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ABSTRACT
Differential privacy has emerged as a preferred standard for
ensuring privacy in analysis tasks on sensitive datasets. Re-
cent algorithms have allowed for significantly lower error by
adapting to properties of the input data. These so-called
data-dependent algorithms have different error rates for dif-
ferent inputs. There is now a complex and growing land-
scape of algorithms without a clear winner that can offer
low error over all datasets. As a result, the best possible
error rates are not attainable in practice, because the data
curator cannot know which algorithm to select prior to ac-
tually running the algorithm.

We address this challenge by proposing a novel meta-
algorithm designed to relieve the data curator of the bur-
den of algorithm selection. It works by learning (from non-
sensitive data) the association between dataset properties
and the best-performing algorithm. The meta-algorithm is
deployed by first testing the input for low-sensitivity prop-
erties and then using the results to select a good algorithm.
The result is an end-to-end differentially private system:
Pythia, which we show offers improvements over using any
single algorithm alone. We empirically demonstrate the ben-
efit of Pythia for the tasks of releasing histograms, answering
1- and 2-dimensional range queries, as well as for construct-
ing private Naive Bayes classifiers.

1. INTRODUCTION
Differential privacy is one of the primary technical ap-

proaches of managing the significant risks of personal dis-
closure that arise in today’s age of massive data collection
and rampant data sharing. In a database where a record
corresponds to an individual, the promise of differential pri-
vacy is that the participation of any single individual does
not significantly alter the output of a differentially private
algorithm. This is generally accepted as a persuasive privacy
guarantee (for suitable settings of the privacy parameter ε),
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allowing researchers to focus on the accuracy that can be
achieved under this definition.

For many data analysis tasks, the best accuracy achiev-
able under ε-differential privacy on a given input dataset is
not known. There are general-purpose algorithms (e.g. the
Laplace Mechanism [6] and the Exponential Mechanism [18]),
which can be adapted to a wide range of settings to achieve
differential privacy. However, the naive application of these
mechanisms nearly always results in sub-optimal error rates.
For this reason, the design of novel differentially-private
mechanisms has been an active and vibrant area of research
[8][13][14][21]-[23][27]. Recent innovations have had dra-
matic results: in many application areas, new mechanisms
have been developed that reduce the error by an order of
magnitude or more when compared with general-purpose
mechanisms and with no sacrifice in privacy.

While these improvements in error are absolutely essen-
tial to the success of differential privacy in the real world,
they have also added significant complexity to the state-of-
the-art. First, there has been a proliferation of different al-
gorithms for popular tasks. For example, in a recent survey
[9], Hay et al. compared 16 different algorithms for the task
of answering a set of 1- or 2-dimensional range queries. Even
more important is the fact that many recent algorithms are
data-dependent, meaning that the added noise (and there-
fore the resulting error rates) vary between different input
datasets. Of the 16 algorithms in the aforementioned study,
11 were data-dependent.

Data-dependent algorithms exploit properties of the in-
put data to deliver lower error rates. As a side-effect, these
algorithms do not have clear, analytically computable error
rates (unlike simpler data-independent algorithms). When
running data-dependent algorithms on a range of datasets,
one may find that error is much lower for some datasets, but
it could also be much higher than other methods on other
datasets, possibly even worse than data-independent meth-
ods. The difference in error across different datasets may be
large, and the “right” algorithm to use depends on a large
number of factors: the number of records in the dataset, the
setting of epsilon, the domain size, and various structural
properties of the data itself.

As a result, the benefits of recent research advances are
unavailable in realistic scenarios. Both privacy experts and
non-experts alike do not know how to choose the “correct”
algorithm for privately completing a task on a given input.
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Figure 1: The Pythia meta-algorithm computes private
query answers given the input data, workload, and epsilon.
Internally, it models the performance of a set of algorithms,
automatically selects one of them, and executes it.

Algorithm Selection
Motivated by this, we introduce the problem of differentially
private Algorithm Selection, which informally is the problem
of selecting a differentially private algorithm for a given spe-
cific input, such that the error incurred will be small.

One baseline approach to Algorithm Selection is to arbi-
trarily choose one differentially private algorithm (perhaps
the one that appears to perform best on the inputs seen
so far). We refer to this strategy as Blind Choice. As we
will show later adopting blind choice does not guarantee
an acceptable error for answering queries under differential
privacy. A second baseline approach is to run all possible
algorithms on the sensitive database and choose the best
algorithm based on their error, we refer to this strategy as
Informed Decision. This approach, while seemingly natural,
leads to a privacy leak since checking the error of a differen-
tially private algorithm requires access to the sensitive data.

Our approach
We propose Pythia, an end-to-end differentially private mech-
anism for achieving near-optimal error rates using a suite of
available privacy algorithms. Pythia is a meta-algorithm,
which safely performs automated Algorithm Selection and
executes the selected algorithm to return a differentially pri-
vate result. Using Pythia, data curators do not have to un-
derstand available algorithms, or analyze subtle properties
of their input data, but can nevertheless enjoy reduced error
rates that may be possible for their inputs.

Pythia works in three steps, as illustrated in Fig. 1. First
it privately extracts a set of feature values from the given in-
put. Then, using a Feature-based Algorithm Selector Pythia
chooses a differentially private algorithm A∗ from a collec-
tion of available algorithms. Lastly, it runs A∗ on the given
input. An important aspect of this approach is that Pythia
does not require intimate knowledge of the algorithms from
which it chooses, treating each like a black-box. This makes
Pythia extensible, easily accommodating new advances from
the research community as they appear.

Contributions
Our main technical contributions are as follows:

• We formalize Algorithm Selection as the problem of
choosing an algorithm from a suite of differentially pri-
vate algorithms A with the least error for performing a
task on a given input dataset. We require solutions to
be (a) differentially private, (b) treat each algorithm
like a black box, and (c) offer competitive error on a
wide range of inputs. An algorithm’s competitiveness
on a given input is measured using regret, or the ratio
of its error to the minimum achievable error using any
algorithm from A.

• We implement the Feature-based Algorithm Selector
using decision trees over features extracted from the
private data instance, the workload and epsilon. We
propose a regret based learning method to learn a deci-
sion tree that models the association between the input
parameters and the optimal algorithm for that input.

• We build Pythia, a system for answering 1- and 2-
dimensional range queries an important class of queries
that supports among others: histogram estimation,
marginals estimation, as well as building more com-
plex systems (e.g. a Naive Bayes Classifier). It is also
a class that has been intensively studied by privacy re-
searchers. For this class of queries we identify a set of
dataset features, which can be estimated privately and
used to direct the selection of an algorithm.

• We comprehensively evaluate Pythia’s performance on
a total of 6,294 different inputs across multiple tasks
and use cases (answering a workload of queries and
building a Naive Bayes Classifier from sensitive data).
On average, Pythia has low regret ranging between
1.27 and 2.27 (an optimal algorithm has regret 1). Our
Pythia based implementation of the Naive Bayes Clas-
sifier outperforms the state of the art implementation
by up to 60% in terms of misclassification rate on two
real world datasets.

Our results have two important consequences. First, be-
cause our Feature-based Algorithm Selector is interpretable,
the output of training phase can provide insight into the
space of algorithms and when they work best. (See for ex-
ample Fig. 8). Second, we believe our approach can have
a significant impact on future research efforts. An extensi-
ble meta-algorithm, which can efficiently select among algo-
rithms, shifts the focus of research from generic mechanisms
(which must work well across a broad range of inputs) to
mechanisms that are specialized to more narrow cases (e.g.,
datasets with specific properties). One might argue that
algorithms have begun to specialize already; if so, then ef-
fective meta-algorithms justify this specialization and en-
courage further improvements.

Organization. In Section 2 we introduce preliminary def-
initions and notation. In Section 3 we define and motivate
the problem of Algorithm Selection, and discuss the limita-
tions of baseline approaches. We introduce Pythia in Sec-
tion 4 and discuss its learning procedure in Section 5 and
Section 6. In Section 7 we discuss implementation details
of Pythia and in Section 8 we perform a thorough empirical
evaluation of our system. Lastly, in Section 9 and Section 10
we discuss related work and recap our main results.



2. PRELIMINARIES
In this section we describe the data model, workloads,

differentially private algorithms, and our error metric.

Data Model. The database D is a multiset of records, each
having k attributes with discrete and ordered domains. Let
D denote the set of all possible input databases. We describe
D as a vector x ∈ Nd where d = d1 × . . .× dk, and dj is the
domain size of the jth attribute. We denote the ith value of
x with xi.

Given a dataset x, we define three of its key properties:
its scale is the total number of records: sx = ‖x‖1; its shape
is the empirical distribution of the data: px = x/sx; and its
domain size is the number of entries dx = |x|.

Queries. A query workload is a set of queries defined on x
and we use matrix notation to define it. A query workload
W is an m× d matrix where each row represents a different
linear query on x. The answer to this workload is defined
as y = Wx. An example of a workload is P, an upper
triangular matrix with its non-zero elements equal to 1. This
workload is called the prefix workload and contains all prefix
queries on a dataset vector – i.e., ∀i : qi = x1 + . . .+ xi.

Usually a data curator is not interested in answering one
specific workload, but rather a collection of similar work-
loads. For that reason we define a task T as a collection
of relevant workloads. Examples of tasks include 1D range
queries, 2D range queries, marginal queries, etc.

Differential Privacy. Differential privacy protects the in-
dividuals’ records by enforcing that the output distribution
of the algorithm changes only by a multiplicative factor in
the absence or presence of a single tuple. Let nbrs(D)
denote the set of databases differing from D in at most one
record; i.e., if D′ ∈ nbrs(D), then |(D−D′)∪ (D′−D)| = 1.

Definition 2.1 (Differential Privacy [6]). A randomized al-
gorithm A is ε-differentially private if for any instance D,
any D′ ∈ nbrs(D), and any subset of outputs S ⊆ Range(A),

Pr[A(D) ∈ S] ≤ exp(ε)× Pr[A(D′) ∈ S]

Theorem 1 (Sequential Composition [19]). Let A1, . . .Ak

be algorithms, where each Ai satisfies εi-differential privacy.
Then their sequential execution on the same dataset satisfies∑
i εi-differential privacy.

Sequential composition allows for building complex differ-
entially private algorithms.

Error Measurement. For a differentially private algorithm
A, dataset x, workload W, and privacy parameter ε we de-
note the output of A as ỹ = A(W,x, ε) . Then the error is
the L2 distance between the vectors of the true answers and
the noisy estimates: error(A,W,x, ε) = ‖ỹ − y‖2

Algorithms. Differentially private algorithms can be broadly
classified as data-independent and data-dependent algorithms.
The error introduced by data independent algorithms is in-
dependent of the input database instance. Classic mecha-
nisms like the Laplace mechanism [6] are data independent.
For the task of answering range queries, alternative data-
independent techniques can offer lower error. One example
is Hb [21], which is based on hierarchical aggregation – i.e.,
it computes counts for both individual bins of a histogram as
well as aggregate counts of hierarchical subsets of the bins.

Algorithm
Name

Tasks
Prior
Work

Data Independent
Laplace General Purpose [6]
Hb Range Queries [21]
Privelet Range Queries [22]

Data Dependent
Uniform General Purpose n/a
DAWA Range Queries [13]
MWEM General Purpose [8]
AHP General Purpose [27]
AGrid 2d Range Queries Queries [14]
DPCube 2d Range Queries [23]

Table 1: Algorithm Overview

Data-dependent algorithms usually spend a portion of the
budget to learn a property of the dataset based on which
they calibrate the noise added to the counts of x. A category
of data-dependent algorithms are partition-based ; these al-
gorithms work by learning a partitioning of x and add noise
only to the aggregate counts of the partitions. The value of
any individual cell of x is given by assuming uniformity on
its partition. While this technique reduces the total noise
added to x, it also introduces a bias factor because of the
uniformity assumption on the partitions. Hence, the overall
error greatly depends on the shape of x. Examples of data-
dependent partitioning algorithms include DAWA, AGrid,
AHP, and DPCube. Other data-dependent algorithms (like
MWEM) use other data adaptive strategies.

Table 1 lists the algorithms that Pythia chooses from for
answering the task of 1- and 2-dimensional range queries.

3. ALGORITHM SELECTION
In this section we formally define the problem of Algo-

rithm Selection, describe the desiderata of potential solu-
tions, and discuss the limitations of three baseline approaches.

Algorithm selection is performed given a collection of al-
gorithms, a dataset, a workload, and a desired epsilon:

Definition 3.1. Algorithm Selection. Let W be a work-
load of queries to be answered on database x under ε-differential
privacy. Let A denote a set of differentially private algo-
rithms that can be used to answer W on x. The problem is
to select an algorithm A∗ ∈ A to answer W on x.

We identify the following desiderata for Algorithm Se-
lection solutions: (a) differentially private, (b) algorithm-
agnostic, and (c) competitive.

Differentially Private: Algorithm Selection methods
must be differentially private. If the input data is relevant
to an Algorithm Selection method, any use of the input data
must be included in an end-to-end guarantee of privacy.

Agnostic: Algorithm Selection methods should treat each
algorithm A ∈ A as a black box, i.e., solutions should only
require that algorithms satisfy differential privacy and should
be agnostic to the rest of the details of each algorithm. Ag-
nostic methods are easier to deploy and are also readily ex-
tensible as research provides new algorithmic techniques.

Competitive: Algorithm Selection methods should pro-
vide an algorithm A∗ that offers low error rates on a wide
variety of inputs (multiple workloads, different datasets).



We measure the competitiveness of an Algorithm Selection
method using a regret measure defined to be the ratio of the
error of the selected algorithm to the least error achievable
from any algorithm of A. More precisely, given a set of
differentially private algorithms A, a workload W, a dataset
x, and a privacy budget ε, we define the (relative) regret with
respect to A, of an algorithm A ∈ A as follows:

regret(A,W,x, ε) =
error(A,W,x, ε)

minA∈A error(A,W,x, ε)

3.1 Baseline Approaches
As we mentioned in Section 1, two baseline approaches

to Algorithm Selection are Blind Choice and Informed De-
cision. We also consider a third baseline, Private Informed
Decision and explain how each of these approaches violate
our desiderata.

Blind Choice. This baseline consists of simply selecting an
arbitrary differentially private algorithm and using it for all
inputs. It is a simple solution to Algorithm Selection and
clearly differentially private. But such an approach will only
be competitive if there is one algorithm that offers minimal,
or near-minimal error, on all inputs. Hay et al. demon-
strated [9] that the performance of algorithms varies signifi-
cantly across different parameters of the input datasets, like
domain size, shape, and scale. One of the main findings is
that there is no single algorithm that dominates in all cases.
Our results in Section 8.2 confirm this, showing that the
regret of Blind Choice (for any one algorithm in A) is high.

Informed Decision. In Informed Decision the data curator
first runs all available algorithms on the given input and
records the error of each algorithm. He then chooses the
algorithm that performed the best. While Informed Decision
solves Algorithm Selection with the lowest possible regret, it
violates differential privacy since it needs to access the true
answers in order to compute the error.

Theorem 2. There exists a set of differentially private al-
gorithms A, an input (W,x, ε) such that if Informed Deci-
sion is used to choose A∗ ∈ A for the input (W,x, ε) then
releasing A∗(W,x, ε) violates Differential Privacy.

See Appendix A.1 for proof.

Private Informed Decision. This strategy follows the
same steps as Informed Decision except that estimation of
the error of each algorithm is done in a differentially pri-
vate manner. Naturally, this means the total privacy bud-
get must be split to be used in two phases: (a) private al-
gorithm error estimation, and (b) running the chosen algo-
rithm. This kind of approach has already been proposed in
[4], where the authors use this method to choose between
differentially private machine learning models.

The main challenge with this approach is that it requires
that algorithm error has low sensitivity; i.e., adding or re-
moving a record does not significantly impact algorithm er-
ror. However, we are not aware of tight bounds on the sen-
sitivity of error for many of the algorithms we consider in
Section 8. This means that Private Informed Decision can-
not be easily extended with new algorithms. So, while Pri-
vate Informed Decision satisfies differential privacy and may
be more competitive than Blind Choice, it violates the algo-
rithm agnostic desideratum.
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Figure 2: Delphi: Building of Pythia

4. PYTHIA OVERVIEW
Our approach to solve Algorithm Selection is called Pythia

(see Fig. 1) and works as follows. Given an input (W,x, ε),
Pythia first extracts a set of features F from the input, and
perturbs each f ∈ F by adding noise drawn from Laplace(d·
∆f/ε1), where ∆f denotes the sensitivity of f , and d is the
number of sensitive features. The set of features and their
sensitivities are predetermined. Next it uses a Feature-based
Algorithm Selector (FAS) to select an algorithm A? from
an input library of algorithms A based on the noisy fea-
tures of the input. Finally, Pythia executes algorithm A?

on (W,x, ε2) and outputs the result. It is easy to see that
this process is differentially private.

Theorem 3. Pythia satisfies ε-Differential Privacy, where
ε = ε1 + ε2.

Proof. Feature extraction satisfies ε1-Differential Privacy and
executing the chosen algorithm satisfies ε2-Differential Pri-
vacy. The proof follows from Theorem 1.

The key novelty of our solution is that the Feature-based
Algorithm Selector is constructed using a learning based ap-
proach, called Delphi (see Fig. 2). Delphi can be thought
of as a constructor to Pythia: given a user specified task T
(e.g., answering 1-dimensional range queries) it utilizes a set
of differentially private algorithms AT that can be used to
complete the task T , and a set of public datasets to output
the set of features F , their sensitivities ∆F as well as the
Feature-based Algorithm Selector (FAS). To learn the FAS,
Delphi constructs a training set by (a) generating training
inputs (W,x, ε) that span diverse datasets and workloads,
and (b) measuring the empirical error of algorithms in AT
on training inputs. Delphi never accesses the private input
database instance, but rather uses public datasets to train
the FAS. This allows Delphi to (a) trivially satisfy differen-
tial privacy with ε = 0, and (b) be run once and re-used for
Algorithm Selection on different input instances.

Next we describe the design of Delphi and Pythia in de-
tail. Section 5 describes the training procedure employed
by Delphi to learn a Feature-based Algorithm Selector. Sec-
tion 6 describes specific implementation choices for the task
of answering range queries. Section 7 describes the Pythia
algorithm as well as optimizations that help reduce error.



5. DELPHI
Delphi’s main goal is to build a Feature-based Algorithm

Selector that can be used by Pythia for algorithm selection.
The design of Delphi is based on the following key ideas:

Data Independent: As mentioned in the previous sec-
tion, we designed Delphi to work without knowledge of the
actual workload W, database instance x, or privacy param-
eter ε that will be input to Pythia. Delphi only takes the
task (e.g., answering range queries in 1D) as input. First,
this saves privacy budget that can be used for extracting fea-
tures and running the chosen algorithm later on. Secondly,
this allows the FAS output by Delphi to be reused for many
applications of the same task.

Rule Based Selector: The FAS output by Delphi uses
rules to determine how features are mapped to selected al-
gorithms. In particular we use Decision Trees [16] for algo-
rithm selection. Decision trees can be interpreted as a set of
rules that partition the space of inputs (in our case (W,x, ε)
triples), and the trees Delphi outputs shed light into the
classes of (W,x, ε) for which an algorithm has the least er-
ror. Moreover, prediction is done efficiently by traversing
the tree from root to leaf. We discuss our decision tree im-
plementation of FAS in Section 5.1.

Supervised Approach: Delphi constructs a training
set, where each training instance is associated with fea-
tures extracted from triples (W,x, ε) and the empirical er-
ror incurred by each A ∈ A for answering W on x under
ε-differential privacy. We ensure the training instances cap-
tures a diverse set of ε values as well as databases x with
varying shapes, scales and domain sizes. Unlike standard
supervised learning where training sets are collected, Delphi
can (synthetically) generate as many or as few training ex-
amples as necessary. Training set construction is explained
in Section 5.2.

Regret-based Learning: Standard decision tree learn-
ing assumes each training instance has a set of features and
a label with the goal of accurately predicting the label using
the features. This can be achieved by associating each train-
ing instance with the algorithm achieving the least error on
the instance. However, standard decision tree algorithms
view all mispredictions as equally bad. In our context this
is not always the case. Recent work [9] has shown that for
datasets x with large scales (e.g. ≥ 108 records), algorithms
like MWEM have a high regret (in the hundreds), while al-
gorithms like Hb and DAWA have low regrets (close to 2)
for the task of 1D range queries. A misprediction that offers
a competitive regret should not have the same penalty as a
misprediction whose regret is in the hundreds. Towards this
goal, Delphi builds a decision tree that partitions the space
of (W,x, ε) triples into regions where the average regret at-
tained by some algorithm is low. Delphi does not distinguish
between algorithms with similar regrets (since these would
all be good choices), and thus is able to learn a FAS that
selects algorithms with lower regret than models output by
standard decision tree learning. Our learning approach is
described in detail in Section 5.3.

5.1 Feature-based Algorithm Selector
We use decision trees to implement the Feature-based Al-

gorithm Selector. The FAS is a binary tree where the in-
ternal nodes of the tree are labeled with a feature and a
condition of the form fi ≤ v. Leaves of the tree determine
the outcome, which in our case is the chosen algorithm. The

Domain <= 24

Scale <= 3072

True

NNZ <= 25

False

Dawa Laplace AGrid Hb

Figure 3: Example of an FAS for 2D range queries.

decision tree divides the space of inputs into non-overlapping
regions – one per leaf. All inputs in the region correspond-
ing to the leaf satisfy a conjunction of constraints on features
`1 ∧ `2 ∧ . . . ∧ `h, where `i = (fi ≤ v) if the leaf is in the
left sub-tree of an internal node with that condition, and
`i = (fi > v) if the leaf is in the right sub-tree.

Given an unseen input set of features, prediction starts at
the root of the tree. The condition on the internal node is
checked. Traversal continues to the left child if the condi-
tion is true and to the right if the condition is false. Traver-
sal stops at the leaf which determines the outcome. Fig-
ure 3 shows an example FAS for the task of 2-dimensional
range queries. For instance, the FAS selects the Laplace
mechanism for inputs with small domain size (≤ 24) but a
large number of records (> 3072). Similarly, the FAS picks
AGrid for large domain sizes (> 24) with a small number
of non-zero (NNZ≤ 25) counts.

5.2 Training Data
For a task T , Delphi chooses a set of differentially private

algorithms AT for T . Then using a library of representa-
tive workloads for the task T and a benchmark of public
datasets, Delphi constructs a set of inputs ZT of the form
z = (W,x, ε). Details on how ZT is constructed can be
task dependent, and the implementation for range queries is
described in Section 6.

Next, from an input z = (W,x, ε), we extract a feature
vector to be used in FAS. Features can be derived from the
workload W, the input dataset x, or the privacy budget ε.
Let F be a set of real valued functions over input triples. For
f ∈ F , we denote by fz the value of feature f on input triple
z, and by fz the feature vector [f1z , . . . , fmz ]ᵀ. Examples of
features include the number of records in the dataset (or
scale), or the domain size. Section 6 describes the precise
set of features used for the task of range queries. Delphi also
records the performance of each algorithm A ∈ AT on each
input z ∈ ZT and creates a regret vector for each z: rz that
contains the regret for all algorithms in AT for input z.

rz =
[

regretrel(A, z)
]ᵀ
∀A∈AT

Finally, Delphi records the algorithm with the least error on
z, say A∗z, which will have a regret of 1. Thus, the final
training data is a set I consisting of triples of the form i =
(fz,A

∗
z, rz). We use the notation i.fz, i.A

∗
z, i.rz to refer to

the different members of the training instance i.

5.3 Regret-based Learning
Decision trees are typically constructed in a top-down re-

cursive manner by partitioning the training instances I into
a tree structure. The root node is associated with the set of



Algorithm 1 Cart (I) [3, 16]

1: Start at the root node, containing all training data I.
2: For each feature f find the value s∗ such that splitting

on (f, s∗) results in children whose weighted average of
node impurity (NI) is minimized. Repeat the process
for all features and choose (f∗, s∗) that minimizes the
weighted average of NI of the children.

3: Recurse on each child until the stopping criterion is met.

all training examples. An internal node v that is associated
with a subset of training examples V ⊂ I, is split into two
child nodes vf≤s and vf>s based on a condition f ≤ s. The
children are associated with Vf≤s = {i ∈ V |i.fz ≤ s} and
Vf>s = {i ∈ V |i.fz > s}, respectively. The split condition
f ≤ s is chosen by computing the values f∗, s∗ according
to a splitting criterion. Recursive tree construction ends
when a stopping condition is met. The two conditions we
consider are: (a) when no split of the node v results in an
improvement and (b) when the tree has reached a maximum
depth hmax. Algorithm 1 describes a standard decision tree
construction algorithm called Cart. Note that the compu-
tation of f∗ implies that features are automatically selected
in order from the system.

The splitting criterion we use in this work chooses (f?, s?)
to maximize the difference between the node impurity (NI
for short) of the parent node, and the weighted average of
the node impurities of the children resulting from a split.

argmax
f,s

(
|V |NI(v)−

(
|Vf≤s|NI(vf≤s) + |Vf>s|NI(vf>s)

))

Node impurity NI is a function that maps a set of training
instances to a real number in the range [0, 1] and measures
the homogeneity of the training examples within a node with
respect to predicted values. In our context, NI(v) should
be low if a single algorithm achieves significantly lower error
than all other algorithms on instances in V , and high if many
algorithms achieve significantly lower error on subsets train-
ing examples. Decision tree construction methods differ in
the implementation of NI. We next describe four alternate
implementations of NI that result in four splitting criteria –
best algorithm, group regret, minimum average regret and
regret variance criterion. As the names suggest, the first cri-
terion is based just on the best algorithm for each training
instance (and is an adaptation of a standard splitting cri-
terion). The other three splitting criteria are novel and are
based on the regrets achieved by all algorithms in AT on a
training instance z. In Section 8.4 we make a quantitative
comparison between all splitting criteria we consider.

Best Algorithm Criterion. This approach treats the prob-
lem of Algorithm Selection like a standard classification prob-
lem, where each training instance is associated with a label
corresponding to the algorithm with the least error on it. If
multiple algorithms achieve a regret of 1, one of them is cho-
sen arbitrarily as the label. The NI(V ) implementation we
consider is the Gini impurity [16], which measures the likeli-
hood that a randomly chosen training instance in V will be
misclassified if a label was predicted based on the empirical
distribution of labels in V . More specifically, for node v of

the tree let tv denote the empirical distribution over labels.

tv =

[
1

|V |
∣∣{i ∈ V |s.t. i.A∗z = A}

∣∣]ᵀ
∀A∈AT

That is, tv[A] is the fraction of training instances for which
A is the best algorithm. The Gini impurity on node v is
defined as follows:

NI(v) = Gini(v) = 1− tᵀv · tv

As discussed before, the best algorithm criterion views
all algorithms that are not the best as equally bad. Del-
phi employs a regret-based splitting criterion discussed next,
which allow to rank different splits based on their average
regret. Recall that i.rz denotes the vector of regrets for all
algorithms A ∈ AT on training instance z. We define the
average regret vector of training instance in V as:

rv =
1

|V |
∑
i∈V

i.rz

Group Regret Criterion. We now present our best split-
ting criterion for algorithm selection, which we call the Group
Regret Criterion. The key idea behind this splitting criterion
is to (a) cluster algorithms with similar average regrets for
a set of training instances, (b) associate training instances
of a node v to the group of v with the least average regret,
and (c) compute the Gini impurity criterion on the empiri-
cal distribution of the groups rather than on the empirical
distribution over the labels (i.e., the best algorithm). The in-
tuition is that choosing any algorithm from the same cluster
would result in similar average regret, and thus algorithms
in a cluster are indistinguishable.

Let C a partitioning of AT , then for a node v let gvC
denote the empirical distribution over the clusters of C:

gvC =

[
1

|V |
∣∣{i ∈ V |s.t. i.A∗z ∈ C}∣∣]ᵀ

∀C∈C

That is, gvC [C] is the fraction of training instances for which
some A ∈ C is the algorithm that attains the least error.

Definition 5.1 (θ-Group Impurity). Given a node v as-
sociated with a set of training examples V and a thresh-
old θ ∈ R+, we define a θ-clustering of algorithms AT to
be a partitioning C = {C1, . . . , Ck} such that ∀C ∈ C and
∀A,A′ ∈ C,

∣∣rv[A]− rv[A′]
∣∣ ≤ θ. The θ-Group Impurity of

v is defined as:

NI(v) = GIθ(v) = min
θ-clusterings C

1− gᵀ
vC · gvC (1)

For a node v, the clustering C∗ that achieves the minimum
GIθ(v) is called the θ-Group Clustering (θGC).

The intuition behind θ-Group Impurity is the following:
suppose A is the best algorithm for an instance z (regret is
1). Other algorithms A′ that are in the same cluster in a
θGC have regret at most θ+ 1, and hence the model should
not be penalized for selecting A′ instead of A. However, the
FAS must be penalized for selecting algorithms that are not
in the same cluster as A in the θGC.
θ-group clusterings can be efficiently computed due to the

following property:

Claim 5.1. Let C be a θGC for a set of algorithms in node
v of the FAS. For any three algorithms k, l, m such that



rv[k] ≤ rv[l] ≤ rv[m], if k and l are in the same cluster
C ∈ C, then l is also in the same cluster C.

See Appendix A.2 for proof.
As a consequence of Claim 5.1, if the algorithms in AT

are sorted in increasing order of their regrets, then the θGC
always corresponds to a range partitioning of the sorted list
of algorithms. More precisely, if {A1,A2, . . . } are such that
rv[Ai] ≤ rv[Aj ] for all i ≤ j, then every cluster C ∈ C∗
is a range [k,m] such that ∀` ∈ [k,m] : A` ∈ C. When
the cardinality of AT is low (like in our experiments) one
can enumerate over all the range partitions of the sorted
list of algorithms to find the θGC. In cases where AT is
large we can use dynamic programming (like in [12]) since
the optimization criterion (Equation 1) satisfies the optimal
substructure property.

Minimum Average Regret Criterion. With minimum av-
erage regret (MAR) criterion our goal is to promote splits
in the tree where the resulting average regret of the children
is less than the average regret of the parent node. This is
achieved by choosing a Node-Impurity that measures the
average regret of the node:

NI(v) = MAR(v) =
‖rv‖1
|AT |

Regret Variance Criterion. The next criterion we consider
is to promote splits where the variance of the regret vectors
of the children is smaller than the variance of the regret of
the parent node. In this case Node-Impurity(v) is simply
the variance of v:

NI(v) = Var(v) =
1

|AT |
∑
A∈AT

(
rv[A]− ‖rv‖1|AT |

)2

6. DELPHI FOR RANGE QUERIES
In this section we present how Delphi generates the set of

input instances ZT = {(W,x, ε)} for tasks of range queries.
Section 6.1 details how we generate x’s, and Sections 6.2
and 6.3 explain how we handle workloads and epsilon values
in the training phase.

6.1 Generating Datasets
Recent work [9] on the empirical evaluation of differen-

tially private algorithms for answering range queries identi-
fied that algorithm error critically depends on three param-
eters of a dataset x: scale, shape, and domain size. The
characteristics of the input to Pythia are not know a priori,
thus we must ensure that Delphi creates training data that
spans a diverse range of scales, shapes, and domain sizes.

Delphi starts with a benchmark of public datasets Dpublic.
One or two dimensional datasets are constructed by choosing
one or two attributes from the dataset, respectively. For
each choice of attribute(s), if the domain is categorical it
is made continuous using kernel density estimation. This
process results in an empirical density, which we call the
shape p. We denote by P the set of all shapes constructed.

Next, the continuous domain is discretized using equi-
width bins (in 1- or 2-dimensions) to get various domain
sizes. We denote by K the set of domain sizes for each
shape. Finally, to get a dataset of scale s, given a domain
size k and shape p, we scale up the shape p by s to get a
total histogram count of s. The set of scales generated is

denoted by S. Thus the space of all datasets corresponds to
P ×K × S. We denote by X the resulting set of datasets.

6.2 Workload Optimization
Replicating training examples for every possible workload

for a given task would make training inefficient. Hence, we
use the following optimization. Delphi maps each task T to
a set of representative workloads WT , which contains work-
loads relevant to the task. For example if T is “Answer
range queries on 1D datasets”, then WT contains I and P,
the identity and prefix workloads respectively. The identity
workload is effective as answering short range queries, while
the prefix workload is a better choice for answering longer
random range queries. Given a new task T , Delphi selects a
set of differentially private algorithms AT , a set of represen-
tative workloads WT , and a privacy budget ε. Delphi also
generates a set of input datasets X (as described above).

For every workload W ∈ Wt Delphi generates a set of
training instances IW by running all algorithms of AT , for
all datasets x ∈ X , workload W, and privacy budget ε.
Then Delphi uses the Cart algorithm with training data IW
and creates a set of FAS’s: {FASW | ∀W ∈ WT }. Lastly,
Delphi creates a root r connecting each FASW where edges
incident to r have rules based on workload features. The
resulting tree with root r is the FAS returned by Delphi.

6.3 Privacy Budget Optimization
As with workloads, Delphi could train different trees for

different ε values. However, this would either require know-
ing ε (or a range of ε values) up front, or would require
building an infinite number of trees. Delphi overcomes this
challenge by learning a FAS for a single value of ε = 1.0; i.e.,
all training instances have the same value of ε. At run-time
in Pythia, if z = (W,x, ε′), where ε′ 6= ε, Pythia transforms

the input database x to a different database x′ = ε′

ε
x, and

runs algorithm selection on z′ = (W,x′, ε). This strategy
is justified due to the scale-epsilon exchangeability property
defined below.

Definition 6.1. Scale-epsilon exchangeability [9] Let p be a
shape, W a workload. For datasets x1 = s1p and x2 = s2p,
a differentially private algorithm A is scale-epsilon exchange-
able if error(A,W,x1, ε1) = error(A,W,x2, ε2) whenever
ε1s1 = ε2s2.

Recent work [9] showed that all state-of-the-art algorithms
for answering range queries under differential privacy sat-
isfy scale-epsilon exchangeability. We can show that under
asymptotic conditions, the algorithm selected by a FAS on
(W,x, ε′) that is trained on input instances with privacy
parameter ε′ would be identical to algorithm selected by a

FAS′ on (W, ε
′

ε
x, ε) trained on input instances with privacy

parameter ε.
Let X be P×K×R+ a set of datasets. We construct inputs
Z1 = {(W,x, ε1)|∀x ∈ X} and Z2 = {(W,x, ε2)|∀x ∈ X}.
We construct I1 and I2 by executing epsilon-scale exchange-
able algorithms A, on Z1 and Z2 respectively. Let the
Feature-based Algorithm Selectors constructed from these
training datasets: FAS1 = Cart(I1), and FAS2 = Cart(I2).

Theorem 4. Consider instances z1 = (W,x1, ε1) and z2 =
(W,x2, ε2) such that ε1x1 = ε2x2. During prediction, let
the traversal of z1 on FAS1 result in leaf node v1, and let
the traversal of z2 on FAS2 result in leaf node v2. Then, we



Algorithm 2 Pythia(W,x, ε, ρ)

1: ε1 = ρ · ε
2: ε2 = (1− ρ) · ε
3: d = Nnz(∆F)
4: fz = F(W,x, ε)

5: f̃z = fz + ∆FT Lap(d/ε1)

6: A∗ = FAS(f̃z)
7: ỹ = A∗(W,x, ε2)
8: return ỹ

have tv1 = tv2 . Thus, the algorithm selected by FAS1 on z1
is the same as the algorithm selected by FAS2 on z2.

See Appendix A.3 for the proof.

7. PYTHIA
Pythia is a meta-algorithm with the same interface as a

differentially private algorithm: its input is a triple z =
(W,x, ε), and its output is y, the answers of W on x un-
der ε-differential privacy. Pythia works in three steps: fea-
ture extraction, algorithm selection, and algorithm execu-
tion. First, using ε1 privacy budget it extracts a differen-
tially private estimate of the features f̃z from the input z.
Then based on f̃z it uses its FAS to choose an algorithm A∗,
which runs with input (W,x, ε2) and returns the result.

In Algorithm 2 we see an overview of Pythia. In lines 2-3
of Algorithm 2 we split the privacy budget to ε1 and ε2 to be
used for feature extraction and algorithm execution, respec-
tively. In line 4 we compute the number of total features
that need to be privately computed (Nnz is a function that
returns the number of non-zero elements of a given vector).
In line 5 we extract the true features fz and in line 6 we use
the Laplace Mechanism to produce a private estimate f̃z.
In line 7 we apply the FAS on the noisy features f̃z and we
get the chosen algorithm A∗. In line 8 we run A∗ with input
z = (W,x, ε2) and return the answer.

Feature Extraction. Delphi provides Pythia with the set
of features F of the input z = (W,x, ε). As a reminder,
features extracted from the sensitive dataset x might po-
tentially leak information about x; for that reason we need
to privately evaluate the values of these features on x. To
do so, we use the vector of sensitivities ∆F of each individ-
ual feature. We add noise to the features in the following
manner: we assign a privacy budget ε1 for feature extrac-
tion, and then use the Laplace Mechanism to privately eval-
uate each feature’s value by using a fraction ε1/d for each
feature, where d is the total number of sensitive features.
This process guarantees that feature extraction satisfies ε1-
differential privacy.

7.1 Deployment Optimizations
The first optimization we consider is dynamic budget allo-

cation, and the second is post-processing via noisy features.
In Algorithm 3 we show Pythia utilizing both optimizations.

Dynamic Budget Allocation. The first optimization we
consider is to dynamically reallocate the privacy budget be-
tween feature extraction and the execution of the selected
algorithm. Recall that the feature extraction step of Pythia
consumes privacy budget ε1 to recover d sensitive features
from x. Then f̃z is used to traverse the decision tree FAS

Algorithm 3 Pythia(W,x, ε, ρ) – w/ Optimizations

1: ε1 = ρ · ε
2: ε2 = (1− ρ) · ε
3: d = Nnz(∆F)
4: fz = F(W,x, ε)

5: f̃z = fz + ∆FT Lap(d/ε1)

6: A∗, f̃ ′z = FAS(f̃z)

7: ε′2 = ε2 + (d− |f̃ ′z|)/dε1
8: ỹ = A∗(W,x, ε′2)

9: ȳ = Optimize(ỹ,W, f̃ ′z)
10: return ȳ

to choose an algorithm A∗. In reality, not all features are
necessarily used at the tree traversal step. For example, in
Fig. 3, while there are 2 sensitive features (scale, number
of non-zero counts) in the FAS, any input traversing that
FAS will only utilize one sensitive feature (either scale, or
Nnz). In this example we have spent ε1/2 to extract an
extra sensitive feature that we do not use.

Dynamic Budget Allocation recovers the privacy budget
spent on extracting features that are not utilized in the tree
traversal step and instead spends it on running the chosen al-
gorithm A∗. More specifically, given d′ < d sensitive features
were used to traverse the tree, we update the privacy budget
of the algorithm execution step to ε′2 = ε2 + (d − d′)/d · ε1.
Lines 7 and 8 of Algorithm 3 reflect this optimization. In
the example of Fig. 3 this means that we will run the chosen
algorithm with privacy budget ε2 + ε1/2 and thus achieve
higher accuracy on the release step.

Post-Processing via Noisy Features. The second deploy-
ment optimization we propose is a post-processing technique
on the noisy output ỹ of Pythia by reusing the noisy fea-
tures. The intuition behind our method is the following,
the true features extracted from the dataset fz impose a set
of constraints on the true answers of the workload y. We
describe these constraints as a set C, i.e., y ∈ C. Since ỹ
is a noisy estimate of y, it might be the case that ỹ /∈ C.
In the case that C is a convex set, we can project the noisy
answer to C and get another estimate: ȳ = ProjC(ỹ), where

ProjA(x) , arg miny∈A ‖x−y‖. Doing this guarantees that
the error of ȳ will be smaller than ỹ.

Theorem 5. Let a convex set C, and points y, y′ where
y ∈ C. Then ‖y−y∗‖2 ≤ ‖y−y′‖2 where y∗ = ProjjC(y′).

At deployment time we do not know the true features
fz, instead we have a noisy estimate f̃z. We overcome this
challenge by creating a relaxed convex space C̃ based on the
noisy features and project to that. As an example, consider
dataset x and workload W = I the identity workload, at
run-time suppose that the scale s̃z is used. Then we create
the constraint ‖y‖1 ≤ s̃z + ξ, where ξ ∼ 1/ε1 is a slack
parameter, to account for the noise added. Lastly we project
the noisy answer ỹ to space defined by our constraint. We
show experimentally significant improvements in the quality
of the final answer ỹ using this technique.

8. EXPERIMENTS
In our experimental evaluation we consider two different

tasks: 1D and 2D range queries. For each task we train a
single version of Pythia that is evaluated on all use cases for



that task. We consider the standard use case of workload
answering and we also demonstrate that Pythia can be very
effective for the use case of building a multi-stage differen-
tially private system, specifically a Naive Bayes classifier.

In Pythia we always set ρ = 0.1 to split the privacy budget
for the feature extraction step. Tuning the budget alloca-
tion between the two phases is left for future work. For
algorithms used by Pythia, we parameterized using default
values whenever possible.

Sumary of Results. We evaluate performance on a total
of 6,294 different inputs across multiple tasks and use cases.
Our primary goal is to measure Pythia’s ability to perform
algorithm selection, which we measure using regret. Our
main findings are the following:

• On average, Pythia has low regret ranging between
1.27 and 2.27. If we compare Pythia to the strategy of
picking a single algorithm and using it for all inputs, we
find that Pythia always has lower average regret. This
is indirect evidence that Pythia is not only selecting
a good algorithm, on average, it is selecting different
algorithms on different inputs.

• For the multi-stage use case, we learn a differentially
private Naive Bayes classifier similar to Cormode [5]
but swap out a subroutine with Pythia. We find that
this significantly reduces error (up to ≈ 60%). In ad-
dition, results indicate that for this use case Pythia
has very little regret: it performs nearly as well as the
(non-private) baseline of Informed Decision.

We also examine some aspects of the training procedure for
building Pythia.

• We show that our regret-based learning technique us-
ing the group impurity measure results in lower av-
erage regret compared to the standard classification
approach that uses the Gini impurity measure. The
reduction is more than 30% in some cases.

• The learned trees are fairly interpretable: for example,
the tree learned for the task of 2D range queries reveals
that Pythia: selects DAWA when features suggest the
data distribution is uniform or locally uniform, selects
Laplace for small domains, and AHP for large scales.

In terms of run time, Pythia adds negligible overhead to
algorithm execution: some algorithms take up to minutes
for certain inputs, but Pythia runs in milliseconds. Training
is somewhat costly due to the generation of training data
(which takes about 5 hours). However, once the training
data is generated, the training itself takes only seconds.

In Section 8.1, we describe the inputs supplied to the
training procedure Delphi. For each use case, we describe
the setup and results in Sections 8.2 and 8.3. Section 8.4 il-
lustrates the interpretability of the Feature-based Algorithm
Selector and the accuracy improvements due to our regret
based learning procedure.

8.1 Delphi setup
Recall that Pythia is constructed by the Delphi training

procedure described in Sections 5 and 6. To instantiate Del-
phi for a given task, we must specify the set of algorithms
AT , the inputs ZT , and the features used.

Dataset
Name

Domain
Size

Original
Scale

Prior
Work

Task: 1D Range Queries
ADULTFRANK 4,096 32,561 [8],[13]
HEPTH 4,096 347,414 [13]
INCOME 4,096 20,787,122 [13]
MEDCOST 4,096 9,415 [13]
NETTRACE 4,096 25,714 [1],[10],[24],[28]
SEARCHLOGS 4,096 335,889 [1],[10],[24], [28]
PATENT 4,096 27,948,226 [13]

Task: 2D Range Queries
ADULT-2D 256 x 256 32,561 [8],[13]
BJ-TAXI-S 256 x 256 4,268,780 [11]
BJ-TAXI-E 256 x 256 4,268,780 [11]
SF-TAXI-S 256 x 256 464,040 [20]
SF-TAXI-E 256 x 256 464,041 [20]
CHECKING-2D 256 x 256 6,442,863 [9]
MD-SALARY-2D 256 x 256 70,526 [9]
LOAN-2D 256 x 256 550,559 [9]
STROKE-2D 256 x 256 19,435 [9]

Table 2: Overview of the datasets used for each task T .

Algorithms. The set of algorithms AT is equal to the
set of algorithms shown in Table 1, except for AGrid and
DPCube, which were specifically designed for data with 2
or more dimensions and are therefore not considered for the
task of answering range counting queries in 1D.

Inputs. We construct ZT , the set of triples (W, x, e), as
follows. The value of ε is fixed to 1.0, leveraging the opti-
mization discussed in Section 6.3. The datasets x are con-
structed using the methods described in Section 6.1, with
the parameters set as follows: Dpublic consists of datasets
for a given task as described in Table 2; the set of scales
is set to S = {25, 26, . . . , 224}; and the set of domain sizes
is K = {128, 256, . . . , 8192} for 1D and K = {4 × 4, 8 ×
8, . . . , 128×128} for 2D. This yields 980 datasets for the 1D
task and 1080 datasets for 2D.

The workload W comes from the set of representative
workloads, WT , which varies by task. For 1D, we use 2 rep-
resentative workloads: Identity is the set of all unit-length
range queries; and Prefix is the set of all range queries whose
left boundary is fixed at 1. For 2D, we use 4 workloads, each
of consisting of 1000 random range queries, but differing in
permitted lengths. The Short workload has queries such that
their length m satisfies m < d/16 for domain size d, Medium
has d/16 ≤ m < d/4, Long has m ≥ d/4 and Mixed consists
of a random mix of the previous types.

By taking every combination of workload, dataset, and ε
described above, we have 2× 980× 1 = 1, 960 inputs for 1D
and 4 × 1080 × 1 = 4, 320 inputs for 2D. For each input,
we run every algorithm in AT on it 20 times (with different
random seeds) and estimate the algorithm’s error by taking
the average across random trials. We use this to empirically
determine the regret for each algorithm on each input.

Features. Recall that in Delphi, each input (W,x, ε) is
converted into a set of features. The dataset features and
their corresponding sensitivities are as follows:

• The domain size, denoted d. This feature has sen-
sitivity zero because the domain size of neighboring
datasets is always the same, i.e., the domain size of a
dataset is public information.



• The scale is defined as S(x) = ‖x‖1, and corresponds
to the total number of tuples in the dataset. Since
the absence or presence of any tuple in the dataset the
scale can change at most by 1, we have ∆ S = 1.

• The number of non-zeros is Nnz(x) = |{xi ∈ x| xi 6=
0}|. Changing any tuple in x alters the number of
non-zeros by at most 1 so ∆Nnz = 1.

• The total variation between the uniform distribution
and x is:

tvdu(x) =
1

2

d∑
i=1

∣∣∣xi − u∣∣∣
where u = ‖x‖1/|x|. We have ∆ tvdu = 1− 1

d
≤ 1 and

the proof is in Appendix B.

• The partitionality of x is denoted Part and is a func-
tion that returns minimum cost partition of x accord-
ing to the partition score defined in Li et al. [13].
Given the analysis of Li et al. [13], it is straightfor-
ward to show that ∆Part = 2. Part has low values
for datasets whose histograms can be summarized us-
ing a small number of counts with low error.

The workload features vary by task. For the task of 1D
range queries, we use the binary feature“is the average query
length less than d/2?” For 2D range queries, we use a feature
that maps a workload to one of 4 types: short, medium, long,
or mixed. If all queries are short then it is mapped to short,
similarly for medium and long; otherwise, it is mapped to
mixed. As discussed in Section 6.2, the workload feature is
used at the root of the tree to map a test instance to the
appropriate subtree. For 2D, workloads are mapped directly
by the above function; for 1D, workloads with average query
length of less than d/2 are mapped to the Identity subtree
and the rest are mapped to the Prefix subtree. Workload
features have sensitivity zero because they do not depend
on the private input x.

8.2 Use Case: Workload Answering
The first use case we consider is workload answering : an-

swering a single workload of queries W on a dataset x given
a privacy budget of ε. Our goal is to evaluate Pythia’s abil-
ity to select the appropriate algorithm for a given input. We
measure this ability by calculating regret: given a test input
z = (W,x, ε) we run each algorithm in the set {Pythia}∪AT
on this input 20 times using different random seeds and cal-
culate average error for each algorithm. Average error is
then used to derive regret with respect to AT . Note that
when Pythia is invoked without optimizations (see Algo-
rithm 2), even if one assumes it chooses the best algorithm
A∗ for an input z, its regret will be > 1. This is because
Pythia has to execute A∗ for privacy budget ε2 > ε.

Datasets. The test inputs that we use are drawn from the
set ZT , which was described in the previous section on train-
ing. Of course this poses an additional challenge: we should
not evaluate Pythia on an input z that was used in train-
ing. To ensure fair evaluation, we employ a kind of stratified
`-fold cross-validation: ZT is partitioned into ` folds such
that each fold contains all of the inputs associated with a
common source dataset from Dpublic. This ensures that the
training procedure does not have access to any information

about the private datasets that are used in testing. The
number of source datasets varies by task: as indicated in
Table 2, for the 1D task, |Dpublic| = 7 and thus ` = 7; for
2D, |Dpublic| = ` = 9. Reported results are an aggregation
across all folds.

Algorithms Compared. We compare Pythia against the
baselines of Section 3.1. More specifically, we compare against
Informed Decision, which always achieves a regret of 1 but is
non-private and Blind Choice, which uses a single algorithm
for all inputs.

In addition, the optimizations described in Section 7.1 are
used: budget reallocation is used for both 1D and 2D and
post-processing is used for 1D only.

Results. Fig. 4 shows the results for both tasks. Each bar
in the “All” group corresponds to the average regret over all
test inputs. The other bar groups report average regret over
subsets of the test inputs based on workload type. The dot-
ted line corresponds to Informed Decision with regret = 1.
Algorithms whose average regret exceeds 10 were omitted,
namely AHP, MWEM, Privelet, and Uniform for 1D
and DAWA, MWEM, Uniform, and DPCube for 2D. Ad-
ditionally, in Appendix C we provide more detailed results
where we analyze the regret of different algorithms for fixed
values of shape, domain size, and scale.

The results show that Pythia has lower average regret
than all other techniques. In addition, Pythia’s regret is
generally low, ranging between 1.27 (Prefix 1D) and 2.27.
(Short 2D). It is also interesting to see that among the
single algorithm strategies, the algorithm with lowest regret
changes depending on the subset of inputs: for example,
Hb has lower regret than DAWA for 1D Identity workload
whereas the opposite is true for the 1D Prefix workload.
The results provide indirect evidence that Pythia is selecting
different algorithms depending on the input and achieving
lower error than any fixed algorithm strategy.
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Figure 4: Use Case: Workload Answering

8.3 Use Case: Multi-Stage Task
In this section, we evaluate Pythia by building a multi-

stage differentially private system, namely a Naive Bayes
Classifier (NBC) [17]. Fitting an NBC for binary classifi-
cation requires computing multiple 1D histograms of possi-
bly heterogeneous domain sizes and shapes. We use Pythia
to automatically select the most appropriate algorithm to
use for each histogram. We evaluate performance using two
datasets from the UCI repository [15] that, for the purposes
of evaluating Pythia, represent two extreme cases: one has
a small number of homogeneous histograms, the other has
a larger number of more diverse histograms. This way we
can see whether the benefit of algorithm selection increases



with the heterogeneity of the input.
Given a k-dimensional dataset, with attributes {X1, . . .

, Xk} and a binary label Y , an NBC requires computing a
histogram on Y and, for each attribute Xi, a histogram on
Xi conditioned on the value of Y for each possible value of
Y . In total, this requires estimating 2k + 1 histograms. In
addition, once the histograms are computed, they are used
to fit a statistical model. We consider two different models:
the Gaussian [26] and Multinomial [17] models. To compute
an NBC under ε-differential privacy, each histogram can be
computed using any differentially private algorithm provided
it receives only an ε′ = ε/(2k+1) share of the privacy budget.

Datasets. The first dataset is the Skin Segmentation [2]
dataset. Tuples in the dataset correspond to random pixel
samples from face images of individuals of various race and
age groups. In total there are 245K tuples in the dataset.
Each tuple is associated with 3 features R,G,B and the la-
bels are {Skin,NoSkin}. The second dataset we use is the
Credit Default dataset [25] with 30K tuples. Tuples corre-
spond to individuals and each tuple consists of 23 features
consisting of demographic information of the individual, as
well as her past credit payments and credit status. The bi-
nary label indicates whether or not the borrower defaults.
Note that as a pre-processing step, we removed 7 features
that were not predictive for the classification task. To get
test datasets of diverse scales, we generate smaller datasets
by subsampling. For Skin Segmentation, we sample three
datasets of sizes 1K, 10K, and 100K, and for Credit De-
fault, two datasets of sizes 1K and 10K.

Note that these datasets are used for testing only. Pythia
is trained on different inputs, as described in Section 8.1.

Algorithms Compared. We are interested in evaluating
how the choice of algorithm for computing each histogram
affects the accuracy of the resulting classifier. We consider 5
ways of computing histograms: (1) non-private unperturbed
histograms, (2) non-private Informed Decision, which for
each histogram selects the algorithm that achieves lowest er-
ror, (3) Pythia, (4) the Laplace mechanism, and (5) DAWA.
We evaluated these approaches for both Gaussian and the
Multinomial NBCs. Note that NBC with the Laplace mech-
anism and Multinomial model corresponds to the algorithm
proposed by Cormode [5]. Accuracy is measured on a 50/50
random training/testing split. We repeat the process 10
times for different random trials and report the average mis-
classification rate across trials.

Results. Figs. 5 and 6 report classifier error for the Gaus-
sian and Multinomial NBCs respectively. The results indi-
cate that Pythia achieves lower error than any other differ-
entially private strategy. In many cases, it achieves error
that is almost as low as that of Informed Decision, which is
not private. Fig. 6 also indicates that an NBC built with
Pythia outperforms the existing state of the art approach
(Multinomial with Laplace) of Cormode [5]. Somewhat sur-
prisingly, Pythia is very effective even on the Skin Segmen-
tation dataset whose histograms are fewer and homogeneous
in terms of domain size. This is because Pythia almost al-
ways chooses Laplace for releasing the histogram on the label
attribute (which has a domain size of 2) and DAWA for the
the conditional distributions. This is close to the optimal
choice of algorithms. Using Laplace or DAWA alone for all
the histograms results in much higher error.
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Figure 5: Use Case: Naive Bayes Classifier (Gaussian)

10
00

10
00

0

10
00

00

25
40

57

Scale

0.0

0.2

0.4

0.6

0.8

1.0

M
is

sc
la

ss
if
ic

a
ti

o
n
 R

a
te NBC on Skin Segmentation

(a) Skin Segmentation Dataset

10
00

10
00

0

30
00

0

Scale

0.0

0.2

0.4

0.6

0.8

1.0

M
is

sc
la

ss
if
ic

a
ti

o
n
 R

a
te

NBC on Credit Default

(b) Credit Card Default Dataset

Figure 6: Use Case: Naive Bayes Classifier (Multinomial)

8.4 Evaluation of Training
We also examine some aspects of the training procedure

for building Pythia.

Learned Tree. Fig. 8 illustrates the tree learned by Del-
phi for the task of 2D range queries on the Short workload.
Internal nodes indicate a measured feature and leaves are
labeled with the name of the algorithm that is selected for
inputs that reach that leaf. The fraction shown in a leaf in-
dicates for what fraction of those training inputs that were
mapped to that leaf the selected algorithm was optimal. The
tree can be fairly easily interpreted and offers insight into
how Pythia chooses among algorithms. For instance, Pythia
tends to select DAWA when measures indicate the data dis-
tribution is uniform (low TVD) or locally uniform (low Par-
titionality). It tends to select Laplace for small domains,
and AHP for large scales.

Effect of Regret-based Learning. We also compare our
approach of regret-based learning (Section 5.3), which uses
Group Regret as its split criteria, against some alternatives
including the standard Gini criterion measure, the Minimum
Average Regret (MAR) and Regret Variance (VAR) criteria,
all described in Section 5.3.

Fig. 7 compares these measures for the task of workload
answering. The figure shows average error across the test
inputs, exactly as was described in Section 8.2. It shows
that the group impurity measure results in a roughly 30%
reduction in average regret for 1D to the standard classifi-
cation approach that uses the Gini impurity measure. For
2D, the effect is less pronounced (14%) but still the group
regret criterion achieves the lowest average regret.

9. RELATED WORK
The approach proposed by Chaudhuri et al [4] can be used

to implement a version of Private Informed Decision. In that
work, the authors address the problem of differentially pri-
vate parameter tuning in machine learning applications. In
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Figure 8: Tree learned by Delphi for the Short workload on
2D.

particular, a machine learning model (e.g., a classifier) is
trained on a dataset T and its performance is validated on a
hold-out dataset V. To choose the correct parameters for the
model, the process is repeated until the best parameter val-
ues, w.r.t. the performance on V, are found. The authors
assume that both V and T contain sensitive information,
and try to provide an efficient differentially private param-
eter tuning method. First, they assume a set of models
H = {hi, · · · }, each corresponding to a different parameter
value, and define stability conditions on the quality measure
q(·) of a classifier h. Based on the stability conditions, they
evaluate the quality of each h ∈ H with a privacy budget ε1,
and choose the best classifier and output its model with pri-
vacy budget ε2. Applying the same algorithm in the context
of Algorithm Selection results in a Private Informed Decision
strategy. More specifically, the set of classifiers corresponds
to the set AT of differentially private algorithms, sets T
and V are identical and correspond to the private input x,
the quality measure q(·) corresponds to an error metric, and
lastly the stability condition is the sensitivity of the error
measure. As discussed in Section 3.1, this approach is not
practical because computing the sensitivity of the error for
each algorithm in AT is a non-trivial task. It is challeng-
ing for known algorithms and limits the extensibility of the
approach as new algorithms are proposed.

In Cost Sensitive Learning [7] (CSL) the learning proce-
dure assigns a different cost factor for correct and incor-
rect predictions. The motivation behind this model is that
certain incorrect predictions always have greater cost than
some other incorrect predictions. For example, misclassi-
fying a movie as “PG-13” might have a greater cost than
misclassifying it as “R” (since inappropriate material might
be labeled as suitable for minors). Applying CSL in algo-

rithm selection means that misclassifying an input z with
some Ai ∈ AT has lower cost than misclassifying it with
Ak ∈ AT . As we saw earlier, this is not always the case.
Algorithms have different costs depending on the subset of
inputs z they are applied on. In other words, our regret-
based learning method treats the cost (regret) of each label
(algorithm) in a dynamic fashion, by calculating it for each
subset of training instances.

10. CONCLUSIONS
In this paper we explore the problem of Algorithm Selec-

tion in the context of differential privacy, a problem moti-
vated by recent work [9] that shows that across inputs there
is no clear winner among differentially private algorithms.
Simple solutions have limitations that result in either (a)
high error, (b) a violation of differential privacy, or (c) im-
practical implementations. To address this problem, we de-
signed Pythia, a meta-algorithm that measures features of
the input to automatically select the algorithm to execute
from among a suite of available ones. Pythia is an end-to-
end differentially private algorithm that has demonstrably
good utility across a large and diverse set of inputs. Further,
Pythia is agnostic to the details of the differentially private
algorithms from which it selects. This has the added benefit
that it is easily extensible and can readily incorporate new
algorithms developed by the research community.

Pythia’s approach to algorithm selection centers around a
Feature-based Algorithm Selector (FAS). The FAS is learned
by Delphi, a data independent (and hence inherently pri-
vate) supervised learning technique. While the training pro-
cess can be time-consuming (≈ 5 hours in our experiments),
a key property of our approach is that this needs to be done
only once for a given class of task (e.g. 1D range queries).
The learned model can then be deployed inside Pythia and
used in an arbitrary number of instances of that task.

We evaluate the performance of Pythia for the two tasks
of 1D and 2D range queries and multiple use cases, includ-
ing computing the histograms needed to fit a Naive Bayes
classifer. We compare Pythia with state of the art algo-
rithms, as well as with non-private baselines. Overall we see
that Pythia not only achieves the best average performance
across inputs, but also offers small variability in its error.

The current work focuses on a relatively narrow class of
tasks which we hope to expand in future work. Doing so
introduces new challenges such as identifying new dataset
features that are predictive for the new class of tasks. Ide-
ally, we would like to develop methods that automatically
identify and extract the features from the training instances.
This may provide more insight into the conditions under
which existing algorithms work well and may motivate the
development of algorithms that are increasingly specialized.
Those algorithms could be readily added to Pythia and se-
lected whenever the input appears to match the conditions
in which they are designed to work well.
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APPENDIX
A Detailed Proofs

Here we present proofs for the theorems stated in the main
body of the paper.

A.1 Proof of Theorem 2

Proof. Let W be a query workload and let x and y be two
neighboring datasets (i.e., ‖x− y‖1 = 1) that have distinct
outputs on W. That is, Wx 6= Wy. Let Ax and Ay be two
algorithms such that Ax always outputs Wx independent
of the input, and Ay always outputs Wy independent of
the input. Since Ax, and Ay are constant functions, they
trivially satisfy differential privacy for any ε value.

Consider the Algorithm Selection problem where A =
{Ax,Ay}. For input x = (W,x, ε) informed decision picks
the algorithm that results in the least error which is Ax.
For informed decision ID to satisfy ε-differential privacy, we
want ∀S ∈ Range(ID):

P (ID(x) ∈ S) ≤ exp(ε)× P (ID(y) ∈ S)

But we know that P (ID(x) = Wx) = 1, while P (ID(y) =
Wx) = 0, resulting in contradiction.

A.2 Proof of Claim 5.1
Before we prove Claim 5.1, we extend our notation to help

us with the proof. Let a θ-clustering C, then the partial sum
of a cluster Ci ∈ C is: Si = gvC [Ci]

ᵀgvC [Ci], it follows that

gᵀ
vC · gvC =

∑
Ci∈C

Si. Also let g(C) = gᵀ
vC · gvC .

Claim 5.1. We prove by contradiction. Let C∗ a θ−Group
Clustering for node v and algorithms AT . This implies that
C∗ = argmaxC g(C). Assume that C∗ does not satisfy the
claim, i.e., there exist algorithms k, l,m ∈ AT such that
rv[k] ≤ rv[l] ≤ rv[m] with k,m ∈ Ci and l ∈ Cj , where
Ci, Cj ∈ C∗. It is obvious that l is admissible to Ci (since it
is bounded by k and m already in Ci.

Also note that since max[h]∈Cj
|rv[h]− rv[l]| ≤ θ, at least

one of k,m is admissible to Cj .
We consider two cases, regarding the partial sums of Ci

and Cj . If S∗i ≥ S∗j : we construct another solution C′ by
removing l from Cj and adding it to Ci, i.e. C′ = {C | ∀C ∈
C\{Ci, Cj}} ∪ {Cj\{l}} ∪ {Ci ∪ {l}}. The value of this
solution is computed as follows:

g(C′) = g(C∗)− S∗2i − S∗2j + S′2i + S′2j

= g(C∗)− S∗2i − S∗2j + (S∗i + tv[l])2 + (S∗j − tv[l])2

= g(C∗) + 2tv[l]2 − 2tv[l]S∗j + 2tv[l]S∗i

= g(C∗) + 2tv[l]2 + 2tv[l](S∗i − S∗j ) ≥ g(C∗)

If S∗i ≤ S∗j : w.l.o.g. assume only k is admissible to Cj ,
then we construct C′ by removing k from Ci and adding it to
Cj , i.e. C′ = {C | ∀C ∈ C\{Ci, Cj}}∪{Cj∪{k}}∪{Ci\{k}}.
The value of this solution is computed as follows:

g(C′) = g(C∗)− S∗2i − S∗2j + S′2i + S′2j

= g(C∗)− S∗2i − S∗2j + (S∗i − tv[k])2 + (S∗j + tv[k])2

= g(C∗) + 2tv[k]2 + 2tv[k]S∗j − 2tv[k]S∗i

= g(C∗) + 2tv[k]2 + 2tv[k](S∗j − S∗i ) ≥ g(C∗)

A.3 Proof of Theorem 4
We prove Theorem 4 after showing the following lemma.

Recall that in Section 6.3 we defined FAS1, and FAS2 trained
on infinite training sets, with different epsilon values. We
also define a ε-stable bijection. A bijection fε,ε′ : D → D is
a ε-stable bijection if for fε,ε′(s · p) = s′ · p, any workload
W, and a scale/ε-exchangeable algorithm A:

error(A,W, sp, ε) = error(A,W, s′p, ε′)

Lemma 6. Let fε,ε′ an ε-stable bijection. We denote the
nodes of FAS1 at level i as vi1, . . . , v

i
2i , and similarly for

FAS2: wi1, . . . , w
i
2i . Then ∀i, j: V ij = f [W i

j ] and tvij
= twi

j



Proof. The infinite size of the training data as well as the
scale/ε exchangeability of the algorithms in the labels guar-
antee that both roots of FAS1 and FAS2 share the same la-
bel distribution. Consider the first split of FAS1: (v1, v2), we
know that this split achieves the highest impurity improve-
ment: θ1. We argue that the first split of FAS2 : (W1,W2)
is such that V1 = f [W1], V2 = f [W2], if it was any other
case then the impurity improvement would be less in either
FAS1, or FAS2. Because of f is an ε-stable bijection this
also implies that tv1 = tw1 and tv2 = tw2 . As tree con-
struction is made top-down, we recursively apply the same
argument and the proof follows.

Proof. [Theorem 4] From Lemma 6 we have that all non-
leaf nodes vij and wij make a split on the same feature, more
specifically ∀f ∈ F\{scale} : the split condition is the same,
and that for f = scale the split conditions are of the form
(f, s) and (f, sε1/ε2) for FAS1 and FAS2 respectively.

This means that at traversal time, z1 and z2 will end up in
the leaves vij and wij of FAS1, and FAS2. The proof follows
from Lemma 6.

B Feature Sensitivity Estimation
Let x,x′ neighboring datasets with ‖x‖1 = s, |x| = |x′| =

d, and w.l.o.g x′1 = x1 + 1, and xj = x′j ∀j ∈ {2, . . . , d}.
Then:

tvdu(x′) =
1

2

d∑
i=1

∣∣x′i − (s+ 1)/d
∣∣

=
1

2

(∣∣x′1 − (s+ 1)/d
∣∣+

d∑
i=2

∣∣xi − (s+ 1)/d
∣∣)

≤ 1

2

(∣∣x1 − s/d∣∣+ 1− 1/d+

d∑
i=2

(∣∣xi − s/d∣∣+ 1/d
))

=
1

2

(∣∣x1 − s/d∣∣+

d∑
i=2

(∣∣xi − s/d∣∣)+ 1− 1/d+ (d− 1)/d

)

=
1

2

( d∑
i=1

∣∣xi − s/d∣∣+ 2− 2/d

)
= tvdu(x) + 1− 1/d

C Further Experiments
Here we present additional experimental results that com-

plement our analysis in Section 8.2. We further analyze the
error incurred by algorithms for the task of workload an-
swering for fixed values of shape, domain size, and scale.

In Fig. 9 we plot the average regret of each algorithm
across different datasets, for the 1D tasks. Fig. 9a and 9b
correspond to the identity and the prefix workload respec-
tively. For the identity workload, Pythia has the lowest av-
erage regret amongst 5 data-sets and both AHP and DAWA
have the lowest in 1 dataset. For the prefix workload, Pythia
has the lowest average regret in 5 datasets and Hb has the
lowest regret in 2 datasets. The key point in this case is
that when Pythia is not the best it is the second-best, which
means that across datasets it has consistently good error.

In Figures 10 and 11 we see the corresponding plots when
we fix the domain size and scale respectively, and then av-
erage out the regret measure. Again we see similar trends,
with Pythia being a consistently good choice.
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Figure 9: Average Regret vs Shape
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Figure 10: Average Regret vs Domain Size
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Figure 11: Average Regret vs Scale


