
Differentially Private Rank Aggregation

Michael Hay ⇤ Liudmila Elagina † Gerome Miklau †

Abstract
Given a collection of rankings of a set of items, rank aggregation
seeks to compute a ranking that can serve as a single best represen-
tative of the collection. Rank aggregation is a well-studied problem
and a number of effective algorithmic solutions have been proposed
in the literature. However, when individuals are asked to contribute
a ranking, they may be concerned that their personal preferences
will be disclosed inappropriately to others. This acts as a disincen-
tive to individuals to respond honestly in expressing their prefer-
ences and impedes data collection and data sharing.

We address this problem by investigating rank aggregation un-
der differential privacy, which requires that a released output (here,
the aggregate ranking computed from individuals’ rankings) remain
almost the same if any one individual’s ranking is removed from the
input. We propose a number of differentially-private rank aggrega-
tion algorithms: two are inspired by non-private approximate rank
aggregators from the existing literature; another uses a novel rejec-
tion sampling method to sample privately from a complex distribu-
tion. For all the methods we propose, we quantify, both theoreti-
cally and empirically, the “cost” of privacy in terms of the quality
of the rank aggregation computed.

1 Introduction
Preference data describes an individual’s opinion about the
relative quality of two or more alternatives. With the pop-
ularization of social networks, Web search, and other online
services, preference data is now being collected on a massive
scale, reflecting users’ opinions about hotels they have vis-
ited, movies they have watched, employees with whom they
work, among many other examples. Preference data is also
sometimes implied by records of an individual’s choices.
When a web surfer clicks on a search result, it implies they
prefer it to other alternatives, just as a student choosing to
attend a college indicates it is preferred over other colleges
to which they were admitted.

One of the most common representations of preference
data is the ranking, which places items into a total order
based on a user’s preferences. Given a collection of rank-
ings from a population of users, one key problem is rank
aggregation, which seeks to produce a single ranking that
is representative of the input rankings. For example, in rec-
ommendation systems, rank aggregation is a common tool
for combining users’ preferences into a single ranking that
agrees the most with those preferences. Rank aggregation
has been studied in numerous fields, from philosophy and

⇤Department of Computer Science, Colgate University,
mhay@colgate.edu

†College of Information and Computer Sciences, University of Mas-
sachusetts Amherst, {lelagina,miklau}@cs.umass.edu

psychology to economics and database systems, and accord-
ingly, many alternative algorithms have been proposed in the
literature [3–8, 13, 15, 18, 20].

As preference data is collected, published, and mined,
concerns about privacy have grown. In many domains, an
individual’s personal preferences and judgments of relative
quality may be highly sensitive and worthy of privacy pro-
tection. Even if the disclosure of an individual’s preferences
in a given domain is not embarrassing or overtly harmful,
the ability of an outsider to deduce an individual’s prefer-
ence may make them susceptible to coercion. Even fear of
disclosure or potential coercion might prevent an individual
from contributing accurate preference data.

For example, employees ranking their institution against
competing institutions might be reluctant to respond hon-
estly if their true preferences would rank their institution
lower than desired by their managers. Another example
arose recently in the context of the Hugo Awards, which are
annual awards for the best science fiction or fantasy writ-
ing. Each individual can nominate up to five candidates for
each of the Hugo categories. In 2015, the organizers pro-
posed a new system for selecting finalists that was intended
to be more accurate. In order to thoroughly test the new
system, Hugo administrators planned to release nomination
data. However they soon realized that even after anonymiz-
ing individual’s preferences, they were able to re-identify in-
dividuals [1]. This case, in addition to well-known attacks
on other forms of anonymized data (e.g., [19]), shows that
anonymization is unlikely to provide reliable protection for
preference data.

We adapt the provably private model of differential
privacy [9] to preference data, focusing on the important case
where individuals contribute complete rankings of a set of
items. Our goal is to release an aggregate ranking derived
from the collection.

Differential privacy provides a compelling, provable pri-
vacy guarantee, ensuring that the outcome of any analysis on
a database is not influenced substantially by the presence or
absence of any one individual’s data. Researchers have re-
cently designed differentially private algorithms to support
many common data mining tasks (e.g., private decision trees,
private SVM, logistic regression and others) and recent work
has also broadened the scope to support mining of more com-
plex data (e.g., graphs and sequential data). However, these
methods do not offer easy or effective solutions to the prob-

lem of rank aggregation. Rankings are challenging to work
with under differential privacy because of the high dimen-
sionality (the number of ranked items) and the constraints
inherent in analyzing rankings and sets of rankings.

Differentially private rank aggregation is a novel prob-
lem; we are aware of only one prior work on the topic [21]
but it does not scale to rankings of more than a handful of
items, and we show that our methods provide significantly
lower error for the same degree of privacy protection.

Our contributions include the following:

• We provide theoretical insights into differentially pri-
vate rank aggregation by proving bounds on error in
terms of key parameters, which explain how many rank-
ings (as a function of the privacy parameter ✏ and the
number of ranked items) are required to achieve a tar-
get error rate.

• We propose three differentially private rank aggrega-
tion algorithms, offering different trade-offs in error,
efficiency and asymptotic consistency1. A private ver-
sion of the well-known (but sub-optimal) Borda method
is difficult to analyze theoretically, but is efficient and
performs well in some practical settings. We design
a private version of a quicksort-inspired algorithm and
show it is consistent under some distributional proper-
ties, but it may be outperformed when the number of
rankers is small. Our third algorithm is inspired by an
exact solution to the rank aggregation problem and in-
cludes a novel adaptive rejection sampling technique
applied to the well-known differentially private Expo-
nential Mechanism. We show it is consistent in the
greatest number of cases, but at the cost of efficiency: it
has exponential running time in the worst case. Never-
theless, on practical inputs it is efficient.

• We evaluate the accuracy of differentially private rank
aggregation on real and synthetic data, showing (for
the first time) that rank aggregation can be performed
with little practical impact on accuracy while offering
individuals a formal guarantee of privacy.

The rest of the paper is organized as follows. Section 2
formalizes the private rank aggregation problem and reviews
background on differential privacy. We introduce two algo-
rithms in Section 3, each of which is an adaptation of an ex-
isting (non-private) approximate rank aggregation algorithm.
Section 4 presents our approach inspired by optimal rank ag-
gregation. We present a theoretical analysis in Section 5,
empirical results in Section 6, related work in Section 7, and
conclusions in Section 8.

1Consistency means that for fixed privacy parameters, error goes to zero
as the number of input rankings goes to infinity.

2 Background
In this section we provide background on rank aggrega-
tion, formalize differentially private rank aggregation and its
goals, and describe basic building blocks of differentially-
private algorithms.

2.1 Ranking and rank aggregation Given a universe U
of elements, a ranking is an ordered list ⌧ which con-
tains each element of U . We write a ranking ⌧ as ⌧ =

{x
1

, x
2

, ..., x
m

} where each x
i

2 U and m is the number of
elements in the universe, m = |U |. We denote by ⌧(x) the
rank position of element x according to ⌧ : the best ranked
item has position 0 while the worst ranked item has position
m� 1. For simplicity of exposition, we restrict our attention
to these complete rankings, in which every element in U is
ranked. Our techniques can be applied to partial rankings but
we leave this extension as future work.

We consider a database of rankings T = {⌧
1

, . . . ⌧
n

}
in which each ranking is contributed by an individual voter.
The goal of rank aggregation is to find a single representative
ranking (not necessarily from T) that reflects the rankings
in T. An aggregate ranking may be seen as a summary of
the rank collection or as a single ranking that improves upon
any individual ranking by incorporating the preferences of a
group.

The quality of an aggregate ranking is typically mea-
sured using the Kendall tau metric for rankings. For two
permutations � and ⌧ , the Kendall-tau distance is defined as
the number of pairwise disagreements between two permu-
tations: K(�, ⌧) = |{(i, j) : i < j,�(i) < �(j) but ⌧(i) >
⌧(j)}|. Note that K(⌧, ⌧) = 0 and that the maximum
possible Kendall tau distance occurs when � is the reverse
ranking of a ranking ⌧ ; in that case, K(�, ⌧) =

�
m

2

�
.

The average Kendall tau distance of a ranking � to a rank
database T = {⌧

1

, ..., ⌧
n

} is naturally defined as: K(�,T) =
1

n

P
n

i=1

K(�, ⌧
i

).
The most common criterion for determining the “best”

aggregate ranking is the Kemeny optimal aggregation: the
one that minimizes the average Kendall tau distance to T.

DEFINITION 1. (KEMENY OPTIMAL RANK AGGREGATION)
Given a ranking database T = {⌧

1

. . . ⌧
n

}, the Kemeny
optimal aggregate ranking is a ranking � for which K(�,T)
is minimal over the set of all possible rankings.

The Kemeny optimal ranking is a desirable aggregate
ranking because it places first the Condorcet winner (a can-
didate not preferred to any other in pairwise comparisons).
While computing the Kemeny optimal ranking is NP-hard
for rank databases with size n > 3, PTIME approximation
algorithms exist. In addition, a wide array of heuristic meth-
ods have been proposed that may involve scoring and ranking
elements, performing local directed search in the rank space,
or defining a Markov chain from the rank database and rank-

ing by stationary probabilities of the elements, among many
others. We review in detail relevant algorithms in Sections 3
and 4 and discuss others in Section 7.

2.2 Private rank aggregation Differential privacy is ap-
plied in settings where each individual in a population con-
tributes potentially sensitive information to a database, con-
trolled by a trusted party, the data owner. The goal is to re-
lease the results of one or more computations on the database
to the analyst, a potentially untrusted party. Information con-
tributed by an individual should not be shared with the ana-
lyst, but the goal is nevertheless to share with the analyst
accurate properties about the population as a whole, often in
the form of aggregates computed on the database.

Differential privacy [9] offers a model in which to mea-
sure and limit the loss of privacy suffered by any individ-
ual. Informally, differential privacy promises that the re-
leased output will be approximately the same, subject to a
privacy parameter ✏, whether or not any one individual’s in-
formation is included.

Differential privacy is formally defined as a property
of an algorithm that computes a sensitive function on the
database. Let D denote a database consisting of a set
of records where each record corresponds to the sensitive
information of a single individual. Two databases D and
D0 are neighbors if they differ by a single tuple—i.e., |(D�
D0

) [(D0 �D)| = 1.

DEFINITION 2. (✏�DIFFERENTIAL PRIVACY [9]) A ran-
domized algorithm M satisfies ✏� differential privacy if for
all neighboring datasets D and D0 and all S ✓ Range(M),
Pr[M(D) 2 S] exp(✏)⇥ Pr[M(D0

) 2 S]

The privacy parameter ✏ controls the strength of the pri-
vacy definition: lower ✏ provides stronger privacy but typi-
cally implies greater distortion in released results. The data
owner determines an appropriate ✏ for an analyst and this
value is often referred to as the analyst’s privacy “budget.”

We apply differential privacy in the context of ranking
by considering an individual’s information to consist of their
complete ranking of all elements in U , and we therefore pro-
vide strong privacy protection to all of the preference in-
formation they may reveal by participating in the database.
Alternative formulations, which might protect only parts of
an individual’s ranking, or just pairwise comparison infor-
mation, would be weaker: they might, for example, protect
an individual’s top preferences, but reveal preferences about
lower ranked elements. Accordingly, we say that two rank
databases T and T

0 are neighboring if they differ in the pres-
ence or absence of exactly one ranking.

The goal of private rank aggregation is to devise an ✏-
differentially private algorithm for computing an aggregate
ranking. The primary quality metric of a private rank
aggregator is its accuracy. We measure the accuracy of a

private rank aggregation algorithm by comparing the average
Kendall tau of its output to the average Kendall tau of the
optimal ranking. The difference is our error metric:

DEFINITION 3. (ERROR) Let T be a ranking database, ⌧
opt

the Kemeny optimal aggregate ranking for T, and A a
differentially-private rank aggregator. If �̃ = A(T, ✏) is
the private aggregate ranking returned by A, the average
Kendall tau error is: K(�̃,T)�K(⌧

opt

,T).

Error quantifies the cost, in accuracy, of offering a strong
privacy guarantee. Note that, in the absence of privacy,
rank aggregation algorithms may have inherent error due
to computational constraints. The error of a private rank
aggregation algorithm may arise from at least two additional
sources. First, is the strength of the “signal” available to the
private aggregation algorithm. This is determined by the ✏
privacy parameter (higher epsilon means lower privacy and
stronger signal) and by the size, n, of the rank database (more
rankings mean that the noise added for privacy typically has
less impact on the algorithm behavior). Second, is the power
of the algorithm to efficiently utilize the signal to find a
good aggregate ranking. As we will see, it is not always the
case that the best algorithmic approach among non-private
algorithms is still a good approach for a private algorithm
that must cope with noisy observations of the input database.

2.3 Standard differentially private mechanisms The
following are standard methods for constructing differen-
tially private algorithms. Although these methods are quite
general and are sufficient for satisfying differential privacy,
used by themselves they are usually sub-optimal in terms of
error and/or computationally intractable. Nevertheless, they
are often important building blocks of more sophisticated
private algorithms that can offer improved error and good
computational behavior.

The Laplace mechanism adds noise to a numerical func-
tion of the input data, scaling the noise to the sensitivity of
the function, which measures the worst-case impact on the
output of the addition or removal of one record.

DEFINITION 4. (SENSITIVITY) Let D denote the space of
all databases. For a function f : D ! Rk, the sensitivity
of f is: �f = max

D,D

0
||f(D) � f(D0

)||
1

for all neighboring

databases D and D0.

The Laplace mechanism generates noise by sampling
i.i.d. variables from a Laplace distribution, denoted
Laplace(�) where � is the scale of the distribution.

DEFINITION 5. (LAPLACE MECHANISM [10]) Given
function f : D ! Rk, the Laplace mechanism L
adds noise to each of the k components of f(D) :

L(D, f(·), ✏) = f(D) + (Y
1

, Y
2

, ..., Y
k

) where Y
i

are i.i.d.
random variables drawn from Laplace(�f/✏).

When the desired output is not numerical we cannot
construct differentially private algorithms by noise addition.
In place of noise addition, the exponential mechanism di-
rectly defines a probability distribution over an arbitrary out-
put space. A quality function measures the desirability of
each possible output:

DEFINITION 6. (EXPONENTIAL MECHANISM [10])
Given quality function u : D ⇥ R ! R, which maps
database/output pair to utility scores, the exponential
mechanism M

E

(D,u,R) selects and outputs an ele-
ment r 2 R with probability Pr[M

E

(D,u,R) = r] /
exp (✏u(D, r)/2�u) where �u is the sensitivity of u
(computed over all possible r 2 R).

3 Approximate Rank Aggregation
In this section we describe two existing non-private algo-
rithmic approaches to rank aggregation, each offering prov-
able approximations of the optimal aggregate ranking. We
then propose differentially private adaptations of these algo-
rithms.

3.1 Borda aggregation Borda’s method [15] was origi-
nally proposed as a single-winner selection method where
each item receives a certain number of points based on its
position in any given ranking. For example, with a universe
of five elements, an element will receive 0 points every time
it is ranked in first place, 1 point for second place, and so on.
The element with the lowest number of points is identified as
the winner.

DEFINITION 7. (BORDA SCORE) Given a ranking
database T = {⌧

1

. . . ⌧
n

} over a universe U = {x
1

. . . x
m

},

the Borda score of element x
i

is: bscore(x
i

) =

nP
j=1

⌧
j

(x
i

).

Borda scores can be used as a rank aggregation method
by sorting the elements by their Borda scores. The Borda
score aggregator is computationally efficient and (when ties
are broken arbitrarily) was shown to be a 5-approximation of
the optimal rank aggregation [6].

EXAMPLE 1. Using the example rank database in
Fig. 1, notice that element A is ranked in positions
1, 0, 2, 4, 1, 3, 4, 4 and therefore the Borda score is
bscore(A) = 19. The Borda scores for elements B,C,D,E
are, respectively, 19, 13, 18, 11, which results in an ag-
gregate ranking of hE,C,D,A,Bi. This ranking has an
average Kendall tau of 0.40. The Kemeny optimal ranking is
hE,C,B,D,Ai with average Kendall tau distance of 0.37.

3.2 Private Borda aggregation We use Borda scores as
the basis of a differentially private rank aggregator by first
using the Laplace mechanism to privately compute a noisy

estimate of the Borda score of each candidate. Then we sort
the noisy scores to get an aggregate ranking.

DEFINITION 8. (PRIVATE BORDA SCORES) Given a rank-
ing database T = {⌧

1

. . . ⌧
n

} over a universe of elements
U = {x

1

. . . x
m

} and privacy parameter ✏, the P-BORDA
algorithm returns h˜b

1

. . .˜b
m

i where ˜b
i

2 R is a noisy esti-
mate of the Borda score of element i. For each i 2 [1,m],
b
i

= bscore(x
i

) + Z where Z ⇠ Laplace(m(m� 1)/(2✏)).

The above approach satisfies ✏-differential privacy
(proofs omitted due to space limitations).

PROPOSITION 3.1. P-BORDA is ✏-differentially private.

3.3 Quicksort aggregation Ailon et al. [3] introduces a
2-approximation algorithm for rank aggregation based on a
version of quicksort that is guided in its precedence decisions
by the rankings in T. When comparing two elements, x

i

and x
j

, the elements are ordered based on the majority
preference of rankings in T. Formally, let C

ij

(T) denote the
number of times x

i

is preferred to x
j

among the rankings in
T, i.e., C

ij

(T) = |{⌧ 2 T | ⌧(x
i

) < ⌧(x
j

)}|. The elements
are sorted using the comparison function cmp

T

(x
i

, x
j

) =

(C
ji

(T) � C
ij

(T)) where x
i

is placed before x
j

when
cmp

T

(x
i

, x
j

) < 0, vice versa when cmp
T

(x
i

, x
j

) > 0, and
arbitrarily when cmp

T

(x
i

, x
j

) = 0. The pivots of quicksort
are chosen randomly.

3.4 Private quicksort aggregation To make a private ver-
sion of the sorting algorithm, we must make all interactions
with the input rankings differentially private. In this case,
the input is only used by the comparison function. We apply
the Laplace mechanism to make the comparison function dif-
ferentially private. Since the comparison is invoked multiple
times, each invocation receives only an ✏0 share of the privacy
budget (described below). Let gcmp

T

denote this noisy com-
parison function gcmp

T

(x
i

, x
j

) = cmp
T

(x
i

, x
j

) + Z where
Z ⇠ Laplace(1/✏0).

DEFINITION 9. (PRIVATE QUICKSORT) Given a ranking
database T = {⌧

1

. . . ⌧
n

} over a universe of elements U =

{x
1

. . . x
m

} and privacy parameter ✏, the P-SORT algo-
rithm runs quicksort on the elements using randomly cho-
sen pivots and the noisy comparison function gcmp

T

. The
first M invocations of gcmp

T

receive ✏0 = ✏/M where M =

((m�1) logm). Remaining invocations order elements ran-
domly.

PROPOSITION 3.2. P-SORT satisfies ✏-differential privacy.

4 Optimal rank aggregation
Although computing the Kemeny optimal ranking is NP-
hard, algorithms have been developed for solving it exactly.

Input Rankings Aggregate Rankings
Rank voter 1 voter 2 voter 3 voter 4 voter 5 voter 6 voter 7 voter 8 OPT Borda QS

0 E A C E B C C E E E E
1 A E B D A E B D C C C
2 C D A C D D E C B D B
3 B C D B E A D B D A A
4 D B E A C B A A A B D

Figure 1: A ranking database of 8 rankings over the set of elements {A,B,C,D,E}; aggregated rankings produced by
Kemeny optimal (0.37), Borda (0.40), and Quick sort (0.38) algorithms.

These algorithms require exponential time in the worst case,
but in practice may find a solution very efficiently. In this
section we propose a novel private aggregation method in-
spired by these techniques. Our algorithm is based on the
exponential mechanism, and in the absence of the privacy
constraint (i.e., as ✏ ! 1) the algorithm will return an op-
timal solution. Algorithms based on the exponential mech-
anism are typically easy to describe: in our case we simply
wish to privately select the ranking that minimizes average
Kendall tau and the exponential mechanism describes a cor-
rect distribution over rankings that will ensure privacy. This
is an appealingly direct approach, but the challenge is that
sampling from this distribution seems infeasible. Neverthe-
less, the fact that, in the absence of privacy, optimal solutions
can be efficiently computed in practice suggests that it may
be possible to efficiently sample from this distribution.

A persistent problem with algorithms based on the ex-
ponential mechanism is that the probability defined over out-
puts is often complex and approximate sampling methods
cannot be used: it is possible that an approximate distribution
will not satisfy the constraint differential privacy imposes on
outputs. In addition, it is typically difficult to reason about
an approximate sampling technique and its convergence to
the true distribution in order to prove that violations of dif-
ferential privacy are impossible.

Below we propose a novel approach that avoids this is-
sue, based on adaptive sequential rejection sampling, which
we believe will be of independent interest for the implemen-
tation of privacy algorithms in other domains.

4.1 Optimal (non-private) rank aggregation In the non-
private setting, two different approaches have been proposed
for computing the optimal solution. The rank aggregation
problem can be formulated as an integer linear program
(ILP) [5]. The relaxed LP is a 4/3 approximation and
empirically often yields integral solutions [20]. In addition,
an algorithm based on A⇤ search has been shown to run
in O(m2

) time on inputs where there is strong agreement
among rankings [18]. Finally, empirical studies show that
exact algorithms have reasonably low run times on real and
synthetic data [4, 20].

For our experiments, we implemented a variant of the A⇤

approach of Meila et al. [18]. The nodes in the search tree
correspond to a partial ranking consisting of the top k el-
ements, and each node expansion selects another candidate
to insert into the (k + 1)

th position. The node cost is the
contribution to the average Kendall tau distance of placing
these k elements in the first k positions. In our implemen-
tation, we use a different admissable heuristic: the sum of
min{C

ij

(T), C
ji

(T)} for each pair (i, j) among the remain-
ing elements, which is a lower bound on the cost of ranking
these elements. We find this heuristic greatly reduces run-
time.

4.2 Optimal private aggregation Recall from Sec. 2.3
that the exponential mechanism allows us to define a score
function which measures the desirability of each output
among a set of possible outputs. Here we instantiate the
exponential mechanism over the set of all rankings, scored
by the total Kendall tau distance to the database.

DEFINITION 10. (PRIVATE PERMUTATION SAMPLING)
Given a ranking database T = {⌧

1

. . . ⌧
n

} over a universe
U = {x

1

. . . x
m

}, the P-SAMPLE is an invocation of the
exponential mechanism in which the output range R is
the set of all permutations over U , and the utility function
u is defined as u(T,�) = �nK(�,T). On input T, it
outputs permutation � with probability proportional to:
exp(�✏nK(�,T)/�u) where �u =

�
m

2

�
.

The probability mass function defined above differs
slightly from the one in Definition 6 in that a factor of 2 is
omitted. As has been observed elsewhere [10], this factor can
be omitted when the quality function is a monotonic (either
non-decreasing or non-increasing) function of the private
input, which is the case here.

PROPOSITION 4.1. P-SAMPLE is ✏-differentially private.

As mentioned above, P-SAMPLE is an analogue of op-
timal aggregation in the sense that without privacy (i.e., as
✏ ! 1) the above algorithm will return argmin

�

K(�,T),
the optimal aggregate ranking. (As shown later, the algo-
rithm also offers accuracy guarantees in the case of finite ✏.)

We now turn to the problem of sampling from this dis-
tribution. To solve this problem, we use the machinery of

graphical models [14] and decompose the desired output (a
permutation) into a collection of random variables such that
(a) their joint probability distribution is equal to the distribu-
tion above, and (b) the distribution admits a factored repre-
sentation as a product of potential functions over subsets of
the variables. We then apply sampling methods developed
for graphical models.

We represent a ranking � in terms of
�
m

2

�
binary indica-

tor variables, one per pair of elements. Let Y�

= {Y �

ij

} be
a set of indicator variables for i, j 2 [1,m] and i < j where
Y �

ij

= 1 if �(i) < �(j) and 0 otherwise. A valid assign-
ment of these variables must obey transitivity: if Y �

ij

= 1

and Y �

jk

= 1, then Y �

ik

must be 1. Any valid assignment to
the variables corresponds to a unique ranking and vice versa.

The average Kendall tau distance of �, and thus our
utility function u, can be expressed in terms of these Y �

ij

variables. Recall that C
ij

(T) denotes the number of times i
is preferred to j among the voters in T. The average Kendall
tau distance can be written as

K(�,T) =
1

n

m�1X

i=1

mX

j=i+1

C
ji

(T) · Y �

ij

+ C
ij

(T) · (1� Y �

ij

)

We can now express the probability distribution
of P-SAMPLE in terms of variables Y �

ij

and poten-
tial functions on those variables. For each variable
Y �

ij

, we associate a potential function
ij

(y
ij

) =

exp

�
�✏ (C

ji

y
ij

+ C
ij

(1� y
ij

)) /
�
m

2

��
where the depen-

dence of C
ij

on T is implicit and omitted from the no-
tation. And for every triplet {i, j, k} ✓ U , we define a
potential function on the three corresponding variables: let

ijk

(y
ij

, y
jk

, y
ik

) be 1 if the assignment satisfies transitivity
and 0 otherwise. Define a probability distribution over Y�

as follows,

P
T

(Y�

) /
Y

{i,j}✓U

ij

(Y �

ij

)

Y

{i,j,k}✓U

ijk

(Y �

ij

, Y �

jk

, Y �

ik

)

Sampling once from this distribution is equivalent to running
P-SAMPLE. The first product of

ij

terms is equivalent to
the distribution defined by the P-SAMPLE for permutation �;
the second product forces the Y� to be a valid assignment.

To draw samples from this distribution, we apply adap-
tive sequential rejection sampling [17]. The rationale for
using this technique is that it generates exact samples from
the above target distribution. More conventional techniques,
such as Markov Chain Monte Carlo, yield only approximate
samples and thus would require additional analysis to de-
termine whether the approximation leaks private informa-
tion.2 The high level idea behind adaptive sequential re-
jection sampling is that it constructs a nested sequence of

2Prior work on private MCMC [22, 23] assumes the sampling distribu-
tion converges to the target distribution – something which may not happen
in practice. Because our approach generates an exact sample, it is guaran-
teed to achieve differential privacy in all cases.

proposal distributions over an increasingly larger subset of
the variables, using rejection sampling to filter out samples
that have low probability according to the target distribution.
With each rejection, the proposal distribution adapts, mak-
ing it more likely that a sample is eventually accepted. In the
worst case, the algorithm may reject an exponential number
of samples before the first accepted sample. However, any
accepted samples are guaranteed to be samples from the tar-
get distribution. Thus, differential privacy follows from (a)
the guarantee that samples are exact (cf. [17]), and (b) Propo-
sition 4.1.

To invoke the sequential rejection sampling algorithm,
we must choose a sample ordering of the variables. We
sample the variables in insertion sort order: for each element
x
j

for j = 1 . . .m, we sample the sequence of variables
y
ij

for i = 1 . . . j � 1, thus effectively inserting element
x
j

into the already sampled permutation over the elements
x
1

, . . . , x
j�1

. Given this variable ordering and the particular
proposal distribution used by the algorithm, it avoids ever
sampling a value that would violate transitivity. A sample
of a partial permutation may still be rejected if it only
permits low probability orderings when subsequent elements
are inserted. For example, it might first sample permutation
x
2

, x
1

only to subsequently reject it if, say, the input rankings
reveal a strong preference for placing x

3

after x
1

but before
x
2

, thus forcing the ordering x
1

, x
3

, x
2

.

5 Theoretical analysis
In this section, we analyze the accuracy of the algorithms
presented in Sections 3 and 4.

We start with a negative result that applies to any ✏-
differentially private algorithm. It shows that privacy im-
poses some limits on ranking: any differentially algorithm
cannot, with high probability, return the same ranking as a
non-private optimal algorithm. Intuitively, the reason is that
there exist datasets in which a single vote can completely
change the optimal ranking.

THEOREM 5.1. Let n
0

be any constant and A an ✏-
differentially private algorithm. Let p(A,T) denote the
probability that A fails to output ⌧

opt

, an optimal ranking
for T. (We can assume ties are broken arbitrarily but consis-
tently across algorithms.) If p(A,T) � for all datasets T
such that |T| � n

0

, then ✏ � 1

2

ln

�
(m!� 1)

1��

�

�
.

Fixing � as a constant, this says that a fixed error rate for all
inputs is only feasible if ✏ � O(m logm).

So while it may be impossible to return ⌧
opt

on all
inputs, the next result shows that P-SAMPLE can produce a
ranking that is arbitrarily close to optimal, provided the input
is sufficiently large. In the following theorem, we use the
term normalized error to mean error divided by

�
m

2

�
, giving

us an error term that is always [0, 1] and is independent of m.

THEOREM 5.2. Let T be any database with n rankings and
↵, � be constants in [0, 1]. With probability at least (1 � �),
P-SAMPLE has normalized error at most ↵ provided that
n � 2

↵✏

ln

�
m! + ln

1

�

�
.

Fixing ↵ and � as constant, this theorem relates the three
key parameters of the problem—the number of elements, the
number of voters, and the privacy parameter ✏—and says that
n = O(

m logm

↵✏

) voters is sufficient to produce a ranking with
constant error. It also implies that for a fixed universe of
elements, error goes to zero as n ! 1. Thus, with enough
data, the cost of privacy goes to zero with the P-SAMPLE.
We cannot say the same for the other private algorithms,
given that even their non-private analogues are only known
to be constant factor approximation algorithms.

However, we can say something about the error of the
private sorting algorithm, P-SORT, if we make distributional
assumptions about the input data. Specifically, we consider
a dataset consisting of random samples from a Mallows
distribution [16] with unknown reference ranking ⇡ and
dispersion parameter � 2 (0, 1].

THEOREM 5.3. Let T be a set of n samples from a Mal-
lows distribution with reference ranking ⇡ and � for the
dispersion parameter. With probability (1 � �), the P-
SORT algorithm achieves zero error provided that n �
O
⇣

m logm

✏�

⇤

�
logm+ log

1

�

�⌘
where �⇤ =

1��

1+�

.

For fixed � and �, the relationship between key parameters
for P-SORT is n = O(

m log

2
m

✏

).

6 Experiments and Evaluation
In this section we present an evaluation of our proposed
algorithms on real and synthetic ranking databases. The goal
of our evaluation is to understand: (1) for a fixed “signal”
(database size and ✏) which private algorithms are able to
find the lowest error aggregate rankings; (2) which aspects
of the input data impact error of the private aggregators; and
(3) the conditions under which the provided error rates are
likely to be acceptable in practice.

6.1 Experimental setup The proposed algorithms are im-
plemented in Python and executed on a machine with 1.8
GHz Intel CPU and 8 GB of internal memory. In most
cases the algorithms run in less than a few seconds, so we
do not provide a detailed evaluation or comparison of execu-
tion time. We report the average Kendall tau, normalized by
m(m � 1)/2 so we can compare values consistently across
different m. Because all private algorithms are randomized,
for a given input ranking database and privacy parameter ✏,
we report the mean across 10 trials. Where appropriate, we
also report the minimum and maximum across the random-
ized trial runs of the private algorithms.

We evaluate our techniques on two real ranking datasets
collected from individuals (SUSHI and JESTER) and synthet-
ically generated data (MALLOWS); the latter allows us to
control additional parameters of the input rankings.

Real datasets The SUSHI data set [2] consists of full
rankings of m = 10 varieties of sushi from n = 1000 vot-
ers surveyed across Japan. The JESTER Online Joke Rec-
ommender System (Dataset 2+) [12] includes 1.7 Million
continuous ratings (�10.00 to +10.00) of 150 jokes from
50,692 users, which were collected from 2006 to 2012. We
converted the dataset into rankings by ordering jokes accord-
ing to their real-valued ratings. We formed a collection of
JESTER datasets by considering different settings of m (the
number of jokes) and n (the number of rankers). We chose
m = 40 and selected the top-m most-frequently rated jokes
and all the individuals that rated those jokes. We included
only the n ⇡ 4000 rankings that ranked all of the top-40
most frequent jokes.

Synthetic datasets In order to generate a greater va-
riety of datasets we also synthetically generate ranking
databases derived from the Mallows model [16]. This is
a distance-based, unimodal model, in which the probabil-
ity of a permutation diminishes exponentially with its dis-
tance from a reference permutation. We fix a canonical ref-
erence ranking, so the remaining parameters of our synthetic
datasets are m, the number of elements, n, the number of
rankings, and � 2 (0, 1], the dispersion parameter. We use
an instance of the repeated insertion model to generate Mal-
lows data [7].

6.2 Experiments on real datasets Figure 2 presents em-
pirical error rates on SUSHI and JESTER, for privacy levels
of ✏ = {.01, .1, 1}. The plots are stacked bar plots which
report the average Kendall tau for P-BORDA, P-SORT, and
P-SAMPLE along with their non-private counterparts (Borda,
quicksort, and Optimal, respectively). The average Kendall
tau of the non-private algorithm is shown as the lower bar,
with the distortion introduced by the private algorithm shown
above it. Whiskers show the minimum and maximum error
over the random trials of the private algorithms.

The results show that with sufficient signal our proposed
algorithms, P-BORDA, P-SORT, P-SAMPLE, each essen-
tially match the output of the non-private algorithms. For
example, for SUSHI, with ✏ = 1 or ✏ = .1 we see a negli-
gible utility cost. Note that, since the non-private counter-
part of P-SAMPLE is Optimal, this is the best possible av-
erage Kendall tau. The private algorithms are matching this
Kendall tau when the signal is high, but for lower signal (e.g.
✏ = .01 for both SUSHI and JESTER) the increased Kendall
tau shows the loss of utility. Among P-BORDA, P-SORT, and
P-SAMPLE, P-BORDA performs the best. This is somewhat
surprising, since computing the Borda scores privately has
high sensitivity and P-SORT is designed to limit the number

epsilon=0.01 epsilon=0.1 epsilon=1.0

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

m
=10

P−
BO

RD
A

P−
SO

RT

P−
SA

M
PL

E

P−
BO

RD
A

HI
ST

P−
BO

RD
A

P−
SO

RT

P−
SA

M
PL

E

P−
BO

RD
A

HI
ST

P−
BO

RD
A

P−
SO

RT

P−
SA

M
PL

E

P−
BO

RD
A

HI
ST

M
ea

n
Ke

nd
al

l t
au

(a) SUSHI dataset with 5000 voters and 10 items

epsilon=0.01 epsilon=0.1 epsilon=1.0

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

m
=40

P−
BO

RD
A

P−
SO

RT

P−
SA

M
PL

E

P−
BO

RD
A

P−
SO

RT

P−
SA

M
PL

E

P−
BO

RD
A

P−
SO

RT

P−
SA

M
PL

E

M
ea

n
Ke

nd
al

l t
au

(b) JESTER Jokes dataset with 4000 voters and 40 items.

Figure 2: Comparison of the average Kendall tau of pri-
vate and non-private rank aggregation algorithms on real
datasets, SUSHI (Figure 2a) and JESTER (Figure 2b), across
varying ✏ (inset panels). (The Kendall tau on the y-axis
is normalized by dividing by

�
m

2

�
so that it lies between

[0, 1].) Private algorithms correspond to the lightly shaded
bars and are labeled along the x-axis. Each private algorithm
is paired with a non-private analogue: P-BORDA, P-SORT,
P-SAMPLE, and P-BORDA-HIST are paired with non-private
Borda, quicksort, Optimal, and Borda respectively.

of high sensitivity computations to m logm. We suspect that
this is due to the fact that these datasets have a high level of
agreement, which will tend to create Borda scores that are
more spaced out, and therefore more tolerant to recognizing
their correct ordering in the presence of noise.

Comparison to P-BORDA-HIST For the SUSHI dataset
(only) we include the histogram-based Borda estimator pro-
posed by Shang et al. [21], identified as P-BORDA-HIST.
This technique first represents the ranking database as a fre-
quency vector of size m! where each position represents one
possible ranking over the universe U . For each possible rank-
ing, the vector reports the number of times that ranking oc-
curs in the database. The private aggregator is formed by
adding independent Laplace(1/✏) noise to each position in
the vector, then computing Borda scores directly from these
noisy counts.

The results show that the technique significantly under-

m=15 m=30 m=45

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

phi=0.5
phi=0.75

2500 5000 7500 10000 2500 5000 7500 10000 2500 5000 7500 10000
Voters

M
ea

n
Ke

nd
al

l t
au

P−BORDA P−SORT P−SAMPLE OPTIMAL

Figure 3: Comparison of (normalized) average Kendall
tau for private rank aggregation algorithms on synthetic
data sampled from Mallows distributions of � = 0.5
(top panel) and � = 0.75 (bottom panel) and varying
numbers of elements m 2 {15, 30, 45} and voters n 2
{1000, . . . , 10, 000}. Privacy parameter ✏ is fixed at 0.1.
Error bars show the full range of variability (minimum and
maximum) of each algorithm across random trials.

performs our proposed techniques: for ✏ = .01 and ✏ = .1
the average Kendall tau approaches .5, which is a rate that
would also be achieved by ignoring the input database and
picking a random permutation as the aggregate.

Although the noise added is relatively small, this ap-
proach suffers from two problems. First, the vector repre-
sentation of the ranking database is very sparse, and will
typically have low counts, so it tends to be overwhelmed by
the noise added for privacy. Second, the m! size of the vec-
tor does not allow this method to scale. The SUSHI dataset
has a relatively small number of elements, so it is feasible
to run P-BORDA-HIST, by operating on a vector of size
10! = 3.6288 ⇥ 10

6. Running P-BORDA-HIST for JESTER
is infeasible, requiring a vector of size 40! ⇡ 8.1⇥ 10

47.

6.3 Experiments on synthetic datasets In Figure 3 we
run P-BORDA, P-SORT, P-SAMPLE, and Optimal on syn-
thetically generated data from the Mallows distribution, with
the dispersion parameter � 2 {.5, .75}. We fix ✏ = .1 but
vary the strength of the signal by increasing n, the number
of voters in the ranking database, along the x-axis. We also
consider varying the number of elements, m 2 {15, 30, 45}.

The results show the relationship between m and n,
namely that as m increases, we need more data (larger
n) in order to maintain accurate results from the privacy
algorithms. The dispersion parameter � has a significant
impact on the optimal average Kendall tau (e.g. for m = 45,
it is less that 0.05 when � = .5, but about .13 when � = .75).
However it does not have a major impact on the magnitude
of error or the relative performance of the private algorithms.

Overall we find that as the signal diminishes P-BORDA
outperforms the other algorithms, sometimes significantly.

7 Related Work
Despite the active research on differentially private data anal-
ysis, we are aware of only one other work that studies the
problem of private rank aggregation: the algorithm by Shang
et al. [21] that we call P-BORDA-HIST and describe in Sec-
tion 6.2. Our experiments show that this approach introduces
more noise than our proposed approaches; further, its run-
time is exponential. Shang et al. also present a theoretical
analysis that is complementary to ours: it shows that under
certain distributional assumptions, private Borda will output
the same ranking as non-private Borda with probability 1 in
the limit of infinite voters.

The (non-private) rank aggregation problem is a well-
studied problem that arises in areas such as psychology,
economics, voting, online commerce, market advertisement
research, information retrieval, and crowdsourcing [3–8, 13,
15, 18, 20]. The problem is known to be NP-Hard [8] and
numerous approximation algorithms have been developed
(cf. [3]) with the best approximation being a PTAS [13]. The
problem has also been studied empirically, with at least two
fairly extensive empirical studies [4, 20].

Another class of approaches to rank aggregation for-
mulate a Markov chain over the elements, assign transition
probabilities as some function of the input rankings, and rank
elements in descending order of their probability in the sta-
tionary distribution [8]. In our investigation, private Markov
chain approaches were not competitive with the other ap-
proaches we proposed, and even in the absence of privacy the
Markov chain variants were outperformed by other methods.
This is consistent with past empirical findings [4] as well as
sensitivity analyses that show Markov chain rankings can be
sensitive to small perturbations in the input [15].

8 Conclusion
We considered the problem of Kemeny optimal rank aggre-
gation under the formal model of differential privacy and
proposed three algorithms. Each offers a different trade-off
in empirical error, efficiency and asymptotic consistency. We
hypothesize that the mismatch between practical error rates
and asymptotics may reflect the need for different strategies
depending on “signal strength” (a function of ✏ and the num-
ber and distribution of voters). In particular, at low signal,
coarser approximations like Borda scores are better able to
tolerate noise. This would be consistent with other studies
of differentially private algorithms [11]. Nevertheless, all of
our algorithms outperform the only known prior work [21].
Further, our theoretical results demonstrate the feasibility of
private (and accurate) rank aggregation.

Our future work will consider extended forms of prefer-
ence data such as partial rankings, pairwise preferences, or
rankings that include ties. We would also like to support ad-
ditional ranking analysis tasks including fitting ranking mod-
els and clustering ranking data.

Acknowledgments This work was supported by NSF
projects 1421325, 1409125 and 1409143. We thank Soo Bin
Kwon and Dong Mai for their help with implementation.

References

[1] http://11011110.livejournal.com/316771.

html.
[2] http://www.kamishima.net/sushi/.
[3] N. Ailon, M. Charikar, and A. Newman. Aggregating incon-

sistent information: ranking and clustering. Journal of the
ACM (JACM), 55(5):23, 2008.

[4] A. Ali and M. Meilă. Experiments with kemeny ranking:
What works when? Mathematical Social Sciences, 2012.

[5] V. Conitzer, A. Davenport, and J. Kalagnanam. Improved
bounds for computing kemeny rankings. In AAAI, 2006.

[6] D. Coppersmith, L. K. Fleischer, and A. Rurda. Ordering by
weighted number of wins gives a good ranking for weighted
tournaments. ACM Trans. Algorithms, 6(3), 2010.

[7] J.-P. Doignon, A. Pekec, and M. Regenwetter. The repeated
insertion model for rankings: Missing link between two
subset choice models. Psychometrika, 69(1):33–54, 2004.

[8] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank
aggregation methods for the web. In WWW, 2001.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In TCC, 2006.

[10] C. Dwork and A. Roth. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comp. Sci., 2014.

[11] M. Hay, A. Machanavajjhala, G. Miklau, Y. Chen, and
D. Zhang. Principled evaluation of differentially private al-
gorithms using dpbench. In SIGMOD, 2016.

[12] http://www.ieor.berkeley.edu/

˜

goldberg/

jester-data/.
[13] C. Kenyon-Mathieu and W. Schudy. How to rank with few

errors. In STOC, 2007.
[14] D. Koller and N. Friedman. Probabilistic graphical models:

principles and techniques. MIT press, 2009.
[15] A. N. Langville and C. D. Meyer. Who’s# 1?: The science of

rating and ranking. Princeton University Press, 2012.
[16] C. L. Mallows. Non-null ranking models. I. Biometrika,

44(1-2):114–130, 1957.
[17] V. Mansinghka, D. Roy, E. Jonas, and J. Tenenbaum. Exact

and approximate sampling by systematic stochastic search. In
AISTATS, 2009.

[18] M. Meila, K. Phadnis, A. Patterson, and J. Bilmes. Consensus
ranking under the exponential model. In UAI, 2007.

[19] A. Narayanan and V. Shmatikov. Robust de-anonymization
of large sparse datasets. In IEEE Symposium on Security and
Privacy, May 2008.

[20] F. Schalekamp and A. van Zuylen. Rank aggregation: To-
gether we’re strong. In Proceedings of the Meeting on Algo-
rithm Engineering & Expermiments, 2009.

[21] S. Shang, T. Wang, P. Cuff, and S. Kulkarni. The application
of differential privacy for rank aggregation: Privacy and
accuracy. In FUSION, July 2014.

[22] E. Shen and T. Yu. Mining frequent graph patterns with
differential privacy. In KDD, 2013.

[23] Q. Xiao, R. Chen, and K.-L. Tan. Differentially private
network data release via structural inference. In KDD, 2014.

http://11011110.livejournal.com/316771.html
http://11011110.livejournal.com/316771.html
http://www.kamishima.net/sushi/
http://www.ieor.berkeley.edu/~goldberg/jester-data/
http://www.ieor.berkeley.edu/~goldberg/jester-data/

	Introduction
	Background
	Ranking and rank aggregation
	Private rank aggregation
	Standard differentially private mechanisms

	Approximate Rank Aggregation
	Borda aggregation
	Private Borda aggregation
	Quicksort aggregation
	Private quicksort aggregation

	Optimal rank aggregation
	Optimal (non-private) rank aggregation
	Optimal private aggregation

	Theoretical analysis
	Experiments and Evaluation
	Experimental setup
	Experiments on real datasets
	Experiments on synthetic datasets

	Related Work
	Conclusion

