
PSynDB: Accurate and Accessible Private Data Generation

Zhiqi Huang†, Ryan McKenna†, George Bissias †
Gerome Miklau†, Michael Hay‡, Ashwin Machanavajjhala∗

† Univ. of Massachusetts, Amherst, College of Information and Computing Sciences
‡ Colgate University, Dept. of Computer Science
∗ Duke University, Dept. of Computer Science

{zhiqihuang, rmckenna, gbiss, miklau}@cs.umass.edu mhay@colgate.edu ashwin@cs.duke.edu

ABSTRACT
Across many application domains, trusted parties who col-
lect sensitive information need mechanisms to safely dissem-
inate data. A favored approach is to generate synthetic data:
a dataset similar to the original, hopefully retaining its sta-
tistical features, but one that does not reveal the private
information of contributors to the data.

We present PSynDB, a web-based synthetic table gener-
ator that is built on recent privacy technologies [10, 11, 15].
PSynDB satisfies the formal guarantee of differential pri-
vacy and generates synthetic tables with high accuracy for
tasks that the user specifies as important. PSynDB al-
lows users to browse expected error rates before running
the mechanism, a useful feature for making important pol-
icy decisions, such as setting the privacy loss budget. When
the user has finished configuration, the tool outputs a data
synthesis program that can be ported to a trusted environ-
ment. There it can be safely executed on the private data
to produce the private synthetic dataset for broad dissemi-
nation.

PVLDB Reference Format:
Zhiqi Huang, Ryan McKenna, George Bissias, Gerome Miklau,
Michael Hay, Ashwin Machanavajjhala. PSynDB: Accurate and
Accessible Private Data Generation. PVLDB, 12(12): 1918-1921,
2019.
DOI: https://doi.org/10.14778/3352063.3352099

1. INTRODUCTION
In many domains, privacy concerns are a barrier to un-

locking the benefits of data analytics and data science. For-
mal privacy methods based on differential privacy [6, 7] are
gaining adoption, by both industry [1, 8] and government
agencies [3, 12], but privacy technology remains difficult to
deploy and adapt to new settings. This demonstration al-
lows novice users to generate differentially private synthetic
data through an easy-to-use web interface and, in addition,
provides a path to more sophisticated generation routines
through code creation linked to an open-source program-
ming framework, Ektelo [15].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352099

Differential privacy supports various modes of use. Diff-
erentially private query interfaces can be interactive, in which
users pose queries one-at-a-time and receive noisy answers.
However, each query must consume a portion of their finite
privacy loss budget, and they may eventually be locked out
of the interface. Queries can be answered privately in batch
mode, which avoids this problem if queries are known ahead
of time. A final mode of operation is synthetic data gener-
ation, in which a synthetic “noisy table”, conforming to the
schema of the original data, is privately produced and given
to the user.

Private synthetic data is extremely appealing to users be-
cause the output table can be queried freely or used as input
to any tools or systems that would use the original data.

But there are fundamental limits on the degree of accu-
racy that any formally private method can provide. The law
of information reconstruction [5] says, informally, that if the
method allows “too many” queries to be answered “too ac-
curately” then the private input can be almost completely
reconstructed, in which case no formal privacy guarantee can
hold. It follows that differentially private synthetic data can
only be accurate for a limited class of queries or tasks, not
all queries at once. And therefore, it should be generated
in a manner that is customized for a specific class of target
uses, for which it will provide high accuracy.

While there has been significant prior work on synthetic
data generation, existing methods have a number of lim-
itations. Work in the statistics community has produced
techniques that are efficient and accurate, but lack rigor-
ous formal privacy guarantees [14]. The problem has been
investigated theoretically, however resulting approaches are
impractical, requiring exponential runtime [2]. Some more
practical approaches have been developed that do satisfy for-
mal privacy guarantees, but cannot be tuned or adapted to
prioritize accuracy on the queries/tasks of interest [13, 16].

In this demonstration, we present PSynDB, a web-based
tool that allows novice users to synthesize a differentially
private table. The interactive tool solicits (non-sensitive)
schema information from the user about their private data
and then allows the user to build a workload of target queries
for which the resulting synthetic data should be accurate.

PSynDB is built using recently-developed privacy tech-
nologies. Its implementation uses Ektelo [15], a program-
ming framework for differentially private algorithms. In ad-
dition, synthetic data is produced using a combination of
the High-Dimensional Matrix Mechanism (HDMM) [10] and
graphical-model based estimation (PGM) [11].



A web-based tool is easy to use for novice users: it re-
quires no installation of software, no system requirements,
or coding. But a downside is that it may be impractical
for users to upload their sensitive data to a tool running
outside their institution. To address this issue, PSynDB
offers two novel features. First, we present the user with
visualizations of the expected error rates (on the workload
queries) which do not rely on the input data. They can
view these error relationships and redesign or refine their
workload, without uploading any data. Second, instead of
producing a synthetic data set, PSynDB can be used to
output Ektelo code, which the user can execute locally on
their data without uploading it to an outside server. Thus,
users can still enjoy the ease-of-use of the web-based tool
without the threat of exposing their data.

2. BACKGROUND & SUPPORTING WORK
PSynDB builds on recent developments in differentially

private algorithm design.

Ektelo
Ektelo [15] is a programming framework that supports the
implementation of provably private programs. It offers a
clean separation between privacy-critical code and other sup-
porting methods, encourages reuse of common subroutines
across algorithm implementations, and is expressive enough
to capture a wide range of recent privacy algorithms. Ektelo
is open-source and we use it both as a reliable backend for
the implementation of PSynDB as well as to allow users to
move the privacy code to their data after setup has been
done using the PSynDB web interface.

HDMM
The high-dimensional matrix mechanism (HDMM) [10] is a
differentially private mechanism for releasing answers to a
workload of predicate counting queries, inspired by the ma-
trix mechanism [9]. Predicate counting queries have the
form SELECT Count(*) FROM R WHERE φ, where φ is any
boolean formula over the attributes in R. Workloads of such
queries are quite versatile, expressing histograms, multi-
dimensional range queries, data cubes, marginals, or arbi-
trary combinations thereof.

HDMM works by compiling the workload queries into a
more privacy-efficient form, called the strategy queries. The
strategy queries are privately answered using the standard
Laplace Mechanism [6], and then an inference step is per-
formed to resolve inconsistencies in the noisy measurements.
This inference step outputs a vector representation of the
estimated database that approximates the true data with
respect to the strategy (and workload) queries.

Graphical models
The goal of HDMM and related approaches is to return an-
swers to the workload queries. To generate synthetic data,
we therefore have to extend HDMM. We do that by using a
recently developed technique based on graphical models [11].
The input to this algorithm is a collection of noisy mea-
surements (i.e., those taken by HDMM), and the output is
a graphical model that approximates the data distribution
with respect to those measurements. Synthetic data can be
efficiently obtained by sampling from the graphical model.
We note that combining HDMM with graphical models has

Interacting module (Front-end) Processing module (Back-end)

Workload

builder
Implicit representation

. . .

Algorithms

Summary &

Visualization

Results anaysis

Ektelo framework

HDMMIdentity

Trusted system (Firewall)

Publicly accessible

Schema

&

Domain

Input

data
synthetic

data

Ektelo

Code

Publicly accessible

Figure 1: Overview of PSynDB system.

been demonstrated to boost the accuracy of the mechanism
on the workload [11].

3. THE PSynDB TOOL
Figure 1 presents the system architecture of PSynDB. It

has three major components: a front-end interacting mod-
ule, a back-end processing module, and a local (trusted)
Ektelo framework. To generate private synthetic data,
PSynDB requires as input a description of the table’s
schema, including attribute types and domains for each at-
tribute. It provides an interface for the user to define a work-
load, which consists of a set of predicate counting queries,
possibly weighted to reflect their relative importance.

This input is fed to a back-end processing module, which
searches for an effective strategy for generating a synthetic
table tuned to provide accurate answers to the workload
queries. In addition to HDMM, it considers a baseline strat-
egy called Identity, which adds noise directly to a vec-
tor representation of the data. A common feature of these
strategies is that it is possible to derive a closed-form es-
timate of the error on the workload queries without actu-
ally running the mechanism on the sensitive data. The es-
timated performance is displayed by the front-end module,
which allows the user to interactively explore the expected
performance.

The user can iteratively revise the workload structure and
observe the effect on performance. When the user is ready to
generate synthetic data, the front-end allows them to down-
load a short Ektelo program, which encodes the attribute
domain information, a logical representation of the query
workload, and the commands to construct synthetic data.
This program can then be executed on the sensitive dataset
in a trusted environment to produce the synthetic data.

4. DEMONSTRATION OVERVIEW
The PSynDB website guides users through an appropri-

ate definition of the input domain, which is critical for sound
privacy semantics, and allows them to define the accuracy
criteria by specifying workloads of queries. Given these def-
initions by the user, PSynDB automatically devises an op-
timized mechanism, and allows them to browse and inspect
the expected error they will receive across the queries in the
workload. The process completes before running the mech-
anism and consuming the privacy budget on the original



Figure 2: Workload builder in PSynDB.

data. With the workload summarization and error visual-
ization, the user may choose to fine-tune their selections, or
re-define their performance criteria before final execution of
the mechanism, which will synthesize a differentially private
table.

We will demonstrate PSynDB on the well-known Adult
dataset [4], which reports demographic and income informa-
tion for a sample of individuals. We describe the detailed
interactive process below in six steps:

Step 1 (Define schema): Initially, the user defines the
schema of the table either by manual data entry or by up-
loading a small sample of data (in csv format), from which
schema information can be inferred. The user will be able
to view and modify attribute domains in the next step.

Step 2 (Define domains): In this step, the user defines
attribute domains necessary to specify the workload queries,
e.g., if the workload is a histogram of capital gains for each
combination of age, race and sex, the user needs to define
attribute domains of {age, capital-gain, race, sex} for the
Adult dataset. Numerical attributes will be discretized, in
which case the user must specify lower/upper bounds and a
bucket size. For a categorical attribute, the domain defini-
tion contains all possible values and whether it is ordered.

Step 3 (Define workloads): Once the user completes
the definition of the schema and attribute domains, she
can build her workload. PSynDB supports workloads
containing the expressive class of counting queries with
conjunctive conditions, i.e., the subset of predicate counting
queries where the predicates are conjunctively com-
bined. An example of such a query is: SELECT Count(*)

FROM Adult WHERE sex=’male’ AND race=’Black’ AND

(capital-gain BETWEEN 40000 AND 50000).
We provide useful abstractions so that the user may

quickly build interesting workloads without having to write
down the queries one-at-a-time. In particular, the work-
loads can be constructed from four common building blocks
over a single attribute A: Identity, Prefix, AllRange, Total.
Each building block contains a set of predicates, given below
(where dom(A) denotes the domain of attribute A):

1. Identity (I): φi = (A = ai), ∀ai ∈ dom(A).

2. Prefix (P) φi = (A ≥ ai), ∀ai ∈ dom(A)

3. AllRange (R): φij = (ai ≤ A ≤ aj), ∀ai, aj ∈ dom(A)

4. Total (T): φ = True

A workload can consist of a collection of attributes, and
a corresponding building block for each attribute. The
workload encodes the cartesian product of predicates in
the building blocks, where individual queries from each
building block are conjunctively combined. For example
the set of queries that report all ranges of capital gains
for each combination of sex and race could be encoded as
Identity(Sex) × Identity(Race) × AllRange(Capital-gain).
Omitted attributes have an implied Total predicate.

The Identity building block is useful for categorical at-
tributes with unordered domains, whereas Prefix and All-
Range make sense for attributes with ordered domains,
such as those arising from discretizing a numeric attribute.
These building blocks can encode a wide variety of inter-
esting workloads. To capture even more general work-
loads, we have a fifth custom building block allowing the
user to express arbitrary predicates on a single attribute,
e.g., to build counting queries for different age groups like
{0−17, 18−65, 66−115}, The system uses C (Customize) to
represent the user defined predicate sets. Such customiza-
tion, along with the predefined predicates, allows the flexi-
bility to describe a wide variety of query workloads.

Figure 2 shows the interface in PSynDB for an example
consisting of a single specified workload. Moreover, the tool
allows the user to construct multiple such workloads, which
can then be combined using a union operation (not shown
in Figure 2).

Step 4 (Run optimization): When workloads are sub-
mitted to the back-end processing module, PSynDB runs
the HDMM optimization to find a good query strategy for
the given workload, and for comparison purposes, also con-
siders the baseline Identity strategy. Then it calculates
the expected error for every query in the workload under
these strategies. Because HDMM represents the workload
implicitly using Kronecker products, PSynDB can handle
large domains and workloads. However, when the number
of queries in the workload is too large to enumerate explic-
itly, we instead calculate the expected error for a uniform
sample of one million workload queries.



Figure 3: Query error overview for a given workload

Step 5 (Visualization): In the front-end module, the
user is now able to view the expected error for the workload
and how the errors are distributed across queries. This gives
the user the information they need to fine-tune their work-
load and determine an appropriate privacy budget before
running the mechanism on their sensitive data.

Figure 3 shows the error distribution on the example work-
load for the optimized query strategy (HDMM) as well as for
a baseline query strategy (Identity). It shows that work-
load query error is considerably lower using HDMM. The
table above the plot reports the expected error averaged
across all queries in the workload for two mechanisms.

When the workload is the union of two or more subwork-
loads, we also visualize the error distribution for each sub-
workload. This is shown in Figure 4, where two distribu-
tions are plotted, one for the first subworkload and one for
the second subworkload. The table above the figure shows
the expected error for each subworkload, averaged across the
queries in that subworkload.

The user can utilize these visualizations to refine her de-
sign of the workload. For example, the visualizations may
reveal outliers that could be avoided by re-weighting the
workload. Similarly, after viewing the visualizations, the
user may decide to add or remove queries to the workload.
This process can be iterated until the user is happy with the
expected errors of the mechanism.

Step 6 (Generate output): If the user is ready to syn-
thesize data in a trusted environment, PSynDB can gener-
ate Ektelo code which includes schema definitions, attribute
domains, workload submission, and the best (lowest error)
query strategy in a file. By downloading the file, the user
can locally execute Ektelo code, using her sensitive data as
input, to generate a synthetic dataset.

Acknowledgements. This work was supported by the
National Science Foundation under grants 1408982, 1409125,
1421325, and 1409143; and by DARPA and SPAWAR under con-
tract N66001-15-C-4067. The views, opinions, and/or findings
expressed are those of the author(s) and should not be interpreted
as representing the official views or policies of the Department of
Defense or the U.S. Government.

Figure 4: HDMM error overview for multi-workloads

5. REFERENCES
[1] Apple Differential Privacy Team. Learning with privacy at

scale. Apple Machine Learning Journal, 2017.

[2] A. Blum, K. Ligett, and A. Roth. A learning theory
approach to noninteractive database privacy. Journal of the
ACM, 60(2):12, 2013.

[3] 2010 Census Summary File 1, Census of Population and
Housing, 2012.

[4] D. Dheeru and E. Karra Taniskidou. UCI machine learning
repository, 2017.

[5] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In Principles of Database Systems.
ACM, 2003.

[6] C. Dwork, F. M. K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. 2006.

[7] C. Dwork and A. Roth. The Algorithmic Foundations of
Differential Privacy. Found. and Trends in Theoretical
Computer Science, 2014.

[8] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor:
Randomized aggregatable privacy-preserving ordinal
response. In CCS, pages 1054–1067, 2014.

[9] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor.
Optimizing linear counting queries under differential
privacy. In Principles of Database Systems, pages 123–134.
ACM, 2010.

[10] R. McKenna, G. Miklau, M. Hay, and A. Machanavajjhala.
Optimizing error of high-dimensional statistical queries
under differential privacy. PVLDB, 11(10):1206–1219, 2018.

[11] R. McKenna, D. Sheldon, and G. Miklau. Graphical-model
based estimation and inference for differential privacy. In
ICML, 2019.

[12] OnTheMap Web Tool. http://onthemap.ces.census.gov/.
[13] H. Ping, J. Stoyanovich, and B. Howe. Datasynthesizer:

Privacy-preserving synthetic datasets. In Conference on
Scientific and Statistical Database Management, 2017.

[14] J. P. Reiter. Satisfying disclosure restrictions with synthetic
data sets. Journal of Official Statistics, 18(4):531, 2002.

[15] D. Zhang, R. McKenna, I. Kotsogiannis, M. Hay,
A. Machanavajjhala, and G. Miklau. Ektelo: A framework
for defining differentially-private computations. In
SIGMOD, 2018.

[16] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and
X. Xiao. Privbayes: Private data release via bayesian
networks. ACM Transactions on Database Systems,
42(4):25, 2017.


