we
construct a query QP whose answer on TS and LS is equiv-
alent to the answer of Q on P (TS) and P (LS).

For simplicity, we assume that the redaction policies satisfy
the condition in Prop. 3.8. Generally the composition will be-
gin by adopting the rewriting algorithm in the previous subsec-
tion, which results in a set of sub-queries Q = {Q1, . . . , Qn}
connected by union operator. Attributes appearing in either
the SELECT or WHERE clause are called critical attributes.
For each sub-query Qi, a redaction rule is relevant to Qi

when its redaction attribute list shares some attribute with Qi’s
critical attributes. Besides the rewriting process in the previous
subsection, we also should:

1) FROM clause: for each table, add a case statement
modification based on its relevant redaction rules.

2) WHERE clause: for any expunction rules (φ, [u, v]), add
conjunction of not (φ ∧ trange overlap [u, v]).

Note that the case statement modification is inspired by
similar work in [16], but we change the semantics from
NULLS to variables.

VI. EVALUATION

In this section we study the performance of query processing
in our framework and evaluate the impact of retention policies
on the accuracy of query results. Our experiments address the
following key questions:

• Overhead and Scalability. We assess the performance
overhead of evaluating audit queries using both physical
and logical policy application. We test the scalability of
our framework in terms of database size (the average
snapshot size) and history length (the average number
of versions of each tuple).

• Accuracy of uncertain answers. We study the impact
of retention policies on the accuracy of query results.
Over sample data, we measure the precision and recall of
query answers as a function of the selectivity of redaction
policies.

• Suppression using variables v. NULLs. Using NULLs is
a common solution in relational database research such
as fine-grained access control[16]. However, variables
can hide values while preserving more information about
changes. We show that the extra information kept by
variables significantly increases the accuracy of audit
query answers.

A. Experimental Setup
In all our experiments we use Postgres 8.3 running on an

Intel Core2 workstation with 2.40GHz CPU and 2Gb memory.
Our datasets are synthetically-generated histories based on our
example client schema S(eid,name,dept,sal).

We generated our history with an initial set of employees
that grows slowly over time through periodic insertions. We
apply a random sequence of independent updates to attributes
throughout the lifetime of individuals. Thus the total tuples in
the t-relation and log is closely approximated by the product of
two parameters: the initial number of employees (the snapshot
size) and the average number of versions of each employee
tuple (the history length).

We use two redaction policies3 and three queries in our
experiments. They are:

R1: Redact all department values before a specified time.
R2: Redact salary values for the Mgmt and HR depart-

ment in a specified time period.
Q1: Return employees whose dept is Mgmt and whose

salary is 10k.
Q2: Return all the clients who changed the salary of

employees in the dept Mgmt.
Q3: Return all employees who worked in the same de-

partment as a specific employee at the same time.

3We do not consider expunction rules since they will simply remove tuples
and reduce the size of the history.

9

 0

 1

 2

 3

 4

 5

 6

 7

 8

q1 q2 q3

Ex
ec

. T
im

e (
s)

possible tuples
certain tuples
original

Fig. 2. Performance on three queries, for each
query the bars from left to right are the original,
physical and logical solution respectively.

60
original

50

original
physical

40(s
)

logical

30Ti
m

e
(

20

30

xe
c.

 T

20E

10

0
1 10 20 30 40 501 10 20 30 40 50

History Length

Fig. 3. Performance of Q3 on tables with
variable history length and fixed snapshot size
of 100,000.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ex
ec

. T
im

e(
s)

Snapshot Size (x10000)

original

physical

logical

Fig. 4. Performance on Q3 of tables with
variable snapshot size and fixed history length
50.

The three queries include one table scan (Q1), a traditional
join of the audit log and t-relation (Q2), and a concurrent self
join on the t-relation (Q3).

We measure the query execution time by reporting the
average of 10 runs with the largest and smallest runs omitted.

B. Overhead and Scalability
In our first experiment (shown in Figure 2) we compare

the execution time of each of the three queries for both
physical and logical policy application. The baseline (original)
is the time to compute the audit query without the retention
policy, that is, on the original tables. For the logical and
physical techniques, we also distinguish between the time for
computing certain tuples and possible tuples. The total number
of tuples is one million.

We find that evaluating queries under retention restrictions
has a modest overhead, to be expected from the added clauses
in the queries and the fact that result sizes are increased
because of uncertain tuples. In addition, the logical solution
is uniformly slower that the physical because of the more
complex queries required when policies are composed with
queries. It is worth noting that the certain tuples alone can
be computed more quickly that the original result. This is
because the rewritten query computing certain tuples can
ignore variables and the certain tuple set returned tends to
be smaller than the true result.

These relationships hold when we scale up the size of the
historical data set. Figure 3 shows the execution time of Q3
on the history with fixed snapshot size of 100k when scaling
on history lengths from 1 to 50. Similarly, Figure 4 uses a
fixed history length of 50, and varies the snapshot size from
10k to 100k. That is to say, the total number of tuples in the
data history is up to five million in both cases. Both physical
and logical execution times increase nearly linearly as the total
number of tuples increases in the two graphs. Both techniques
scale at close to the rate of the query on the original data, with
the physical case outperforming the logical.

C. Accuracy of Uncertain Answers
Next we evaluate experimentally the accuracy of audit query

answers under sample retention policies. Over the original
data, an audit query can be considered to partition the set of
all feasible query answers (determined by the active domain)
into answer tuples and disqualified tuples. Under retention

 I

O

ApAc

(a) General case

 I

ApOAc

(b) Guarantee of precision = 1

Fig. 5. Result relationship in Venn Diagram: The answer space is I (the
Largest box) and the original answer are O (shaded box), the certain tuples in
our model are Ac, the possible tuples is Ap (both are boxes with doted-line).

restrictions, audit queries partition the set of feasible answers
into certain answers, possible answers, and disqualified tuples.
Our first measure of accuracy considers this distribution of
answers as a function of the selectivity of the redaction
policies. The second measurement is the precision and recall
of our answers to original ones. Assume the answer space is
I and the true original answer is O, the certain tuples in our
model are Ac, the possible tuples is Ap. Intuitively, we want to
know how large is O∩Ac (fig5(a)) in proportion to O and Ac.
Formally, the precision of certain tuples is defined by O∩Ac

Ac

and the recall of certain tuples is defined O∩Ac
O .

We can also define precision and recall of the impossible
tuples, which may be relevant to auditors since disqualify-
ing answers has value in an investigation. The precision of
impossible tuples is defined (I−Ac−Ap)∩(I−O)

I−O and recall of
impossible tuples is defined (I−Ac−Ap)∩(I−O)

I−Ac−Ap
. Note that if

we consider sound and secret retention policies, as described
in Section III, then the precision of certain and impossible
tuples is always equal to 1, showed in fig5(b), because the
soundness (Prop. 3.8) guarantees Ac ⊆ O and O ⊆ Ac ∪Ap.

The first experiment is performed on Q2, which is a standard
join between the t-relation and the audit log. Since policy R2
is irrelevant to this query, the selectivity is measured by R1.
We vary the time condition in R1 to increase its selectivity,
e.g. 50% indicates that the time condition is half of the history
time. Figure 6 shows the answer distribution. The first bar is
the result without the policy. The true answer, which for Q2
is a set of client names, happens to return 20% of all the
clients in the database. The other 80% are impossible. Under
retention policies we can see the region of possible tuples
grows with the selectivity of the policy. Yet, the certain tuple
set remains close to 20% for reasonable selectivities of up
to 10% − 25%. Figure 7 measures the recall of the certain
and impossible tuples directly for the same query and policy.
The recall for certain tuples decreases rapidly when selectivity

10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

origi 0.001 0.01 0.1 0.25 0.5 0.75
Selectivity

Pe
rc

en
ta

ge
certain possible impossi

Fig. 6. Answer Distribution (Q2)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001 0.01 0.1 0.25 0.5 0.75
Selectivity

Pe
rc

en
ta

ge

recall of certain recall of impossi

Fig. 7. Recall of Answers (Q2)

0

0.2

0.4

0.6

0.8

1

0.01 0.1 0.25 0.5 0.75 0.9 0.99

Pe
rc

en
ta

ge

Selectivity

variable, recall of certain variable, recall of impossi
null, recall of certain null, recall of impossi

Fig. 8. Variables v.s. NULLs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

origi .01 .1 .25 .5 .75 .9 .99 origi .01 .1 .25 .5 .75 .9 .99
Selectivity

Pe
rce

nta
ge

certain possible impossible

Fig. 9. Answer Distribution (Q3)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

.01 .1 .25 .5 .75 .9 .99 .01 .1 .25 .5 .75 .9 .99
Selectivity

Pe
rce

nta
ge

recall of certain recall of impossible

Fig. 10. Recall of Answers (Q3)

is larger than 50%. When selectivity is larger than 10%, we
miss a lot of impossible answers but recall of certain answers
decreases much more slowly.

The second experiment is on Q3 (the concurrent self-
join). We vary the target employee E in the select condition,
choosing a person who joined the company at an earlier or later
time. The results are shown in Figure 9 and 10 (left side for
earlier employee and right side for new employee). The trend
of the answer distribution and recall is quite different from
the last experiment. The percentage of possible tuples, recall
of certain and impossible tuples all have an inflection point as
the selectivity goes up. This is because when the selectivity
is small, fewer variables are introduced to the t-relation so
we can retain a high recall. When the selectivity increases,
the number of variables increases and recall decreases. On the
other end, when selectivity is extremely high, the t-relation
is mostly variables on key attributes. We can still get high
recall since the equivalence among variables can be inferred
accurately. We can get very high accuracy at selectivity 100%.
The difference inside the two settings of this experiment are
inflection point at different selectivity level, which is decided
by attribute dependency of our data.

D. Suppression using variables v. NULLs
In our final experiments we apply redaction policies using

a suppression function that uses NULL values instead of
variables. Figure 8 shows the recall of certain and impossible
tuples on Q3 (with condition on an early employee) compared
with the variable solution. Variables significantly outperform
NULLs. For example, with a selectivity of 25% the recall
of certain tuples is 97% using variables, but just 56% using
NULLs. This is because any two tuples with NULL on the
join column will produce a possible output tuple. With distinct

variable assignments, only identical variables will result in an
output tuple.

VII. RELATED WORK

Retention policies and problems of expiring historical data
have been studied in a variety of contexts. Garcia-Molina
et al. considered expiring tuples from materialized views in
a data warehouse [17]. An administrator can declaratively
request to remove tuples from a view, and the system will
remove as much information as possible as long as it does not
impact views referencing the original view. Toman proposed
techniques for automatically expiring data in a historical data
warehouse while preserving answers to a fixed set of queries
[18]. Skyt et al. consider vacuuming a temporal database [19].
Policies remove entire tuples, and the authors are concerned
with the correctness of vacuum specifications, and mitigating
actions to handle queries referencing missing information. The
above works differ from ours because they do not consider
cell-level removal, do not view the resulting database as an in-
complete history from which possible answers can be derived,
and do not consider an audit log accompanying the history.
Recently, Ataullah et al. [15] considered retention restrictions
on complex business records, which they describe by logical
views over relations. They define protective and destructive
policies, and reduce a number of retention problems to well-
studied relational view problems.

Our redaction policies (especially when implemented log-
ically) are related to fine-grained access control rules. Wang
et al. [20] recently studied the correctness of query answers
under cell-level access control policies, and made an important
connection between that problem and models of incomplete
information. To our knowledge there is little work on access
control over time-varying data. Research into temporal access

11

control models [21] refers to access rights that change over
time, not the problem of negotiating access to data with a time
dimension.

Transaction-time databases have been studied extensively by
the research community including work on query languages
and logical foundations [5], [4], [22], implementation tech-
niques [23], [24], [2], techniques for accommodating time
in standard databases [25], [26], as well as implemented
extensions to existing systems [27]. Jensen studied querying
backlog relations to monitor changes to a database [3]. In-
complete information also has a long history in databases [8],
[28], [10], including in temporal databases. The model of
temporal incompleteness presented by Gadia et al. [9] is more
expressive than ours. It allows for uncertainty about values, as
we do, but also represents certain values whose active period is
uncertain. Despite work on data models and query languages
to support temporal incompleteness, we are not aware of any
implementations of the techniques.

Encrypting audit logs have been widely studied in the
literature [29], [30], [31] with the goal of maintaining the
confidentiality and integrity of log records. The problem in
this paper is to allow auditing under legal deletion of data and
logs.

VIII. CONCLUSIONS & FUTURE WORK

We have presented a framework for limiting access to
historical data, while still permitting auditing. Our redaction
rules hide values but preserve information about the lifetime
of tuples in a database, allowing an auditor to get accurate
answers from the historical record despite the information
removed by retention restrictions. We demonstrated that our
techniques have a modest performance overhead, even when
implemented on a standard relational system, and that the un-
certainty introduced by sample retention policies is acceptable.

Our approach to obscuring values with variables was shown
to substantially improve answer accuracy (as compared with
NULLs). However this scheme can be vulnerable to an insider
attack. Suppose Bob’s salary was 10k at time x but is later
redacted. If Bob has the right to access both his and other
employees’ information, he may find Jack’s salary at time y
is equal to his redacted salary at time x, allowing him to
infer that Jack has salary 10k at time y, in violation of the
redaction policy. Solving this problem requires trading secrecy
for auditing accuracy. In addition, an extension to our model
could generalize or summarize values instead of redacting
them. At a small cost to confidentiality, this could substan-
tially improve auditing capabilities. Finally, a more powerful
model of incompleteness might offer improved soundness and
secrecy properties for sanitized histories, at the expense of
increased query processing complexity. We believe each of
these are promising directions for future work.

Acknowledgments: This material is based upon work
supported by NSF CAREER Grant No. 0643681.

REFERENCES

[1] B. Wrozek, “Electronic Data Retention Policy,” 2001. [Online]. Avail-
able: http://www.sans.org/reading room/whitepapers/backup/514.php

[2] C. S. Jensen, L. Mark, and N. Roussopoulos, “Incremental implementa-
tion model for relational databases with transaction time,” IEEE Trans.
Knowl. Data Eng., vol. 3, no. 4, pp. 461–473, 1991.

[3] C. S. Jensen and L. Mark, “Queries on change in an extended relational
model,” IEEE TKDE, vol. 4, no. 2, pp. 192–200, 1992.

[4] S. K. Gadia, “A homogeneous relational model and query languages
for temporal databases,” ACM Trans. Database Syst., vol. 13, no. 4, pp.
418–448, 1988.

[5] J. Chomicki, “Temporal query languages: a survey,” in Temporal Logic:
ICTL’94, vol. 827, 1994, pp. 506–534.

[6] J. A. Blakeley, N. Coburn, and P.-A. Larson, “Updating derived relations:
detecting irrelevant and autonomously computable updates,” TODS,
vol. 14, no. 3, pp. 369–4000, 1989.

[7] J. A. Blakeley, P.-A. Larson, and F. W. Tompa, “Efficiently updating
materialized views,” SIGMOD Rec., vol. 15, no. 2, pp. 61–71, 1986.

[8] T. Imielinski and W. Lipski, “Incomplete information in relational
databases,” J. ACM, vol. 31, no. 4, pp. 761–791, 1984.

[9] S. K. Gadia, S. S. Nair, and Y.-C. Poon, “Incomplete information in
relational temporal databases,” in 18th VLDB Conference, 1992.

[10] J. Biskup, “A foundation of codd’s relational maybe-operations,” ACM
Trans. Database Syst., vol. 8, no. 4, pp. 608–636, 1983.

[11] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison-Wesley, 1995.

[12] T. Imieliński and J. W. Lipski, “Incomplete information in relational
databases,” J. ACM, vol. 31, pp. 761–791, 1984.

[13] W. Lu and G. Miklau, “Auditguard: A system for database auditing
under retention restrictions,” in VLDB Demo Program, 2008.

[14] J. Skyt, C. Jensen, and L. Mark, “A foundation for vacuuming temporal
databases,” Data & Knowl. Eng., vol. 44, no. 1, pp. 1–29, 2003.

[15] A. Ataullah, “A framework for records management in relational
database systems,” Master’s thesis, University of Waterloo, 2008.

[16] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and
D. DeWitt, “Limiting disclosure in hippocratic databases,” Proc. of 13th
VLDB-Volume 30, pp. 108–119, 2004.

[17] H. Garcia-Molina, W. Labio, and J. Yang, “Expiring data in a ware-
house,” in Conference on VLDB, 1998, pp. 500–511.

[18] D. Toman, “Expiration of historical databases,” in Symposium on Tem-
poral Representation and Reasoning (TIME), 2001, pp. 128–135.

[19] J. Skyt, C. S. Jensen, and L. Mark, “A foundation for vacuuming
temporal databases,” Data Knowl. Eng., vol. 44, no. 1, pp. 1–29, 2003.

[20] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J.-W. Byun,
“On the correctness criteria of fine-grained access control in relational
databases,” in VLDB, 2007, pp. 555–566.

[21] E. Bertino, C. Bettini, and P. Samarati, “A temporal authorization
model,” in ACM CCS, 1994, pp. 126–135.

[22] R. T. Snodgrass, The TSQL2 Temporal Query Language. Norwell, MA,
USA: Kluwer Academic Publishers, 1995.

[23] R. Shaull, L. Shrira, and H. Xu, “Skippy: a new snapshot indexing
method for time travel in the storage manager,” in ACM SIGMOD
Conference, 2008, pp. 637–648.

[24] D. B. Lomet, R. S. Barga, M. F. Mokbel, G. Shegalov, R. Wang, and
Y. Zhu, “Transaction time support inside a database engine,” in ICDE,
2006.

[25] R. T. Snodgrass, Developing time-oriented database applications in
SQL. Morgan Kaufmann Publishers Inc., 2000.

[26] N. L. Sarda, “Extensions to sql for historical databases,” IEEE Trans.
Knowl. Data Eng., vol. 2, no. 2, pp. 220–230, 1990.

[27] R. T. Snodgrass and C. S. Collberg, “The τ -MySQL transaction time
support,” Available at www.cs.arizona.edu/tau/tmysql.

[28] G. Grahne, The Problem of Incomplete Information in Relational
Databases, ser. LNCS. Springer, 1991, vol. 554.

[29] B. Schneier and J. Kelsey, “Secure Audit Logs to Support Computer
Forensics,” ACM Trans. Inf. Syst. Secur., vol. 2, no. 2, pp. 159–176,
1999.

[30] R. Snodgrass, S. Yao, and C. Collberg, “Tamper detection in audit logs,”
in 13th VLDB-Volume 30. VLDB Endowment, 2004, pp. 504–515.

[31] B. Waters, D. Balfanz, G. Durfee, and D. Smetters, “Building an
encrypted and searchable audit log,” in NDSS, vol. 6, 2004.

12

