
Graphical-model based estimation and inference for differential privacy

Ryan McKenna 1 Daniel Sheldon 1 2 Gerome Miklau 1

Abstract
Many privacy mechanisms reveal high-level in-
formation about a data distribution through noisy
measurements. It is common to use this informa-
tion to estimate the answers to new queries. In this
work, we provide an approach to solve this estima-
tion problem efficiently using graphical models,
which is particularly effective when the distribu-
tion is high-dimensional but the measurements are
over low-dimensional marginals. We show that
our approach is far more efficient than existing
estimation techniques from the privacy literature
and that it can improve the accuracy and scalabil-
ity of many state-of-the-art mechanisms.

1. Introduction
Differential privacy (Dwork et al., 2006) has become the
dominant standard for controlling the privacy loss incurred
by individuals as a result of public data releases. For com-
plex data analysis tasks, error-optimal algorithms are not
known and a poorly designed algorithm may result in much
greater error than strictly necessary for privacy. Thus, care-
ful algorithm design, focused on reducing error, is an area
of intense research in the privacy community.

For the private release of statistical queries, nearly all recent
algorithms (Zhang et al., 2017; Li et al., 2015; Lee et al.,
2015; Proserpio et al., 2014; Li et al., 2014; Qardaji et al.,
2013b; Nikolov et al., 2013; Hardt et al., 2012; Ding et al.,
2011; Xiao et al., 2010; Li et al., 2010; Hay et al., 2010;
Hardt & Rothblum, 2010; Hardt & Talwar, 2010; Barak
et al., 2007; Gupta et al., 2011; Thaler et al., 2012; Acs et al.,
2012; Zhang et al., 2014; Yaroslavtsev et al., 2013; Cormode
et al., 2012; Qardaji et al., 2013a; McKenna et al., 2018)
include steps within the algorithm where answers to queries
are inferred from noisy answers to a set of measurement
queries already answered by the algorithm.
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Inference is a critical component of privacy mechanisms
because: (i) it can reduce error when answering a query by
combining evidence from multiple related measurements,
(ii) it provides consistent query answers even when measure-
ments are noisy and inconsistent, and (iii) it provides the
above benefits without consuming the privacy-loss budget,
since it is performed only on privately-computed measure-
ments without re-using the protected data.

Consider a U.S. Census dataset, exemplified by the Adult
table, which consists of 15 attributes including age, sex,
race, income, education. Given noisy answers to a set of
measurement queries, our goal is to infer answers to one
or more new queries. The measurement queries might be
expressed over each individual attribute (age), (sex), (race),
etc., as well as selected combinations of attributes (age,
income), (age, race, education), etc. When inference is
done properly, the estimate for a new query (e.g., counting
the individuals with income>=50K, 10 years of education,
and over 40 years old) will use many, or even all, available
measurements.

Current inference methods are limited in both scalability
and generality. Most methods first estimate some model of
the data and then answer new queries using the model. Per-
haps the simplest model is a full contingency table, which
stores a value for every element of the domain. When the
measurements are linear queries (a common case, and our
primary focus) least-squares (Hay et al., 2010; Nikolov et al.,
2013; Li et al., 2014; Qardaji et al., 2013b; Ding et al., 2011;
Xiao et al., 2010; Li et al., 2010) and multiplicative-weight
updates (Hardt & Rothblum, 2010; Hardt et al., 2012) have
both been used to estimate this model from the noisy mea-
surements. New queries can then be answered by direct cal-
culation. However, the size of the contingency table is the
product of the domain sizes of each attribute, which means
these methods break down for high-dimensional cases (or
even a modest number of dimensions with large domains).
In the example above, the full contingency table would con-
sist of 1019 entries. To avoid this, factored models have been
considered (Hardt et al., 2012; Zhang et al., 2017). How-
ever, while scalable, these methods have other limitations
including restricting the query class (Hardt et al., 2012) or
failing to properly account for (possibly varying) noise in
measurements (Zhang et al., 2017).
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In this work we show that graphical models provide a foun-
dation for significantly improved inference. We propose to
use a graphical model instead of a full contingency table
as a model of the data distribution. Doing so avoids an
intractable full materialization of the contingency table and
retains the ability to answer a broad class of queries. We
show that the graphical model representation corresponds
to using a maximum entropy criterion to select a single data
distribution among all distributions that minimize estimation
loss. The structure of the graphical model is determined by
the measurements, such that no information is lost relative to
a full contingency table representation, but when each mea-
surement is expressible over a low-dimensional marginal of
the contingency table, as is common, the graphical model
representation is much more compact.

This work is focused on developing a principled and general
approach to inference in privacy mechanisms. Our method is
agnostic to the loss function used to estimate the data model
and to the noise distribution used to achieve privacy. We
focus primarily on linear measurements, but also describe
an extension to non-linear measurements.

We assume throughout that the measurements are given, but
we show our inference technique is versatile since it can
be incorporated into many existing private query-answering
algorithms that determine measurements in different ways.
For those existing algorithms that scale to high-dimensional
data, our graphical-model based estimation method can
substantially improve accuracy (with no cost to privacy).
Even more importantly, our estimation method can be added
to some algorithms which fail to scale to high-dimensional
data, allowing them to run efficiently in new settings. We
therefore believe our inference method can serve as a basic
building block in the design of new privacy mechanisms.

2. Background and Problem Statement
Data. Our input data represents a population of individuals,
each contributing a single record x = (x1, . . . , xd) where
xi is the ith attribute belonging to a discrete finite domain
Xi of ni possible values. The full domain is X =

∏d
i=1 Xi

and its size n =
∏d

i=1 ni is exponential in the number
of attributes. A dataset X consists of m such records
X = (x(1), . . . ,x(m)). We also consider a normalized con-
tingency table representation p, which counts the fraction
of the population with record equal to x, for each x in the
domain. That is, p(x) = 1

m

∑m
i=1 I{x(i) = x},∀x ∈ X ,

where I{·} is an indicator function. Thus p is a probability
vector in Rn with index set X (ordered lexicographically).
We write p = pX when it is important to denote the depen-
dence on X.

Queries, Marginals, and Measurements. We focus on
the most common case of linear queries expressed over

subsets of attributes. We will describe an extension to a
generalized class of queries, including non-linear ones, in
Section 3.1. A linear query set fQ(X) is defined by a query
matrix Q ∈ Rr×n and has answer fQ(X) = Q pX. The
ith row of Q, denoted qT

i represents a single scalar-valued
query. In most cases we will refer unambiguously to the
matrix Q, as opposed to fQ, as the query set. We often
consider query sets that can be expressed on a marginal
(over a subset of attributes) of the probability vector p. Let
A ⊆ [d] identify a subset of attributes and, for x ∈ X , let
xA = (xi)i∈A be the sub-vector of x restricted to A. Then
the marginal probability vector (or simply “marginal on A”)
µA, is defined by:

µA(xA) =
1

m

m∑
i=1

I{x(i)
A = xA}, ∀xA ∈ XA :=

∏
i∈A
Xi.

The size of the marginal is nA := |XA| =
∏

i∈A ni, which
is exponential in |A| but may be considerably smaller than n.
Note that µA(xA) is a linear function of p, so there exists
a matrix MA ∈ RnA×n such that µA = MAp. When
a query set depends only on the marginal vector µA, we
call it a marginal query set written as QA ∈ RrA×nA , and
with answer fQA

(X) = QA µA. The marginal query set
QA is equivalent to the query set Q = QAMA on the
full contingency table, since QAµA = (QAMA)p. One
marginal query set asks for the marginal vector itself, in
which case QA = InA×nA

(the identity matrix).

In our problem formulation, we consider measurements con-
sisting of a collection of marginal query sets. Specifically,
let C be a collection of measurement sets, where each C ∈ C
is a subset of [d].1 For each measurement set C ∈ C, we
are given a marginal query set QC . The following nota-
tion is helpful to refer to combined measurements and their
marginals. Let µ = (µC)C∈C be the combined vector of
marginals, and let QC be the block-diagonal matrix with
diagonal blocks {QC}C∈C , so that the entire set of query
answers can be expressed as QCµ. Finally, let MC be the
matrix that vertically concatenates the matrices {MC}C∈C ,
so that µ = MCp and QCµ = QCMCp. This shows that
our measurements are equivalent to the combined query set
Q = QCMC applied to the full table p.

Differential privacy. Differential privacy protects individ-
uals by bounding the impact any one individual can have on
the output of an algorithm.

Definition 1 (Differential Privacy; Dwork et al., 2006). A
randomized algorithm A satisfies (ε, δ)-differential privacy
if for any input X, any X′ ∈ nbrs(X), and any subset of
outputs S ⊆ Range(A),

Pr[A(X) ∈ S] ≤ exp(ε) Pr[A(X′) ∈ S] + δ

1Later, these will comprise the cliques of a graphical model, as
the notation suggests.
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Above, nbrs(X) denotes the set of datasets formed by replac-
ing any x(i) ∈ X with an arbitrary new record x′(i) ∈ X .
When δ = 0 we say A satisfies ε-differential privacy. Dif-
ferentially private answers to fQ are typically obtained with
a noise-addition mechanism, such as the Laplace or Gaus-
sian mechanism. For ε-differential privacy, the noise added
to the output of fQ is determined by the L1 sensitivity
of fQ, which, specialized to linear queries, is defined as
∆Q = maxX,X′∈nbrs(X) ‖Q pX −Q pX′‖1. It is straight-
forward to show that ∆Q = 2

m ‖Q‖1 where ‖Q‖1 is the
maximum L1 norm of the columns of Q.

Definition 2 (Laplace Mechanism; Dwork et al., 2006).
Given a query set Q ∈ Rr×n of r linear queries, the
Laplace mechanism is defined as L(X) = Q pX + z where
z = (z1, . . . , zr) and each zi is an i.i.d. random variable
from Laplace(∆Q/ε).

The Laplace mechanism satisfies ε-differential privacy. The
sequential composition property implies that if we answer
two query sets Q1 and Q2, under ε1 and ε2 differential
privacy, respectively, then the combined answers are (ε1 +
ε2)-differentially private. The post-processing property of
differential privacy (Dwork & Roth, 2014) asserts that post-
processing the output of a differentially private algorithm
(without using the original protected data) does not affect
the privacy guarantee.

Problem Statement. We assume as given a collection C of
measurement sets, and for each C ∈ C: a marginal query
set QC , a privacy parameter εC , and an εC-differentially
private measurement yC = QCµC + Lap(∆QC

/εC). The
combined measurements are y = (yC)C∈C which satisfy
ε-differential privacy for ε =

∑
C∈C εC by sequential com-

position. Note that there is no loss of generality in these
assumptions; in the extreme case, there may be just a single
measurement setC = [d] consisting of all attributes. Formu-
lating the problem this way will allow us to realize computa-
tional savings when measurements are not full-dimensional,
which is common in practice. We also emphasize that the
marginal query set QC is often a complex set of linear
queries expressed over measurement set C (not simply a
marginal). Many past works (Li et al., 2015; 2014; Qar-
daji et al., 2013b; Nikolov et al., 2013; Ding et al., 2011;
Xiao et al., 2010; Li et al., 2010; Hay et al., 2010; Barak
et al., 2007) have shown that it is beneficial, in the presence
of noise-addition for privacy, to measure carefully chosen
query sets which balance sensitivity against efficient recon-
struction of the workload queries.

Our goal is: given y, derive answers to (possibly different)
workload queries W. There are multiple possible motiva-
tions: W may include new queries that were not part of
the original measurements; or it is possible that W is a
subset of measurement queries, but we can obtain a more
accurate answer by combining all of the available infor-

mation to estimate Wp as opposed to just using the noisy
answer directly. We describe an extension to non-linear
queries in Section 3.1; this will be applied to the DualQuery
algorithm (Gaboardi et al., 2014) in Section 4.

3. Algorithms for Estimation and Inference
What principle can we follow to estimate answers to the
workload query set? Prior work takes the approach of first
using all available information to estimate a full contingency
table p̂ ≈ p and then using p̂ to answer later queries (Hay
et al., 2010; Li et al., 2010; Ding et al., 2011; Qardaji et al.,
2013b; Lee et al., 2015). We will call finding p̂ estimation,
and using p̂ to answer new queries inference.

3.1. Optimization Formulation

The standard framework for estimation and inference is:

p̂ ∈ argmin
p∈S

L(p), (estimation)

fW(X) ≈W p̂. (inference)

Here S =
{
p : p ≥ 0,1Tp = 1

}
is the probability

simplex and L(p) is a loss function that measures how
well p explains the observed measurements. In past works,
L(p) = ‖Qp− y‖ has been used as a loss function, where
Q is the measured query set and ‖·‖ is either the L1 norm
or L2 norm. Minimizing the L1 norm is equivalent to maxi-
mum likelihood estimation when the noise comes from the
Laplace mechanism (Lee et al., 2015). Minimizing the L2

norm is far more common in the literature however, and
it is also the maximum likelihood estimator for Gaussian
noise (Hay et al., 2010; Nikolov et al., 2013; Li et al., 2014;
Qardaji et al., 2013b; Ding et al., 2011; Xiao et al., 2010; Li
et al., 2010; McKenna et al., 2018). Our method supports
both of these loss functions; we only require that L is con-
vex. Both of these loss functions are easily adapted to the
situation where queries in Q may be measured with differ-
ing degrees of noise. The constraint p ∈ S may also be
relaxed, which simplifies L2 minimization; additionally, un-
der different assumptions and an alternate version of privacy,
the number of individuals may not be known. All existing
algorithms to solve these variations of the estimation prob-
lem suffer from the same problem: they do not scale to high
dimensions since the size of p is exponential in d and we
have to construct it explicitly as an intermediate step even
if the inputs and outputs are small (e.g., all measurement
queries are over low-dimensional marginals).

Optimization in Terms of Marginals. For marginal query
sets, a loss function will typically depend on p only through
its marginals µ. For example, when Q = QCMC we have
L(p) = ‖Qp− y‖ = ‖QCµ− y‖ = L(µ) where we now
write the loss function asL(µ). More generally, we will con-
sider any loss function that only depends on the marginals.
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A very general case is when L(µ) = − log p(y | µ) is
the negative log-likelihood of any differentially private al-
gorithm that produces output y that depends only on the
marginal vector µ (see our treatment of DualQuery in Sec-
tion 4).

The marginal vector µ may be much lower dimensional
than p. How can we take advantage of this fact? An “ob-
vious” idea would be to modify the optimization to esti-
mate only the marginals as µ̂ ∈ argminµ∈M L(µ), where
M =

{
µ : ∃p ∈ S s.t. MCp = µ} is the marginal poly-

tope, which is the set of all valid marginals. There are two
issues here. First, the marginal polytope has a complex
combinatorial structure, and, although it is a convex set, it
is generally not possible to enumerate its constraints for
use with standard convex optimization algorithms. Note
that this optimization problem is in fact a generic convex
optimization problem over the marginal polytope, and as
such it generalizes standard graphical model inference prob-
lems (Wainwright & Jordan, 2008). Second, after finding
µ̂ it is not clear how to answer new queries, unless they
depend only on some measured marginal µC .

Graphical Model Representation. After finding an opti-
mal µ̂we want to answer new queries that do not necessarily
depend directly on the measured marginals. To do this we
need to identify a distribution p̂ that has marginals µ̂, and
we must have a tractable representation of this distribution.
Also, since there may be many p̂ that give rise to the same
marginals, we want a principled criteria to choose a single
estimate, such as the principle of maximum entropy. We
accomplish these goals using undirected graphical models.

A graphical model represents a high-dimensional distribu-
tion as a product of factors φC defined on attribute subsets,
i.e., p(x) =

∏
C∈C φC(xC). A factored representation is

often much more compact than an explicit one and facil-
itates efficient computation of marginals (Koller & Fried-
man, 2009). We use a log-linear form with parameters
θC(xC) = logφC(xC).

Definition 3 (Graphical model). Let pθ(x) =
1
Z exp

(∑
C∈C θC(xC)

)
be a normalized distribu-

tion, where θC ∈ RnC . This distribution is a graphical
model that factors over the measurement sets C, which
are the cliques of the graphical model. The vector
θ = (θC)C∈C is the parameter vector.

Theorem 1 (Maximum entropy (Wainwright & Jordan,
2008)). Given any µ̂ in the interior of M there is a pa-
rameter vector θ̂ such that the graphical model pθ̂(x) has
maximum entropy among all p̂(x) with marginals µ̂.2

2If the marginals are on the boundary of M, e.g., if they
contain zeros, there is a sequence of parameters {θ(n)} such
that pθ(n)(x) converges to the maximum-entropy distribution as
n→∞. See (Wainwright & Jordan, 2008).

Algorithm 1 Proximal Estimation Algorithm

Input: Loss function L(µ) between µ and y
Output: Estimated data distribution p̂θ
θ = 0
for t = 1, . . . , T do
µ =MARGINAL-ORACLE(θ)
θ = θ − ηt∇L(µ)

end for
return p̂θ

Theorem 1 says that, after finding µ̂, we can obtain a fac-
tored representation of the maximum-entropy distribution
with these marginals by finding the graphical model parame-
ters θ̂. This is the problem of learning in an graphical model,
which is well understood (Wainwright & Jordan, 2008).

3.2. Estimation: optimizing over the marginal polytope

We need algorithms to find µ̂ and θ̂. We considered a variety
of algorithms and present two of them here. Both are proxi-
mal algorithms for solving convex problems with “simple”
constraints (Parikh et al., 2014). Central to our algorithms
is a subroutine MARGINAL-ORACLE, which is some
black-box algorithm for computing the clique marginals
µ of a graphical model from the parameters θ. This is
the problem of marginal inference in a graphical model.
MARGINAL-ORACLE may be any marginal inference rou-
tine — we use belief propagation on a junction tree. In the
remainder of this section, we assume that the clique set C
are the cliques of a junction tree. This is without loss of
generality, since we can enlarge cliques as needed until this
property is satisfied.

Algorithm 1 is a routine to find µ̂ by solving a convex op-
timization problem over the marginal polytope. Due to the
special structure of the algorithm it also finds the parameters
θ̂. Algorithm 1 is inspired by the entropic mirror descent
algorithm for solving convex optimization problems over
the probability simplex (Beck & Teboulle, 2003). The it-
erates of the optimization are obtained by solving simpler
optimization problems of the form:

µt+1 = argmin
µ∈M

µT∇L(µt) +
1

ηt
D(µ,µt) (1)

where D is a Bregman divergence that is chosen to reflect
the geometry of the marginal polytope. Here we use the fol-
lowing Bregman divergence generated from the Shannon en-
tropy: D(µ,µt) = −H(µ)+H(µt)+(µ−µt)T∇H(µt),
where H(µ) is the Shannon entropy of the graphical model
pθ with marginals µ. Since we assumed above that µ are
marginals of the cliques of a junction tree, the Shannon
entropy is convex and easily computed as a function of µ
alone (Wainwright & Jordan, 2008).3

3An alternative would be to use the Bethe entropy as in (Vilnis
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With this divergence, the objective of the subproblem in
Equation 1 can be seen to be equal to a variational free en-
ergy, which is minimized by marginal inference in a graphi-
cal model. The full derivation is provided in the supplement.
The implementation of Algorithm 1 is very simple — it
simply requires calling MARGINAL-ORACLE at each iter-
ation. Additionally, even though the algorithm is designed
to find the optimalµ, it also returns the corresponding graph-
ical model parameters θ “for free” as a by-product of the
optimization. This is evident from Algorithm 1: upon con-
vergence,µ is the vector of marginals of the graphical model
with parameters θ. The variable ηt in this algorithm is a step
size, which can be constant, decreasing, or found via line
search. This algorithm is an instance of mirror descent, and
thus inherits its convergence guarantees. It will converge for
any convex loss function L at a O(1/

√
t) rate,4 even ones

that are not smooth, such as the L1 loss.

We now present a related algorithm which is based on
the same principles as Algorithm 1 but has an improved
O(1/t2) convergence rate for convex loss functions with
Lipchitz continuous gradients. Algorithm 2 is based on
Nesterov’s accelerated dual averaging approach (Nesterov,
2009; Xiao, 2010; Vilnis et al., 2015). The per-iteration
complexity is the same as Algorithm 1 as it requires calling
the MARGINAL-ORACLE once, but this algorithm will
converge in fewer iterations. Algorithm 2 has the advan-
tage of not requiring a step size to be set, but it requires
knowledge of the Lipchitz constant of ∇L. For the stan-
dard L2 loss with linear measurements, this is equal to the
largest eigenvalue of QTQ. The derivation of this algorithm
appears in the supplement.

3.3. Inference

Once p̂θ has been estimated, we need algorithms to answer
new queries without materializing the full contingency table
representation. This corresponds to the problem of inference
in a graphical model. If the new queries only depend on
p̂θ through its clique marginals µ, we can immediately an-
swer them using MARGINAL-ORACLE, or by saving the
final value of µ from Algorithms 1 or 2. If the new queries
depend on some other marginals outside of the cliques of
the graphical model, we instead use the variable elimination
algorithm (Koller & Friedman, 2009) to first compute the
necessary marginal, and then answer the query. In Section
B of the supplement, we present a novel inference algorithm
that is related to variable elimination but is faster for answer-
ing certain queries because it does not need to materialize

et al., 2015). The Bethe entropy is convex and computable from
µ alone regardless of the model structure. Using Bethe entropy
would lead to approximate marginal inference instead of exact
marginal inference as the subproblems, which is an interesting
direction for future work.

4That is, L(µt)− L(µ∗) ∈ O(1/
√
t).

Algorithm 2 Accelerated Proximal Estimation Algorithm

Input: Loss function L(µ) between µ and y
Output: Estimated data distribution p̂θ
K = Lipchitz constant of∇L
ḡ = 0
ν,µ =MARGINAL-ORACLE(0)
for t = 1, . . . , T do
c = 2

t+1
ω = (1− c)µ+ cν
ḡ = (1− c)ḡ + c∇L(ω)

θ = −t(t+1)
4K ḡ

ν =MARGINAL-ORACLE(θ)
µ = (1− c)µ+ cν

end for
return graphical model p̂θ with marginals µ

full marginals if the query does not need them. For more
complicated downstream tasks, we can generate synthetic
data by sampling from p̂θ , although this should be avoided
when possible as it introduces additional sampling error.

4. Use in Privacy Mechanisms
Next we describe how our estimation algorithms can im-
prove the accuracy and/or scalability of four state-of-the-art
mechanisms: MWEM, PrivBayes, HDMM, and DualQuery.

MWEM. The multiplicative weights exponential mecha-
nism (Hardt et al., 2012) is an active-learning style algo-
rithm that is designed to answer a workload of linear queries.
MWEM maintains an approximation of the data distribution
and at each time step selects the worst approximated query
qT
i from the workload via the exponential mechanism (Mc-

Sherry & Talwar, 2007). It then measures the query using
the Laplace mechanism as yi = qT

i p + zi and then updates
the approximate data distribution by incorporating the mea-
sured information using the multiplicative weights update
rule. The most basic version of MWEM represents the ap-
proximate data distribution in vector form, and updates it
according to the following formula after each iteration:

p̂← p̂� exp (−qi(q
T
i p̂− yi)/2m)/Z, (2)

where � is elementwise multiplication and Z is a normal-
ization constant.

It is infeasible to represent p explicitly for high-dimensional
data, so this version of MWEM is only applicable to rel-
atively low-dimensional data. Hardt et al describe an en-
hanced version of MWEM, which we call factored MWEM,
that is able to avoid materializing this vector explicitly, in
the special case when the measured queries decompose
over disjoint subsets of attributes. In that case, p is repre-
sented implicitly as a product of independent distributions
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over smaller domains, i.e., p(x) =
∏

C∈C pC(xC), and the
update is done on one group at a time. However, this en-
hancement breaks down for measurements on overlapping
subsets of attributes in high-dimensional data, so MWEM is
still generally infeasible to run except on simple workloads.

We can replace the multiplicative weights update with a call
to Algorithm 2 using the standard L2 loss function (on all
measurements up to that point in the algorithm). By doing
so, we learn a compact graphical model representation of p̂,
which avoids materializing the full p vector even when the
measured queries overlap in complicated ways. This allows
MWEM to scale better and run in settings where it was pre-
viously infeasible. Our efficient version of MWEM gives
solutions that are identical to a commonly used MWEM vari-
ant. The MWEM update (Equation 2) is closely related to
the entropic mirror descent update (Beck & Teboulle, 2003),
and, if iterated until convergence (as is done in practice),
solves the same L2 minimization problem that we consider.
More details are given in Section E.2 of the supplement.

PrivBayes. PrivBayes (Zhang et al., 2017) is a differen-
tially private mechanism that generates synthetic data. It
first spends half the privacy budget to learn a Bayesian net-
work structure that captures the dependencies in the data,
and then uses the remaining privacy budget to measure
the statistics—which are marginals—necessary to learn the
Bayesian network parameters. PrivBayes uses a heuristic
of truncating negative entries of noisy measurements and
normalizing to get conditional probability tables. It then
samples a synthetic dataset of m records from the Bayesian
network from which consistent answers to workload queries
can be derived. While this is simple and efficient, the heuris-
tic does not properly account for measurement noise and
sampling may introduce unnecessary error.

We can replace the PrivBayes estimation and sampling step
with a call to Algorithm 2, using an appropriate loss func-
tion (e.g. L1 or L2), to estimate a graphical model. Then
we can answer new queries by performing graphical model
inference (Section 3.3), rather than using synthetic data.

HDMM. The high-dimensional matrix mechanism
(McKenna et al., 2018) is designed to answer a workload
of linear queries on multi-dimensional data. It selects the
measurements that minimize expected error on the input
workload, which are then answered using the Laplace mech-
anism, and inconsistencies resolved by solving an ordinary
least squares problem of the form: p̂ = argmin ‖Qp− y‖2.
Solving this least squares problem is the main bottleneck
of HDMM, as it requires materializing the data vector even
when Q contains queries over the marginals of p.

We can replace the HDMM estimation procedure with Al-
gorithm 2, using the same L2 loss function. If the work-
load contains queries over low-dimensional marginals of p,

then Q will contain measurements over the low-dimensional
marginals too. Thus, we replace the full “probability” vector
p̂ with a graphical model p̂θ. Also p̂ may contain nega-
tive values and need not sum to 1 since HDMM solves an
ordinary (unconstrained) least squares problem.

DualQuery. DualQuery (Gaboardi et al., 2014) is an itera-
tive algorithm inspired by the same two-player game under-
lying MWEM. It generates synthetic data to approximate
the true data on a workload of linear queries. DualQuery
maintains a distribution over the workload queries that de-
pends on the true data so that poorly approximated queries
have higher probability mass. In each iteration, samples are
drawn from the query distribution, which are proven to be
differentially private. The sampled queries are then used to
find a single record from the data domain (without accessing
the protected data), which is added to the synthetic database.

The measurements — i.e., the random outcomes from the
privacy mechanism — are the queries sampled in each itera-
tion. Even though these are very different from the linear
measurements we have primarily focused on, we can still
express the log-likelihood as a function of p and select p to
maximize the log-likelihood using Algorithm 1 or 2. The
log-likelihood only depends on p through the answers to the
workload queries. If the workload can be expressed in terms
of µ instead, the log-likelihood can as well. Thus, after run-
ning DualQuery, we can call Algorithm 1 with this custom
loss function to estimate the data distribution, which we can
use in place of the synthetic data produced by DualQuery.
The full details are given in the supplementary material.

5. Experimental Evaluation
In this section, we measure the accuracy and scalability
improvements enabled by probabilistic graphical-model
(PGM) based estimation when it is incorporated into ex-
isting privacy mechanisms.

5.1. Adding PGM estimation to existing algorithms

We run four algorithms: MWEM, PrivBayes, HDMM, and
DualQuery, with and without our graphical model technol-
ogy using a privacy budget of ε = 1.0 (and δ = 0.001 for
DualQuery). We run Algorithm 1 with line search for Dual-
Query and Algorithm 2 for the other mechanisms, each for
10000 iterations. We repeat each experiment five times and
report the median workload error. Experiments are done
on 2 cores of a single compute cluster node with 16 GB of
RAM and 2.4 GHz processors.

We use a collection of four datasets in our experiments, sum-
marized in Table 1. Each dataset consists of a collection
of categorical and numerical attributes (with the latter dis-
cretized into 100 bins). The domain of each dataset is very
large, which makes efficient estimation challenging.
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Figure 1: Workload error of four mechanisms on four datasets, with and without our PGM estimation algorithm for ε = 1.0.

Table 1: Datasets used in experiments along with the number
of queries in the workload used with the dataset.

Dataset Records Attributes Domain Queries
Titanic 1304 9 3e8 4851
Adult 48842 15 1e19 62876
Loans 42535 48 5e80 362201
Stroke 19434 110 4e104 17716

For each dataset, we construct a workload of counting
queries which is an extension of the set of three-way
marginals. First, we randomly choose 15 subsets of at-
tributes of size 3, C. For each subset C ∈ C, if C con-
tains only categorical attributes, we define sub-workload
WC to be a 3-way marginal. However, when C contains
any discretized numerical attributes, we replace the set of
unit queries used in a marginal with the set of prefix range
queries. For example, if C = 〈sex, education, income〉 then
the resulting subworkload WC would consist of all queries
of the form: sex = x, education = y, income ∈ [0, z] where
x, y, z range over the domains of the attributes, respectively.
The final workload is the union of the 15 three-way sub-
workloads defined above.

We measure the error on the workload queries as:

Error =
1

|C|
∑
C∈C

‖WCµC −WCµ̂C‖1
2 ‖WCµC‖1

where the summand is related to the total variation distance
(and is equal in the special case when WC = I).

Improved accuracy. PrivBayes and DualQuery are highly
scalable algorithms supporting the large domains considered
here. Figures 1a and 1b show that incorporating PGM
estimation significantly improves accuracy. For PrivBayes,
workload error is reduced by a factor of 6× and 7× on the
Loans and Stroke datasets, respectively, and a modest 30%
for Adult. For DualQuery, we also observe very significant
error reductions of 1.2×, 1.8×, 3.5×, and 4.4×.

Replacing infeasible estimation methods. The MWEM
and HDMM algorithms fail to run on the datasets and work-
loads we consider because both require representations too

large to maintain in memory. However, incorporating PGM
estimation makes these algorithms feasible.

As Figure 1c shows, for the first three datasets, MWEM
crashed before completing because it ran out of memory or
timed out. For example, on one run of the Adult dataset, the
first three chosen queries were on the 〈race, native-country,
income〉, 〈workclass, race, capital-gain〉, and 〈marital status,
relationship, capital-gain〉marginals. Since these all overlap
with respect to race and capital-gain, factored MW offers
no benefit and the entire vector pC must be materialized
over these attributes, which requires over 100 MB. After 5
iterations, the representation requires more than 2 GB, at
which point it timed out. Interestingly, MWEM was able
to run on the Stroke dataset, which has the largest domain
and greatest number of attributes. This is mainly because
the workload did not contain as many queries involving
common attributes. In general, MWEM’s representation
remains feasible as long as the workload (and therefore its
measurements) consists solely of queries defined over low-
dimensional marginals that do not have common attributes.
Unfortunately this imposes a serious restriction on the work-
loads MWEM can support. Note that the error on Stroke is
identical for MWEM and MWEM+PGM — this is because
both are based on the same underlying estimation problem.

Although the HDMM algorithm fails to run, for the purpose
of comparison, we run a modified version of the algorithm
(denoted HDMM+LLS) which uses local least squares inde-
pendently over each measurement set instead of global least
squares over the full data vector. While scalable, Figure 1d
shows that this estimation is substantially worse than PGM
estimation, especially on the Titanic and Loans dataset. In-
corporating PGM estimation offers error reductions of 6.6×,
3.2×, 27×, and 6.3×. These improvements primarily stem
from non-negativity and global consistency.

Varying epsilon. While ε is set to 1 in Figure 1, in Figure
2a we look at the impact of varying ε, for a fixed dataset
and measurement set. We use the Adult dataset and the mea-
surements selected by HDMM, (which do not depend on
ε). The magnitude of the improvement offered by our PGM
estimation algorithm increases as ε decreases. At ε = 0.3
and below, the mechanism has virtually no utility without
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Figure 2: (a) Error of HDMM variants on Adult as a function
of ε. (b) Scalability of estimation algorithms.

PGMs. At the highest ε of 10.0, HDMM+LLS actually
offers slightly lower error than HDMM+PGM on the work-
load, although both have very low error in an absolute sense.
The error of HDMM+PGM on the measurements is still bet-
ter by more than a factor of three at this privacy level. This
behavior has been observed before in the low-dimensional
setting, where the ordinary least squares estimator general-
izes better than the non-negative least squares estimator for
workloads with range queries (Li et al., 2015).

5.2. The scalability of PGM estimation

We now evaluate the scalability of our approach compared
with two other general-purpose estimation techniques: mul-
tiplicative weights (MW; Hardt et al., 2012) and iterative or-
dinary least squares (LSMR; Fong & Saunders, 2011, Zhang
et al., 2018). We omit from comparison PrivBayes estima-
tion and DualQuery estimation because they are special-
purpose estimation methods that cannot handle arbitrary
linear measurements. We use synthetic data so that we
can systematically vary the domain size and the number of
attributes. We measure the marginals for each triple of adja-
cent attributes — i.e., QC = I for all C = (i, i+ 1, i+ 2)
where 1 ≤ i ≤ d − 2. In Figure 2b, we vary the number
of attributes from 3 to 1000 (fixing the domain of each at-
tribute, |Xi| at 10), and plot the time per iteration of each of
these estimation algorithms. Both MW and LSMR fail to
scale beyond datasets with 10 attributes, as they both require
materializing p in vector form, while PGM easily scales to
datasets with 1000 attributes.

The domain size is the primary factor that determines
scalability of the baseline methods. However, the scal-
ability of PGM primarily depends on the complexity of
the measurements taken. In the experiment above, the
measurements were chosen to highlight a case where
PGM estimation scales very well. In general, when the
graphical model implied by the measurements has high
tree-width, our methods will have trouble scaling, as
MARGINAL-ORACLE is computationally expensive. In
these situations, MARGINAL-ORACLE may be replaced
with an approximate marginal inference algorithm, like
loopy belief propagation (Wainwright & Jordan, 2008).

6. Related Work
The release of linear query answers has been extensively
studied by the privacy community (Zhang et al., 2017; Li
et al., 2015; Zhang et al., 2014; Li et al., 2014; Gaboardi
et al., 2014; Yaroslavtsev et al., 2013; Qardaji et al., 2013b;
Nikolov et al., 2013; Thaler et al., 2012; Hardt et al., 2012;
Cormode et al., 2012; Acs et al., 2012; Gupta et al., 2011;
Ding et al., 2011; Xiao et al., 2010; Li et al., 2010; Hay et al.,
2010; Hardt & Talwar, 2010; Barak et al., 2007; McKenna
et al., 2018; Eugenio & Liu, 2018). Early work using infer-
ence includes (Barak et al., 2007; Hay et al., 2010; Williams
& McSherry, 2010), motivated by consistency as well as
potential accuracy improvements. Inference has since been
widely used in techniques for answering linear queries (Lee
et al., 2015). These mechanisms often contain custom spe-
cialized inference algorithms that exploit properties of the
measurements taken, and can be replaced by our algorithms.

(Williams & McSherry, 2010) introduce the problem of find-
ing posterior distributions over model parameters from the
output of differentially private algorithms. Their problem
formulation requires a known model parameterization and a
prior distribution over the parameter space. Their approach
requires approximating a high-dimensional integral, which
they do either by Markov chain Monte Carlo, or by upper
and lower bounds via the “factored exponential mechanism”.
In the discrete data case, these bounds require summing over
the data domain, which is just as hard as materializing p
and is not feasible for high-dimensional data.

(Bernstein et al., 2017) consider the task of privately learn-
ing the parameters of an undirected graphical model. They
do so by releasing noisy sufficient statistics using the
Laplace mechanism, and then using an expectation max-
imization algorithm to learn model parameters from the
noisy sufficient statistics. Their work shares some technical
similarities with ours, but the aims are different. They have
the explicit goal of learning a graphical model whose struc-
ture is specified in advance and used to determine the mea-
surements. Our goal is to find a compact representation of
some data distribution that minimizes a loss function where
the measurements are determined externally; the graphical
model structure is a by-product of the measurements made
and the maximum entropy criterion.

(Chen et al., 2015) consider the task of privately releasing
synthetic data. Their mechanism is similar to PrivBayes,
but it uses undirected graphical models instead of Bayesian
networks. It finds a good model structure using a mutual
information criteria, then measures the sufficient statistics
of the model (which are marginals) and post-processes them
to resolve inconsistencies. This post-processing is based on
a technique developed by (Qardaji et al., 2014) that ensures
all measured marginals are internally consistent, and may
be improved with our methods.
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A. Estimation
Define µ(θ) to be the marginals of the graphical model
with parameters θ, which may be computed with the
MARGINAL-ORACLE.

A.1. Proximal Algorithm Derivation

Our goal is to solve the following optimization problem:

µ̂ = argmin
µ∈M

L(µ)

where L is some convex function such as ‖QCµ− y‖.

Using the mirror descent algorithm (Beck & Teboulle, 2003),
we can use the following update equation:

µt+1 = argmin
µ∈M

µT∇L(µt) +
1

ηt
D(µ,µt)

Where D is a Bregman distance measure defined as

D(µ,µt) = ψ(µ)− ψ(µt)− (µ− µt)T∇ψ(µt)

for some strongly convex and continuously differentiable
function ψ. Using ψ = −H to be the negative entropy, we
arrive at the following update equation:

µt+1 = argmin
µ∈M

µT∇L(µt) +
1

ηt
D(µ,µt)

= argmin
µ∈M

µT∇L(µt) +
1

ηt

(
−H(µ) + µT∇H(µt)

)
= argmin

µ∈M
µT
(
∇L(µt) +

1

ηt
∇H(µt)

)
− 1

ηt
H(µ)

= argmin
µ∈M

µT
(
ηt∇L(µt) +∇H(µt)

)
−H(µ)

= argmin
µ∈M

µT
(
ηt∇L(µt)− θt

)
−H(µ)

= µ
(
θt − ηt∇L(µt)

)
The first four steps are simple algebraic manipulation of
the mirror descent update equation. The final two steps
use the observation that∇H(µt) = −θt and that marginal
inference can be cast as the following optimization problem:
(Wainwright & Jordan, 2008; Vilnis et al., 2015)

µ(θ) = argmin
µ∈M

−µTθ −H(µ)

Thus, optimization over the marginal polytope is reduced
to computing the marginals of a graphical model with pa-
rameters θt− ηt∇L(µt), which can be accomplished using
belief propagation or some other MARGINAL-ORACLE.

A.2. Accelerated Proximal Algorithm Derivation

The derivation of the accelerated proximal algorithm is sim-
ilar. It is based on Algorithm 3 from (Xiao, 2010). Applied
to our setting, step 4 of that algorithm requires solving the
following problem:

νt = argmin
µ∈M

µT ḡ − 4K

t(t+ 1)
H(µ)

= argmin
µ∈M

t(t+ 1)

4K
µT ḡ −H(µ)

= µ
(
− t(t+ 1)

4L
ḡ
)

which we solve by using the MARGINAL-ORACLE.

A.3. Direct Optimization

In preliminary experiments we also evaluated a direct
method to solve the optimization problem. For the direct
method, we estimate the parameters θ̂ directly by refor-
mulating the optimization problem and instead solving the
unconstrained problem θ̂ = argminθ L

(
µ(θ)

)
.To evaluate

the optimization objective, we use MARGINAL-ORACLE
to compute µ(θ) and then compute the loss. For opti-
mization, it has been observed that it is possible to back-
propagate through marginal inference procedures (with
or without automatic differentiation software) to com-
pute their gradients (Eaton & Ghahramani, 2009; Domke,
2013). We apply automatic differentiation to the entire for-
ward computation (Maclaurin et al., 2015), which includes
MARGINAL-ORACLE, to compute the gradient of L.

Since this is now an unconstrained optimization problem
and we can compute the gradient of L, many optimization
methods apply. In our experiments, we use L2 loss, which
is smooth, and apply the L-BFGS algorithm for optimiza-
tion (Byrd et al., 1995).

However, despite its simplicity, there is a significant draw-
back to the direct algorithm. It is not, in general, convex
with respect to θ. This may seem surprising since the origi-
nal problem is convex, i.e., L(µ) is convex with respect to
µ andM is convex. Also, the most well known problem
of this form, maximum-likelihood estimation in graphical
models, is convex with respect to θ (Wainwright & Jor-
dan, 2008); however, this relies on properties of exponential
families that do not apply to other loss functions. One can
verify for losses as simple as L2 that the Hessian need not
be positive definite. As a result, the direct algorithm is not
guaranteed to converge to a global minimum of the origi-
nal convex optimization problem minµ∈M L(µ). We did
not observe convergence problems in our experiments, but
it was not better in practice than the proximal algorithms,
which is why it is not included in the paper.
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Algorithm 3 Inference for Factored Queries

Input: Parameters θ, factored query matrix Q
Output: Query answers Q pθ
ψ = {exp(θC) | C ∈ C} ∪ {Qi | i ∈ [d]}
Z =MARGINAL-ORACLE(θ)
return VARIABLE-ELIM(ψ,X )/Z

B. Inference
We now discuss how to exploit our compact factored repre-
sentation of pθ to answer new linear queries. We give an
efficient algorithm for answering factored linear queries.

Definition 4 (Factored Query Matrix). A factored query
matrix Q has columns that are indexed by x and rows that
are indexed by vectors z ∈ [r1]×· · ·×[rd]. The total number
of rows (queries) is r =

∏d
i=1 ri. The entries of Q are given

by Q(z,x) =
∏d

i=1 Qi(zi,xi), where Qi ∈ Rri×ni is a
specified factor for the ith attribute. The matrix Q can be
expressed as Q = Q1⊗· · ·⊗Qd, where⊗ is the Kronecker
product.

Factored query matrices are expressive enough to encode
any conjunctive query (or a cartesian product of such
queries), and more. There are a number of concrete exam-
ples that demonstrate the usefulness of answering queries
of this form, including:

• Computing the marginal µC for any C ⊆ [d] (including
unmeasured marginals).

• Computing the multivariate CDF of µC for any C ⊆ [d].
• Answering range queries.
• Compressing the distribution by transforming the domain.
• Computing the (unnormalized) expected value of one

variable conditioned on other variables.

For the first two examples, we could have used standard
variable elimination to eliminate all variables except those
in C. Existing algorithms are not able to handle the other
examples without materializing p̂ (or a marginal that sup-
ports the queries). Thus, our algorithm generalizes variable
elimination. A more comprehensive set of examples, and
details on how to construct these query matrices are given
in section B.1

The procedure for answering these queries is given in Algo-
rithm 3, which can be understood as follows. For a particular
z, write f(z,x) = Q(z,x)pθ(x) =

∏
i Qi(zi,xi)pθ(x).

This can be viewed as an augmented graphical model on the
variables z and x where we have introduced new pairwise
factors between each (xi, zi) pair defined by the query ma-
trix. Unlike a regular graphical model, the new factors can
contain negative values. The query answers are obtained by
multiplying Q and p, which sums over x. The zth answer

is given by:

(Qpθ)(z) =
∑
x∈X

Q(z,x)pθ(x)

=
1

Z

∑
x∈X

d∏
i=1

Qi(zi,xi)
∏
C∈C

exp[θC(xC)]

This can be understood as marginalizing over the x variables
in the augmented model f(z,x). The VARIABLE-ELIM rou-
tine referenced in the algorithm is standard variable elimina-
tion to perform this marginalization; it can handle negative
values with no modification. We stress that, in practice,
factor matrices Qi may have only one row (ri = 1, e.g., for
marginalization); hence the output size r =

∏d
i=1 ri is not

necessarily exponential in d.

B.1. Factored Query Matrices

Table 2 gives some example “building block” factors that
can be used to construct factored query matrices. This
is by no means an exhaustive list of possible factors but
it provides the reader with evidence that answering these
types of queries efficiently is practically useful. The factored
query matrix for computing the marginal µC uses Qi = I
for i ∈ C and Qi = 1 for i /∈ C. Similarly, the factored
query matrix for computing the multivariate CDF of µC

would simply use Qi = P for i ∈ C. A query matrix
for compressing a distribution could be characterized by
functions fi : [ni] → [2] or equivalently binary matrices
Qi = Rfi ∈ R2×ni . The query matrix for computing the
(unnormalized) expected value of variable i conditioned on
variable j would use Qi = E and Qj = I (and Qk = 1
for all other k). These are only a few examples; these
building blocks can be combined arbitrarily to construct a
wide variety of interesting query matrices.

C. Loss Functions
C.1. L1 and L2 losses

The L1 and L2 loss functions have simple (sub)gradients.

∇L1(µ) = QT
C sign(QCµ− y)

∇L2(µ) = QT
C (QCµ− y)

C.2. Linear measurements with unequal noise

When the privacy budget is not distributed evenly to the
measurements in the we have to appropriately modify the
loss functions, which assume that the noisy answers all
have equal variance. In order to do proper estimation and
inference we have to account for this varying noise level in
the loss function. In section 3.1 we claimed that L(p) =
‖Qp− y‖ makes sense as a loss function when the noise
introduced to y are iid. Luckily, even if this assumption is
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Qi Requirements Size Definition (∀a ∈ [ni]) Description
I ni × ni Qi(a, a) = 1 keep variable in
1 1× ni Qi(1, a) = 1 marginalize variable out
ej j ∈ [ni] 1× ni Qi(1, j) = 1 inject evidence
eS S ⊆ [ni] 1× ni Qi(1, j) = 1 ∀j ∈ S inject evidence (disjuncts)
P ni × ni Qi(b, a) = 1 ∀b ≥ a transform into CDF
Rf f : [ni]→ [ri] ri × ni Qi(f(a), a) = 1 compress domain
E 1× ni Qi(1, a) = a reduce to mean
Ek k ≥ 1 k × ni Qi(b, a) = ab ∀b ≤ k reduce to first k moments

Table 2: Example factors in the factored query matrix

not satisfied it is easy to correct. Assume that yi = qT
i p+εi

where εi ∼ Lap(bi). Then 1
bi
yi = 1

bi
qT
i p + 1

bi
εi and

1
bi
εi ∼ Lap(1). Thus, we can replace the query matrix

Q← DQ and the answer vector y← Dy where D is the
diagonal matrix defined by Dii = 1

bi
. All the new query

answers have the same effective noise scale, and so the
standard loss functions may be used. This idea still applies
if the noise on each query answer is sampled from a normal
distribution as well (for (ε, δ)-differential privacy).

C.3. Dual Query Loss Function

Algorithm 4 shows DualQuery applied to workloads de-
fined over the marginals of the data. There are five hyper-
parameters, of which four must be specified and the remain-
ing one can be determined from the others.

The first step of the algorithm computes the answers to the
workload queries. Then for T time steps observations are
made about the true data via samples from the distribution
Qt. These observations are used to find a record x ∈ X to
add to the synthetic database.

Algorithm 4 Dual Query for marginals workloads

Input: X , the true data
Input: WC , workload queries
Input: (s, T, η, ε, δ), hyper-parameters
Output: synthetic database of T records
y = WCµX
Q1 = uniform(W)
for t = 1, . . . , T do

sample qt
1, . . .q

t
s from Qt

xt = argmaxx∈X
∑s

i=1 qt
iµ− qt

iµx

Qt+1 = Qt � exp (−η ∗ (y −WCµxt))
normalize Qt

end for
return (x1, . . . ,xT )

Algorithm 5 shows a procedure for computing the negative
log likelihood (our loss function) of observing the Dual-
Query output, given some marginals. Evaluating the log

likelihood is fairly expensive, as it requires basically simu-
lating the entire DualQuery algorithm. Fortunately we do
not have to run the most computationally expensive step
within the procedure, which is finding xt. We differentiate
this loss function using automatic differentiation (Maclaurin
et al., 2015) for use within our estimation algorithms.

Algorithm 5 Dual Query Loss Function

Input: µ, marginals of the data
Input: WC , workload queries
Input: cache, all relevant output from DualQuery
> qt

1, . . .q
t
s - sampled queries at each time step

> xt - chosen record at each time step
Output: L(µ), the negative log likelihood
y = WCµ
Q1 = uniform(W)
loss = 0
for t = 1, . . . , T do

loss –=
∑s

i=1 log (Qt(qt
i))

Qt+1 = Qt � exp (−η ∗ (y −WCµxt))
normalize Qt

end for
return loss

D. Additional Experiments
D.1. L1 vs. L2 Loss

In Section 3 we mentioned that minimizing L1 loss is equiv-
alent to maximizing likelihood for linear measurements with
Laplace noise, but that L2 loss is more commonly used in
the literature. In this experiment we compare these two
estimators side-by-side. Specifically, we consider the work-
load from Figure 1 and measurements chosen by HDMM
with ε = 1.0. As expected, performing L1 minimization
results in lower L1 loss but higher L2 loss, although the
difference is quite small, especially for L1 loss. The dif-
ference is larger for L2 loss. Minimizing L2 loss results in
lower workload error, indicating that it generalizes better.
This is somewhat surprising given that L1 minimization is
maximizing likelihood. Another interesting observation is
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Figure 3: L1 minimization vs. L2 minimization, evaluated on L1 loss, L2 loss, and workload error

that the workload error actually starts going up after about
200 iterations, suggesting that some form of over-fitting is
occurring. There minimum workload error achieved was
0.066 while the final workload error was 0.084 — a pretty
meaningful difference. Of course, in practice we cannot
stop iterating when workload error starts increasing because
evaluating it requires looking at the true data.

E. Additional Details
E.1. Unknown Total

Our algorithms require m, the total number of records in the
dataset is known or can be estimated. Under a slightly differ-
ent privacy definition where nbrs(X) is the set of databases
where a single record is added or removed (instead of mod-
ified), this total is a sensitive quantity which cannot be re-
leased exactly (Dwork & Roth, 2014). Thus, the total is not
known in this setting, but a good estimate can typically be
obtained from the measurements taken, without spending ad-
ditional privacy budget. First observe that 1TµC = m is the
total for an unnormalized database. Now suppose we have
measured yC = QCµC + zC . Then as long as 1T is in the
row-space of QC , mC = 1TQ+

CyC is an unbiased estimate
for m with variance V ar(mC) = V ar(yC)

∥∥1TQ+
C

∥∥2
2
.

This is a direct consequence of Proposition 9 from (Li et al.,
2015). We thus have multiple estimates for m which we can
combine using inverse variance weighting, resulting in the
final estimate of m̂ =

∑
C mC/V ar(mC)∑
C 1/V ar(mC) , which we can use

in place of m.

E.2. Multiplicative Weights vs Entropic Mirror
Descent

Recall from Section 4 that the multiplicative weights update
equation is:

p̂← p̂� exp (qi(q
T
i p̂− yi))/2m/Z

and the update is applied (possibly cyclically) for i =
1, . . . , T . Now imagine taking all of the measurements
and organizing them into a T × n matrix Q. Then we can
apply all the updates at once, instead of sequentially, and

we end up with the following update equation.

p̂← p̂� exp (QT (Qp̂− y)/2m)/Z

Observing that∇L2(p̂) = QT (Qp̂− y), this simplifies to:

p̂← p̂� exp (∇L2(p̂)/2m)/Z

which is precisely the update equation for entropic mirror
descent for minimizing L2(p) over the probability simplex
(Beck & Teboulle, 2003).


