
The VLDB Journal
DOI 10.1007/s00778-015-0398-x

REGULAR PAPER

The matrix mechanism: optimizing linear counting queries
under differential privacy

Chao Li1,4 · Gerome Miklau1 · Michael Hay2 · Andrew McGregor1 ·
Vibhor Rastogi3

Received: 26 January 2014 / Revised: 22 April 2015 / Accepted: 16 July 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Differential privacy is a robust privacy standard
that has been successfully applied to a range of data analy-
sis tasks. We describe the matrix mechanism, an algorithm
for answering a workload of linear counting queries that
adapts the noise distribution to properties of the provided
queries. Given a workload, the mechanism uses a different
set of queries, called a query strategy, which are answered
using a standard Laplace or Gaussian mechanism. Noisy
answers to the workload queries are then derived from the
noisy answers to the strategy queries. This two-stage process
can result in a more complex, correlated noise distribution
that preserves differential privacy but increases accuracy.
We provide a formal analysis of the error of query answers
produced by the mechanism and investigate the problem
of computing the optimal query strategy in support of a
given workload. We show that this problem can be formu-
lated as a rank-constrained semidefinite program.We analyze
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two seemingly distinct techniques proposed in the litera-
ture, whose similar behavior is explained by viewing them
as instances of the matrix mechanism. We also describe an
extension of the mechanism in which nonnegativity con-
straints are included in the derivation process and provide
experimental evidence of its efficacy.

Keywords Differential privacy · Linear query · Matrix
mechanism · Semidefinite program · Least squares

1 Introduction

Differential privacy [12] offers participants in a dataset the
compelling assurance that information released about the
dataset is virtually indistinguishable whether or not their
personal data are included. It protects against powerful adver-
saries and, in most cases, offers precise accuracy guarantees.
As outlined in recent surveys [7–9], it has been applied suc-
cessfully to a range of data analysis tasks and to the release
of summary statistics such as contingency tables [2], his-
tograms [19,28], and order statistics [25].

Differential privacy is achieved by introducing random-
ness into query answers. The original algorithm for achieving
ε-differential privacy, commonly called the Laplace mecha-
nism [12], returns the sum of the true answer and random
noise drawn from a Laplace distribution. To achieve approx-
imate (ε, δ)-differential privacy, the standard algorithm adds
random noise drawn from a Gaussian distribution. In both
cases, the scale of the noise distribution is determined by a
property of the query called its sensitivity: roughly the max-
imum possible change to the query answer induced by the
addition or removal of one tuple. Higher sensitivity queries
are more revealing about individual tuples and must receive
greater noise.
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Fig. 1 Query answering using
matrix mechanismMK,A with a
base differentially private
algorithm K and a strategy A

We study batch query answering under differential pri-
vacy, in which a collection of queries (called a query
workload) is submitted and answered in one interaction with
the database. At the heart of our investigation is the subopti-
mal behavior of standard mechanisms when answers to a set
of correlated queries are requested. We say two queries are
correlated if the change of a tuple in the underlying database
can affect both answers. Correlatedworkloads arise naturally
in practice; however, asking correlated queries can lead to
suboptimal results because correlation increases sensitivity
and therefore the magnitude of the noise.

In this work, we describe the matrix mechanism, an
improved mechanism for answering a workload consisting
of linear counting queries. This class consists of queries
described as a linear combination of base counts reporting
the number of tuples with the given combination of attribute
values. Histograms, sets of marginals, and data cubes can be
expressed as workloads of linear counting queries.

As illustrated in Fig. 1, thematrixmechanismuses another
private algorithm K (such as the Laplace or Gaussian mech-
anism) as a subroutine. Given a workload of queries, the
matrix mechanism invokes K to answer a different set of
queries, called a query strategy, and obtains noisy answers.
Noisy answers to the workload queries are then derived from
the noisy answers to the strategy queries. There may be more
than one way to estimate a workload query from the answers
to the strategy queries. In this case, the derived answer of
the matrix mechanism combines the available evidence into
a single consistent estimate that minimizes the variance of
the noisy answer. The proof of differential privacy for the
final workload query answers is straightforward because it is
inherited from the privacy guarantee of K.

Using thematrix mechanism, the noise added to the work-
load queries may consist of a complex, correlated noise
distribution evenwhen the underlying algorithmK adds inde-
pendent noise to each strategy query. Such correlated noise
allows for more accurate results, particularly for workloads
with correlated queries.

The accuracy of the matrix mechanism depends on the
query strategy selected to instantiate it. This paper explores
the problem of designing the optimal strategy for a given
workload. To understand the optimization problem, we first
analyze the error of any query supported by a strategy. The
error is determined by two essential features of the strategy:

its error profile, a matrix which governs the distribution of
error across queries, and its sensitivity, a scalar term that uni-
formly scales the error on all queries. Accurately answering
a workload of queries requires choosing a strategy with a
good error profile (relatively low error for the queries in the
workload) and low sensitivity. We show that naive strategies
typically succeed at one, but not both, of these objectives.

We then formalize the optimization problem of finding
the strategy that minimizes the total error as a semidefinite
program with rank constraints.

We also investigate an extension to the matrix mechanism
which incorporates nonnegativity constraints into the infer-
ence process. The matrix mechanism can be seen to produce
an estimate, suited to the input workload, of the original data-
base. This estimate is represented as a vector of counts which
should be nonnegative, but may include negative values due
to the addition of randomnoise.Mostworks either ignore this
issue or simply round negative values to zero to achieve non-
negativity. We investigate this step in more detail than prior
work, showing experimentally that nonnegativity constraints
can significantly reduce error when applied properly, but that
they also result in a mechanism that diverges in an important
way from the basic matrix mechanism: The achieved error
rates are no longer independent of properties of the input
database, and as a result, the formal error analysis of the
mechanism cannot be carried out without taking into account
properties of the input data.

After a background discussion in Sects. 2 and 3, we
describe the matrix mechanism in Sect. 4. We analyze its
error formally in Sect. 5 and apply our analysis to two related
techniques in Sect. 6. In Sect. 7, we investigate the problem
of choosing an optimal query strategy and discuss practi-
cal solutions. In Sect. 8, we study nonnegativity constraints.
Finally, we discuss related work and conclude in Sects. 9
and 10.

2 Background: linear queries and query workloads

The matrix mechanism is designed to answer a set of linear
queries. A linear query is an aggregation query over a single
relation that can be expressed as a linear combination of a
set of database counts. In this section, we first describe the
representation of a relational table as a vector of nonneg-
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ative integers. We then describe linear queries, represented
as vectors of coefficients, and a workload of linear queries,
represented as a matrix. Lastly, we show that the matrix rep-
resentation of a set of linear queries is not unique.

2.1 Data domain and cell lists

We consider a database instance I of a single-table relational
schema R(A) with attributes A = {A1, A2, . . . , Am}. The
domain dom(Ai ) of an attribute Ai may be discrete or con-
tinuous, finite or infinite, ordered or unordered. The set of all
tuples that may exist in I is the cross product of the domains
of attributes in A: dom(A) = dom(A1) × dom(A2) × · · · ×
dom(Am). The database instance is encoded as a vector of
cell counts, each counting the number of tuples included in
a distinct subset of the domain.

Definition 1 (Cell andCell List)Acell is a non-empty subset
of dom(A). A cell list Φ = φ1, . . . φn is an ordered list of
mutually exclusive cells: ∀i, j, φi ∩ φ j = ∅.

We do not require that the cells in a cell list cover dom(A).
For a specified cell list, a relational table can be represented
(or sometimes partially represented) in the form of a data
vector consisting of a nonnegative integer for each cell.

Definition 2 (Data vector) Given instance I and cell list
Φ = φ1, φ2 . . . φn , the vector representation of I using Φ,
denoted x(I, Φ), is the length-n column vector consisting
of a nonnegative integer for each cell; i.e., the i th entry in
x(I, Φ) is |I ∩ φi |.

When I and Φ are clear from the context, we denote the
data vector simply by x.

Example 1 Consider a relational schema R = (name, grad-
year, gender, gpa) describing students. Figure 2a shows
a sample instance of this relation. Figure 2b describes a
cell list based on gender (male or female) and gradyear
(2011, 2012, 2013 or 2014) where the wildcard (∗) matches
any element of the domain. Figure 2c shows the data vector
that results from the instance and the cell list. Note that the
sum of the counts in the data vector does not equal the total
number of tuples in the instance because the cells happen not
to cover the entire active domain of gradyear .

A common case is to define a cell list by partitioning
dom(A) according to a single ordered attribute. In this case,
the data vector would describe a one-dimensional histogram.
Parts of the domain that are not represented in the cell list
cannot be queried. The main criterion for selecting a cell list
for a given schema is that the cells support the queries of the
intended workload. This can be done in multiple ways, and
we return to the choice of cell lists later in this section.

2.2 Linear queries

A linear query computes a linear combination of the counts
in the data vector x.

Definition 3 (Linear query) A linear query is a length-n row
vector w = [w1 . . . wn] with each wi ∈ R. The answer to a
linear query w on x is the dot product wx = w1x1 + · · · +
wnxn .

Linear queries can express a variety of common aggrega-
tion queries.We refer to a linear query whose coefficients are
exclusively zero or one as a predicate counting query, since it
computes the number of tuples satisfying a predicate defined
by the disjunction of the cells corresponding to query coeffi-
cients of one. For an ordered attribute domain, a range count
query is a special case of a predicate counting query whose
nonzero coefficients form a contiguous range. Range count
queries have a natural extension to multi-dimensional range
count queries. Multi-dimensional range count queries are a
versatile class: Histograms, data cubes,marginal queries, and
group-by queries are all sets of one-dimensional or multi-
dimensional range count queries.

Although many common classes of queries are predicate
counting queries, we need not restrict our attention only to
linear queries with coefficients of zero or one. With other
coefficients, linear queries can compute differences (e.g.,
query w5 in Fig. 3b) and can express aggregate queries that
are not, strictly speaking, counting queries. For example,
referring to the cell list in Fig. 2, the average graduation year
of male students graduating between 2011 and 2014 can be
computed as (2011x1 + 2012x3 + 2013x5 + 2014x7)/4.

We will consider query workloads that consist of sets of
linear queries, organized into the rows of a query matrix.

Fig. 2 For schema R =
(name, gradyear, gender,
gpa). a shows a sample
instance. A cell list consisting of
8 cells described in terms of the
tuples that match conditions on
gradyear and gender is shown
in (b). The database vector,
shown in (c), accordingly
consists of 8 counts

(a) (b) (c)

123



C. Li et al.

Fig. 3 a A query matrixW
consisting of five linear queries,
b the description of the queries
in W using the cell list Φ in
Fig. 2, c the evaluation of W on
x, d a semantically equivalent
query matrixW′ expressed w.r.t.
a reduced cell list (columns 5
and 6 inW have been combined
to get W′)

(a) (b)

(c) (d)

Definition 4 (Query matrix) A query matrix is a collection
ofm linear queries, arranged by rows to form anm×nmatrix.

IfW is anm×n query matrix, the evaluation ofW results
in a length-m column vector of query answers, which can be
computed as the matrix product Wx.

Example 2 Figure 3 shows a query matrix representing a
workload of five linear queries, along with the meaning of
the queries using the cell list in Fig. 2b. The queries are
evaluated by computing Wx, as shown in Fig. 3c.

As the example above shows, a linear query is simply a
vector of coefficients, whereas the cell lists provide a seman-
tics for the query in terms of the schema for a particular
relation.

2.3 Representing query workloads in matrix form

Later in the paper, wewill assume that an analyst has decided
on a workload of queries of interest, selected a cell list, and
represented theworkload as a querymatrix,which is themain
input to our algorithms. We describe next a few guidelines
and subtleties involved in representing a query workload in
matrix form.

The matrix mechanism can be seen as automatically opti-
mizing the workload to reduce error. As a result, the analyst
does not have to think carefully about the workings of the
privacy mechanism when representing the workload. In par-
ticular, the analyst needs not try to reduce the sensitivity of
theworkload or avoid subtle redundancies in queries. Instead,
the analyst should include in theworkload all queries of inter-
est, even if some queries could be computed from others in
the workload. As a concrete example, in Fig. 3b, w4 can be
computed as (w2 − w3), but it is nevertheless included in
the workload. This reflects our assumption that the goal is to
simultaneously answer all givenworkload queries withmini-
mumaggregate error, treating each equally.Duplicate queries
should be removed from the workload; however, individual
rows of the workload may be multiplied by a positive scalar
value. This has the effect of increasing the importance of the

query and reducing the error of that query relative to total
error of the workload.

After deciding on the workload queries, the next step is to
select an appropriate cell list that can support the workload
queries. If each attribute domain is finite, then it is possible to
fully represent instance I by defining the (finite) vector xwith
one cell for every element ofdom(A). Then,x is a bit vector of
size |dom(A)| with nonzero counts for each tuple present in
I . This is also a vector representation of the full contingency
table built from I (note that if the schema contains infinite
attribute domains, they would typically be partitioned into
finite regions of sufficient granularity to support the desired
queries).

Selecting the cell list in this manner allows a wide range
of desired queries to be supported. But it is often inefficient,
since the size of x then grows exponentially with the sizes of
the attribute domains, and ineffective, since the base counts
are typically too small to be estimated very accurately. Alter-
natively, it may be sufficient to partially represent I by the
cell counts in x, for example, by focusing on a subset of the
attributes ofA that are relevant to a specialized set of queries
and/or a subset of the attribute domains (as in Example 1).

There are many ways to represent semantically equivalent
workloads in matrix form. First of all, any workload matrix
implies a particular order for the workload queries, but this
order is irrelevant to the set-based semantic of a query work-
load. Further, there are many feasible choices for the cell list
supporting a given workload, and equivalent workloads can
be expressed over alternative cell lists:

Definition 5 (Workload semantic equivalence)WorkloadW
over cell list Φ is semantically equivalent to workload W′
over cell list Φ ′, denoted (W, Φ) ≡ (W′, Φ ′), if there
is a permutation matrix P such that for every instance
I, Wx(I, Φ) = PW′x(I, Φ ′).
Example 3 Observe in Fig. 3 that columns 5 and 6 of work-
loadW are identical. With respect to the example workload,
positions 5 and 6 of the data vector are either both ignored, or
summed together. It follows that cells φ5 and φ6 can be com-
bined and the query matrix altered by dropping one of the
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columns and that these operationswill notmodify the seman-
tics of the workload. More precisely, (W, Φ) ≡ (W′, Φ ′)
where Φ ′ is derived from Φ as follows. The first four cells in
Φ ′ are equal to those of Φ, cell φ′

5 = φ5 ∨ φ6, φ′
6 = φ7, and

φ′
7 = φ8. Observe that W′ results from removing column 6

from W.

The following proposition shows that semantic equiva-
lence can be characterized by considering a small set of
semantics-preserving operations over cell lists and workload
matrices.

Proposition 1 For workloadW over cell list Φ and a work-
load W′ over cell list Φ ′, (W, Φ) ≡ (W′, Φ ′) if and only
if W′ and Φ ′ result from a sequence of one or more of the
following operations:

1. Permutation apply permutationμ to the rows ofW, or the
cells of Φ and the columns of W.

2. Cell union ifW contains two columns with identical coef-
ficients, form W′ by removing one of the columns and
replacing the cells by their union.

3. Cell division for any column Wi ofW and corresponding
cell φi of Φ, construct Φ ′ by replacing condition φi with
φi1 and φi2 where φi1 ∪φi2 = φi and φi1 ∩φi2 = ∅. Then,
associate cell φi1 and φi2 with the column of coefficients
Wi (i.e., two copies of Wi will appear inW′).

4. Add irrelevant cells add a new cell to Φ and a corre-
sponding column toW whose coefficients are all zeros.

5. Remove irrelevant cells ifW contains a column of zeros,
remove it along with its associated cell in Φ.

Proof The sufficiency of the conditions in Proposition 1 is
easily verified.Here,weprove the necessity of the conditions.

GivenW1 overΦ1 andW2 overΦ2 such that (W1, Φ1) ≡
(W2, Φ2). As it is defined in Definition 5, there exists a per-
mutation matrix P such that W1x(I, Φ1) = PW2x(I, Φ2)

for any instance I . Noticing the row permutation is a part of
the Permutation operation in Proposition 1, it is sufficient to
consider the case that P = I.

Further, given a workloadW1 over Φ1, construct a work-
load W′

1 over Φ ′
1 by performing operation 2 and 5 until the

workload contains neither duplicate column nor column of
zeros. Then, (W1, Φ1) ≡ (W′

1, Φ
′
1) according to the suffi-

ciency of those conditions. Apply the same process to W2

to get the workload W′
2 over Φ ′

2 such that (W′
2, Φ

′
2) ≡

(W2, Φ2). According to Definition 5, (W′
1, Φ

′
1) must be

semantically equivalent to (W′
2, Φ

′
2).

First of all,
∨

φ∈Φ ′
1
φ = ∨

φ∈Φ ′
2
φ. Otherwise, without

loss of generality, assume that
∨

φ∈Φ ′
1
φ is not a subset of

∨
φ∈Φ ′

2
φ and let

I0 = {
t |φ(t) ∧ (¬φ′(t)) is True, ∀φ ∈ Φ ′

1, ∀φ′ ∈ Φ ′
2

}
.

Then, I0 �= ∅ and W′
1x(I0, Φ

′
1) �= W′

2x(I0, Φ
′
2) = 0, which

contradicts with the fact that (W′
1, Φ

′
1) ≡ (W′

2, Φ
′
2).

In addition, for any i, j such that φi ∈ Φ ′
1 and φ′

j ∈ Φ ′
2

such that φi ∧ φ′
j �= ∅. Let Wi be the column of W′

1
corresponding to φi and W ′

j be the column of W′
2 cor-

responding to φ′
j . Wi must be equal to W ′

j . Otherwise,
let I1 = {t |φi (t) ∧ φ′

j (t) is True} and W′
1x(I1, Φ

′
1) =

|I1|Wi �= W′
2x(I1, Φ

′
2) = |I1|W ′

j , which leads to a con-
tradiction. Moreover, since neither W′

1 nor W′
2 contains

duplicate columns, any cell condition in Φ ′
1 other than φi

is disjoint with φ′
j and any cell condition in Φ ′

2 other than
φ′
j is disjoint with φi . Therefore, φi = φ′

j ; otherwise,∨
φ∈Φ ′

1
φ �= ∨

φ∈Φ ′
2
φ.

Above all, we know there must exist a permutation μ to
the cells ofΦ ′

1 and the columns ofW′
1 that gets us (W′

2, Φ
′
2).

Thus, (W1, Φ1) can be transformed into (W2, Φ2) with the
operations in Proposition 1. �

We will show later in the paper that many aspects of the
performance of our algorithms are independent of the cell
list used and the particular query matrix that results. Most
importantly, the optimal error achievable for a workload is
the same for any semantically equivalent workload matrix.
However, in terms of efficiency, it is beneficial to represent
a workload with the smallest possible set of cells. The num-
ber of cells in the cell list, n, (which is also the number of
columns in the workload matrix) is a key parameter in the
computational complexity of the algorithms to come. For-
tunately, using Proposition 1, it is straightforward to create
the smallest cell list for a given workload of interest. After
starting with any feasible representation of the workload, we
can repeatedly apply steps (2) and (5), in any order.

3 Background: differential privacy

Informally, a randomized algorithm is differentially private if
it produces statistically close outputs whether or not any one
individual’s record is present in the database. Two instances
I and I ′ are neighbors, denoted nbrs(I, I ′) if they differ by
at most one record, i.e., if |(I − I ′) ∪ (I ′ − I )| = 1.

Definition 6 (Differential privacy) A randomized algorithm
K is (ε, δ)-differentially private if for any instances I, I ′ such
that nbrs(I, I ′), and any subset of outputs S ⊆ Range(K),
the following holds:

Pr [K(I ) ∈ S] ≤ exp(ε) × Pr [K(I ′) ∈ S] + δ,

where the probability is taken over the randomness of theK.

If an algorithm satisfies the definition above for δ = 0,
then it is ε-differentially private. When δ > 0, the privacy
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standard is sometimes referred to as approximate differen-
tial privacy. The matrix mechanism can be used with both
definitions.

Both ε- and (ε, δ)-differential privacy can be satisfied by
algorithms that add random noise to query answers. The
magnitude of the required noise is determined by the pri-
vacy parameters, ε and/or δ, and the sensitivity of the set of
queries: the maximum change in a vector of query answers
over any two neighboring databases. The two privacy defini-
tions differ, however, in themeasurement of sensitivity and in
their noise distributions. Standard ε-differential privacy can
be achieved by adding Laplace noise calibrated to the L1 sen-
sitivity of the queries [12]. Approximate (ε, δ)-differential
privacy can be achieved by adding Gaussian noise calibrated
to the L2 sensitivity of the queries [10,22].

Since our query workloads are represented as matrices,
we describe the sensitivity of a workload matrix as a matrix
norm. Recall that, for any cell listΦ, cells are always disjoint
and x(I, Φ) is the vector representation of I using Φ. Since
neighboring databases I and I ′ differ in exactly one tuple, it
follows that the corresponding vectors x(I, Φ) and x(I ′, Φ)

differ in at most one component, by at most one.
In the propositions below, cols(W) is the set of column

vectors Wi ofW. For a query matrixW, the L1 sensitivity is
the maximum L1 norm of the columns of W.

Proposition 2 (L1 Querymatrix sensitivity)For any cell list
Φ, the L1 sensitivity of a query matrixW using cell list Φ is
denoted ‖W‖1 and defined as:

||W||1 def= max
I,I ′∈nbrs(I,I ′)

∥
∥Wx(I, Φ) − Wx(I ′, Φ)

∥
∥
1

= max
Wi∈cols(W)

‖Wi‖1

Similarly, the L2 sensitivity ofW is equal to themaximum
L2 norm of the columns of W.

Proposition 3 (L2 Querymatrix sensitivity)For any cell list
Φ, the L2 sensitivity of a query matrixW using cell list Φ is
denoted ||W||2 and defined as:

||W||2 def= max
I,I ′∈nbrs(I,I ′)

||Wx(I, Φ) − Wx(I ′, Φ)||2
= max

Wi∈cols(W)

||Wi ||2

It is clear from the above propositions that the sensitivity
of a query matrix is in fact independent of any cell list that
accompanies it and our notation reflects this. Further, we
occasionally use ||W|| (without a subscript) to represent the
sensitivity when the context does not specify whether it is L1

or L2 sensitivity.

Fig. 4 Query matrices with a cell of size four. Each is full rank. I4
returns a count for each cell. H4 computes seven sums, hierarchically
partitioning the cells. Y4 is based on the Haar wavelet

Example 4 Figure 4 shows three query matrices, over an
unspecified cell list of size four, which we use as a running
example. I4 is the identity matrix of size four. This matrix
consists of four queries, each asking for an individual ele-
ment of the data vector x. H4 contains seven queries, which
represent a binary hierarchy of sums: The first row is the sum
of the elements of x, the second and third rows each sum one
half of x, and the last four rows return individual elements of
x. Y4 is the matrix of the Haar wavelet. It can also be seen
as a hierarchical set of queries: The first row is the total sum,
the second row computes the difference between sums in two
halves of x, and the last two rows return differences between
smaller partitions of x.

The sensitivity of each of the query matrices in Fig. 4
is: ||I4||1 = 1 and ||H4||1 = ||Y4||1 = 3; ||I4||2 = 1 and
||H4||2 = ||Y4||2 = √

3. A change by one in any component
xi will change the query answer I4x by exactly one under
both L1 and L2, but will changeH4x and Y4x by 3 under L1

and
√
3 under L2 since each xi contributes to three predicate

queries in both H4 and Y4.

The following propositions describe, in vector form, the
standard mechanisms for answering a set of queries under
ε-differential privacy and (ε, δ)-differential privacy. The
Laplace mechanism [7,10] achieves ε-differential privacy by
adding Laplace noise calibrated to the L1 sensitivity of the
input queries.We use Laplace(b)m to denote a column vector
consisting of m independent samples drawn from a Laplace
distribution with mean 0 and scale b.

Proposition 4 (Laplace mechanism) Given an m × n query
matrix W, the randomized algorithm L that outputs the fol-
lowing vector is ε-differentially private:

L(W, x) = Wx + Laplace(b)m

where b = ||W||1/ε.
The Gaussian mechanism [22] achieves (ε, δ)-differential

privacy by adding Gaussian noise calibrated to the L2 sen-
sitivity. We use Normal(σ )m to denote a column vector
consisting ofm independent samples drawn from a Gaussian
distribution with mean 0 and scale σ .
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Proposition 5 (Gaussian mechanism [10,22]) Given an
m × n query matrix W, the randomized algorithm G that
outputs the following vector is (ε, δ)-differentially private:

G(W, x) = Wx + Normal(σ )m

where σ = ||W||2√2 ln(2/δ)/ε.

Recall that Wx is a vector consisting of the true answers
to each query in W. The algorithms above add independent
Laplace noise (scaled by ||W||1 and ε) or Gaussian noise
(scaled by ||W||2, ε, and δ) to each query answer. Thus, both
L(W, x) and G(W, x) are length-m column vectors contain-
ing a noisy answer for each linear query in W. The vector
form of the Laplace and Gaussian mechanisms above incor-
porateswhat is sometimes referred to as parallel composition
for answering multiple queries [23].

4 The matrix mechanism

In this section, we present the formal basis for the matrix
mechanism. Given a workload of linear queries, the matrix
mechanism uses an alternative set of queries, the strategy,
which are answered privately by a standard mechanism.
Answers to the workload queries are then derived from the
strategy queries. Below, we define the set of queries whose
estimates can be derived from the strategy and we provide
optimal mechanisms for deriving estimates. In the remainder
of this paper, we useW and A to denote the query workload
and query strategy as well as their matrix representation.

Given aquery strategyA and its noisy answer fromanydif-
ferentially private algorithm, in order to answer a querywork-
load W with the answer to A, each query w in W should be
able to be expressed as a linear combination of queries in A:

Definition 7 (Support) Given a query workload W and a
query strategy A, we say A supports W if each query in W
can be expressed as a linear combination of queries in A.
In other words, there exists a solution matrix X to the linear
system W = XA.

To derive the answer to W, one needs to solve the linear
system W = XA. There may be multiple solutions to the
linear system, so we take the advantage of the uniqueness of
the Moore–Penrose pseudoinverse of matrix A and express
the answer toW as follows:

Definition 8 (Workload derivation) Let A be a query strat-
egy that supports W and ŷ be noisy answers to A. Then, the
derived noisy answer to W is defined as WA+ŷ, where A+
is the Moore–Penrose pseudoinverse of matrix A.

In particular, when A is a full rank matrix, A+ŷ is the esti-
mate of x that minimizes the squared error given the noisy
observations of the strategy queries.

Example 5 Recall the cell conditions and queries in Fig. 2.
Let the query workload be W1 = {q2,q3}. Then, query
strategy A1 = {q1,q2} does not support W since it cannot
represent q3. A2 = {q3,q4} supports W1 and

WA+
2 =

[
1 1

1 0

]

.

In this case, the answer toW1 can be uniquely computed from
the answer to A2. Further, the rows of WA+

2 show exactly
the linear combinations of the answers to A2 that are used to
compute the answer to W1.

Now, we describe the matrix mechanism. Given any dif-
ferentially private algorithm K that answers linear queries,
the matrix mechanism can be considered as an extension of
K. When instantiated with the supporting query strategy A,
the matrix mechanism is denoted asMK,A.

Definition 9 (Matrix mechanism) Given anm×n workload
matrix W, a p × n strategy matrix A that supports W and a
differentially private algorithm K(A, x) that answers A with
a given database instance x. The matrix mechanism MK,A
outputs the following vector:

MK,A(W, x) = WA+K(A, x). (1)

Recall Fig. 1 illustrating the process of query answering
using the matrix mechanism MK,A. Given query work-
load W, the matrix mechanism uses a query strategy A that
supports W, answers A with the differentially private algo-
rithm K, and outputs the derived answer to W using the
answer to A. The power of the matrix mechanism comes
from the possibility that query strategy A can be carefully
designed or optimized. Note that the derivation of the work-
load queries uses only the answers to the strategy queries,
with no additional access to the database x. The matrix
mechanism therefore inherits the privacy properties andunbi-
asedness of K.

Proposition 6 The matrix mechanism MK,A inherits the
privacy guarantee of K and is unbiased if K is unbiased.

In general, Eq. (1) is valid for any differentially private
mechanism K. However, the choice of K impacts the diffi-
culty of the error analysis and the complexity of finding a
query strategy A to minimize the error for a given workload
W. In most of this paper, we focus on differentially private
algorithms that are data independent:

Definition 10 A differentially private algorithm K(A, x) is
data independent if it can be represented as

K(A, x) = Ax + b̃A,
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where b̃A is a random vector that is independent of the choice
of x.

In addition, the algorithmK(A, x)we are considering should
also satisfy the following two properties: (1) The algorithm
should add independent noise to each query of A, (2) the
standard deviation of noise added is linearly scaled up with
||A||. Analytically, such an algorithm K can be represented
into the following form:

K(A, x) = Ax + ||A||b̃, (2)

where b̃ is a vector of i.i.d random variables that does not
depend onW or x. Many data-independent differentially pri-
vate mechanisms based on noise adding can be represented
in the form of Eq. (2), such as Laplace mechanism [10,12],
Gaussian mechanism [12,22], geometric mechanism [14],
and K-norm mechanism [18].

Proposition 7 When K has the form of Eq. (2), the matrix
mechanism can be presented as:.

MK,A(W, x) = Wx + WA+||A||b̃. (3)

In the rest of the paper, we focus on the matrix mechanism
with the form of Eq. (3). In particular, we use the ε-matrix
mechanism to denote the case in which K is Laplace mech-
anism, and the (ε, δ)-matrix mechanism to denote the case
in which K is Gaussian mechanism. In this case, Eq. 3 can
be readily compared with the Laplace and Gaussian mech-
anisms from Propositions 4 and 5. Both the Laplace and
Gaussian mechanisms add to Wx a vector of independently
sampled noise that is calibrated to the sensitivity ofW, while
the matrix mechanism adds a more complex noise vector
(independent noise b̃ transformed by WA+) and one that is
calibrated to ||A||, the sensitivity of the strategy.

According to properties of the Moore–Penrose pseudoin-
verse (see Proposition 17 in the appendix), since entries of
||A||b̃ are generated from i.i.d random distributions,WA+ is
the min-variance estimation to the noisy answer of A.

Proposition 8 When K has the form of Eq. (2), the matrix
mechanism MK,A produces the min-variance estimator to
Wx given K(A, x).

4.1 Running time of the matrix mechanism

Here, we briefly describe how to use the matrix mechanism
and its running time. To run the matrix mechanism, the user
should first fix a basic differentially private algorithmK like
the Laplace or Gaussian mechanism. For each given work-
loadW, the matrix mechanism can be deployed in four steps:

1. Strategy selection given W: It is non-trivial to generate
optimal strategies for an arbitrary workloadW. The com-

plexity of optimal strategy selection will be discussed in
Sect. 7. On the other hand, for certain workloads, the
strategy can be set to known strategies proposed in the
literature [19,28].

2. Answering the strategy A: All queries in the strategy A
on the dataset x must be answered using K, which takes
O(m1 × n) time for an m1 × n strategy A.

3. ComputingWA+: In general, computingWA+ for anm×
n workloadW and anm1×n strategyA takes O(mm1n)

time.
4. Answering the workload W: The answer to the work-

loadW can be computed bymultiplying the matrixWA+
by the vector of answers to the strategy A, which takes
O(mn) time for an m × n workload W.

It is important to note that, for any fixed workload, one
only needs to run steps 1 and 3 once. Their results can be
used repeatedly on any input database. Therefore, for a fixed
workload, one can precompute steps 1 and 3 so that the
running time of the matrix mechanism can be reduced to
O((m + m1)n). When m1 = O(m), this running time is
asymptotically the same as the time for answering a general
m × n workload using K (the standard Gaussian or Laplace
mechanism), which takes O(mn) time.

The efficiency of the matrix mechanism can be further
improved when special strategy matrices are used. In par-
ticular, the instances of the matrix mechanism described
in [2,6,19,28,31] each focus on workloads of range queries
and use special strategy matrices for which faster evalua-
tion is possible: It only takes O(n) time to deploy the matrix
mechanism in these cases.

5 Analyzing the error of the matrix mechanism

The error introduced using thematrixmechanism is impacted
by two factors: the noise from the differentially private
mechanism K and the linear combinations that generate the
answers to the workload queries W from the answers to the
strategy queries A. We analyze the error of the matrix mech-
anism in this section and derive a closed-form expression for
given K, W, and A.

Along with the error analysis, we investigate another kind
of equivalence among workloads, the total error equivalence.
Such workloads are semantically different, but always have
the same error under the matrix mechanism. Further, we
study the equivalence among strategies and demonstrate that
strategies consisting of different sets of queries are fully
exchangeable under the matrix mechanism.

5.1 Error of the matrix mechanism

Given a query w and a query strategy A that supports w, the
error of answering w using the matrix mechanism MK,A is
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defined as themean-squared error (variance) of the estimated
answer to w.

Definition 11 (Error of a single query) Let x be the database
instance and A be a query strategy. Given a single query
w that A supports, the error of answer w using the matrix
mechanism MK,A is:

ErrorK,A(w) = E

[(
wx − wA+K(A, x)

)2
]
.

For a query workload W that A supports, the total error of
answering W using the matrix mechanism MK,A is:

TotalErrorK,A(W) =
∑

w∈W
E

[(
wx − wA+K(A, x)

)2
]
.

For a query strategyA, the followingproposition describes
how to compute the error of answering a supported query w
or a supported query workload W using the matrix mecha-
nismMK,A. The Frobenius norm, || · ||F , used below is the
square root of the sum of squares of all entries in a vector/
matrix.

Proposition 9 Let A be a query strategy. Given a query w
that A supports, the error of answering w using the matrix
mechanism MK,A is:

ErrorK,A(w) = P(K)||A||2||wA+||2F . (4)

For a query workload W that A supports, the total error of
answering W using the matrix mechanism MK,A is:

TotalErrorK,A(W) = P(K)||A||2||WA+||2F . (5)

Here, P(K) is a constant determined by K and independent
of W, A, and x.

Proof Recall that K(A, x) = Ax + ||A||b̃ and the entries of
b̃ are i.i.d random variables. Let b̃ = (b1, . . . , bn). Accord-
ing to Definition 11, the error of answer w using the matrix
mechanism MK,A is:

ErrorK,A(w) = E

[(
wx − wA+K(A, x)

)2
]

= E

[(
wx − wA+(Ax + ||A||b̃)

)2
]

= E

[
(wA+||A||b̃)2

]

= Var(wA+||A||b̃)

= Var(b1)||A||2||wA+||2F .

Therefore, for a given query workload W,

TotalErrorK,A(W) =
∑

w∈W
E[(wx − wA+K(A, x))2

= Var(b1)
∑

w∈W
||A||2||wA+||22

= Var(b1)||A||2||WA+||2F .

Let P(K) = Var(b1), and recall that b̃ only depends on K.
P(K) is independent of W, A, and x. �

Since we only consider the matrix mechanism based on
data-independent differentially private algorithms, the results
in Proposition 9 do not contain the database instance x. Recall
that the parameter P(K) is a constant determined by the
given private algorithm K. In particular, P(K) = 2/ε2 and
P(K) = 2 log(1/δ)/ε2 when K is the Laplace mechanism
and Gaussian mechanism, respectively. Moreover, the com-
putation of ||A|| is also determined by the choice of K: It
can either be the maximum L1 or L2 norm of the columns of
A depending on whether K satisfies ε- or (ε, δ)-differential
privacy, respectively.

Notice that a query strategy A impacts both Eqs. (4) and
(5) in two ways: ||A|| and ||WA+||F . The former determines
the cost of answering A using K, and the latter reflects the
hardness of computing the answer toW from the answer toA.
To achieve minimum error, the ideal query strategyA should
have low sensitivity while being as similar toW as possible.
Consider two extreme cases for the choice of A. First, ifA =
I, the sensitivity is 1, as low as possible, but if W contains
queries that are linear combinations of many cells, the value
of ||WA+||F can be very large and hence leads to high error.
The other case is A = W, in which A andW are exactly the
same. In such case, ||WA+||F = rank(W), which is small,
but the strategy performs badly when the ||W|| is high. In
many practical cases, the best strategy is one that achieves
a good balance between the sensitivity and the similarity to
W. Optimization approaches to strategy selection are treated
in detail in Sect. 7.

5.2 Total error equivalent workloads

Given the error analysis above,wenowconsider another form
of equivalence among workloads: total error equivalence.
Workloads that are total error equivalent are semantically
different, but always have the same set of supporting strate-
gies and the same total error under the matrix mechanism.
On the other hand, semantically equivalent workloads are not
necessarily error equivalent, although the minimum error of
answering two semantically equivalent workloads is always
the same, which will be addressed in Sect. 7.3.

Error equivalence is impossible among single queries. For
two distinct queries w1 andw2, one can verify that the query

123



C. Li et al.

strategy A =
[

w1
2w2

]

supports w1 and w2 and guarantees

ErrorA(w1) �= ErrorA(w2). Therefore, there are no two
queries that have the same error on all query strategies that
support both of them. However, there exist pairs of query
workloads whose total error is the same over all of their
commonly supporting query strategies. These workloads are
defined as total error equivalent.

Definition 12 Two query workloads W1 and W2 are called
total error equivalent, if for any query strategy A that sup-
ports both W1 and W2, TotalErrorA(W1) = total

errorAW2.

Analyzing Eq. (5) leads to the following condition of total
error equivalent.

Proposition 10 Given two query workloads W1 and W2

where W1 has at least as many queries as W1. W1 and W2

are total error equivalent, if and only if there exists an orthog-

onal matrix Q such that W1 = QW2 or W1 = Q
[
W2
0

]

if

W1 has more queries than W2.

Proof (⇐) WhenW1 = QW2 orW1 = Q
[
W2
0

]

ifW1 has

more queries than W2, we have WT
1 W1 = WT

2 W2. Notice
that

||WA+||2F = trace
(
WT (ATA)+W

)

= trace
(
WTW(ATA)+

)
,

for any query strategy A that supports both W1 and
W2, TotalErrorA(W1) = TotalErrorA(W2).
(⇒) If WT

1 W1 �= WT
2 W2, consider the eigenvalue decom-

position of WT
1 W1 − WT

2 W2 = QDQT and d1, . . . , dn
be the diagonal entries of D. Without loss of generality,
assume d1 �= 0 and let D′ = diag(d ′

1, . . . , d
′
n) where

d ′
1 = √|d1|/√|d2| + · · · + |dn| + 1 and d ′

2 = · · · = d ′
n = 1.

Let query strategy A = D′QT . A supportsW1 andW2 since
it is full rank. Moreover,

||W1A+||2F − ||W2A+||2F
= trace

(
WT

1 (ATA)+W1

)
− trace

(
WT

2 (ATA)+W2

)

= trace
(
WT

1 W1(ATA)+
)

− trace
(
WT

2 W2(ATA)+
)

= trace
(
(WT

1 W1 − WT
2 W2

)
(ATA)+)

= d1
|d1| (|d2| + · · · + |dn| + 1) + d2 + · · · + dn �= 0.

When WT
1 W1 = WT

2 W2, there exist singular value decom-
positions W1 = Q1D1PT and W2 = Q2D2PT , where

the nonzero entries of D1 and D2 are the same. Thus, let

Q0 = Q1QT
2 or Q0 = Q1

[
Q2 0
0 I

]

if W1 has more queries

than W2, and W1 = Q0W2. �
Noticing that any query strategy that supportsWwill support
QW for any matrixQ, the conclusion of Proposition 10 also
indicates that the total error equivalent workloads share a
same set of supporting strategies.

5.3 Equivalence between query strategies

Query strategies are essential to thematrixmechanism.When
thematrixmechanism is instantiatedwith different strategies,
it supports a different set of workloads and introduces dif-
ferent error. An important application of the error analysis
is to determine sets of equivalent query strategies, which are
entirely exchangeable under the matrix mechanism: Equiva-
lent strategies support the same set of workloads and answer
any query with exactly the same amount of error.

Definition 13 (Query strategy equivalence)Given twoquery
strategies A1 and A2, we say that A1 and A2 are equiv-
alent under K if they support the same sets of queries
and for any query w that they support, ErrorK,A1(w) =
ErrorK,A2(w).

To understand the equivalence between query strategies,
let us review the error formulae in Eqs. (4) and (5). In both
equations, the error is computed by ||A|| and a Frobenius
norm term ||wA+||2F and ||WA+||2F , respectively. According
to the definition of the Frobenius norm,

||wA+||2F = trace
(
wA+(wA+)T

)

= trace
(
w(ATA)+w

)
,

||WA+||2F = trace
(
WA+(WA+)T

)

= trace
(
W(ATA)+WT

)
.

The right-hand sides of both equations above share a common
term (ATA)+, which we call an error profile.

Definition 14 Given a query strategyA, the matrix (ATA)+
is called the error profile of A.

When the matrix mechanism is instantiated with A, its
error profile characterizes the distribution of the error of
answering queries under the matrix mechanism: The diago-
nal entries contain the variance of error for each cell, and the
off-diagonal entries encode the covariance of error between
cells. Therefore, the error distribution of two query strategies
is the same if their profiles differ by a constant factor, which
is defined as profile equivalence.
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Fig. 5 Profile-equivalent strategies using a cell list of size four

Definition 15 (Profile equivalence between query strate-
gies) Given two query strategies A1 and A2, we say that
A1 and A2 are profile equivalent if there exists a nonzero
constant c such that (AT

1 A1)
+ = c(AT

2 A2)
+.

Profile-equivalent strategies are not always equivalent,
since profile-equivalent strategies can have different error
if their sensitivities do not differ by a factor of 1/c. However,
profile equivalence is also important since it is independent
of the choice ofK, which is not true for query strategy equiv-
alence. In addition, as it is proved later in this section, profile
equivalence is a necessary condition to query strategy equiv-
alence. Therefore, we first present some properties of profile
equivalence and then study what condition leads to query
strategy equivalence.

Example 6 Figure 5 contains three query strategiesH′
4, H

′′
4,

and Y4 that are profile equivalent. In particular, under the
ε-differentially private matrix mechanism, H′

4 is equivalent
to Y4, but not equivalent to H′′

4, which has the same profile
but smaller sensitivity. This also shows that Y is not optimal
under ε-differential privacy because it is dominated by the
improved strategy H′′

4.

There are other equivalent conditions to profile equiva-
lence, based on strategy matrices and their transformations.

Proposition 11 Given two query strategies A1 and A2,
where A1 has at least as many rows as A2, all of the fol-
lowing conditions are equivalent:

(i) A1 and A2 are profile equivalent;
(ii) There exists a nonzero constant c such that AT

1 A1 =
c · AT

2 A2;
(iii) There exists a nonzero constant c and an orthogonal

matrix Q such that A1 = c · QA2 or A1 = c · Q
[
A2
0

]

if A1 has more rows than A2;

Proof (i) ⇔ (ii) According to the definition of profile equiv-
alence, (AT

1 A1)
+ = c · (AT

2 A2)
+. Take the Moore–Penrose

pseudoinverse to both sides of the equation and we have
AT
1 A1 = 1

c · AT
2 A2.

(ii) ⇒ (iii) Since AT
1 A1 = c · AT

2 A2, there exist singular
value decompositions ofA1 = Q1D1PT

1 andA2 = Q2D2PT
2

such that P1 = P2 and the diagonal entries of D1 are equal
to

√
c times the diagonal entries of D2. If A1 has more rows

thanA2, the matrixQ = Q1

[
QT

2 0
0 I

]

is the orthogonal matrix

such that A1 = √
c · Q

[
A2
0

]

.

(iii) ⇒ (ii) AT
1 A1 = c2 · AT

2 Q
TQA2 = c2 · AT

2 A2. �
The conditions in Proposition 11 imply that profile-

equivalent strategies support the same set of queries. In
addition, for each query they support, the ratio between the
error introduced by those strategies is the same.

Corollary 1 Given two query strategies A1 and A2 that are
profile equivalent, for any query W, A1 supports W if and
only if A2 supports W. Furthermore, there exists a nonzero
constant c such that given a differentially private algorithm
K, for any workload query W that A1 and A2 support,
TotalErrorK,A1(W) = c · TotalErrorK,A2(W).

The following proposition reveals that the strategy equiv-
alence is a special case of profile equivalence with an extra
constraint.

Proposition 12 Two query strategies A1 and A2 are equiv-
alent if they are profile equivalent and

||A1||2
(
AT
1 A1

)+ = ||A2||2
(
AT
2 A2

)+
,

In particular, A1 and c · A1 are equivalent for any nonzero
scalar c.

Proof (⇐) If A1 and A2 are profile equivalent, Corollary 1
indicates that they support the same set of query workloads.
Furthermore, one can verify that for any workload query that
A1 and A2 support,

||A1||2||WA+
1 ||2F = ||A1||2trace

(
WT (AT

1 A1)
+W

)

= ||A2||2trace
(

WT
(
AT
2 A2

)+
W

)

= ||A2||2||WA+
2 ||2F .

(⇒) First, we prove that AT
1 A1 and AT

2 A2 have same eigen-
vectors. Otherwise, let Q0 be the matrix whose rows are
orthogonal eigenvectors that are shared by A1 and A2, Q1

be the matrix whose rows are orthogonal eigenvectors of A1

that are supported by A1 and not eigenvectors of A2, andQ2

be the matrix whose rows are orthogonal eigenvectors of A2

that are supported by A2 and are not eigenvectors of A1. In
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addition, letD1 be the diagonalmatrixwhose diagonal entries
are the eigenvalues ofAT

1 A1 corresponding to the rows ofQ1

and let D2 be the diagonal matrix whose diagonal entries are
the eigenvalues of AT

2 A2 corresponding to the rows of Q2.
Noticing that the spanning space of Q1 contains all vec-

tors that are supported byA1 and are orthogonal to all vectors
in Q0 and so does the spanning space of Q2. Recall that the
equivalent query strategies support the same set of queries;
the rows in Q1 and Q2 are actually two orthogonal bases to
the same subspace. There hence exists an orthogonal matrix
Q such that Q1 = QQ2. For any vector v, vQ1 is a query
that A1 supports and

ErrorK,A1(vQ1)

= P(K)||A1||2||vQ1A
+
1 ||2F

= P(K)||A1||2trace
(
vQ1(AT

1 A1)
+QT

1 v
T
)

= P(K)||A1||2vD−1
1 vT ,

ErrorK,A2(vQ1)

= P(K)||A2||2||vQ1A
+
2 ||2F

= P(K)||A2||2trace
(
vQQ2(AT

2 A2)
+QT

2 Q
T vT

)

= P(K)||A2||2vQD−1
2 QT vT .

Since A1 and A2 are equivalent, ErrorK,A1(vQ1) =
ErrorK,A2(vQ1) for any v, which is equivalent to, for any v,

ErrorK,A1(vQ1) − ErrorK,A2(vQ1)

= P(K)v
(
||A1||2D−1

1 − ||A2||2QD−1
2 QT

)
vT

= 0.

Thus, ||A1||2D−1
1 = ||A2||2QD−1

2 QT , and we can consider
Q(||A2||2D−1

2 )QT is an eigenvalue decomposition of matrix
||A1||2D−1

1 . Recall Q1 = QQ2, and none of the rows of Q1

belongs to Q2. Therefore, there is no column in Q that con-
sists one entry equal to 1 where all other entries are equal
to 0, which indicates that all diagonal entries of D−1

2 should
be equal. However, in such a case, the rows of Q1 will be
eigenvectors of AT

2 A2, which leads to a contradiction, and
we know AT

1 A1 and AT
2 A2 must have same eigenvectors.

In addition, given an eigenvector u of AT
1 A1 and AT

2 A2

thatA1 andA2 support, letAT
1 A1uT = ξ1uT andAT

2 A2uT =
ξ2uT . Since A1 and A2 support u, ξ1 �= 0 and ξ2 �= 0. Fur-
thermore,

ErrorA1(u) = P(K)||A1||2||uA+
1 ||2F

= ||A1||2trace
(
u(AT

1 A1)
+uT

)

= ||A1||2||u||22
ξ1

,

ErrorA2(u) = P(K)||A2||2||uA+
2 ||2F

= ||A2||2trace
(
u(AT

2 A2)
+uT

)

= ||A2||2||u||22
ξ2

,

Since ErrorA1(u) = ErrorA2(u), ||A1||2ξ2 = ||A2||2ξ1.
Noticing that it is true for all pairs of corresponding eigen-
values of AT

1 A1 and AT
2 A2, we have

||A2||2
(
AT
1 A1

)
= ||A1||2

(
AT
2 A2

)
.

According to Corollary 1, A1 and A2 are profile equivalent
and

||A1||2
(
AT
1 A1

)+ = ||A2||2
(
AT
2 A2

)+
.

�
In particular, when K is under (ε, δ)-differential privacy,

profile equivalence is equivalent to query strategy equiva-
lence.

Proposition 13 Given a differentially private algorithm K,
ifK satisfies (ε, δ)-differential privacy, all profile-equivalent
query strategies are equivalent.

Proof WhenK is under (ε, δ)-differential privacy, sensitivity
ofA is computed by ||A||2. Noticing that ||A||22 is equal to the
largest diagonal entry ofmatrixATA, given two query strate-
giesA1 andA2 that are profile equivalent, by definition there
exists a constant c such that (AT

1 A1)
+ = c · (AT

2 A2)
+. Then,

c ·AT
1 A1 = AT

2 A2 and c · ||A1||22 = ||A2||22. Substitute those
values into Eq. (5), and we know TotalErrorK,A1(W) =
TotalErrorK,A2(W) for any query workload W that A1

and A2 support. �

6 Application: analyzing Hn and Yn using the
matrix mechanism

In this section, we use our techniques to analyze and improve
two previously proposed approaches for answering a specific
workload: the set of all range queries over a (possibly multi-
dimensional) domain [19,28].We show that both approaches
are instances of the matrix mechanism, each using a different
query strategy designed to support the range queryworkload:
In Xiao et al. [28], a wavelet transformation matrix is used
as the strategy, and in Hay et al. [19], a hierarchical set of
queries is used as the strategy. We will show that the seem-
ingly distinct approaches have remarkably similar behavior:
They have low (but not minimal) sensitivity, and they are
highly accurate for range queries but much worse for queries
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that are not ranges. Although both techniques can support
multi-dimensional range queries, we focus our analysis on
one-dimensional range queries.

We briefly describe these techniques and how they can
each be represented in matrix form. In the hierarchical
schemeproposed in [19], the query strategy canbe envisioned
as a recursive partitioning of the domain. We consider the
simple case of a binary partitioning, although higher branch-
ing factors were considered in [19]. The strategy includes
the total sum over the whole domain, and then the count of
each half of the domain, and so on, terminating with counts
of individual elements of the domain. For a domain of size n
(assumed for simplicity to be a power of 2), this results in a
query strategy consisting of 2n − 1 rows. We represent this
strategy as matrixHn , andH4 in Fig. 4 is a small instance of
it.

In the wavelet scheme, proposed in [28], query strategies
are based on the Haar wavelet. For one-dimensional range
queries, the technique can also be envisioned as a hierarchical
scheme, asking the total query, then asking for the difference
between the left half and right half of the domain, continu-
ing to recurse, asking for the difference in counts between
each binary partition of the domain at each step. Though it
is presented differently in [28], we prove later in this section
the equivalence of that construction with our formulation
Yn . This results in n queries—fewer than the hierarchical
scheme of [19]. The matrix corresponding to this strategy is
the matrix of the Haar wavelet transform, denotedYn in gen-
eral, and illustrated asY4 in Fig. 4. Thus,Hn is a rectangular
(2n−1)×n query strategy andYn is an n×n query strategy.

As suggested by the examples in earlier sections, these
seemingly different techniques have similar behavior. We
analyze them in detail below, proving new bounds on the
error for each technique, and proving new results about their
relationship to one another.We also include In in the analysis,
which is the strategy represented by the dimension n identity
matrix, which asks for each individual count.

6.1 Representing the Haar wavelet technique

The representation of the wavelet approach in terms of strat-
egy matrix Yn is different from its original presentation in
Xiao et al. [28]. The following theorem shows the equiva-
lence of both representations.

Proposition 14 (Equivalence of Haar wavelet representa-
tions) Let x̂Haar denote the estimate derived from the Haar
wavelet approach of Xiao et al. [28]. Let x̂Yn denote the esti-
mate from asking queryWn. Then, x̂Haar and x̂Yn are equal
in distribution, i.e., Pr [x̂Haar ≤ x] = Pr [x̂Yn ≤ x] for any
vector x.

Proof Given vector x, the Haar wavelet is defined in terms
of a binary tree over x such that the leaves of the tree are x.

Each node in the tree is associatedwith a coefficient. Coef-
ficient ci is defined as ci = (aL −aR)/2 where aL (aR) is the
average of the leaves in the left (right) subtree of ci . Each ci is
associated with a weightW(ci )which is equal to the number
of leaves in subtree rooted at ci (in addition, there is a coef-
ficient c0 that is equal to the average of x and W(c0) = n).

An equivalent definition for ci is ci = ∑n
j=1 x j zi ( j)

where for i > 0,

zi ( j) =

⎧
⎪⎨

⎪⎩

1/W(ci ), if j is in the left subtree of ci

−1/W(ci ), if j is in the right subtree of ci

0, otherwise

For i = 0, then zi ( j) is equal to 1/W(c0) for all j .
Let A be a matrix where ai j = zi ( j). The i th row of A

corresponds to coefficient ci . Since there are n coefficients,
A is an n × n matrix. The approach of [28] computes the
following yHaar = Ax + b̃A where b̃A is an n × 1 vector
whose i th entry is an independent sample from a Laplace
distribution with scale bi = 1+log n

εW(ci )
. Observe that b̃A can be

equivalently represented as:

b̃A = R−1
(
1 + log n

ε

)

b̃

where R is an n × n diagonal matrix with rii = W(ci ). The
estimate for x is then equal to:

x̂Haar = A−1yHaar = x + A−1b̃A

= x + A−1R−1
(
1 + log n

ε

)

b̃

= x + (RA)−1
(
1 + log n

ε

)

b̃

We now describe an equivalent approach based on the matrix
Yn . Observe thatYn = RA. The sensitivity ofYn is ||Yn|| =
1 + log n. Using the matrix mechanism, the estimate x̂Yn is:

x̂Yn = Yn
−1

(

Ynx + (
||Yn||

ε
)b̃)

)

= x + Yn
−1 ||Yn||

ε
b̃

= x + (RA)−1
(
1 + log n

ε

)

b̃

�

6.2 Similarity between Hn and Yn

Though represented differently,Hn and Yn are actually very
similar strategies under the matrix mechanism. In particular,
a strategy matrix that is equivalent to Yn can be achieved by
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removing the query of total sum and adding identity queries
on each cell.

Theorem 1 Let n be a power of 2, denoted as n = 2k . Let
H′

n be the matrix that results from removing the row of all 1s

frommatrix

[
Hn
In

]

. Then,H′
n andW are equivalent strategies

under both ε- and (ε, δ)-differential privacy.

Proof Noticing that H′
n has the same L1 and L2 sensitivity

with Yn , it is sufficient to prove H′
n
TH′

n = YT
n Yn , which is

equivalent to prove HT
n Hn = YT

n Yn + 1n×n − In .
Recall n = 2k , and wewill prove the conclusion by induc-

tion on k. When k = 1,

HT
2 H2 =

[
2 1
1 2

]

,

YT
2 Y2 =

[
2 0
0 2

]

.

Assume that the conclusion is correct for k − 1. Since

H2k =
⎡

⎢
⎣

11×2k−1 11×2k−1

H2k−1 0

0 H2k−1

⎤

⎥
⎦ ,

Y2k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y2k−1

11×2k−1

0

−11×2k−1

Y2k−1

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

one can verify that HT
2k
H2k = YT

2k
Y2k + 12k×2k − I2k . �

Example 7 Figure 6 contains the strategy matrices H4, H′
4,

and Y4 and reveals the relationship between them. Adding
I4 to H4 and removing the row of all 1s gives H′

4. We find

(a)
(c) (d)

(b)

Fig. 6 Strategy matrices H4, H′
4, Y4, H′

4
TH′

4, and YT
4 Y4, which

shows the similarity between H4 and H′
4 as well as the equivalence

between H′
4 and Y4

that H′
4 and Y4 are equivalent strategies (under both the ε-

and (ε, δ)-differentially private matrix mechanisms) because
their error profiles are equal (as indicated in Fig. 6d).

It follows from the similarity ofHn andYn that the error pro-
files are asymptotically equivalent to one another. We thus
prove a close equivalence between the error of the two tech-
niques:

Corollary 2 For any linear counting query w and differen-
tially private mechanism K,

1

2
ErrorK,Y(w) ≤ ErrorK,H(w) ≤ 2ErrorK,Y(w).

6.3 Error analysis for In, Hn, and Yn

In this part, we analyze the error for two specificworkloads of
interest. We focus on two typical workloads: WR , the set of
all rangequeries, andW01,which includes arbitrary predicate
queries, since it consists of all linear 0-1 queries. Note that
attempting to use either of theseworkloads as a strategy leads
to high sensitivity: The sensitivity ofWR is O(n2), while the
sensitivity ofW01 is O(2n). Here, we consider the total error
as well as the maximum error under the matrix mechanism.
The latter is defined as the worst-case error of a single query
and denoted as MaxError.

In the original papers describing Hn and Yn [19,28],
both techniques are shown to have worst-case error, under
ε-differential privacy, that is bounded by O(log3 n) on WR .
Both papers resort to experimental analysis to understand the
distribution of total error across the class of range queries.
We note that our results in Proposition 9 allow error for any
query to be analyzed analytically.

Example 8 Figure 7 demonstrates the error of answering
each range query inWR under the Laplace mechanism with
n = 512 and ε = 1 using strategy matrices Hn, Yn , and In ,
respectively. Using the identity, In gives lower error on small
ranges, but significant error on large ranges. BothHn andYn

smooth the error and have roughly similar patterns with Yn

favoring smaller ranges more than Hn .

Next, we summarize the total error and the maximum
error for these strategies. The following results tighten known
bounds for WR and show new bounds for W01 with the ε-
differential privacy.

Theorem 2 (Error and Maximum Error) The total error
and the maximum error on workloads WR and W01 using
strategies Hn,Yn, and In under the ε- and (ε, δ)-matrix
mechanism is given in Table 1.

Proof Here, we focus on the case of ε-matrix mechanism
since the proof on (ε, δ)-matrix mechanism is exactly the
same.
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Fig. 7 Error of each range query inWR using different strategies under ε-matrix mechanism with n = 512, ε = 1. a Hn as the strategy matrix. b
Yn as the strategy matrix. c In as the strategy matrix

Table 1 Total and maximum
error of Hn, Yn , and In on all
predicate queries

Hn Yn In

(a) Under ε-differential privacy

TotalError

WR Θ(n2 log3 n/ε2) Θ(n2 log3 n/ε2) Θ(n3/ε2)

W01 Θ(n2n log2 n/ε2) Θ(n2n log2 n/ε2) Θ(n2n/ε2)

MaxError

WR Θ(log3 n/ε2) Θ(log3 n/ε2) Θ(n/ε2)

W01 Θ(n log2 n/ε2) Θ(n log2 n/ε2) Θ(n/ε2)

(b) Under (ε, δ)-differential privacy

TotalError

WR Θ(n2 log2 n log(1/δ)/ε2) Θ(n2 log2 n log(1/δ)/ε2) Θ(n3 log(1/δ)/ε2)

W01 Θ(n2n log n log(1/δ)/ε2) Θ(n2n log n log(1/δ)/ε2) Θ(n2n log(1/δ)/ε2)

MaxError

WR Θ(log2 n log(1/δ)/ε2) Θ(log2 n log(1/δ)/ε2) Θ(n log(1/δ)/ε2)

W01 Θ(n log n log(1/δ)/ε2) Θ(n log n log(1/δ)/ε2) Θ(n log(1/δ)/ε2)

Since Wn and Hn are asymptotically equivalent, we
can derive the error bounds for either. We analyze the
error of Wn . Let n = 2k+1, consider the range query

[2k − 1
3 (4

� k−1
2 �+1 − 1), 2k + 1

3 (4
� k−1

2 �+1 − 1)]. The error
of this query is Θ(log3 n), which follows from algebraic
manipulation of Eq. 5, facilitated by knowing the eigen-
decomposition of (WT

n Wn)
+. Since Xiao et al. [28] have

already shown that the worst-case error ofWn is O(log3 n),
we know the maximum error of answering any query inWR

is Θ(log3 n).
Moreover, it follows from algebraic manipulation that the

error of answering any querywwhere the number of nonzero
entries is 1 is O(log2 n). Therefore, the error of any 0-1 query
is O(n log2 n). Consider the query (0, 1, 0, 1, . . . , 0, 1):
It can be shown to have error Θ(n log2 n). Therefore,

the maximum error of answering any query in W01 is
Θ(n log2 n).

Recall that when K is the Laplace mechanism,

TotalErrorA(W) = 2

ε2
||A||21||WA+||2F .

Total error of workloads WR, W01 can be computed by
applying the equation above to strategies Hn,Wn and In .

�

7 Optimal strategy selection

An essential task in deploying the matrix mechanism is
selecting an appropriate query strategy A for a given query
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workloadW. In this section, we present techniques that gen-
erate optimal or approximately optimal strategies for a given
workload under the matrix mechanism, as well as a heuristic
that can enhance any given strategy. We first define our main
problem as follows:

Problem 1 (MinError) Given a query workload W and a
differentially private algorithm K, find a query strategy A
that supports W and minimizes TotalErrorK,A(W).

Since both W and −W support W but 0 = W + (−W)

does not, the MinError problem is non-convex. In this
section, wewill formulate theMinError problem as a semi-
definite programwith rank constraints,which is a non-convex
variant of a semidefinite program. We then discuss the prob-
lem in two cases corresponding to the differential privacy
guarantee of K. A general technique that can be used to
improve a query strategy is also provided in the later section.
We also show that two semantically equivalent workloads
yield the same minimum total error at the end of this section.

7.1 Formulating the MINERROR problem

Here, we show that the MinError problem under ε-
differential privacy can be expressed as a semidefinite
program with rank constraints. While rank constraints make
the semidefinite program non-convex, there are algorithms
that can solve such problems by iteratively solving a pair of
related semidefinite programs.

Theorem 3 Given an m × n workload W, MEDP(Prog-
ram 7.1) is a semidefinite program with rank constraint
whose solution is the tuple (A,u,X) and the m′ × n strat-
egy A minimizes TotalErrorK,A(W) among all m′ × n
strategies.

Proof Toprove that the output strategyAofMEDP is an opti-
mal m′ × n strategy to the MinError problem, one needs
to show that the solution of MEDP supportsW and the opti-
mization goal of MEDP is equivalent with the MinError

problem.
The semidefinite condition in (6) is important, which guar-

antees that there exists a matrix A′ such that A′TA′ = X, A′
supports wi , and ui ≥ ||wiA′+||2F . According to the proper-
ties of positive semidefinitematrices, it is a symmetricmatrix
with nonnegative eigenvalues. Let X = P�PT be an eigen-
value decomposition of matrix X. Consider the matrix

Y =
[
PT 0
0 1

] [
X wT

i
wi ui

] [
P 0
0 1

]

=
[

� (wiP)T

wiP ui

]

,

(6) holds if and only if Y � 0. Since � is a diagonal matrix,
if its j th diagonal entry is 0, the j th entry ofwiPmust be 0 as
well. Otherwise,Y cannot be positive semidefinite no matter

Program 7.1 (MEDP): minimizing the total error with K
under ε-differential privacy

Given: W ∈ R
m×n

Minimize: u1 + u2 + · · · + um

Subject to: For i ∈ [m] : wi is the i-th row of W.

[
X wT

i
wi ui

]

� 0 (6)

||A||1 ≤ 1 (7)

rank

([
Im′ A
AT X

])

= m′ (8)

the value of ui . Recall that the diagonal entries of� are eigen-
values ofX and hence are nonnegative. LetD be the diagonal
matrix whose diagonal entries are the square roots of diago-
nal entries of�. We knowD supportswiP. Then,A′ = DPT

supportswi andA′TA′ = X. In addition, letY′ be the matrix
that is constructed by removing all 0 columns and rows from
Y. For any wi that is supported by A′, Y � 0 is equivalent
to |Y′| ≥ 0. The expansion of |Y′| implies that the determi-
nant is nonnegative if and only if ui ≥ ||wiA′+||2F . Since the
goal of the optimization problem is to minimize the sum of
ui , when the optimal case is achieved, we must have ui =
||wiA′+||2F = wi (A′TA′)+wT

i = wiX+wT
i . Furthermore,

(8) guarantees that X = ATA, and hence ui = ||wiA+||2F .
According to Proposition 12, applying a nonzero scalar c

to a query strategy A leads to its equivalent strategy. There-
fore, the condition (7) does not limit the scope of query
strategies to be considered since any query strategy has
equivalent strategies with sensitivity no more than 1. This
constraint is as well a convex constraint since the sensitiv-
ity of A is convex for both ε- and (ε, δ)-differential privacy.
Noticing ||wi (c · A)+||F = ||wiA+||F/c < ||wiA+||F for
any c > 1, ||A||1 must be 1 in the optimal case.

Above all, any solution to MEDP supports W. When the
optimal case is achieved, ||A||1 = 1 and ui = ||wiA+||2F =
||A||21||wiA+||2F = P(K)ErrorK,A(wi ). Therefore, the
goal of the optimization, minimizing

∑m
i=1 ui , is equivalent

to minimizing

∑m

i=1
ErrorK,A(wi ) = TotalErrorK,A(W).

�
Theorem 3 provides the best strategy to the MinError

problem with at most m′ queries. If the optimal strategy has
m′′ < m′ queries, then MEDP will return an m′ × n matrix
with m′ − m′′ rows of 0s. In addition, if the workload only
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Program 7.2 (MEADP): Minimizing the Total Error withK
under (ε, δ)-differential privacy

Given: W ∈ R
m×n .

Minimize: u1 + u2 + · · · + um .

Subject to: For i ∈ [m] : wi is the i-th row of W.
[
X wT

i
wi ui

]

� 0

Xi i ≤ 1, i ∈ [n].

contains queries with coefficients in {−1, 0, 1}, we can show
that n2 is an upper bound on the number of queries in the
optimal strategy [20].

In addition, since MEDP encodes the error of each query
wi in query workloadW, we can actually use another convex
function of u1, . . . , um to take the place of u1 + · · · + um
in the optimization goal. One variation to the optimization
goal is maxi ui , under which the result of MEDP becomes
the query strategy that minimizes the maximum error of all
queries inW.

Dattorro [5] shows that solving a semidefinite program
with rank constraints can be converted into solving two semi-
definite programs iteratively. The convergence follows the
widely used trace heuristic for rank minimization. We are
not aware of results that quantify the number of iterations
that are required for convergence. However, notice that it
takes O(n4) time to solve a semidefinite program with an
n× n semidefinite constraint matrix and in MEDP; there are
m semidefinite constraintmatriceswith sizem+n, which can
be represented as a semidefinite constraint matrix with size
m(m + n). Thus, the complexity of solving our semidefinite
program with rank constraints is at least O(m4(m + n)4).

The difficulty of MEDP comes from the rank constraint
(8), which is used to connectATA andA since we needATA
to compute ||wiA+||2F and A to compute ||A||1. However,
when K is based on (ε, δ)-differential privacy, ||A||2 can be
computed directly fromATA. In that case,A is not necessary
in the optimization problem and the rank constraint can be
removed. The optimization problem can then be reduced to a
semidefinite program, which can be solved more efficiently.

Theorem 4 Given an m × n workload W, MEADP(Pro-
gram 7.2) is a semidefinite program whose solution is the
tuple (X,u) and any m′ × n strategy A such that X = ATA
minimizes TotalErrorK,A(W) among all strategies under
(ε, δ)-differential privacy.

7.1.1 Minimizing the sensitivity under ε-differential privacy

Similar to the MinError problem, another important task
is to find the best strategy with a desired error distribu-
tion for the workload queries. In the language of the matrix

Program 7.3Minimizing the sensitivity under ε-differential
privacy

Given: M ∈ R
n×n .

Minimize: r.

Subject to: ||A||1 ≤ r;
rank

([
In A
AT M+

])

= n.

mechanism, this means finding the best strategy among all
profile-equivalent strategies:

Problem 2 Given an error profile M, find the query matrix
A whose error profile isM and has the minimum sensitivity
under ε-differential privacy.

Unfortunately, similar to the MinError problem, Prob-
lem 2 is non-convex. Problem 2 can also be formulated as a
semidefinite program with rank constraint, as stated below.

Theorem 5 Given an error profileM, Program 7.3 is a semi-
definite program with rank constraint that outputs an m × n
matrix A such that (ATA)+ = M with ||A||1 minimized.

7.2 Augmentation heuristic

We formalize below the following intuition that applies to the
matrix mechanism: As far as the error profile is concerned,
additional noisy query answers can never detract from query
accuracy as they must have some information content useful
to one or more queries. Therefore, if A′ is a query strategy
formed by augmenting the query strategy A with additional
rows, ||WA′+||F ≤ ||WA+||F .

Theorem 6 (Augmenting a strategy) Let A be a query
strategy, and consider a new strategy A′ obtained from A by

adding the additional rows of strategy B, so that A′ =
[
A
B

]

.

For any workload W that A supports, A′ supports W and

||WA′+||F ≤ ||WA+||F .

Further, ||WA′+||F = ||WA+||F if and only if WA′+ =[
WA+
0

]

.

Proof Since A supports W, A′ supports W as well. Notic-
ing paddingWA+ with some 0s gives a solution to equation
XA′ = W, according to Proposition 17, ||WA′+||F ≤
||WA+||F .
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Let w1, . . . ,wm be rows of W. Noticing that

||WA+||F =
m∑

i=1

||wiA+||F ;

||WA′+||F =
m∑

i=1

||wiA′+||F ;

||wiA′+||F ≤ ||wiA+||F , i = 1, . . . ,m.

Therefore, ||WA′+||F = ||WA+||F if and only if ||wiA′+||F
= ||wiA+||F for all i = 1, . . . ,m. Thus, it is sufficient to
consider the condition that ||wA′+||F = ||wA+||F for a sin-
gle query w that A supports.

Given two distinct solutions x1 and x2 to equation xA′ =
w. If ||x1||F = ||x2||F , noticing the Frobenius norm is con-
vex, we have ||(x1 + x2)/2||F < ||x1||F = ||x2||F . Since
(x1 + x2)/2 is also a solution to equation xA′ = w, the solu-
tion of xA′ = w with minimized Frobenius norm is unique
and ||wA′+||F = ||wA+||F if and only if wA′+ is equal to
wA+ padding with 0s. �

This improvement in the error profile may have a cost—
namely, augmentingAwith strategyBmay lead to a strategy
A′ with greater sensitivity than A. A heuristic that follows
from Theorem 6 is to augment strategy A only by complet-
ing deficient columns, that is by adding rows with nonzero
entries only in columns whose absolute column sums are less
than the sensitivity of A. In this case, the augmentation does
not increase sensitivity and is guaranteed to strictly improve
accuracy for any query with a nonzero coefficient in an aug-
mented column.

Our techniques could alsobeused to reason formally about
augmentations that do incur a sensitivity cost. We leave this
as future work, as it is relevant primarily to an interactive
differentially private mechanism which is not our focus here.

7.3 The MINERROR problem for semantically
equivalent workloads

As defined in Definition 5, semantically equivalent work-
loads only differ in their representations, and answering them
should introduce exactly the same amount of error. However,
as pointed out in Sect. 5.2, semantically equivalentworkloads
may not be error equivalent. On the other hand, semanti-
cally equivalent workloads do have the sameminimum error,
shown as follows.

Theorem 7 Given workload W1 over cell conditions Φ1

and workload W2 over cell conditions Φ2 such that
(W1, Φ1) ≡ (W2, Φ2), minA TotalErrorK,A(W1) =
minA totalerrorK,AW2 for any differentially private
algorithm K.

Proof By symmetry, it is sufficient to prove that for any strat-
egy A1 that supportsW1, there exists a strategy A2 such that
A2 supports W2 and

TotalErrorK,A1(W1) ≥ TotalErrorK,A2(W2).

As described in Proposition 1, there are five operations to
generate semantic equivalent workloads. We prove that such
an A2 exists for each of the five operations.

If W2 can be formed by permuting rows and columns of
W1, there exist permutationmatricesP andQ such thatW2 =
PW1Q. Then,A1Q supportsW2 andTotalErrorK,A1(W1)

= TotalErrorK,A2(W2) for any K.
If W2 results from splitting one of the columns of W1,

without loss of generality, we assume that W2 is generated
by splitting the last column ofW1 into two columns. Let A2

be the matrix that is generated by applying the same split to
the strategymatrixA1. Then, it is clear thatW1A

+
1 A2 = W2.

Therefore, A2 supports W2 and TotalErrorK,A1(W1) =
TotalErrorK,A2(W2) for any K.

If W2 results from combining two of the columns of W1

with the same entries, we assume that the last two columns
ofW1 have the same entries and removing one of them gives
us W2. Let A2 be the matrix that is generated by remov-
ing the last column of A2. Then, W1A

+
1 A2 = W2 and A2

hence supports W2. Noticing that ||A2|| ≤ ||A1|| for any
K, TotalErrorK,A1(W1) ≥ TotalErrorK,A2(W2) for
any K.

IfW2 results from adding columns of 0s toW1, let A2 be
thematrix that is generated by adding corresponding columns
of 0s to A1. Then, W1A

+
1 A2 = W2. Thus, A2 supports W2

and TotalErrorK,A1(W1) = TotalErrorK,A2(W2) for
any K.

IfW2 results from removing columns of 0s toW1, let A2

be the matrix that is generated by removing corresponding
columns of 0s to A1. Then, W1A

+
1 A2 = W2 and A2 hence

supports W2. Noticing that ||A2|| ≤ ||A1|| for any K,

TotalErrorK,A1(W1) ≥ TotalErrorK,A2(W2)

for any K. �
Since we do not consider cell conditions in the proof of

Theorem 7, two workloads W1 and W2 have the same min-
imum total error if they can be converted to one another
with the matrix operations mentioned in Proposition 1. On
the other hand, according to Theorem 7, given a workload
W and its corresponding list of cell conditions Φ, we can
simplifyW and Φ by:

– Removing all 0 columns in W and discarding their cor-
responding cell conditions from Φ.

– Merging all columns with the same entries and their cor-
responding cell conditions.

123



The matrix mechanism: optimizing linear counting queries under differential privacy

Table 2 Special cases of the matrix mechanism presented in the liter-
ature

Workload class References Privacy guarantee

1-Dimensional range
queries

[19,26,28,31] ε-Differential privacy

Low-order marginal
queries

[2] ε-Differential privacy

Datacube [6] ε-Differential privacy

Low-rank workloads [32] ε-Differential privacy

Any workloads [21,24] (ε, δ)-Differential privacy

In particular, ifW is a subset of all range queries,WR , we
can always simplify W and its cell conditions such that the
number of cell conditions is no more than twice the number
of queries inW.

Corollary 3 (Cell condition simplification) Given a work-
load W1 ⊆ WR with m queries and its corresponding
list of cell conditions, Φ1, there exists a workload W2

and a list of cell conditions, Φ2, such that (W1, Φ1) ≡
(W2, Φ2), |Φ2| ≤ 2m − 1.

7.4 Strategy selection in practice

As we have shown above, the strategy selection problem is
difficult to solve in general. Specific strategies, or efficient
strategy selectionmethods, have beendeveloped that perform
well for the special case of workloads derived from a given
class of workloads (e.g., range queries or sets of data cubes).
Table 2 summarizes these results and provides references to
the relevant literature.

Although they will not, in general, offer the best possi-
ble error rates achievable using the matrix mechanism, these
methods still offer reduced error over baseline methods. We
present experimental results comparing some of these meth-
ods with the baseline methods (Laplace or Gaussian) on
different workloads. Below, when we mention a class of
queries (e.g., 1-dimensional range queries or 2-waymarginal
queries), our results concern the workload consisting of all
queries in the class.

– For the workload of all 1-dimensional range queries under
ε-differential privacy, we compare, in Fig. 8a, the Laplace
mechanism with instances of the matrix mechanism using
the hierarchical strategy [19], the wavelet strategy [28],
and the hierarchical strategy with optimal branching fac-
tor [26] (denoted as Optimal Hierarchical). We vary the
number of cells from 512 to 2048.

– Forworkloads of all 1- ormulti-dimensional range queries
under (ε, δ)-differential privacy, we compare, in Fig. 8b,
the Gaussian mechanism with the matrix mechanism
using the hierarchical strategy [19], the wavelet strat-

egy [28], and the strategy generated using the eigen-design
algorithm [21]. We consider domains with 2048 cells
but different numbers of dimensions, varying from a 1-
dimensional domain with 2048 cells to a 4-dimensional
domain with 8, 8, 8, and 4 cells on each dimension
(denoted as [8 · 8 · 8 · 4]).

– For workloads of all 1- and 2-way marginal queries under
(ε, δ)-differential privacy, we compare, in Fig. 8c, the
Gaussian mechanism with the matrix mechanism using
the Fourier strategy [2], the strategy generated by dif-
ferentially private data cubes [6] (denoted as DataCube),
and the strategy generated using the eigen-design algo-
rithm [21]. We test on domains with 2048 cells but
with different numbers of dimensions, varying from a 3-
dimensional space with 16, 16, 8 cells on each dimension
to an 11-dimensional spacewith 2 cells on each dimension
(denoted as [211]).

Since the error rate of thematrixmechanism only depends
on the domain size and workload and is independent of the
underlying dataset, we only show shapes of the cell list and
omit any concrete dataset. Further, since changing the pri-
vacy parameters impacts both the baseline mechanism and
instances of the matrix mechanism in the same way, we
simply fix ε = 1 for all experiments and δ = 0.0001 for
experimentswith (ε, δ)-differential privacy. All relationships
between techniques hold for other settings of the privacy
parameters and any input data.

Overall, these results indicate that the matrix mechanism
can greatly improve the baseline methods even without opti-
mal strategy selection. Further, the results of Nikolov et
al. [24] show that the minimum error of the matrix mech-
anism is within a factor of O(log2 n) to the minimum noise
of any data-independent algorithm under (ε, δ)-differential
privacy.

8 The matrix mechanism with nonnegativity
constraints

As stated in Sect. 4, we have analyzed the matrix mech-
anism MK,A over differentially private algorithms K for
which the amount of noise added by K does not change
with different underlying datasets. In addition, according to
Proposition 7, the noise added to the answer to the workload
W only depends on the workloadW and the strategyA. Such
properties are fundamental to our closed-form error formu-
lae (4) and (5). On the other hand, such properties prevent
the matrix mechanism from adding any further constraints to
the output data vector x̂ or query answersWx̂. Consequently,
using the matrix mechanism directly cannot take advantage
of any properties of the underlying database. In this section,
we extend the matrix mechanism to take into account non-
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Fig. 8 Comparison of error
between the matrix mechanism
with different strategies and
baseline mechanisms, where
ε = 1 and δ = 0.0001 (for
(ε, δ)-differential privacy only).
a Average error on all
1-dimensional range queries
under ε-differential privacy. b
Average error on all range
queries over cells of different
dimensions under
(ε, δ)-differential privacy. c
Average error on all 1- and
2-way marginal queries over
cells of different dimensions
under (ε, δ)-differential privacy

(a) (b)

(c)

negativity constraints that must hold on the original database
vector x.

8.1 The nonnegativity constraint

Given a data vector x, since the number in each entry of x
is the number of tuples that satisfy a certain cell condition,
each entry of xmust be nonnegative. Since the matrix mech-
anism only provides the estimated query answers instead of
providing x̂ directly, the nonnegative constraint in the matrix
mechanism can be formulated as the existence of a nonneg-
ative data vector x̂ such that vector Wx̂ is the same as the
vector of estimated query answers.

Definition 16 For a given workload W, an answer ŷW to
W satisfies the nonnegativity constraint if and only if there
exists a nonnegative data vector x̂ such that ŷW = Wx̂.

Using the matrix mechanism as described in Sect. 4 can-
not guarantee nonnegative answers to the workload queries.
Themost straightforward solution is to compute an estimated
data vector x̂ = Aŷ, round all negative entries of x̂ up to zero,
and compute the answer toW using the new data vector. We
present two additional approaches in the next section that
enforce the nonnegativity constraint. Both approaches rely
on quadratic programming with the nonnegativity constraint,
and the major difference between them is the goal of opti-
mization. The first approach uses the standard nonnegative
least square estimator which aims to minimize the distance

to the data vector, while the second approach minimizes the
distance to the workload answers.

8.2 Enforcing the nonnegativity constraint

To enforce the nonnegativity constraint, let us first revisit how
the matrix mechanism works. According to Proposition 7,

MK,A(W, x) = WA+ (
Ax + ||A||b̃

)

= Wx + WA+||A||b̃.

If the nonnegative data vector x̂ such that Wx̂ = MK,A
(W, x) does not exist, one should derive a nonnegative data
vector x̂ such that Wx̂ is close toMK,A(W, x).

8.2.1 The nonnegative least squares estimator

According to Proposition 17, for any y = Ax + b̃, where
entries of b̃ are i.i.d random variables, A+y satisfies

∀x′ ||y − AA+y||2 ≤ ||y − Ax′||2.

Hence, A+y is a least square estimator of x. Now, we add an
additional nonnegativity constraint to this process and use the
nonnegative least square estimator to take the place of A+y,
which can be computed using the following optimization
formulation:
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Given: A ∈ R
m×n, y ∈ R

m .

Minimize: ||Ax̂ − y||22.
Subject to: x̂ ≥ 0.

With the vector x̂ given by the nonnegative least square
estimator, one can compute answers to the workload W
directly as Wx̂, which automatically satisfies the non-
negativity constraint. Solving for the nonnegative solution
that minimizes squared error is a well-known optimization
problemwith a variety of solutions andmany available imple-
mentations.

Example 9 Let A = Y4 and x = (0, 2, 1, 3)T , and y =
(5.85,−3.51, 0.59,−6.53)T .

– Using the least square estimator A+y, we can compute
an estimated data vector as (0.88, 0.29,-0.93, 5.60).

– Using the nonnegative least square estimator above, the
estimated data vector is (0.88, 0.29, 0, 5.30).

8.2.2 Nonnegative least squares on the workload

One of the potential problems with using the nonnegative
least square estimator above is the case in which the strat-
egy contains non-overlapping querieswhose true answers are
small compared with the magnitude of noise. In such cases,
the nonnegative least square estimator would eliminate all
negative noise while keeping positive noise, which leads to
an unnecessary amount of noise accumulation when com-
puting the answers to the workload using the answers to the
strategy. The extreme case is when A = In . Using nonneg-
ative least square is equivalent to rounding up all negative
entries of x̂ to 0. Since those negative entries correspond to
negative noise, rounding them up to 0 leads to biased esti-
mates and reduces the chance of canceling error by adding
entries with positive and negative noise. Hence, using non-
negative least squares in such cases often leads to a very
poorly estimated answer to the workload.

In order to address this weakness, we can keep the original
framework of the matrix mechanism to answer the workload.
We then post-process the answers to the workload by using
the nonnegative least square, described as follows:

Given: W ∈ R
m1×n,A ∈ R

m2×n, y ∈ R
m
2 .

Minimize: ||WA+y − Wx̂||22.
Subject to: x̂ ≥ 0.

Example 10 As in Example 9, letA = Y4, x = (0, 2, 1, 3)T ,
and y = (5.85,−3.51, 0.59,−6.53)T . Further, let W =
WR . Using the nonnegative least square with the workload,
the estimated data vector yields (0.76, 0, 0, 5.08)T .

8.3 Comparing different approaches

Since neither of the approaches mentioned above relies on
the least square estimator, their error cannot be computed via
error formula (4) or (5). Therefore, in this section, we empir-
ically compare the effect of these two approaches, along with
the naive rounding approach.

Two datasets are considered in our experiments, which
are the same datasets used in [19]. The Nettrace dataset
contains the IP-level network traces from a major university.
The Search_Logs dataset includes the search query logs
that report the frequency of the phrase “Obama” from2004 to
2010. Both datasets are aggregated so that each has 512 cells.
TheNettrace dataset is more sparse and has smaller average
cell count on nonzero cells. We include three strategies in the
experiments: the hierarchical strategy (Hn) [19], the privelet
strategy (Yn) [28], and the identity strategy (In).

The results are shown in Fig. 9, where both the nonnega-
tive least square estimator (NNLS) and the nonnegative least
square on the workload (NNLS on W) are compared with
the original matrix mechanism with the least square estima-
tor (LS). The workload of all range queries is fixed, and all
three approaches are applied to both datasets and the three
different strategies mentioned above. The K is set to be the
Laplace mechanism, and ε is varied from 0.001 to 1.

As the figure demonstrates, NNLS on W always intro-
duces lower error than both NNLS and LS. In particular,
the error of NNLS on W is much smaller on the Nettrace
dataset: asmuch as 10 times smaller than bothNNLS and LS.
Meanwhile, the performance of NNLS heavily depends on
the strategy: It has lower error than LS when using the hier-
archical strategy, similar error as LS when using the privelet
strategy, and much worse error than LS when using the iden-
tity strategy. Intuitively, such differences may come from

Fig. 9 Error comparison among the matrix mechanism (LS), the non-
negative least square estimator (NNLS), and the nonnegative least
square on the workload (NNLS on W)
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the different number of strategy queries that must be com-
bined to answer a workload query: The number of strategy
queries to be combined using the hierarchical strategy, which
is O(log n), is much less than the number when using the
identity strategy, which is O(n). The results for the naive
approach of rounding negative entries in x to zero are omit-
ted in this figure since it is worse than NNLS by more than
two orders of magnitude (except when the strategy is In , in
which case the round up approach is exactly the same as
NNLS).

The natural formulation of the problem of finding an opti-
mal strategyusing nonnegativity constraintswill contain both
the workload and the data vector, since the error depends on
both. However, solving for the best strategy using this formu-
lation violates differential privacy since one needs to access
the data vector during the process. Because it is difficult to
find a differentially private formulation of the problem, our
current approach is to find a strategy without the nonnega-
tivity constraint (i.e., using the techniques of Sec. 7) and use
the nonnegative constraint to reduce the error afterward. The
theoretical analysis of the matrix mechanism with nonneg-
ativity constraints and the formulation of the corresponding
optimization problem are left as future work.

9 Related work

Since its original definition, differential privacy [12] has been
the subject of considerable research, as outlined in recent
surveys [7–9].

Two prior techniques specifically tailored to range queries
can be viewed as special instances of the matrix mecha-
nism. The first uses awavelet transformation [28]; the second
uses a hierarchical set of queries followed by inference [19].
Meanwhile, otherworks that designed algorithms that answer
marginal queries can also be considered as instances of the
matrix mechanism. Each of those works designs special
strategies for a specific class of workloads. Barak et al. [2]
studied answering low-order marginal queries using subsets
of the Fourier basis; Ding et al. [6] considered a special col-
lection of marginal queries, called data cubes, which are
answered by a subset of all data cube queries selected via
a greedy algorithm. The algorithm adapts a known approxi-
mation algorithm for the subset sum problem and cannot be
applied to general linear queries.

As follow-up works to the matrix mechanism, an adaptive
algorithm that generates strategies for any workload under
(ε, δ)-differential privacy was presented in [21]. The algo-
rithm generates different strategies by weighting queries that
consist of the singular vectors of the query workload. An
empirical study demonstrates that the strategies produced by
this algorithm outperform previously designed algorithms on
various workloads [2,6,19,28]. The case of supporting low-

rank workloads under ε-differential privacy are discussed by
Yuan et al. [32] when the number of queries is much smaller
than the size of the domain. Though represented in a different
form, the inference matrix used in [32] is exactly the same
as the matrix mechanism. In order to avoid the hardness of
solving the optimization problem under the matrix mecha-
nism, Yaroslavtsev et al. [31] demonstrated an approach that
has a similar form of the matrix mechanism, but relies on a
fixed “recovery” matrix instead of the least square inference
as the last step of the matrix mechanism. Such a simplifica-
tion leads to a much easier optimization formulation, though
inference with the recovery matrix introduces more noise
than inference with the least squares.

Thematrixmechanism and its variationsmentioned above
do not change across different datasets: As long as the work-
load stays the same, the same set of queries will be answered
and the answer to the workload is derived using the same
process, either by the least square estimator or by the recov-
ery matrix. The recent work of Nikolov et al. [24] further
demonstrates that the minimum error of the matrix mecha-
nism is within a factor of O(log2 n) to the optimal error for
any data-independent mechanisms under (ε, δ)-differential
privacy.

However, data independence does not hold for the discus-
sion in Sect. 8, since the nonnegative least square estimator
depends on the input data. Similarly, many recently pro-
posed techniques for linear query answering also depend
on the underlying database because they exploit properties
of the input database to determine queries to be answered
and/or the noise to be added to query answers. Practical
algorithms are presented to answer linear queries on 1-
dimensional databases [1,30] and 2-dimensional databases
[4,29], respectively. Hardt et al. [16] designed an algorithm
that supports any linear queries under differential privacy.
Further, there are more data-dependent approaches from the
theory community. Those approaches are both data-aware
and interactive and lead to asymptotically smaller error than
the matrix mechanism over sparse databases by analyz-
ing the properties of the underlying database. The median
mechanism [27] maintains a set of database instances that
consist of historical query answers. The new query is either
answered by themaintained set of databases or by the original
database, determined in a differentially private way. Dwork
et al. [13] sampled linear queries in each step and modi-
fied the sample distribution with the new query answers.
In [15,17], the authors recursively update the estimated data
vector to reduce the error on linear queries. In each of those
algorithms, asymptotic error bounds are provided.More gen-
erally, Dwork et al. provide an error bound using an arbitrary
differentially private mechanism [11] but not specifically for
linear counting queries. Theoretically, those approaches have
better dependency on privacy parameters but may not be
applicable in practice.
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10 Conclusion

We have described the matrix mechanism, which derives
answers to a workload of counting queries from the noisy
answers to a different set of strategy queries. By designing
the strategy queries for theworkload, correlated sets of count-
ing queries can be answeredmore accurately.We showed that
the optimal strategy can be computed by iteratively solving
a pair of semidefinite programs, and we investigated alter-
native derivation methods which account for nonnegativity
constraints.

Future directions include extending the matrix mecha-
nism for operation in an interactive (rather than batch) setting
and understanding precisely the conditions under which opti-
mal strategies in our framework match known lower bounds
for the accuracy of differentially private algorithms. We are
also interested in combining the matrix mechanism, which is
effective for exploiting properties of the workload in a data-
independent way, with algorithmic techniques that adapt to
the input database.

Although the techniques in this paper have been shown to
offer a significant reduction in absolute error when compared
to baseline and competingmethods, it remains to demonstrate
the overall effectiveness of these privacy algorithms to down-
stream data analytics tasks. Such tasks may use a workload
of linear queries as sufficient statistics for some other com-
putation. To assess utility in a manner that is most relevant
to the end-user, we would like to measure it in terms of the
final use of the data.
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Appendix 1: Linear algebra fundamentals

In this section, we summarize the concepts and results in lin-
ear algebra and matrix analysis that are used throughout the
paper. We use diag(d1, . . . dn) to indicate the n × n diagonal
matrix with scalars di on the diagonal and 0m×n to indicate
a matrix of zeroes with m rows and n columns. Recall that
for a matrixA, AT is its transpose andA−1 is its inverse. We
sayA is symmetric ifAT = A and orthogonal ifAT = A−1.
The rank of a matrix A, rank(A), is defined as the size of
the largest set of linearly independent rows (or equivalently
columns) of A. We say a matrix is full row (column) rank
if its rank is equal to the number of its rows (columns). In
particular,A−1 exists if and only ifA is a square matrix with
full rank.

If matrix A is a square matrix, the trace of A, denoted as
trace(A), is the sum of entries on the main diagonal ifA. The
trace of a matrix has a very important property: It is invariant
under cyclic permutations; i.e, if matrix A1 has m columns
and matrix A3 has m rows,

trace(A1A2A3) = trace(A3A1A2)

Another concept that is related to the trace is the Frobenius
norm. The Frobenius norm of A is denoted as ||A||F and
defined as

√
trace(ATA), or, equivalently, the square root of

the squared sum of all entries in A.
Matrix decomposition is extensively used in the paper.We

focus on two decompositions: eigenvalue decomposition and
singular value decomposition. Given a matrix A, the eigen-
valuedecompositionofA always existswhenA is symmetric.
It can be written as A = QDQT where Q is an orthogonal
matrix whose columns are eigenvectors ofA andD is a diag-
onal matrix whose diagonal entries are eigenvalues ofA. The
singular value decomposition of A always exists and has the
form A = QDPT where Q and P are orthogonal matrices
and D is a diagonal matrix padded with columns or rows of
0s.

Wewill also rely on the notion of the positive semidefinite
matrix. A symmetric square matrixA is called positive semi-
definite, denoted as A � 0, if for any vector x, xTAx ≥ 0.
In particular, for any matrix A, ATA � 0. Here, we present
two equivalent conditions to positive semidefinite.

Proposition 15 Given an n×n symmetric matrixA, both of
the following conditions are equivalent with A � 0.

(i) All the eigenvalues of A are nonnegative.
(ii) For any 1 ≤ i1 < · · · < ik ≤ n, the determinant of the

matrix that consists of the intersection of the i th1 , . . . , i thk
rows and i th1 , . . . , i thk columns of matrix A is nonnega-
tive.

In addition, we consider a generalization of the matrix
inverse, called the Moore–Penrose pseudoinverse, which is
defined as follows:

Definition 17 (Moore–Penrose Pseudoinverse [3])
Given a m × n matrix A, a matrix A+ is the Moore–Penrose
pseudoinverse of A if it satisfies each of the following:

AA+A=A, A+AA+ =A+, (AA+)T =AA+, (A+A)T =A+A.

TheMoore–Penrose pseudoinverse is unique and canbe com-
puted using the singular value decomposition of a matrix.

Proposition 16 ([3]) Given an n × n diagonal matrix
D0, D

+
0 = {d ′

i j } is an n × n diagonal matrix such that
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d ′
i j =

{
0 di j = 0
1
di j

di j �= 0

For an m × n matrix D consisting of a diagonal matrix D0

padding with columns (rows) of 0s, D+ is an n × m matrix
consisting of the diagonal matrix D+

0 with rows (columns)
of 0s. Given a matrix A with singular value decomposition
A = QDPT , A+ = PD+QT .

When A has full column rank, A+ = (ATA)−1AT . We
include some important properties of the Moore–Penrose
pseudoinverse in the following proposition.

Proposition 17 ([3]) The Moore–Penrose pseudoinverse
satisfies the following properties:

1. Given any matrix A, there exists a unique matrix that is
the Moore–Penrose pseudoinverse of A.

2. Given a vector y, we have ||y − Ax||2 ≥ ||y − AA+y||2
for any vector x.

3. For any satisfiable linear system BA = W, WA+ is a
solution to the linear system and ||WA+||F ≤ ||B||F for
any solution B to the linear system.

Appendix 2: Proofs

Proofs from Section 4

Proposition 6 Thematrix mechanismMK,A inherits the pri-
vacy guarantee of K and is unbiased if K is unbiased.

Proof According to Eq. (1), the matrix mechanism can be
considered to post-process the output of K(A, x), without
using x, and hence shares the same privacy guarantee with
K(A, x). In addition, since WA+A = W, we have:

E[MK,A(A, x)] = E[WA+K(A, x)]
= WA+

E[K(A, x)] = WA+Ax = Wx.

�

Proofs from Section 5

Corollary 1 Given two query strategies A1 and A2 that are
profile equivalent, for any query W, A1 supports W if and
only if A2 supports W. Furthermore, there exists a nonzero
constant c such that given a differentially private algorithm
K, for any workload query W that A1 and A2 support,
TotalErrorK,A1(W) = c · TotalErrorK,A2(W).

Proof Given a query workload W, if A1 supports W, there
exists a matrix X such that W = XA1. According to Propo-
sition 11(iii), A1 and A2 are profile equivalent if and only if

there exists a nonzero constant c and an orthogonal matrixQ
such thatA1 = c ·QA2. Then, c ·XQ satisfiesW = c ·XQA2,
and therefore, A2 supports W as well.

The definition of profile equivalence indicates that there
is a constant c′ such that (AT

1 A1)
+ = c′ · (AT

2 A2)
+. Thus,

for any query workload that A1 supports:

TotalErrorK,A1(W )

TotalErrorK,A2(W )
= ||A1||2||WA+

1 ||2F
||A2||2||WA+

2 ||2F
= ||A1||2trace(W(AT

1 A1)
+WT )

||A2||2trace(W(AT
2 A2)+WT )

= c′ ||A1||2
||A2||2 ,

where the ratio is a value that is independent of W. �

10.1 Proofs from Section 6

Corollary 2 For any linear counting query w and differen-
tially private mechanism K,

1

2
ErrorK,Y(w) ≤ ErrorK,H(w) ≤ 2ErrorK,Y(w).

Proof According to Theorem 1, let H′
n be the matrix that

results from removing the row of all 1s from matrix

[
Hn
In

]

.

Since H′
n and Yn are equivalent strategies under both ε-

and (ε, δ)-differentially private mechanisms, it is sufficient
to prove that for any linear counting query w,

1

2
ErrorK,H′

n
(w) ≤ ErrorK,Hn (w) ≤ 2ErrorK,H′

n
(w).

Let v = wH+
n and v′ be a vector such that

v′
i =

⎧
⎪⎨

⎪⎩

v1 1 ≤ i ≤ 2

vi−1 3 ≤ i ≤ 2n

0 2n + 1 ≤ i ≤ 3n

.

One can verify that v′H′
n = vHn = w. Since

||wH′
n
+||F ≤ ||v′||F ≤ 2||v||F = ||wH+

n ||F ,

noticing that ||Hn||1 = ||H′
n||1 and ||Hn||2 = ||H′

n||2,
ErrorK,H′

n
(w) ≤ 2ErrorK,Hn (w).

On the other hand, H′
n contains two copies of queries In ,

which is equivalent to reduce the error on those queries by a
factor of 2. Noticing all other queries in H′

n are contained in
Hn , we have ErrorK,Hn (w) ≤ 2ErrorK,H′

n
(w). �

Corollary 3 (Cell condition simplification) Given a work-
load W1 ⊆ WR with m queries and its corresponding
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list of cell conditions, Φ1, there exists a workload W2

and a list of cell conditions, Φ2, such that (W1, Φ1) ≡
(W2, Φ2), |Φ2| ≤ 2m − 1.

Proof Since W1 ⊆ WR , let b1, . . . , b2m be the bound-
aries of queries in W1 such that b1 ≤ · · · ≤ b2m . For any
query q ∈ W1, it contains either all cells between bi and
bi+1 or none of them. Therefore, columns bi , . . . , bi+1 − 1
are exactly the same. According to Theorem 7, removing
columns bi + 1, . . . , bi+1 − 1 and merging the cell condi-
tions of bi , . . . , bi+1 − 1 results in a workload and a list of
cell conditions that is equivalent with (W1, Φ1). Thus, merg-
ing cells between bi , . . . , bi+1 − 1 for i = 1, . . . , 2m − 1
and discarding the rest of the cells gives a workload W2

and its corresponding list of cell conditions Φ2, such that
(W2, Φ2) ≡ (W1, Φ1) and |Φ2| ≤ 2m − 1. �
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