
S y s t e m D e a d l o c k s

E. G. COFFMAN, JR.

Pennsylvania State University, University Park, Pennsylvania "

M. J. ELPHICK

University of Newcastle upon Tyne, Newcastle upon Tyne, England

A. SHOSHANI

System Development Corporation, Santa Moniea, California

A problem of increasing impor tance in the design of large mul t ip rogramming systems is
the, so-called, deadlock or deadly-embrace problem. In this arliele we survey the work
t ha t has been done on the t r e a t m e n t of deadlocks from bolh the theoret ical and
pract ica l points of view.

Key words and phrases: deadlocks, deadly embraces, system deadlocks,
mul t iprograrnming, in ter lock problems

CR categories: 4.10, 4.32

1 INTRODUCTION

One of the objectives of recent developments
in operating systems--incorporat ing multi-
programming, multiproeessing, e tc . --has
been to improve the utilization of system
resources (and hence reduce the cost to
users) by distributing them among many
concurrently executing tasks. In any operat-
ing system of this type the problem of dead-
10ek must be considered. Requests by sepa-
rate tasks for resources may possibly be
granted in such a sequence that a group of
two or more tasks is unable to proceed--
each task monopolizing resources and wait-
ing for the release of resources currently
held by others in that group. As a somewhat
simplified example, suppose we have a task
T1 that has just produced a request for a
file on disk, and that T1 must suspend
operation until the disk becomes available.
Suppose another task Te has control of the
(single) disk channel but that it is still wait-
ing for T1 to complete the updating of a
(shared) file that contains information re-
quired by T=,. In order for work to proceed,
the disk channel must be given over to T1.

But if we assmne that T2 is in the middle
of some file on disk, then, because of hard-
ware or software limitations, a preemption
of the disk from T2 can be effectively tanta-
mount to a sacrifice in the processing al-
ready aeeolnplished by T2. Under these
circumstances, if T1 and T~ have no (tem-
porary) alternative to waiting, they will be
deadlocked and never able to proceed.

As shown by this example, deadlocks, or
"deadly embraees":as E. W. Dijkstra has
called them, can arise even though no single
task requires more than the total resources
available in the system. Moreover, dead-
locks can arise whether the allocation of re-
sources is the responsibility of the operating
system (as is normally the ease) or of the
programs themselves.

The example also illustrates that the term
"resource," in the context of deadlocks, can
apply not only to devices (tape and disk
drives, channels, card readers, etc.), and
processors and storage media (core store,
drums, disks, tapes), but to programs, sub-
routines, and data (tables, files, etc.). Many
of these permit only exclusive use by one

Computing Surveys, Vol. 3, No. 2, June 1971

68 • E. G. Coffman, Jr., M. J. Elphick, and A. Shoshani

CONTENTS

1 Int roduct ion 67-70
2 Characterizations of Deadlocks 70 72
3 Prevent ion of Deadlock 72-73
4 Deadlock Detection and Recovery 73 74
5 Avoid ing Deadlocks Using Informat ion on Resource

Requirements 74 76
6 Conclusions 76-78
7 References 78

task at a time, but some (for example, read-
only programs) may be shared by more than
one task. The mutual exclusion of several
tasks using the same resource may be
achieved by allocating the use of that re-
source to only one task, or, if access to the
resource is not directly under the control of
the operating system, by the use of the
primitive P and V operations introduced
by Di jks t ra [1]. The facilities for queueing
requests from separate tasks for a serially
reusable resource provided in OS/360 by the
ENQ and D E Q macros [2] are examples of
this lat ter approach, as are the LOCK and
U N L K macro instructions suggested by
Dennis and Van Horn [3].

Another aspect of these various types of
resource is the possibility of preemption:
if a resource has been allocated by the sys-
tem to a task, it may be possible (at some
cost) to seize the resource from that task
(which is then suspended) and preserve the
current state both of the task and of its use
of tha t resource. Thus, if the resource in
question is a CPU, the information that
must be preserved consists of the contents
of CPU registers and the current instruction
counter (or "program status word") . The
cost of preemption is low in this case; how-
ever, for storage media like magnetic tape,
the cost may be much higher. The cost may
have to be regarded as effectively infinite in
those cases where preemption of the given
resource must involve the loss of "progress"
of one or more tasks (as in the deadlock ex-
ample above). We should emphasize that
this type of resource may be inherently non-
preemptible or it may simply be that the
operating system is not designed to preempt
this type of resource.

I t should also be noted tha t users of the
system may make requests for resources
either implicitly (e.g., by defining the data
sets to be used for a given job in OS/360)
or explicitly during the execution of a pro-
gram. In some cases, a request for one re-
source will imply a further request for other
resources: for example, an initial request for
access to the information contained in a
random-access file may lead to a request for
main storage to be allocated for input and
output buffers.

Comput ing Surveys, Vol. 3, No. 2, June 1971

System Deadlocks • 69

FIG. 1. Traffic deadlock.

V-I

V-1

e l - -

Since the deadlock problem is a logical
one it can arise in different contexts, pro-
vided that tasks and resources are in-
terpreted properly. For example, consider
the situation of traffic flow along the edges
of a square as shown in Figure 1. The small
boxes represent cars, and the arrows the
direction in which they want to move. Since
there are four cars blocking the traffic at
each corner we have a traffic deadlock. In
this case we can think of the space occupied
by a car as a resource for which other cars
are competing. Cars represent tasks that
request the next resource (space) before
they can release the current resource (space
they currently occupy). This is a simple ex-
ample of deadlock problems that can appear

in traffic control. Many other examples arise
in production management and control,
where machines, tools, people, input infer-
mation, etc., can be considered as resources
needed for the execution of some task.

The deadlock problem becomes more com-
plex when a system has different resource
types and, in general, more than one re-
source of the same type. In this case re-
sources of the same type are not labeled
differently. When a request is made for a
number of resources of a particular type,
any resources of that type will do. Thus,
the case of only one resource of each type
is a special case of the above. Examples of
many resources of the same type are mere-
ory pages (i.e., units of storage allocation),

Comput ing Surveys, Vol. 3, No. 2, June 1971

70 • E. G. Coffman, Jr., M. J. Elphick, a~d A. Shoshani

disk drives (if there is more than one in a
system), processors in a multiprocessor sys-
tem, etc.

The remainder of this paper is organized
as follows. In the next section we summarize
the conditions necessary for the existence of
deadlocks and present two graphical meth-
ods for representing deadlocks. In sections
3-5 the t reatment of deadlocks is classified
according to the assumption of whether ad-
vance information about future resource re-
quirements of tasks is available. For the
ease when no such information is available,
we consider in section 3 the design of sys-
tems in which the possibility of deadlocks
occurring is prevented from the s tar t by re-
moving one or more of the necessary condi-
tions. We then discuss in section 4 how a
state of deadlock may be detected, and how
recovery can be carried out, preferably at
the least cost to the users of the system. I f
advance estimates of the resources required
by each job can be obtained, techniques are
available for avoiding deadlock, and we dis-
cuss their cost and effectiveness in section 5.
Finally, we a t tempt some conclusions about
the relative merits of these various ap-
proaches to the problem of deadlock.

2 CHARACTERIZATIONS OF DEADLOCKS

In order to illustrate the conditions under
which deadlocks can occur, we abs t rac t the
previous example and consider two tasks
T~ and Te, each requiring the exclusive use
of two different resources R1 and Re (not
necessarily together). We can represent the
combined progress of these tasks in the
following way (due to Di jks t ra) . For each
task the number of instructions executed
subsequent to some selected initial t ime is
used as a measure of its progress, and a pair
of such values defines a point in a two-
dimensional "progress space," as shown in
Figure 2. The joint progress of T1 and Te is
then represented by a sequence of discrete
points in this space; sub-sequences in which
only one coordinate increases correspond to
t ime intervals in which one task is in sole
control of the CPU, while simultaneous in-
creases in both coordinates can only occur

in a multiple processor system. I t is clear
that such a " t ra jec tory" can never result in
a decrease in either coordinate--progress
(i.e., the execution of instructions) is irre-
versible.

The intervals during which tasks T1 and
Te require resources R1 and R2 are shown
in Figure 2, as are those areas representing
simultaneous use of a resource by both
tasks. Since we have assumed tha t each task
requires exclusive control of any resources,
these areas cannot be entered by the trajec-
tory representing their progress.

Given the sequence of resource usage by
the two tasks shown in Figure 2, it is clear
that if the t ra jectory is allowed to enter the
region D, then a state of deadlock is inevita-
b l e - T 1 holds resource R1, T2 holds re-
source R2, and the subsequent requests from
each task for its second resource must be
denied. Other tasks in the system may be
able to continue if they do not require these
resources, but the overall performance of the
system will be degraded by the unavaila-
bility of R1 and R2.

This deadlock situation has arisen only
because all of the following general condi-
tions were operative:
1) Tasks claim exclusive control of the re-

sources they require ("mutual exclu-
sion" condition).

2) Tasks hold resources already allocated
to them while waiting for additional re-
sources ("wait for" condition).

3) Resources cannot be forcibly removed
from the tasks holding them until the
resources are used to completion ("no
preemption" condition).

4) A circular chain of tasks exists, such
that each task holds one or more re-
sources that are being requested by the
next task in the chain ("circular wait"
condition).

The existence of these conditions effectively
defines a state of deadlock.

In the previous example these conditions
were indeed in effect, and a circular wait
existed, since T~ was waiting for T~ to re-
lease Re, while T~ was waiting for T1 to re-
lease Ri.

In terms of these necessary conditions it is

Comput ing Surveys, Vol. 3, No. 2, June 1971

System Deadlocks • 71

Progress of T 2

I R2 required

T 2 waiting

wT~iting

/ /_ ' / j

J

I~ requ:red
r i~----2~,

required

)

Progress of T I

FIG. 2. Joint progress of tasks T~, 7'2.

interesting to examine again the example of
traffic deadlocks in Figure 1. In this case
there is only one resource of each type, since
spaces occupied by ears are all distinguisha-
ble from each other. The "mutual exclusion"
condition obviously holds since a space can-
not I)e shared by two or more ears. The
"wait for" condition exists, since a ear can-
not release the current space until it gets
the next space. The "no preemption" condi-
tion clearly holds, assuming that ears are
not removable by an outside agent. Finally,
circuits in the state graph are possible be-
cause of the direction of flow around the
square.

Deadlocks can be expressed more pre-
cisely in terms of graphs. Suppose we have
a set of tasks { T], T:, • •. , T, } in some arbi-
t ra ry state of execution; let {R1, R2, " " ,
R,, } be a set of distinct resources in use by
these tasks (i.e., there is only one resource
of each type) . We define a directed graph
(to be called a state graph) whose nodes
correspond to the resources {R j} and whose
arcs are defined as follows. If, at the time in-
stant to which the graph applies, some task T
is allocated (i.e., possesses) resource Rj while
requesting R~., then the graph contains an
arc from node R / t o node R~.. An example is
shown in Figure 3 for m = 3. As can be

Comput ing Surveys. Vol. 3, No. 2, June 1971

72 • E. G. Coffman, Jr., M. J. Elphick,

C
.FIG. 3. E x a m p l e o f a s t a t e g r a p h .

and A. Shosha~d

necessary, but no longer a sufficient, condi-
tion for the existence of deadlocks. However,
this result may still be meaningful in con-
sidering the prevention of deadlocks. If a
restriction is imposed on the behavior 0f
tasks in such a way tha t circuits in the re-
quest graph cannot arise, then deadlocks will
never occur (such a restriction is discussed
in section 3).

Two recent studies [16, 18] of deadlock
l)roblelns have appeared in which different
variat ions of graphical representations are
investigated. Results based on graph struc-
ture that are similar to but more extensive
than those discussed here under the head-
ings of detection and avoidance are pre-
sented for these graphs.

seen, there exists a task possessing R1 and
requesting R2, a task possessing Ra and re-
questing R, and R2.

I t has been shown [4, 6, 8, 14] tha t a cir-
cuit (directed loop) in the request graph is
a necessary and sufficient condition for a
deadlock, assuming the first three conditions
given above are operative. As an example,
suppose an are from R~ to R:, is added to the
graph in Figure 3. Clearly, there must exist
at least three deadlocked tasks; each of the
R, is requested by one task but allocated to
another so that none of the R~ can be effec-
t ively used.

The state graph described above is appro-
priate only for systems in which there is
only one resource of a type. For the general
ease of more than one resource of the same
type, a state graph was defined [14] as fol-
lows: resources are part i t ioned into types
r~, r2, "" ", r, with the number of resources
of each type given by w~, w2, • • ", w,, respec-
tively. The resources of a given type are
identical and indistinguishable, and it is as-
sumed tha t requests for a given resource
type r~ can be for any number less than or
equal to w,. State graphs are defined in a
way similar to tha t given earlier. The nodes
now become the resource types {r~}. There
will be an are from r~ to rj if and only if
there exists at least one task requesting one
or more resources of type rj and possessing
one or more resources of type r~. With this
definition a circuit in the state graph is a

3 PREVENTION OF DEADLOCK

I f we undertake the design of a system in
which the possibility of deadlock is to be
excluded a priori, then we must ensure that
at every point in t ime at least one of the
necessary conditions is not satisfied. This
implies certain constraints on the way in
which requests for resources may be made.

The first of the four necessary conditions
given in section 2 cannot be denied for all
resources. For example, the sharing of a
file by more than one task can only be per-
mitted when neither task is updating the
contents of that file.

The following approaches, suggested by
Havender [4], in effect deny each of the
three remaining conditions in turn.
a) Each task nmst request all its required

resources at once and cannot proceed
until all have been granted ("wait-for"
condition denied).

bl I f a task holding certain resources is de-
nied a further request, that task must
release its original resources and, if
necessary, request them again together
with the additional resources ("no pre-
emption" condition denied).

e) The imposition of a linear ordering of
resource types on all tasks; i.e., if a task
has been allocated resources of type r~
it may subsequently request only those
resources of types following r~ in the or-
dering. In the ease of only one resource

Computing Surveys, Vol. 3, No. 2, June 1971

of a type, the linear ordering is of re-
sources. (I t can be shown that under this
condition the state graph cannot have
circuits, and therefore circular wait con-
ditions are prevented.}

When each of these strategies is only par-
tially applicable it is dea r ly possible to use
a combination of them in a given system,
and also to implement them either by em-
bodying the constraints in the design of the
system (so that no task can violate the con-
straints), or by insisting that all application
programs as well as system components fol-
10w certain conventions in requesting re-
sources.

Approach (a) may be costly since some
of the resources allocated to a task may
remain unused for long periods. Approach
(bl is convenient only when applied to pre-
eruptible resources whose state can be easily
saved and restored later, as is the ease with
a processor. Approach (c) may be feasible
and is used in the ease discussed by Haven-
der [4], where he describes the way in which
the deadlock problem was tackled in the
design of that eomI)onent of the OS/360
(MVT} system responsible for initiating
job-steps. Here certain possibilities of dead-
10ek {between separate job-steps, at least)
have been prevented by acquiring storage,
devices, and data sets for each job-step in a
fixed order. However, the possibility of
deadlock between several tasks initiated by
one or more job-steps has not been pre-
vented completely, since the ENQ and D E Q
facilities can be used (or misused) to create
a "circular wait ."

Other approaches to this problem are dis-
cussed in the report by Collier [5], and in
the papers by lIleiter [6], Murphy [7], and
~.Ierikallio and Holland [8].

4 DEADLOCK DETECTION AND RECOVERY

It was discussed in section 2 that in the ease
of one resource of a type, a deadlock exists
at time t if and only if there exists a circuit
in the state graph at t ime t. Thus, a dead-
lock detection mechanism in this ease con-
sists of a routine for maintaining a state
graph each time resources are requested,
acquired, or released by tasks, and a routine

Sys tem Deadlocks • 73

that examines the state graph to determine
whether a circuit exists.

For the ease of more than one resource of
a type, a detection algorithm cannot be sin>
ilarly based on the state graph since, in this
ease, a circuit in the state graph is only a
necessary condition for a deadlock; a more
elaborate state description mechanism is re-
quired.

Let rl, r2, • • ", r, represent resource types
and Wl, w.,, . . . u', represent the number of
resources of each type as in section 2. At
an arb i t ra ry time instant t let p~j denote the
number of resources of type ra allocated to
(possessed by) T~ and let q~j denote the
number of resources of type rj requested by
T, in excess of those already allocated to
T~. Define the al loca t ion and reques t ma-
trices P = ((pu) ~ and Q = ((q~j~) and let
P~ and Q~ denote the row vectors giving the
resources allocated to T~ and requested by
T~, respectively. Let 1" = Ivy, v2, " " , v,)
be an avai lab le resources vector whose ith
element tv~ ~< w0 indicates the number of
resources of type r, that are currently avail-
able. Note that

L'j = W i - - ~ p,-j.
i=l

Tha t is, the sum of the resources allocated
and those available of type '5 must be equal
to the total number of that type in the sys-
tem. In the following, 0 will indicate a (row)
vector each of whose s elements is 0. Also,
x -~ y, where x and y are vectors, is defined
to hold if and only if it holds for each pair
of corresponding elements from x and y.

The algorithm below, which is presented
in [14], is designed to reveal a deadlock by
simply accounting for all possibilities of se-
quencing the tasks that remain to be com-
pleted. Suppose at t ime t the state of the
system is available in the matrices P and Q,
and suppose V is also given. We have the
following algorithm for determining the ex-
istence of a deadlock at t ime t.

A l g o r i t h m A

1t Initialize IV +- l ' (t l . M a r k all rows for
which P i t t l = 0. (All rows arc assumed
to be "umnarked" at the outset.}

2) Search for all unmarked row, say the ith,

Comput ing Surveys, Vol. 3. No. 2, June 1971

74 • E. G. Coffman, Jr. , M . J . Elphick, and A . Shoshani

such that Q~(t) ~< W. I f one is found,
go to Step 3; otherwise terminate the
algorithm.

3) Set W ~-- W + P~(t) , mark the ith row,
and return to Step 2.

I t is not difficult to ver i fy tha t a deadlock
exists if and only if there are umnarked rows
at the terminat ion of the algorithm. More-
over, the set of unmarked rows corresponds
precisely to the set of deadlocked tasks.

The running time of this algorithm is pro-
portional to the square of the number of
tasks. I t is shown in [16] (see also [17])
that by ordering the resource requests by
size and associating with each task a count
of the number of types of resources being
requested, a detection algorithm can be de-
vised which has a running t ime tha t varies
linearly with the number of tasks. More-
over, the additional cost of ordering requests
and maintaining counts is offset by the fact
tha t this method also facilitates finding
blocked tasks to act ivate when other t a s k s
release resources. A number of simplifica-
tions are possible in important special cases
(e.g., a single resource of each type) , and
these are also discussed in [16].

Given a detection mechanism, perhaps
the simplest approach to recovery from a
deadlock situation would involve aborting
each of the deadlocked tasks, or, less drasti-
cally, aborting them in some sequence until
sufficient resources t)ecome released to re-
move deadlocks in the set of remaining
tasks. Obviously, we could also design an
algorithm tha t searches for a minimum-
sized set of tasks which, if aborted, would
remove the deadlocks.

A more general technique [14] has been
devised that assigns a fixed cost c~ to the
removal (forced preemption) of a resource
of type r~ from a deadlocked task tha t is
being aborted. Thus, the cost of removing
resources from a deadlocked task T~ is:

• ci.g(q,] -- vj) w h e r e g (x) =
X; X > 0

~=~ 0; x ~< 0

An algorithm has been designed tha t finds
a subset of resources tha t would incur the
minimum cost if preempted. The algorithm
finds a minimum cost solution by an efficient

tree-search procedure that can be charaete
ized as a branch-and-bound technique. (A
gori thm A is used to isolate new s e t s
deadlocked tasks in the sequence of tria
removals made by the algorithm.)

Note that by using this deteetion-reeo'
cry mechanism the notion of deadlock e~
be extended to include resource types whi~
are actually preemptible but which ha,
varying preemption costs. In other word
with this extension, deadlocks do not neee
sarily involve tasks tha t nmst be aborte~
rather, it may only be necessary to remo~
certain resources from tasks tha t incur su(
costs as supervisor overhead, swapping, et~
but not a loss of input, output, or the prol
ress that has been made in a comlmtatio
Clearly, forced resource preemptions invol,
ing the lat ter losses will be assigned hie
costs so tha t the recovery algorithm w!
avoid them.

AVOIDING DEADLOCKS USING
INFORMATION ON RESOURCE
REQUIREMENTS

To avoid deadlocks in a multiprogrammir
system in which the necessary conditions fl
deadlocks can exist, it is usually necessary t
have some advance information on the r~
source usage of tasks. A number of interes~
ing models can be envisioned, each diffferil:
in the amount of information assume
available. A comprehensive theoretical stud
of a number of task models can be found i
[10]. In this section we shall briefly examir
two such models: the first will be the m0~
basic model (full information assumed) an
the second will be the more practically or:
ented model of Habe rmann [11].

In the basic model a task is assumed t
consist of a sequence of task-s teps durin
each of which the resource usage of the tas
remains constant. The execution of a tasl~
step first involves the acquisition of tho~
resources needed by the given task-step b~
not passed on by the previous task-stel
Next follows a period of execution durin
which the resource requirements do n(
change. Finally, at the completion of exee~

Comput ing Surveys, Vol. 3, No. 2, June 1971

tion, all those resources not needed by the
subsequent task-step are released and re-
turned to a pool of available resources.

Before describing how deadlocks are
avoided with the task-step model we shall
find it convenient to introduce the notion of
saJe states. As indicated in the previous sec-
tion, the state of the system as it relates to
the requesting and allocation of resources at
time t is reflected in the two matrices Q (t)
and P (t) , respectively. For simplicity let us
denote this resource-state by S (t) . We shall
say that S (t) is s a f e when, using the cur-
rently available resources and those which
will be returned by currently executing task-
steps, it is possible to find a valid sequence
of the uninitiated task-steps in the currently
initiated but incomplete tasks such that all
tasks in the system can be run to comple-
tion. A sequence of this kind will be valid if
the implied sequence of resource requests is
such that at the time each request is made
there are sufficient available resources to
satisfy it.

As an illustration of this definition, con-
sider Figure 2 in which the region D corre-
sponds to points in the joint progress of T~
and T: from which a deadlock is inevitable:
As we can see, all points in the region D
correspond to unsafe states and all points
outside this region (and the shaded region)
correspond to safe states.

The following remarks should be made
about the definition of a safe state. First, we
note that the initial state in which no re-
s0urecs are yet allocated and all are avail-
able is always a safe state. Hence, there al-
ways exists an initial sequence of all task-
steps according to which all tasks are com-
pleted. In particular, we can always execute
the tasks in strict serial sequence if neces-
sary. In part it follows from this observation
that if there is a way to complete the cur-
rently executing tasks without getting into
a deadlock, we can clearly complete the re-
maining uninitiated tasks (again, executing
them in serial order if necessary). Finally,
with an appropriate formalization of the
ideas in this and the previous section, it has
been shown that the ability to avoid dead-
locks subsequent to time t can be guaran-
teed if and only if S (t) is a safe state [10].

S y s t e m D e a d l o c k s • 75

We are now in a position to state precisely
the problem confronted by a supervisor de-
signed to avoid deadlocks. Suppose the sys-
tem is in a safe state S(t) and there exists a
set of outstanding resource requests given
by the contents of Q (t) . The supervisor
must be able to determine whether any
given one of these requests (if any) is safe
in the sense that it is less than or equal to
the currently available resources and would
leave the system in a safe state if granted.
Since, in general, there can be more than one
safe request, some other scheduling criterion
has to be invoked to determine which safe
request is to be granted. Common criteria
include first-in-first-out, shortest (or small-
est) job first, etc. I t is worth emphasizing
perhaps that these other scheduling criteria
lnust be applied to the set consisting only of
safe requests. Otherwise, if they are applied
to all requests, a request that is not safe
1nay be selected, thus artificially creating a
deadlock arising from conflicting scheduling
policies.

The problem of determining whether a
state S (t) is safe following the granting of
a request generally requires a procedure to
search for an appropriate sequence of task-
steps. As ilnplied earlier, the procedure be-
gins by assuming that the currently avail-
able resources are augmented by those allo-
cated to currently executing task-steps.
This is equivalent to assuming that the first
task-step in the sequence sought is not be-
gun until all currently executing task-steps
have been allowed to complete. The search
timc can be improved by the following re-
sult [10].

At some stage in the search procedure
let x = pIP~ " " • p~. be an initial (trial) sub-
sequence of task-steps. Assuming that this
sub-sequence were realized, suppose that
the number of resources available following
any given task-step is, for each type, greater
than or equal to the number of resources
available just following the previous task-
step. Under this condition it has been shown
that if the state S (t) being tested is in fact
safe, then there must exist a valid sequence
of all uninitiated task-steps in the executing
tasks that has x as a prefix (i.e., pap2 • " • Pr

will be the initial task-steps in the se-

Comput ing Surveys, Vol. 3. No. 2, June 1971

76 • E. G. Coffma~, Jr., M. J. Elphick, a~d A. Shos]~a~i

quence). Thus, in organizing a conventional
tree-search for appropriate sequences it is
never necessary to back-up beyond the last
element of an initial sub-sequence having a
eorresl)onding sequence of available re-
source vectors with the above property.

Frmn practical considerations it is likely
to be necessary to assume tha t less is known
about the resource usage of tasks than is
assumed in the task-s tep model. We shall
now briefly discuss Hat)ermann's model [l l]
in which we deal with entire tasks rather
than task-steps, and in which it is assumed
that only the maxinmm number of resources
required by each task is known. In part icu-
lar, for each task T~ we have a resource vec-
tor that gives the maximum number of re-
sources of each type that will 1)e required at
any time during execution of T~.

A state S(t) will be safe in this model if
and only if there exists some sequence ac-
cording to which the currently executing
(i.e., initiated but incomplete) tasks can
complete, assumiT~g they will still need their
maximum resource requirements at some
time, and assuming tha t we have only the
currently available resources at the begin-
ning of the sequence. The search for se-
quences of the executing tasks can be sig-
nificantly more efficient than the search de-
scribed with the task-s tep model, even after
the fact that there are generally fewer tasks
than task-steps is taken into account. The
reason for this is as follows. Since each task
will return as many resources as it requests,
the sequence of available resource vectors
corresponding to a sequence of the executing
tasks will always have the monotonically
non-decreasing property mentioned earlier.
Thus, we can show that in the search proce-
dure it is never necessary to back-up to t ry
new initial sub-sequences; and it follows
tha t the search time is proportional to the
square of the number of executing tasks.

A further technique mentioned by Haber -
mann for shortening the search time is de-
scribed as follows. Suppose a request has
just been made by task T , the system is in
a safe state, and we wish to determine if the
request is safe. I f at any point in developing
a trial sequence we find that the correspond-
ing available resources are sufficient to eom-

plete T~, we may terminate the search with
the decision that the request is safe. The
reason is tha t if T,, the source of the request,
can complete and release all the resources it
controls, all other tasks can certainly be
completed, since the state previous to the
request was safe and they could therefore
have been completed before the request was
l n a (t e . ~

In summary, the applicabil i ty of the
basic task-s tep model means tha t we can
determine precisely when deadloeks are un-
avoidable on granting a request. Although
with Habermann ' s model false threats of
deadlocks may degrade resource utilization,
it has the significant advantages of requir-
ing less information about task behavior
and a more efficient algorithm for testing
whether states are safe. For models that
moderate the disadvantages (and the ad-
vantages) of both the above models see [10].

Heba lka r [18] uses a graph model to rep-
resent processes of more general structure
than the sequence of task-steps. In his
model, nodes represent transitions of a com-
putat ion and ares represent demand vectors
of resources. Thus, a computat ion can split
into parallel subeomputations, and subeom-
putations can merge. A cut-set of a graph
represents a state of the system. This model
has been shown to facilitate the representa-
tion of safe states as well as deadlock states.
Algorithms designed to preclude deadlocks
are presented, and are based on the advance
information in the graph model.

6 CONCLUSIONS

We have described the various strategies
that can be used to deal with the problem of
deadlock, under the headings of prevention,
detection (and recovery), and avoidance.
Algorithms for implementing the last two
policies have been outlined briefly.

Where possible, prevention of the possi-
bility of deadlock is better than cure, since
in most current systems deadlock is an ex-

* For techniques leading to search times that
vary linearly with the number of tasks and for
applications to important special eases, see [161.
Such techniques arise from tile more efficient de-
leetion algorithms mentioned in section 4.

Comput ing Surveys, Vol. 3, No. 2, June 1971

eeptional occurrence, and in many cases it
involves only a limited set of resources.
Once a deadlock situation has been recog-
nized as such, the problem can often be re-
moved by suitable changes to that part of
the system (for example, permitting pre-
emption of a resource where this was not
thought necessary before).

If this approach is not feasible--perhaps
because the constraints it would impose on
jobs are unacceptable-- then detection or
avoidance may be considered. However, it
is not possible at present to predict accu-
rately either the costs or the benefits that
can be obtained by use of the techniques
described. Good measures of the running
time of the various search algorithms and of
the resource utilization achieved by systems
using them are not available.

Some refinements of the models presented
here for the detection, recovery, and avoid-
ance algorithms would be desirable in prac-
tice. The recovery model, for example,
should use costs (for the preemption of re-
sources from a task) that are functions of
the time for which that task has been in
progress, and perhaps of its priority. The se-
lection of an appropriate avoidance model
involves a balance between the efficiency of
the algorithm (for determining whether
granting a request is safe), the level of re-
source utilization possible, and the cost to
the user in providing estimates of potential
resource requirements.

In avoiding deadlock, an alternative to
the search algorithms presented may be
feasible when the number of safe sequences
is relatively small (and the system may be
operating inefficiently, having to deny most
requests). This alternative approach is to
store the current set of safe sequences, up-
dating them as necessary, and to inspect the
first element of each sequence to decide
whether a request can be granted. How-
ever, as the number of safe sequences in-
creases, the storage and updating problems
will make this approach less efficient, and
some scheme for switching from one method
to the other might be necessary.

In practice, even though complete dead-
lock is avoided, it may be more important,
for the sake of efficiency, to prevent the sys-

S y s t e m Deadlocks • 77

tern from entering a state of "near dead-
lock," in which progress can be made only
by granting requests from one task at a
time. Again, when jobs with heavy resource
requirements are discriminated against, the
situation in which such a job is allowed to
acquire control of several valuable re-
sources, but is subjected to long waits as a
result of further requests, must be avoided.
The models described above might be
adapted for this purpose by defining a cost
for a given sequence of resource allocations
(which would be high when a valuable re-
source is unavailable for a long sequence of
task-steps); a search for a safe sequence
having a low cost might be feasible.

On the other hand, one could focus on re-
ducing supervisor overhead rather than im-
proving resource utilization by adopting the
following approach. Assuming advance re-
source-usage information, as in Haber-
mann's model, for example, an operating
system could be designed that never multi-
programs two or more tasks whose resource
requirements are such that circular wait
conditions can arise. Tha t is, deadlocks are
avoided by inspection of resource require-
ments only at the beginning of task execu-
tions rather than each time a resource
request is made. This approach clearly sac-
rifices potential losses in resource utilization
for savings in supervisor execution times.

Needham and Har t ley [12] have exam-
ined system designs partially involving this
approach but have not at tempted a complete
removal of the possibility of deadlock (or
"knotting," as the authors refer to it). In
the interest of system operating~efficiency,
deadlocks (and the resulting "disasters")
are allowed to occur, but measures are de-
scribed that ensure that such events are
kept at an acceptably low frequency.

In conclusion, it must be agreed that the
problem of deadlock has not been of major
(or at least continuing) importance in most
current systems, mainly because it has
amounted to little more than an isolated
debugging problem. However, for future
systems sharing an increasingly costly set
of services and resources among an increas-
ing number of individual users, these prob-
lems are likely to become more pressing.

Computing Surveys, Vol. 3, No. 2, June 1971

78 • E. G. Coffman, Jr., M . J . Elphiek, and A . Shosha~i

T h e y will be even more i m p o r t a n t for those
sys tems t h a t p rov ide a common set of large
files (or da t a bases) ava i l ab le to the m a n y
users of the sys tem for both r ead -on ly access
and updat ing . The typ ica l resource usage
here will be to ob ta in access to a small sub-
set of records, f rom which o ther tasks mus t
be excluded unt i l the t ask at hand releases
the subset. Some techniques for organiz ing
this t ype of sys tem to avoid dead lock are
discussed by Shoshani and Berns te in [13].

"" . . 4 .

5.

REFERENCES

1. DIJKSTRA, E. W. "Co-operating sequential
processes." In Programming la~tguages: NATO
advanced study in,stitute. F. GENUYS (ED.),
Academic Press, London. 1968.

2. IBM System~360 operating system, ,supervisor
a~*d data m(magement services. Form C28-6646-
2, IBM, White Plains, N. Y., 1968.

3. DENNIS, J. B.; AND VAN HOnN, E. C. "Pro-
gramming semantics for multiprogrammed
computations." Comm. ACM 9, 3 (March
1966), 143-155.
HAVENDEa. J. W. "Avoiding deadlock in
nnllti-tasking systems." IBM Systems Journal
2 (1968), 74-84.
BRAUOE, E. J. "An algorithm for the detec-
tion of system deadlocks." IBM Technical
Report: TROO. 791, IBM Data Systems Divi-
sion, Poughkeepsie, N. Y., 1961.

6. COLLIER, W. W. "System deadlocks." IBM
Technical Report TR-00. 1756, IBM Systems
Development Division, Poughkeepsie, N.Y.,
1968.

7. REITER. A. "A resource-allocation scheme for
multi-user on-line operation of a small com-
puter." Proc. AFIPS SJCC, Vol. 30, pp. 1-7.
AFIPS Press. Montvale, N. J., 1967.

8. MURPHY, J. E. "Resource allocation with in-

terlock detection in a multi-task system."
Proc. AFIPS FJCC, Vol. 33. Pt. 2, pp. 1169-
1176. AFIPS Press, Montvale, N. J., 1968.

9. MERIKALLIO. 1~. A.; AND HOLLAND, F. C.
"Sinnllation design of a multi-processing sys-
tem." Proc. AFIPS FJCC, Vol. 33, Pt. 2, pp.
1399-1410. AFIPS Press, Montvale, N. J., 1968.

10. SHOSHANI, i . ; AND COFFMAN, E .G . "Sequenc-
ing tasks in multi-process, multiple resource
systems lo avoid deadlocks." In Proc. l l th A~-
nail Symposium on Switching a~d Automata
Theory, Oct. 1970. pp. 225-233.

11. HAREn.~IANN, A. N. "Prevention of system
deadlocks." Comm. ACM 12, 7 (July 1969),
373-377. 385.

12. NEEDHA.~I, R. M.; AND HARTLEY. D.F. "Theory
and practice in operating system design."
Proc. 2nd ACM Symposium o~ Operating
Sy,~'tems Principles, pp. 8-12. Brandon/Systcms
Press. Princeton, N.J., 1969.

13. SHOSHANL A.; AND BERNSTEIN, A. J. "Syn-
chronization in a parallel-accessed data base."
Comm. ACM 12, 11 (Nov. 1969), 604-607
[Also GE Report No. 69-C-138].

14. SHOSHA.XL A.; AND COFFMAN. E. G. "Preven-
tion, detection, and recovery from system dead-
locks." In Proc. ~th Annual Princeton Conj. on
.In]ormatioa Sciences alul Sgstems, March
1970. (See also Computer Science Lab. Tech-
nical Report No. 80, Department of Electrical
Engineering. Princeton University, 1969.)

15. DIJKSTaA, E .W. "The structure of the THE-
multiprogramming system." Comm. ACM 11,
5 (May 1968), 341-346.

16. HOLT, RICHARD C. "On deadlock in compuler
systems." (PhD Dissertation) Department of
Computer Science. Cornell University, Ithaca,
N.Y., Jan. 1971.

17. RUSSELL, R.D. "A model of de'tdlock-free re-
source allocation--preliminary version." Memo
CGTM ~93. Department of Computer Science,
Stanford University, Stanford, Calif., June 1970.

18. HEBALKAR, PRAKASH. "Deadlock-free resource
sharing in asynchronous systems." (PhD Dis-
sertation) Electrical Engineering DepartmenL
MIT. Cambridge, Mass., Sept. 1970.

Computing Surveys, Vol. 3, No. 2, June 1971

