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ABSTRACT
Differential privacy has emerged as the dominant privacy
standard for data analysis. Its wide acceptance has led to
significant development of algorithms that meet this rigorous
standard. For some tasks, such as the task of answering
low dimensional counting queries, dozens of algorithms have
been proposed. However, no single algorithm has emerged as
the dominant performer, and in fact, algorithm performance
varies drastically across inputs. Thus, it’s not clear how to
select an algorithm for a particular task, and choosing the
wrong algorithm might lead to significant degradation in
terms of analysis accuracy. We believe that the difficulty
of algorithm selection is one factor limiting the adoption of
differential privacy in real systems. In this demonstration we
present DIAS (Differentially-private Interactive Algorithm
Selection), an educational privacy game. Users are asked
to perform algorithm selection for a variety of inputs and
compare the performance of their choices against that of
Pythia, an automated algorithm selection framework. Our
hope is that by the end of the game users will understand
the importance of algorithm selection and most importantly
will have a good grasp on how to use differentially private
algorithms for their own applications.

1. INTRODUCTION
In the modern age of big data, not only is information

about individuals being collected by various agencies (e.g.,
hospitals, retailers, etc.), users also voluntarily share their
own data. Performing analyses on such data is tremen-
dously valuable both for commercial and research purposes.
Unfortunately, such analyses can lead to significant privacy
breaches. Differential privacy has emerged as the prominent
privacy definition. Informally, differential privacy requires
that the output of an analysis algorithm not change too
much with the addition or removal of any single individual
from the input dataset.
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The interest of the research community in differential pri-
vacy has lead to a rich literature of algorithms. Most differ-
entially private algorithms work by carefully injecting a cer-
tain amount of structured noise into analysis computations.
General purpose algorithms like the Laplace Mechanism [1]
are easy to adapt for a variety of tasks, but typically offer
sub-optimal error rates. Because of this, more sophisticated
task-specific algorithms have been designed that are capa-
ble of reducing error rates by an order of magnitude while
satisfying the same privacy guarantee. Some of these al-
gorithms achieve lower error by adapting the added noise
to specific properties of the data. This makes their per-
formance data-dependent, meaning their error rates vary by
input and deriving tight bounds on the error for a specific
input is non-trivial. Moreover, a recent empirical study of
16 differentially private algorithms found that (a) no single
algorithm dominates (i.e., offers the lowest error rate across
all inputs) and (b) the error rate of an individual algorithm
can widely vary depending on properties of the input such
as the dataset size, the setting of the privacy parameter, and
other structural properties [2].

As a result, the rich literature on differentially private al-
gorithms has limited accessibility for a practitioner. In the
current algorithm landscape, a practitioner needs to know
details of each particular algorithm and under what condi-
tions it is likely to perform well. Moreover, the fact that
there is no single algorithm that dominates only makes the
problem more challenging.

For this reason, in our paper that appears in SIGMOD
2017 [3], we formalize the problem of Algorithm Selection
under differential privacy and propose Pythia, an end-to-
end differentially private solution to the algorithm selection
problem. Our vision with Pythia is to make differential pri-
vacy more accessible to data curators regardless of their ex-
pertise. Pythia is the first meta-algorithm for answering low
dimensional queries on datasets under differential privacy.
From the user’s perspective, Pythia is no different than any
other differentially private algorithm for the task as it shares
a common interface with them. Pythia offers an end-to-end
differentially private solution, highly competitive error rates,
and an effortless application to new tasks. We believe that
Pythia is a necessary step towards a future where the prac-
titioner specifies her privacy constraints and the queries she
would like answered on a sensitive input and the differen-
tially private system computes an optimized output under
the privacy constraints.



Demo Overview. In this demonstration, users are intro-
duced to two distinct but closely related concepts: (a) the
importance and hardness of algorithm selection in the con-
text of differential privacy and (b) the impact of input prop-
erties on the error of each algorithm. Users play a data
release game called DIAS (Differentially private Interactive
Algorithm Selection). The goal of the game is to perform
a complex data analysis task under differential privacy with
the highest possible accuracy. The task requires the simul-
taneous private release of multiple histograms built on the
original data. Players are presented with the challenge of al-
gorithm selection: given a set of algorithms to choose from,
they must select what they believe is the best algorithm for
each histogram task, with the wrong choice leading to po-
tentially significant loss in accuracy.

The game is organized in rounds and in each successive
round the complexity of the inputs increases and the users
are exposed to increasingly more sophisticated challenges of
algorithm selection under differential privacy. These chal-
lenges are centered around input properties and how they
affect different algorithms. For example, in earlier rounds
users are introduced to the importance of the histogram’s
domain size and they choose from only a small class of sim-
pler algorithms. In contrast, in later rounds of the game,
users have to choose from all available algorithms and the
histograms to be computed have different structural proper-
ties that make algorithm selection challenging. At the end
of the game, users compare their results with that of the
best baseline strategies as well as with the results of Pythia.
Users also have access to the inner workings of Pythia and
see the reasoning behind its choices.

2. PRELIMINARIES
Data Model. A database D is a multiset of records, each
having k attributes with discrete and ordered domains. Let
D denote the universe of all possible input databases. Fol-
lowing convention, we describe D as a vector x ∈ Nd where
xi reports the number of records type i for all d possible
types where d = d1 × . . . × dk and dj is the domain size of
the jth attribute.

Queries. A query workload W is a set of m linear count-
ing queries defined on x. This class of queries includes
queries that count the number of individuals satisfying a
range predicate on one or more attributes, and thus includes
histograms, marginals, and datacubes, in addition to more
general predicate counting queries. The answer to this work-
load is denoted as y = Wx.

Differential Privacy. Differential privacy is satisfied when
the output distribution of the algorithm changes by only a
small multiplicative factor with the addition or deletion of
a single record. Let nbrs(D) denote the set of databases
differing from D in at most one record; i.e., if D′ ∈ nbrs(D),
then |(D −D′) ∪ (D′ −D)| = 1.

Definition 2.1 (Differential Privacy [1]). A randomized al-
gorithm A is ε-differentially private if for any instance D,
any D′ ∈ nbrs(D), and any subset of outputs S ⊆ Range(A),

Pr[A(D) ∈ S] ≤ exp(ε)× Pr[A(D′) ∈ S]

ε is called the privacy budget as it (indirectly) constrains the
amount of utility that can be extracted from the input.

Algorithms. The algorithms considered here take as input
a triple (W,x, ε) corresponding to a workload W, a private
dataset x, and a specific setting of the privacy parameter ε
and they compute noisy answers to the workload W on x
that satisfy ε-differential privacy, denoted ỹ.

Differentially private algorithms can be broadly classified
into two categories: data-independent and data-dependent.
A data independent algorithm has the property that its er-
ror rate is independent of the input database instance. Clas-
sic algorithms like the Laplace mechanism [1] are data in-
dependent. For the task of answering range queries on a
single attribute, the Laplace mechanism has the least error
when the domain of the attribute is small, whereas other
data independent techniques like Hb that perform hierar-
chical decompositions of the domain can yield significantly
lower error rates for attributes with larger domains.

In many settings, however, the best performing algorithms
are data dependent. Examples of such algorithms include
DAWA, AGrid, AHP, and MWEM (see [2] for a compre-
hensive overview and full list of citations). These algorithms
typically adapt to the particular dataset, finding a collection
of aggregate statistics that serve as an accurate approxima-
tion of the underlying database. For instance, a popular
data adaptive strategy (employed by DAWA, AGrid and
AHP) is to first learn a partitioning of x for which the data
distribution within each partition is approximately uniform,
and then summarize the dataset at the coarser granular-
ity of partitions. Hay et al. [2] offer a more comprehensive
overview of data dependent algorithms.

A challenge with using data dependent algorithms is that
their error rates depend on the input database instance and
thus their performance can be hard to predict a priori. This
motivates the problem of algorithm selection.

Problem Statement. Given a collection of state-of-the-art
differentially private algorithms, the data curator must se-
lect the algorithm that is likely to yield the best performance
on the curator’s data. This problem is formalized as follows.

Definition 2.2. Algorithm Selection [3]. Let A denote
a set of differentially private algorithms. Given the triplet
(W,x, ε) corresponding to a workload, a private dataset and
a setting of the privacy parameter ε respectively, the algo-
rithm selection problem is to select an algorithm A∗ ∈ A to
answer W on x such that ε-differential privacy is satisfied.

Solutions to algorithm selection must satisfy the following
three desiderata:

1. Differential privacy: The algorithm selector must it-
self be differentially private. In particular, any use of the
input data in selecting an algorithm must be included in
an end-to-end guarantee of privacy. The obvious ap-
proach of running all available algorithms on the sen-
sitive input, checking their error, and selecting the one
with least error has been shown to violate privacy [3].

2. Agnostic: Each algorithm A ∈ A should be treated as a
black box, i.e., only requiring that the algorithm satisfy
differential privacy. Agnostic methods are easier to use
for non-experts and are also readily extensible as new
algorithms can be easily added.

3. Competitive: It should select an algorithm A∗ that
offers low error rates on the given input.
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Figure 1: The Pythia meta-algorithm computes private
query answers given the input data, workload, and epsilon.
Internally, it maintains a model of the performance of a set
of algorithms, automatically selects one, and executes it.

Performance. The performance of an algorithm selector
is measured using regret, which compares the error of the
selected algorithm to the error of the best possible algorithm
for that particular input.

Definition 2.3 (Regret). Given a set of differentially pri-
vate algorithms A and triplet (W,x, ε), the regret of selected
algorithm A ∈ A is:

regret(A,W,x, ε) =
error(A,W,x, ε)

OPTA(W,x, ε)

where OPTA(W,x, ε) = minA∈A error(A,W,x, ε) and
error(A,W,x, ε) = ‖ỹ − y‖2.

3. PYTHIA
Pythia is a differentially private meta algorithm that solves

algorithm selection and satisfies the three desiderata out-
lined in the previous section. It works in three steps (see
Fig. 1). First, it extracts a set of noisy features from the
input x using a small fraction of the privacy budget. Next,
it consults a Feature-based Algorithm Selector (FAS) and
chooses one out of a library of differentially private algo-
rithms based on the extracted features. Finally, it executes
the chosen algorithm on the input using the remainder of
the privacy budget. Since some of the privacy budget is used
for feature extraction, Pythia will necessarily have slightly
higher error than the optimal choice algorithm.

Algorithm selection is facilitated by the FAS, which is im-
plemented in Pythia as a decision tree. The FAS is learned
using a offline algorithm called Delphi that uses a synthet-
ically generated training dataset constructed from publicly
available inputs. For a detailed description of both Delphi
and Pythia we refer the reader to the forthcoming paper [3].

By design, Pythia satisfies the first two desiderata (dif-
ferentially private and agnostic) and we empirically show
that it is also highly competitive, offering near-optimal re-
gret rates for a wide variety of inputs. Pythia closes the
accessibility gap for differential privacy since it does not re-
quire from the practitioner any knowledge of differentially

Figure 2: The interface of a round in the game. At the far
left column the user chooses a histogram and an algorithm
for that histogram. The middle and right columns provide
valuable information on the selected histogram and the cho-
sen algorithm respectively. Once the user has locked in all
his choices he can press next to go to the next round.

Figure 3: The interface users interact with at the end of each
round. The first column shows the user’s choices and the
respective error incurred. The second column shows what
Pythia chose and the errors for each algorithm. Finally, the
last column shows the regret for each choice made by both
Pythia and the user.

private algorithms. Lastly, Delphi’s design allows the fast
and easy inclusion of new algorithms as they are proposed
by the research community.

4. DEMO OVERVIEW
Target Group. The audience for DIAS includes SIGMOD
attendees who have little prior knowledge of differentially
private algorithms as well as experts in differential privacy.
Privacy experts who participate in DIAS compete against
Pythia for the task of algorithm selection and can see how
well they fare against our automated system. At the same
time, non-experts who are interested in differential privacy
and want to understand the subtle nuances of differentially
private algorithms have a chance to do so by participating
in DIAS, since its rounds are designed to serve as a brief
tutorial on both differential privacy and algorithm selection.

Game Organization. DIAS is a game of algorithm selec-
tion, where users play by selecting algorithms for a variety
of different inputs. Once users have selected an algorithm
for each histogram DIAS combines their private estimates
to complete a single data analysis task (e.g., Naive Bayes
Classification). The goal of the game is to privately perform
the analysis task such that a task specific accuracy measure
is maximized (e.g., in the case of a Naive Bayes Classifier
the goal is to minimize the misclassification rate). Note that
the accuracy of the task highly depends on the accuracy of
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Figure 4: Example of a Feature-based Algorithm Selector
for the task of 2D histogram release. Leaves of the tree cor-
respond to differentially private algorithms and the internal
nodes describe the decision criteria (i.e., a feature and a
feature value).

the private estimates. Hence, algorithm selection plays a
crucial role in performing the data analysis with high accu-
racy. The game is organized in rounds each of which lasts
approximately 1 minute. Early rounds act as a brief tuto-
rial for non-experts as in each round users select algorithms
for a different subset of the histograms. At the end of the
game, users compare their performance with that of baseline
algorithm selection strategies, as well as that of Pythia and
have a chance to peek into the inner workings of Pythia.
Users can also participate in the DIAS leaderboard, and the
winner will win a small prize.

Data Analysis Tasks. In this demonstration users can
choose between two different tasks: training a differentially
private Naive Bayes Classifier (NBC) and workload answer-
ing. Training an NBC for binary classification involves the
estimation of multiple 1D histograms, and utility is mea-
sured in terms of misclassification rate. In the case of work-
load answering, there is a set of differentially private inputs
S of the form (W,x, ε) and the goal is to privately estimate
all of them while achieving the lowest possible average regret
across S.

Rounds Description. Our main goal with organizing DIAS
in terms of separate rounds is to create an easy to follow
tutorial for non-privacy experts who want to employ differ-
ential privacy in their applications. Each round serves a dif-
ferent educational purpose and subsequent rounds provide
a deeper dive into algorithm comparisons. Fig. 2 shows an
example round. At the end of each single round users have
an opportunity to check their current performance against
that of Pythia and a baseline strategy (see Fig. 3). Note
that in every step of the game the demo presenter will be
available to answer questions on algorithms and concepts of
differential privacy.

In the first round users are introduced to the problem
of histogram estimation under differential privacy and are
introduced to the baseline algorithm that satisfies differen-
tial privacy, the Laplace Mechanism [1]. Users need to per-
form algorithm selection for 2 histograms. The nature of the
histograms is such that algorithm performance depends on
their domain size. In this round users are also first intro-
duced to the notion of regret, through a visual comparison of
algorithm performance between their choice and the choices
made by a baseline strategy and that of Pythia.

In the second round of the game users get to learn the
basics of data dependent algorithms and under what cir-

cumstances they achieve better error rates than their data
independent counterparts. The histograms to be estimated
now have a different number of records (i.e., scale) and users
get first-handed knowledge of the importance of scale in the
error rates of different algorithms.

In the next round, users need to estimate the same his-
togram under different ε values where for the small value
a data dependent algorithm performs best and for the high
value a data independent performs the best. The main point
of this round is to emphasize the importance of the privacy
parameter in algorithm selection and how it is exchangeable
[2] with the scale parameter.

The main educational point of the last round is to in-
troduce users to structural properties of the data and algo-
rithms that take advantage of these properties. More specif-
ically, users are introduced to properties like uniformity and
sparsity. The histograms to be answered are highly het-
erogeneous and users need to select algorithms that exploit
different structural properties of the input. These new ele-
ments give users a valuable insight of how input properties
affect error rates for different algorithms.

End of the Game. Once the user has gone through all the
rounds and selected an algorithm for each histogram, DIAS
completes the data analysis task and assigns a score to the
user which puts him on the leaderboard. The user then has
the option to access Pythia’s inner workings and see exactly
how Pythia made each of its choices. We achieve this goal by
exposing users to both the features extracted from Pythia as
well as the FAS (see Fig. 4) that Pythia used. Thus, users
learn exactly what decisions Pythia made and what features
are more important in algorithm selection. Another subtle
point of Pythia that users will get to see first-hand is the
trade-off inherent to Pythia. The privacy budget spent for
feature extraction implies that more noise will be added on
the release step, but on the other hand, feature extraction
leads to a better algorithm choice which can decrease the
error by an order of magnitude and thus have improvement
on the performance. In the case that a user outperforms
Pythia, we hope to have a constructive discussion on their
insight for algorithm selection and what features they used
in their decision making.

Our goal is that by the end of the game, both privacy ex-
perts and non-experts alike will have increased their knowl-
edge on differential privacy and more importantly will feel
even more confident in applying differentially private algo-
rithms in their own applications.
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