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1 INTRODUCTION 

One of the objectives of recent developments 
in operating systems--incorporat ing multi- 
programming, multiproeessing, e tc . --has 
been to improve the utilization of system 
resources (and hence reduce the cost to 
users) by distributing them among many 
concurrently executing tasks. In any operat- 
ing system of this type the problem of dead- 
10ek must be considered. Requests by sepa- 
rate tasks for resources may possibly be 
granted in such a sequence that  a group of 
two or more tasks is unable to proceed--  
each task monopolizing resources and wait- 
ing for the release of resources currently 
held by others in that  group. As a somewhat 
simplified example, suppose we have a task 
T1 that has just produced a request for a 
file on disk, and that  T1 must suspend 
operation until the disk becomes available. 
Suppose another task Te has control of the 
(single) disk channel but that  it is still wait- 
ing for T1 to complete the updating of a 
(shared) file that  contains information re- 
quired by T=,. In order for work to proceed, 
the disk channel must be given over to T1. 

But if we assmne that  T2 is in the middle 
of some file on disk, then, because of hard- 
ware or software limitations, a preemption 
of the disk from T2 can be effectively tanta-  
mount to a sacrifice in the processing al- 
ready aeeolnplished by T2. Under these 
circumstances, if T1 and T~ have no (tem- 
porary) alternative to waiting, they will be 
deadlocked and never able to proceed. 

As shown by this example, deadlocks, or 
"deadly embraees":as E. W. Dijkstra  has 
called them, can arise even though no single 
task requires more than the total resources 
available in the system. Moreover, dead- 
locks can arise whether the allocation of re- 
sources is the responsibility of the operating 
system (as is normally the ease) or of the 
programs themselves. 

The example also illustrates that  the term 
"resource," in the context of deadlocks, can 
apply not only to devices (tape and disk 
drives, channels, card readers, etc.), and 
processors and storage media (core store, 
drums, disks, tapes),  but to programs, sub- 
routines, and data (tables, files, etc.). Many  
of these permit only exclusive use by one 
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task at a time, but some (for example, read- 
only programs) may  be shared by more than 
one task. The mutual  exclusion of several 
tasks using the same resource may  be 
achieved by allocating the use of that  re- 
source to only one task,  or, if access to the 
resource is not directly under the control of 
the operating system, by the use of the 
primitive P and V operations introduced 
by Di jks t ra  [1]. The facilities for queueing 
requests from separate tasks for a serially 
reusable resource provided in OS/360 by the 
ENQ and D E Q  macros [2] are examples of 
this lat ter  approach,  as are the LOCK and 
U N L K  macro instructions suggested by 
Dennis and Van Horn [3]. 

Another aspect of these various types of 
resource is the possibility of preemption: 
if a resource has been allocated by the sys- 
tem to a task,  it may  be possible (at some 
cost) to seize the resource from that  task 
(which is then suspended) and preserve the 
current state both of the task and of its use 
of tha t  resource. Thus,  if the resource in 
question is a CPU, the information that 
must be preserved consists of the contents 
of CPU registers and the current instruction 
counter (or "program status word") .  The 
cost of preemption is low in this case; how- 
ever, for storage media like magnetic tape, 
the cost may  be much higher. The cost may 
have to be regarded as effectively infinite in 
those cases where preemption of the given 
resource must involve the loss of "progress" 
of one or more tasks (as in the deadlock ex- 
ample above).  We should emphasize that 
this type of resource may  be inherently non- 
preemptible or it may  simply be that  the 
operating system is not designed to preempt 
this type of resource. 

I t  should also be noted tha t  users of the 
system may  make requests for resources 
either implicitly (e.g., by defining the data 
sets to be used for a given job in OS/360) 
or explicitly during the execution of a pro- 
gram. In some cases, a request for one re- 
source will imply a further request for other 
resources: for example, an initial request for 
access to the information contained in a 
random-access file may  lead to a request for 
main storage to be allocated for input and 
output buffers. 
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FIG. 1. Traffic deadlock. 

V-I 

V-1 

e l  - -  

Since the deadlock problem is a logical 
one it can arise in different contexts, pro- 
vided that  tasks and resources are in- 
terpreted properly. For example, consider 
the situation of traffic flow along the edges 
of a square as shown in Figure 1. The small 
boxes represent cars, and the arrows the 
direction in which they want to move. Since 
there are four cars blocking the traffic at 
each corner we have a traffic deadlock. In 
this case we can think of the space occupied 
by a car as a resource for which other cars 
are competing. Cars represent tasks that 
request the next resource (space) before 
they can release the current resource (space 
they currently occupy). This is a simple ex- 
ample of deadlock problems that  can appear 

in traffic control. Many  other examples arise 
in production management and control, 
where machines, tools, people, input infer- 
mation, etc., can be considered as resources 
needed for the execution of some task. 

The deadlock problem becomes more com- 
plex when a system has different resource 
types and, in general, more than one re- 
source of the same type. In this case re- 
sources of the same type are not labeled 
differently. When a request is made for a 
number of resources of a particular type, 
any resources of that  type will do. Thus, 
the case of only one resource of each type 
is a special case of the above. Examples of 
many resources of the same type are mere- 
ory pages (i.e., units of storage allocation), 
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disk drives (if there is more than one in a 
system),  processors in a multiprocessor sys- 
tem, etc. 

The remainder  of this paper  is organized 
as follows. In  the next section we summarize 
the conditions necessary for the existence of 
deadlocks and present two graphical meth-  
ods for representing deadlocks. In sections 
3-5 the t reatment  of deadlocks is classified 
according to the assumption of whether ad- 
vance information about future resource re- 
quirements of tasks is available. For the 
ease when no such information is available,  
we consider in section 3 the design of sys- 
tems in which the possibility of deadlocks 
occurring is prevented from the s tar t  by re- 
moving one or more of the necessary condi- 
tions. We then discuss in section 4 how a 
state of deadlock may  be detected, and how 
recovery can be carried out, preferably at  
the least cost to the users of the system. I f  
advance estimates of the resources required 
by each job can be obtained, techniques are 
available for avoiding deadlock, and we dis- 
cuss their cost and effectiveness in section 5. 
Finally,  we a t tempt  some conclusions about 
the relative merits of these various ap- 
proaches to the problem of deadlock. 

2 CHARACTERIZATIONS OF DEADLOCKS 

In order to illustrate the conditions under 
which deadlocks can occur, we abs t rac t  the 
previous example and consider two tasks 
T~ and Te, each requiring the exclusive use 
of two different resources R1 and Re (not 
necessarily together).  We can represent the 
combined progress of these tasks in the 
following way (due to Di jks t ra ) .  For  each 
task the number of instructions executed 
subsequent to some selected initial t ime is 
used as a measure of its progress, and a pair 
of such values defines a point in a two- 
dimensional "progress space," as shown in 
Figure 2. The joint progress of T1 and Te is 
then represented by a sequence of discrete 
points in this space; sub-sequences in which 
only one coordinate increases correspond to 
t ime intervals in which one task  is in sole 
control of the CPU, while simultaneous in- 
creases in both coordinates can only occur 

in a multiple processor system. I t  is clear 
that  such a " t ra jec tory"  can never result in 
a decrease in either coordinate--progress 
(i.e., the execution of instructions) is irre- 
versible. 

The intervals during which tasks T1 and 
Te require resources R1 and R2 are shown 
in Figure 2, as are those areas representing 
simultaneous use of a resource by both 
tasks. Since we have assumed tha t  each task 
requires exclusive control of any resources, 
these areas cannot be entered by the trajec- 
tory representing their progress. 

Given the sequence of resource usage by 
the two tasks shown in Figure 2, it is clear 
that  if the t ra jectory is allowed to enter the 
region D, then a state of deadlock is inevita- 
b l e - T 1  holds resource R1, T2 holds re- 
source R2, and the subsequent requests from 
each task for its second resource must  be 
denied. Other tasks in the system may  be 
able to continue if they do not require these 
resources, but the overall performance of the 
system will be degraded by the unavaila- 
bility of R1 and R2. 

This deadlock situation has arisen only 
because all of the following general condi- 
tions were operative:  
1) Tasks  claim exclusive control of the re- 

sources they require ("mutual  exclu- 
sion" condition). 

2) Tasks  hold resources already allocated 
to them while waiting for additional re- 
sources ("wait  for" condition). 

3) Resources cannot be forcibly removed 
from the tasks holding them until the 
resources are used to completion ("no 
preemption" condition). 

4) A circular chain of tasks exists, such 
that  each task holds one or more re- 
sources that  are being requested by the 
next task in the chain ("circular wait" 
condition). 

The existence of these conditions effectively 
defines a state of deadlock. 

In the previous example these conditions 
were indeed in effect, and a circular wait 
existed, since T~ was waiting for T~ to re- 
lease Re, while T~ was waiting for T1 to re- 
lease Ri. 

In terms of these necessary conditions it is 
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FIG. 2. Joint progress of tasks T~, 7'2. 

interesting to examine again the example of 
traffic deadlocks in Figure 1. In this case 
there is only one resource of each type, since 
spaces occupied by ears are all distinguisha- 
ble from each other. The "mutual  exclusion" 
condition obviously holds since a space can- 
not I)e shared by two or more ears. The 
"wait for" condition exists, since a ear can- 
not release the current space until it gets 
the next space. The "no preemption" condi- 
tion clearly holds, assuming that  ears are 
not removable by an outside agent. Finally,  
circuits in the state graph are possible be- 
cause of the direction of flow around the 
square. 

Deadlocks can be expressed more pre- 
cisely in terms of graphs. Suppose we have 
a set of tasks { T], T:, • •. ,  T,  } in some arbi- 
t ra ry  state of execution; let {R1, R2, " " ,  
R,, } be a set of distinct resources in use by 
these tasks (i.e., there is only one resource 
of each type) .  We define a directed graph 
(to be called a state graph) whose nodes 
correspond to the resources {R j} and whose 
arcs are defined as follows. If,  at the time in- 
stant  to which the graph applies, some task T 
is allocated (i.e., possesses) resource Rj while 
requesting R~., then the graph contains an 
arc from node R / t o  node R~.. An example is 
shown in Figure 3 for m = 3. As can be 

Comput ing Surveys. Vol. 3, No. 2, June 1971 



72 • E. G. Coffman, Jr., M.  J. Elphick, 

C 
.FIG. 3. E x a m p l e  o f  a s t a t e  g r a p h .  

and A.  Shosha~d 

necessary, but no longer a sufficient, condi- 
tion for the existence of deadlocks. However, 
this result may  still be meaningful in con- 
sidering the prevention of deadlocks. If a 
restriction is imposed on the behavior 0f 
tasks in such a way tha t  circuits in the re- 
quest graph cannot arise, then deadlocks will 
never occur (such a restriction is discussed 
in section 3). 

Two recent studies [16, 18] of deadlock 
l)roblelns have appeared in which different 
variat ions of graphical representations are 
investigated. Results based on graph struc- 
ture that  are similar to but more extensive 
than those discussed here under the head- 
ings of detection and avoidance are pre- 
sented for these graphs. 

seen, there exists a task possessing R1 and 
requesting R2, a task possessing Ra and re- 
questing R, and R2. 

I t  has been shown [4, 6, 8, 14] tha t  a cir- 
cuit (directed loop) in the request graph is 
a necessary and sufficient condition for a 
deadlock, assuming the first three conditions 
given above are operative. As an example, 
suppose an are from R~ to R:, is added to the 
graph in Figure 3. Clearly, there must exist 
at least three deadlocked tasks;  each of the 
R, is requested by one task but allocated to 
another so that  none of the R~ can be effec- 
t ively used. 

The state graph described above is appro- 
priate only for systems in which there is 
only one resource of a type. For  the general 
ease of more than one resource of the same 
type, a state graph was defined [14] as fol- 
lows: resources are part i t ioned into types 
r~, r2, "" ", r, with the number  of resources 
of each type given by w~, w2, • • ", w,, respec- 
tively. The resources of a given type  are 
identical and indistinguishable, and it is as- 
sumed tha t  requests for a given resource 
type r~ can be for any number  less than or 
equal to w,. State graphs are defined in a 
way similar to tha t  given earlier. The nodes 
now become the resource types {r~}. There 
will be an are from r~ to rj if and only if 
there exists at least one task  requesting one 
or more resources of type rj and possessing 
one or more resources of type r~. With this 
definition a circuit in the state graph is a 

3 PREVENTION OF DEADLOCK 

I f  we undertake the design of a system in 
which the possibility of deadlock is to be 
excluded a priori, then we must ensure that 
at every point in t ime at least one of the 
necessary conditions is not satisfied. This 
implies certain constraints on the way in 
which requests for resources may  be made. 

The first of the four necessary conditions 
given in section 2 cannot be denied for all 
resources. For example, the sharing of a 
file by more than one task  can only be per- 
mitted when neither task is updating the 
contents of that  file. 

The following approaches, suggested by 
Havender  [4], in effect deny each of the 
three remaining conditions in turn. 
a) Each task nmst request all its required 

resources at once and cannot proceed 
until all have been granted ("wait-for" 
condition denied). 

bl I f  a task holding certain resources is de- 
nied a further request, that  task must 
release its original resources and, if 
necessary, request them again together 
with the additional resources ("no pre- 
emption" condition denied). 

e) The imposition of a linear ordering of 
resource types on all tasks;  i.e., if a task 
has been allocated resources of type r~ 
it may  subsequently request only those 
resources of types following r~ in the or- 
dering. In  the ease of only one resource 
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of a type, the linear ordering is of re- 
sources. ( I t  can be shown that  under this 
condition the state graph cannot have 
circuits, and therefore circular wait  con- 
ditions are prevented.} 

When each of these strategies is only par-  
tially applicable it is dea r ly  possible to use 
a combination of them in a given system, 
and also to implement them either by em- 
bodying the constraints in the design of the 
system (so that  no task can violate the con- 
straints), or by insisting that  all application 
programs as well as system components fol- 
10w certain conventions in requesting re- 
sources. 

Approach (a) may  be costly since some 
of the resources allocated to a task may  
remain unused for long periods. Approach 
(bl is convenient only when applied to pre- 
eruptible resources whose state can be easily 
saved and restored later, as is the ease with 
a processor. Approach (c) may  be feasible 
and is used in the ease discussed by Haven-  
der [4], where he describes the way in which 
the deadlock problem was tackled in the 
design of that  eomI)onent of the OS/360 
(MVT} system responsible for initiating 
job-steps. Here certain possibilities of dead- 
10ek {between separate  job-steps, at least) 
have been prevented by acquiring storage, 
devices, and data  sets for each job-step in a 
fixed order. However,  the possibility of 
deadlock between several tasks initiated by 
one or more job-steps has not been pre- 
vented completely, since the ENQ and D E Q  
facilities can be used (or misused) to create 
a "circular wait ." 

Other approaches to this problem are dis- 
cussed in the report by Collier [5], and in 
the papers by lIleiter [6], Murphy  [7], and 
~.Ierikallio and Holland [8]. 

4 DEADLOCK DETECTION AND RECOVERY 

It was discussed in section 2 that  in the ease 
of one resource of a type,  a deadlock exists 
at time t if and only if there exists a circuit 
in the state graph at t ime t. Thus, a dead- 
lock detection mechanism in this ease con- 
sists of a routine for maintaining a state 
graph each time resources are requested, 
acquired, or released by tasks,  and a routine 
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that  examines the state graph to determine 
whether a circuit exists. 

For the ease of more than one resource of 
a type, a detection algorithm cannot be sin> 
ilarly based on the state graph since, in this 
ease, a circuit in the state graph is only a 
necessary condition for a deadlock; a more 
elaborate state description mechanism is re- 
quired. 

Let rl, r2, • • ", r, represent resource types 
and Wl, w.,, . . .  u', represent the number of 
resources of each type as in section 2. At 
an arb i t ra ry  time instant t let p~j denote the 
number  of resources of type ra allocated to 
(possessed by) T~ and let q~j denote the 
number of resources of type rj requested by 
T, in excess of those already allocated to 
T~. Define the al loca t ion  and reques t  ma- 
trices P = ((pu) ~ and Q = ((q~j~) and let 
P~ and Q~ denote the row vectors giving the 
resources allocated to T~ and requested by 
T~, respectively. Let 1" = Ivy, v2, " " ,  v,) 
be an avai lab le  resources vector whose ith 
element tv~ ~< w0 indicates the number of 
resources of type r, that  are currently avail-  
able. Note that  

L'j = W i - -  ~ p,-j. 
i=l  

Tha t  is, the sum of the resources allocated 
and those available of type '5 must be equal 
to the total  number  of that  type in the sys- 
tem. In the following, 0 will indicate a (row) 
vector each of whose s elements is 0. Also, 
x -~ y,  where x and y are vectors, is defined 
to hold if and only if it holds for each pair  
of corresponding elements from x and y. 

The algorithm below, which is presented 
in [14], is designed to reveal a deadlock by 
simply accounting for all possibilities of se- 
quencing the tasks that  remain to be com- 
pleted. Suppose at t ime t the state of the 
system is available in the matrices P and Q, 
and suppose V is also given. We have the 
following algorithm for determining the ex- 
istence of a deadlock at t ime t. 

A l g o r i t h m  A 

1t Initialize IV +- l ' ( t l .  M a r k  all rows for 
which P i t t l  = 0. (All rows arc assumed 
to be "umnarked"  at the outset.} 

2) Search for all unmarked row, say the ith, 
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such that  Q~(t) ~< W.  I f  one is found, 
go to Step 3; otherwise terminate  the 
algorithm. 

3) Set W ~-- W + P~(t) ,  mark  the ith row, 
and return to Step 2. 

I t  is not difficult to ver i fy tha t  a deadlock 
exists if and only if there are umnarked rows 
at the terminat ion of the algorithm. More-  
over, the set of unmarked rows corresponds 
precisely to the set of deadlocked tasks.  

The running time of this algorithm is pro- 
portional to the square of the number  of 
tasks. I t  is shown in [16] (see also [17]) 
that  by ordering the resource requests by 
size and associating with each task a count 
of the number of types of resources being 
requested, a detection algorithm can be de- 
vised which has a running t ime tha t  varies 
linearly with the number  of tasks. More- 
over, the additional cost of ordering requests 
and maintaining counts is offset by the fact 
tha t  this method also facilitates finding 
blocked tasks to act ivate  when other t a s k s  
release resources. A number  of simplifica- 
tions are possible in important  special cases 
(e.g., a single resource of each type) ,  and 
these are also discussed in [16]. 

Given a detection mechanism, perhaps 
the simplest approach to recovery from a 
deadlock situation would involve aborting 
each of the deadlocked tasks,  or, less drasti-  
cally, aborting them in some sequence until 
sufficient resources t)ecome released to re- 
move deadlocks in the set of remaining 
tasks.  Obviously, we could also design an 
algorithm tha t  searches for a minimum- 
sized set of tasks which, if aborted, would 
remove the deadlocks. 

A more general technique [14] has been 
devised that  assigns a fixed cost c~ to the 
removal (forced preemption) of a resource 
of type r~ from a deadlocked task tha t  is 
being aborted. Thus, the cost of removing 
resources from a deadlocked task T~ is: 

• ci.g(q,] -- vj) w h e r e g ( x )  = 
X; X > 0 

~=~ 0; x ~< 0 

An algorithm has been designed tha t  finds 
a subset of resources tha t  would incur the 
minimum cost if preempted. The algorithm 
finds a minimum cost solution by an efficient 

tree-search procedure that  can be charaete 
ized as a branch-and-bound technique. (A 
gori thm A is used to isolate new s e t s  
deadlocked tasks in the sequence of tria 
removals made by the algorithm.) 

Note that  by using this deteetion-reeo' 
cry mechanism the notion of deadlock e~ 
be extended to include resource types whi~ 
are actually preemptible but which ha, 
varying preemption costs. In  other word 
with this extension, deadlocks do not neee 
sarily involve tasks tha t  nmst be aborte~ 
rather,  it may  only be necessary to remo~ 
certain resources from tasks tha t  incur su( 
costs as supervisor overhead, swapping, et~ 
but not a loss of input, output,  or the prol 
ress that  has been made in a comlmtatio 
Clearly, forced resource preemptions invol, 
ing the lat ter  losses will be assigned hie 
costs so tha t  the recovery algorithm w! 
avoid them. 

AVOIDING DEADLOCKS USING 
INFORMATION ON RESOURCE 
REQUIREMENTS 

To avoid deadlocks in a multiprogrammir 
system in which the necessary conditions fl 
deadlocks can exist, it is usually necessary t 
have some advance information on the r~ 
source usage of tasks. A number  of interes~ 
ing models can be envisioned, each diffferil: 
in the amount  of information assume 
available. A comprehensive theoretical stud 
of a number  of task models can be found i 
[10]. In this section we shall briefly examir 
two such models: the first will be the m0~ 
basic model (full information assumed) an 
the second will be the more practically or: 
ented model of Habe rmann  [11]. 

In the basic model a task is assumed t 
consist of a sequence of task-s teps  durin 
each of which the resource usage of the tas 
remains constant. The execution of a tasl~ 
step first involves the acquisition of tho~ 
resources needed by the given task-step b~ 
not passed on by the previous task-stel 
Next  follows a period of execution durin 
which the resource requirements do n( 
change. Finally,  at the completion of exee~ 
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tion, all those resources not needed by the 
subsequent task-step are released and re- 
turned to a pool of available resources. 

Before describing how deadlocks are 
avoided with the task-step model we shall 
find it convenient to introduce the notion of 
saJe states. As indicated in the previous sec- 
tion, the state of the system as it relates to 
the requesting and allocation of resources at 
time t is reflected in the two matrices Q (t) 
and P ( t ) ,  respectively. For  simplicity let us 
denote this resource-state by S ( t ) .  We shall 
say that S ( t )  is s a f e  when, using the cur- 
rently available resources and those which 
will be returned by currently executing task- 
steps, it is possible to find a valid sequence 
of the uninitiated task-steps in the currently 
initiated but incomplete tasks such that  all 
tasks in the system can be run to comple- 
tion. A sequence of this kind will be valid if 
the implied sequence of resource requests is 
such that at the time each request is made 
there are sufficient available resources to 
satisfy it. 

As an illustration of this definition, con- 
sider Figure 2 in which the region D corre- 
sponds to points in the joint progress of T~ 
and T: from which a deadlock is inevitable: 
As we can see, all points in the region D 
correspond to unsafe states and all points 
outside this region (and the shaded region) 
correspond to safe states. 

The following remarks should be made 
about the definition of a safe state. First, we 
note that the initial state in which no re- 
s0urecs are yet  allocated and all are avail- 
able is always a safe state. Hence, there al- 
ways exists an initial sequence of all task- 
steps according to which all tasks are com- 
pleted. In particular, we can always execute 
the tasks in strict serial sequence if neces- 
sary. In part  it follows from this observation 
that if there is a way to complete the cur- 
rently executing tasks without getting into 
a deadlock, we can clearly complete the re- 
maining uninitiated tasks (again, executing 
them in serial order if necessary). Finally, 
with an appropriate formalization of the 
ideas in this and the previous section, it has 
been shown that  the ability to avoid dead- 
locks subsequent to time t can be guaran- 
teed if and only if S ( t )  is a safe state [10]. 
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We are now in a position to state precisely 
the problem confronted by a supervisor de- 
signed to avoid deadlocks. Suppose the sys- 
tem is in a safe state S(t)  and there exists a 
set of outstanding resource requests given 
by the contents of Q ( t ) .  The supervisor 
must be able to determine whether any 
given one of these requests (if any) is safe 
in the sense that  it is less than or equal to 
the currently available resources and would 
leave the system in a safe state if granted. 
Since, in general, there can be more than one 
safe request, some other scheduling criterion 
has to be invoked to determine which safe 
request is to be granted. Common criteria 
include first-in-first-out, shortest (or small- 
est) job first, etc. I t  is worth emphasizing 
perhaps that  these other scheduling criteria 
lnust be applied to the set consisting only of 
safe requests. Otherwise, if they are applied 
to all requests, a request that is not safe 
1nay be selected, thus artificially creating a 
deadlock arising from conflicting scheduling 
policies. 

The problem of determining whether a 
state S ( t )  is safe following the granting of 
a request generally requires a procedure to 
search for an appropriate sequence of task- 
steps. As ilnplied earlier, the procedure be- 
gins by assuming that  the currently avail- 
able resources are augmented by those allo- 
cated to currently executing task-steps. 
This is equivalent to assuming that  the first 
task-step in the sequence sought is not be- 
gun until all currently executing task-steps 
have been allowed to complete. The search 
timc can be improved by the following re- 
sult [10]. 

At some stage in the search procedure 
let x = pIP~ " " • p~. be an initial (trial) sub- 
sequence of task-steps. Assuming that  this 
sub-sequence were realized, suppose that  
the number of resources available following 
any given task-step is, for each type, greater 
than or equal to the number of resources 
available just following the previous task- 
step. Under this condition it has been shown 
that if the state S ( t )  being tested is in fact 
safe, then there must exist a valid sequence 
of all uninitiated task-steps in the executing 
tasks that  has x as a prefix (i.e., pap2 • " • Pr 

will be the initial task-steps in the se- 
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quence). Thus, in organizing a conventional 
tree-search for appropriate  sequences it is 
never necessary to back-up beyond the last 
element of an initial sub-sequence having a 
eorresl)onding sequence of available re- 
source vectors with the above property.  

Frmn practical  considerations it is likely 
to be necessary to assume tha t  less is known 
about the resource usage of tasks than is 
assumed in the task-s tep model. We shall 
now briefly discuss Hat)ermann's  model [ l l ]  
in which we deal with entire tasks rather  
than task-steps,  and in which it is assumed 
that  only the maxinmm number  of resources 
required by each task is known. In part icu- 
lar, for each task T~ we have a resource vec- 
tor that  gives the maximum number  of re- 
sources of each type that  will 1)e required at 
any time during execution of T~. 

A state S(t) will be safe in this model if 
and only if there exists some sequence ac- 
cording to which the currently executing 
(i.e., initiated but incomplete) tasks can 
complete, assumiT~g they will still need their 
maximum resource requirements at some 
time, and assuming tha t  we have only the 
currently available resources at the begin- 
ning of the sequence. The search for se- 
quences of the executing tasks can be sig- 
nificantly more efficient than the search de- 
scribed with the task-s tep model, even after  
the fact that  there are generally fewer tasks 
than task-steps is taken into account. The 
reason for this is as follows. Since each task 
will return as many  resources as it requests, 
the sequence of available resource vectors 
corresponding to a sequence of the executing 
tasks will always have the monotonically 
non-decreasing property mentioned earlier. 
Thus, we can show that  in the search proce- 
dure it is never necessary to back-up to t ry  
new initial sub-sequences; and it follows 
tha t  the search time is proportional to the 
square of the number  of executing tasks. 

A further technique mentioned by Haber -  
mann for shortening the search time is de- 
scribed as follows. Suppose a request has 
just been made by task T ,  the system is in 
a safe state, and we wish to determine if the 
request is safe. I f  at any point in developing 
a trial sequence we find that  the correspond- 
ing available resources are sufficient to eom- 

plete T~, we may  terminate  the search with 
the decision that  the request is safe. The 
reason is tha t  if T,, the source of the request, 
can complete and release all the resources it 
controls, all other tasks can certainly be 
completed, since the state previous to the 
request was safe and they could therefore 
have been completed before the request was 
l n a ( t e .  ~ 

In summary,  the applicabil i ty of the 
basic task-s tep model means tha t  we can 
determine precisely when deadloeks are un- 
avoidable on granting a request. Although 
with Habermann ' s  model false threats of 
deadlocks may  degrade resource utilization, 
it has the significant advantages  of requir- 
ing less information about task  behavior 
and a more efficient algorithm for testing 
whether states are safe. For  models that 
moderate the disadvantages (and the ad- 
vantages)  of both the above models see [10]. 

Heba lka r  [18] uses a graph model to rep- 
resent processes of more general structure 
than the sequence of task-steps.  In his 
model, nodes represent transitions of a com- 
putat ion and ares represent demand vectors 
of resources. Thus, a computat ion can split 
into parallel subeomputations,  and subeom- 
putations can merge. A cut-set of a graph 
represents a state of the system. This model 
has been shown to facilitate the representa- 
tion of safe states as well as deadlock states. 
Algorithms designed to preclude deadlocks 
are presented, and are based on the advance 
information in the graph model. 

6 CONCLUSIONS 

We have described the various strategies 
that  can be used to deal with the problem of 
deadlock, under the headings of prevention, 
detection (and recovery),  and avoidance. 
Algorithms for implementing the last two 
policies have been outlined briefly. 

Where possible, prevention of the possi- 
bility of deadlock is better  than cure, since 
in most current systems deadlock is an ex- 

* For techniques leading to search times that 
vary linearly with the number of tasks and for 
applications to important special eases, see [161. 
Such techniques arise from tile more efficient de- 
leetion algorithms mentioned in section 4. 
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eeptional occurrence, and in many cases it 
involves only a limited set of resources. 
Once a deadlock situation has been recog- 
nized as such, the problem can often be re- 
moved by suitable changes to that  part  of 
the system (for example, permitting pre- 
emption of a resource where this was not 
thought necessary before). 

If this approach is not feasible--perhaps 
because the constraints it would impose on 
jobs are unacceptable-- then detection or 
avoidance may be considered. However, it 
is not possible at present to predict accu- 
rately either the costs or the benefits that  
can be obtained by use of the techniques 
described. Good measures of the running 
time of the various search algorithms and of 
the resource utilization achieved by systems 
using them are not available. 

Some refinements of the models presented 
here for the detection, recovery, and avoid- 
ance algorithms would be desirable in prac- 
tice. The recovery model, for example, 
should use costs (for the preemption of re- 
sources from a task) that  are functions of 
the time for which that  task has been in 
progress, and perhaps of its priority. The se- 
lection of an appropriate avoidance model 
involves a balance between the efficiency of 
the algorithm (for determining whether 
granting a request is safe), the level of re- 
source utilization possible, and the cost to 
the user in providing estimates of potential 
resource requirements. 

In avoiding deadlock, an alternative to 
the search algorithms presented may be 
feasible when the number of safe sequences 
is relatively small (and the system may be 
operating inefficiently, having to deny most 
requests). This alternative approach is to 
store the current set of safe sequences, up- 
dating them as necessary, and to inspect the 
first element of each sequence to decide 
whether a request can be granted. How- 
ever, as the number of safe sequences in- 
creases, the storage and updating problems 
will make this approach less efficient, and 
some scheme for switching from one method 
to the other might be necessary. 

In practice, even though complete dead- 
lock is avoided, it may be more important,  
for the sake of efficiency, to prevent the sys- 
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tern from entering a state of "near dead- 
lock," in which progress can be made only 
by granting requests from one task at a 
time. Again, when jobs with heavy resource 
requirements are discriminated against, the 
situation in which such a job is allowed to 
acquire control of several valuable re- 
sources, but is subjected to long waits as a 
result of further requests, must be avoided. 
The models described above might be 
adapted for this purpose by defining a cost 
for a given sequence of resource allocations 
(which would be high when a valuable re- 
source is unavailable for a long sequence of 
task-steps);  a search for a safe sequence 
having a low cost might be feasible. 

On the other hand, one could focus on re- 
ducing supervisor overhead rather than im- 
proving resource utilization by adopting the 
following approach. Assuming advance re- 
source-usage information, as in Haber-  
mann's model, for example, an operating 
system could be designed that  never multi- 
programs two or more tasks whose resource 
requirements are such that  circular wait 
conditions can arise. Tha t  is, deadlocks are 
avoided by inspection of resource require- 
ments only at the beginning of task execu- 
tions rather than each time a resource 
request is made. This approach clearly sac- 
rifices potential losses in resource utilization 
for savings in supervisor execution times. 

Needham and Har t ley  [12] have exam- 
ined system designs partially involving this 
approach but have not at tempted a complete 
removal of the possibility of deadlock (or 
"knotting," as the authors refer to it). In 
the interest of system operating~efficiency, 
deadlocks (and the resulting "disasters") 
are allowed to occur, but measures are de- 
scribed that  ensure that  such events are 
kept at an acceptably low frequency. 

In conclusion, it must be agreed that  the 
problem of deadlock has not been of major 
(or at least continuing) importance in most 
current systems, mainly because it has 
amounted to little more than an isolated 
debugging problem. However, for future 
systems sharing an increasingly costly set 
of services and resources among an increas- 
ing number of individual users, these prob- 
lems are likely to become more pressing. 
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T h e y  will  be even more i m p o r t a n t  for those 
sys tems t h a t  p rov ide  a common set of large 
files (or da t a  bases) ava i l ab le  to the m a n y  
users of the sys tem for both r ead -on ly  access 
and updat ing .  The  typ ica l  resource usage 
here will  be to ob ta in  access to a small  sub- 
set of records,  f rom which o ther  tasks  mus t  
be excluded unt i l  the  t ask  at  hand  releases 
the subset. Some techniques  for organiz ing  
this t ype  of sys tem to avoid  dead lock  are 
discussed by Shoshani  and Berns te in  [13]. 

"" . . 4 .  

5. 
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