MapReduce and Distributed Data Analysis

Sergei Vassilvitskii
Google Research
Dealing With Massive Data

<table>
<thead>
<tr>
<th>Memory</th>
<th>Sublinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial</td>
<td>Sketches</td>
</tr>
<tr>
<td>RAM</td>
<td>External Memory</td>
</tr>
<tr>
<td></td>
<td>Property Testing</td>
</tr>
</tbody>
</table>
Dealing With Massive Data

<table>
<thead>
<tr>
<th>Processors</th>
<th>Memory</th>
<th>Sublinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Polynomial</td>
<td>Sketches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External Memory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Property Testing</td>
</tr>
<tr>
<td>Multiple</td>
<td>Sublinear</td>
<td>PRAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dealing With Massive Data

<table>
<thead>
<tr>
<th>Processors</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Polynomial</td>
</tr>
<tr>
<td></td>
<td>RAM</td>
</tr>
<tr>
<td>Multiple</td>
<td>Sublinear</td>
</tr>
<tr>
<td></td>
<td>Sketches</td>
</tr>
<tr>
<td></td>
<td>External Memory</td>
</tr>
<tr>
<td></td>
<td>Property Testing</td>
</tr>
<tr>
<td></td>
<td>MapReduce</td>
</tr>
<tr>
<td></td>
<td>Distributed Sketches</td>
</tr>
</tbody>
</table>
What about Data Streams?

<table>
<thead>
<tr>
<th>Batch</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td>Data Streams</td>
</tr>
</tbody>
</table>
What about Data Streams?

<table>
<thead>
<tr>
<th>Processors</th>
<th>Single</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch</td>
<td>RAM</td>
<td>MapReduce</td>
</tr>
<tr>
<td>Online</td>
<td>Data Streams</td>
<td>Distributed Sketches Active DHTs</td>
</tr>
</tbody>
</table>
Today’s Focus: MapReduce

Multiple Processors:
- 10s to 10,000s processors

Sublinear Memory
- A few Gb of memory/machine, even for Tb+ datasets
- Unlike PRAMs: memory is not shared

Batch Processing
- Analysis of existing data
- Extensions used for incremental updates, online algorithms
Why MapReduce?

Practice:
- Used very widely for large data analysis
- Google, Yahoo!, Amazon, Facebook, Netflix, LinkedIn, New York Times, eHarmony, ...

Is it a Fad?:
- No! (Do Fads last 10 years?)
- Many similar implementations and abstractions on top of MR: Hadoop, Pig, Hive, Flume, Pregel, ...
- Same computational model underneath

Why?
- Practice that needs theory
- Makes data locality explicit (which sometimes leads to faster sequential algorithms)!
Computation proceeds in rounds.
Each round:

- Receive Input
- Compute
- Produce output
Computation proceeds in rounds.
Each round:

- **Receive Input:** Input must fit into memory
- **Compute:** Full TM
- **Produce output:** Annotated with address of machine in next round
MR Multiple Rounds

Many Machines...and multiple rounds

Round 1:

Arbitrary communication topology (depends on the output of round 1)

Round 2:
Data Streams vs. MapReduce

Distributed Sum:
- Given a set of n numbers: $a_1, a_2, \ldots, a_n \in \mathbb{R}$, find $S = \sum_i a_i$

Stream:
- Maintain a partial sum $S_j = \sum_{i \leq j} a_i$
- update with every element

MapReduce:
- Compute $M_j = a_{jk} + a_{jk+1} + \ldots + a_{j(k+1)-1}$ for $k = \sqrt{n}$ in Round 1
- Round 2: add the \sqrt{n} partial sums.
MR Modeling [Sketch]

Distributed Sum in MR

Round 1:

Round 2:
Modeling

For an input of size n:
Modeling

For an input of size n:

Memory

- Cannot store the data in memory
- Insist on sublinear memory per machine: $n^{1-\epsilon}$ for some $\epsilon > 0$
Modeling

For an input of size n:

Memory
- Cannot store the data in memory
- Insist on sublinear memory per machine: $n^{1-\epsilon}$ for some $\epsilon > 0$

Machines
- Machines in a cluster do not share memory
- Insist on sublinear number of machines: $n^{1-\epsilon}$ for some $\epsilon > 0$
Modeling

For an input of size n:

Memory
- Cannot store the data in memory
- Insist on sublinear memory per machine: $n^{1-\epsilon}$ for some $\epsilon > 0$

Machines
- Machines in a cluster do not share memory
- Insist on sublinear number of machines: $n^{1-\epsilon}$ for some $\epsilon > 0$

Synchronization
- Computation proceeds in rounds
- Count the number of rounds
- Aim for $O(1)$ rounds
Not Modeling

Lies, Damned Lies, Statistics

- And big–O notation
- And Competitive Analysis
- And...
Not Modeling

Lies, Damned Lies, Statistics
- And big-O notation
- And Competitive Analysis
- And...

Communication:
- Very important, makes a big difference
Not Modeling

Lies, Damned Lies, Statistics
- And big-O notation
- And Competitive Analysis
- And...

Communication:
- Very important, makes a big difference
- Order of magnitude improvements due to
 - Move code to data (and not data to code)
 - Working with graphs: save graph structure locally between rounds
 - Job scheduling (same rack / different racks, etc)
Lies, Damned Lies, Statistics
- And big-O notation
- And Competitive Analysis
- And...

Communication:
- Very important, makes a big difference
- Order of magnitude improvements due to
 - Move code to data (and not data to code)
 - Working with graphs: save graph structure locally between rounds
 - Job scheduling (same rack / different racks, etc)
- Bounded by n^{2-2c} (total memory of the system) in the model
 - Minimizing communication always a goal
How Powerful is this Model?

Compared to PRAMs:
- Can (formally) simulate PRAM algorithms with MR
- In practice can use same idea without formal simulation
- One round of MR per round of PRAM: $O(\log n)$ rounds total
- Hard to break below $o(\log n)$, need new ideas
How Powerful is this Model?

Different Tradeoffs from PRAM:
- PRAM: LOTS of very simple cores, communication every round
- MR: Many full TM cores, batch communication.

Formally:
- Can simulate PRAM algorithms with MR
- In practice can use same idea without formal simulation
- One round of MR per round of PRAM: $O(\log n)$ rounds total
- Hard to break below $o(\log n)$, need new ideas!
How Powerful is this Model?

Compared to Data Streams:
- Solving different problems (batch vs. online)
- But can use similar ideas (e.g. sketching)
How Powerful is this Model?

Compared to Data Streams:
- Solving different problems (batch vs. online)
- But can use similar ideas (e.g. sketching)

Compared to BSP:
- Closest in spirit
- Do not optimize parameters in algorithm design phase
Outline

Introduction
MapReduce

MR Algorithmics
- Connected Components
- Matchings
- Greedy Algorithms

Open Problems
Find the core of the problem:
- Reduce the problem size in parallel
- Solve the smaller instance sequentially
Find the core of the problem:
- Reduce the problem size in parallel
- Solve the smaller instance sequentially

Roadmap:
- Identify redundant information
- Filter out redundancy to reduce input size
- Solve the smaller problem
- Use the solution as a seed for the larger problem
Given a graph:
Given a graph:
1. Partition (randomly)

Machine 1

Machine 2
Given a graph:

1. Partition (randomly)
2. Summarize (keep $\leq n - 1$ edges per partition)
Connected Components

Given a graph:
1. Partition (randomly)
2. Summarize (keep $\leq n - 1$ edges per partition)
3. Recombine
Connected Components

Given a graph:
1. Partition (randomly)
2. Summarize (keep $\leq n - 1$ edges per partition)
3. Recombine
4. Compute CC’s
Analysis

Given: \(k \) machines:
- Total Runtime: \(O((m/k + nk)\alpha(n)) \)
- Memory per machine: \(O(m/k + nk) \)
 - Actually, can stream through edges so \(O(n) \) suffices
- 2 Rounds total
Outline

Introduction
MapReduce

MR Algorithmics
 - Connected Components
 - Matchings
 - Greedy Algorithms

Open Problems
Finding matchings

- Given an undirected graph \(G = (V, E) \)
- Find a maximum matching
Finding matchings
- Given an undirected graph \(G = (V, E) \)
- Find a maximum matching
- Find a maximal matching
Matchings

Finding matchings
- Given an undirected graph \(G = (V, E) \)
- Find a maximum matching
- Find a maximal matching

Try random partitions:
- Find a matching on each partition
- Compute a matching on the matchings
- Does not work: may make very limited progress
Looking for redundancy

Matching:
- Could drop the edge if an endpoint already matched

Idea:
- Find a seed matching (on a sample)
- Remove all ‘dead’ edges
- Recurse on remaining edges
Given a graph:
1. Take a random sample
Algorithm

Given a graph:

1. Take a random sample
Algorithm

Given a graph:
1. Take a random sample
2. Find a maximal matching on sample
Algorithm

Given a graph:
1. Take a random sample
2. Find a maximal matching on sample
3. Look at original graph
Algorithm

Given a graph:
1. Take a random sample
2. Find a maximal matching on sample
3. Look at original graph, drop dead edges
Algorithm

Given a graph:
1. Take a random sample
2. Find a maximal matching on sample
3. Look at original graph, drop dead edges
4. Find matching on remaining edges
Key Lemma:
- Suppose the sampling rate is $p = \frac{n^{1+c}}{m}$ for some $c > 0$.
- Then with high probability the number of edges remaining after the prune step is at most:

$$\frac{2n}{p} = \frac{2m}{n^c}$$
Key Lemma:
- Suppose the sampling rate is \(p = \frac{n^{1+c}}{m} \) for some \(c > 0 \).
- Then with high probability the number of edges remaining after the prune step is at most:
 \[
 \frac{2n}{p} = \frac{2m}{n^c}
 \]

- Proof [Sketch]:
 - Suppose \(I \subseteq V \) are unmatched after prune step
 - \(I \) must be an independent set in the sampled graph
 - If \(|E[I]| > O(n/p) \) then it is an I.S. with probability at most \(e^{-n} \)
 - Union bound over all \(2^n \) sets \(I \).
Analysis

Key Lemma:
- Suppose the sampling rate is \(p = \frac{n^{1+c}}{m} \) for some \(c > 0 \).
- Then with high probability the number of edges remaining after the prune step is at most:
\[
\frac{2n}{p} = \frac{2m}{n^c}
\]

Corollaries:
- Given \(n^{1+c} \) memory, algorithm requires \(O(1) \) rounds.
- Given \(O(n \log n) \) memory, algorithm requires \(O(\frac{\log n}{\log \log n}) \) rounds.
- PRAM simulations: \(\Theta(\log n) \) rounds.
Greedy Algorithms

Max k-Cover:
- Given $U = \{u_1, u_2, \ldots, u_n\}$ and sets $S = \{S_1, S_2, \ldots, S_m\}$
- Select $S^* \subseteq S$ with $|S^*| = k$, that maximizes $\bigcup_{S \in S^*} S$

Classical Algorithm:
- Greedy. Iteratively add largest set
- Remove all of the covered elements
- Guarantees a $1 - \frac{1}{e}$ approximation to the optimal
Outline

Introduction
MapReduce

MR Algorithmics
- Connected Components
- Matchings
- Greedy Algorithms

Open Problems
Not so Greedy Algorithms

Not so Greedy Algorithm:
- Iteratively add a set within \((1 + \epsilon)\) of the largest
- Remove all of the covered elements
Not so Greedy Algorithms

Not so Greedy Algorithm:
- Iteratively add a set within \((1 + \epsilon)\) of the largest
- Remove all of the covered elements

Correctness:
- Make almost as much progress as regular greedy algorithm
- Get an \(1 - \frac{1}{e} - O(\epsilon)\) approximation
Intuition:
- Look for large sets first, then progressively look for smaller sets.
- Natural algorithm:
 • Define a threshold: \(v_i = \frac{n}{(1 + \epsilon)^i} \)
 • Stream through elements, add sets of value at least \(v_1 \)
 • Stream through elements, add sets of value at least \(v_2 \)
 • ...until completion
Streaming Algorithms

Intuition:
- Look for large sets first, then progressively look for smaller sets.
- Natural algorithm:
 - Define a threshold: \(v_i = \frac{n}{(1 + \epsilon)^i} \)
 - Stream through elements, add sets of value at least \(v_1 \)
 - Stream through elements, add sets of value at least \(v_2 \)
 - ...until completion

Analysis:
- Every time make a decision within \((1 + \epsilon)\) of OPT
- Need \(O\left(\frac{\log \max |S|}{\epsilon}\right) \) passes
Parallel Algorithms

Simulate the Streaming Algorithm

- Given a threshold, \(v_i \), find a sequence of sets each covering at least \(v_i \) elements

- Similar to maximal matching:
 - Run the streaming algorithm on a sample
 - Remove the sets whose weight falls below the threshold
 - Repeat until no sets meet the threshold
Simulate the Streaming Algorithm

- Given a threshold, v_i, find a sequence of sets each covering at least v_i elements
- Similar to maximal matching:
 - Run the streaming algorithm on a sample
 - Remove the sets whose weight falls below the threshold
 - Repeat until no sets meet the threshold

Theorem [MKVV ’12]: If each set is sampled with probability $p = km^{-\delta}$ each phase of the streaming algorithm can be simulated in $O(1/\delta)$ rounds
Sample&Prune

High-level primitive:
- Take a sample of the input
- Evaluate the function on the sample
- Prune the input
- Repeat
Sample&Prune

High-level primitive:
- Take a sample of the input
- Evaluate the function on the sample
- Prune the input
- Repeat

Much more general:
- General class of greedy algorithms
- (Sub)modular function maximization subject to set of constraints
 - matroid constraints, multiple knapsack constraints
Outline

Introduction
MapReduce
MR Algorithmics
- Connected Components
- Matchings
- Greedy Algorithms

Open Problems
Overview

MapReduce:
- Interleaves sequential and parallel computation
- Many algorithms “embarrassingly parallel” and don’t use the full power of intermediate steps.
Overview

MapReduce:
- Interleaves sequential and parallel computation
- Many algorithms “embarrassingly parallel” and don’t use the full power of intermediate steps.

What are the limits of the model:
- Can simulate PRAM algorithms. But are there bigger speedups to be had?
- No known lower bounds!
- Even a simpler model is interesting
 - e.g. assume data is partitioned and no replication as allowed
Prefix Sum:
- Given an array $A[1...n]$ compute $B[1...n]$ where $B[i] = \sum_{j \leq i} A[j]$
- Relatively simple in MR (2 rounds suffices)
Classical Questions

Prefix Sum:
- Given an array \(A[1...n] \) compute \(B[1...n] \) where \(B[i] = \sum_{j \leq i} A[j] \)
- Relatively simple in MR (2 rounds suffices)

List Ranking:
- Given a permutation as a set of pointers to the next element: \(P[i] = j \)
- Find rank of each element (number of hops to reach it from \(P[0] \))
- Easy in \(O(\log n) \) rounds (simulate PRAM algorithm)
- Can you do it faster?
A Puzzle (essentially list ranking)

I give you an undirected graph on n nodes:
 - As a list of edges
 - With a promise that every vertex has degree exactly 2

You have:
 - $n^{2/3}$ machines, each with $n^{2/3}$ memory

Your Mission:
 - Tell me if the graph is connected in $o(\log n)$ rounds...
 - ...or prove that it cannot be done
Thank You