
3 Fun Machine Learning Problems for Big Data

John Langford (Yahoo! → Microsoft)

STOC Workshop on Big Data and Streaming Algorithms, May 19,
2012

What’s big data?

The practical viewpoint:

1 O(n2) algorithm feasible: small data

2 Fits on one machine: medium data

3 Doesn’t fit on one machine: big data

An example: predicting which ad is interesting. [ACDL11]
2.1T sparse features
17B Examples
16M parameters
1K nodes

We train an optimal linear predictor in 70 minutes = 500M
features/second: faster than the IO bandwidth of a single
machine⇒ we beat all possible single machine linear learning
algorithms.

What’s big data?

The practical viewpoint:

1 O(n2) algorithm feasible: small data

2 Fits on one machine: medium data

3 Doesn’t fit on one machine: big data

An example: predicting which ad is interesting. [ACDL11]
2.1T sparse features
17B Examples
16M parameters
1K nodes

We train an optimal linear predictor in 70 minutes = 500M
features/second: faster than the IO bandwidth of a single
machine⇒ we beat all possible single machine linear learning
algorithms.

What’s big data?

The practical viewpoint:

1 O(n2) algorithm feasible: small data

2 Fits on one machine: medium data

3 Doesn’t fit on one machine: big data

An example: predicting which ad is interesting. [ACDL11]
2.1T sparse features
17B Examples
16M parameters
1K nodes

We train an optimal linear predictor in 70 minutes = 500M
features/second: faster than the IO bandwidth of a single
machine⇒ we beat all possible single machine linear learning
algorithms.

Algorithm

The algorithm (sketch: many details):
1 On each node use online learning independently to find a

parameter vector.
2 Use AllReduce to average the weights.
3 On each node, compute the sum of the gradient for each

example.
4 Use AllReduce to add the gradients at each node.
5 Use L-BFGS to update the weight vector, goto (3) 20 times.

2828 28

Allreduce final state

28 28 28 28

Algorithm

The algorithm (sketch: many details):
1 On each node use online learning independently to find a

parameter vector.
2 Use AllReduce to average the weights.
3 On each node, compute the sum of the gradient for each

example.
4 Use AllReduce to add the gradients at each node.
5 Use L-BFGS to update the weight vector, goto (3) 20 times.

7

2 3 4

6

Allreduce initial state

5

1

2828 28

Allreduce final state

28 28 28 28

Algorithm

The algorithm (sketch: many details):
1 On each node use online learning independently to find a

parameter vector.
2 Use AllReduce to average the weights.
3 On each node, compute the sum of the gradient for each

example.
4 Use AllReduce to add the gradients at each node.
5 Use L-BFGS to update the weight vector, goto (3) 20 times.

2828 28

Allreduce final state

28 28 28 28

Empirical Results

0 10 20 30 40 50
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Iteration

a
u
P

R
C

Online

L−BFGS w/ 5 online passes
L−BFGS w/ 1 online pass

L−BFGS

0 5 10 15 20

0.466

0.468

0.47

0.472

0.474

0.476

0.478

0.48

0.482

0.484

Iteration

a
u
P

R
C

Online

L−BFGS w/ 5 online passes
L−BFGS w/ 1 online pass

L−BFGS

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Effective number of passes over data

au
P

R
C

L−BFGS w/ one online pass
Zinkevich et al.
Dekel et al.

Analysis

Theorem: ??

We can prove that the algorithm makes sense as an optimization.
We don’t know how to prove anything meaningful about
generalization.

Analysis

Theorem: ??

We can prove that the algorithm makes sense as an optimization.
We don’t know how to prove anything meaningful about
generalization.

Where does data come from?

Repeatedly:

1 A user comes to Yahoo!MSN (with history of previous visits, IP
address, data related to his Yahoo!MSN account)

2 Yahoo!MSN chooses information to present (urls, ads, news stories)

3 The user reacts to the presented information (clicks on something,
clicks, comes back and clicks again,...)

Yahoo!MSN wants to interactively choose content and use the observed

feedback to improve future content choices.

The Contextual Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal: Efficiently compete with a large reference class of policies
Π = {π : X → A}:

Regret = max
π∈Π

averaget(rπ(x) − ra)

Examples of Π:

Context-free policies prescribing the same treatment to all.

A machine learning system (e.g., all linear predictors)

A discrete set based on domain-specific hunches or hypotheses

The Contextual Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal: Efficiently compete with a large reference class of policies
Π = {π : X → A}:

Regret = max
π∈Π

averaget(rπ(x) − ra)

Examples of Π:

Context-free policies prescribing the same treatment to all.

A machine learning system (e.g., all linear predictors)

A discrete set based on domain-specific hunches or hypotheses

Randomized UCB
[DHKKLRZ11]

Given an oracle finding arg maxπ∈Π
∑

(x ,~r) rπ(x):

Randomized UCB

For each t = 1, 2, . . .

1 Choose distribution P over Π minizing variance for empirical
good policies and limiting variance for empirical bad policies.

2 observe x

3 Let p(a) = fraction of P choosing a given x .

4 Choose a ∼ p and observe reward r

Theorem: For all sets of policies Π, for all distributions D(x ,~r), if
the world is IID w.r.t. D, with high probability Randomized UCB

has regret O

(√
K ln |Π|

T

)
in time Poly(t,K , log |Π|)

All other approaches require O(|Π|) time!

The Problem

...It uses the ellipsoid algorithm for convex programming.

The grand challenge: Can we make a quasilinear time algorithm
given an optimization oracle?

Some evidence: We succeeded with active learning [BHLZ10]
[KL11]

The Problem

...It uses the ellipsoid algorithm for convex programming.

The grand challenge: Can we make a quasilinear time algorithm
given an optimization oracle?

Some evidence: We succeeded with active learning [BHLZ10]
[KL11]

Feature Hashing

R
A

M

Conventional VW

Weights

S
tr

in
g
 −

>
 I

n
d
ex

 d
ic

ti
o
n
ar

y

Weights

Most algorithms use a hashmap to change a word into an index for
a weight.
A hash function takes almost no RAM, is x10 faster, and is easily
parallelized.

The spam example [WALS09]

1 3.2 ∗ 106 labeled emails.

2 433167 users.

3 ∼ 40 ∗ 106 unique features.

Construct a personalized spam filter using hashing:
〈w , φ(x)〉+ 〈w , φu(x)〉

(baseline = global only predictor)

The spam example [WALS09]

1 3.2 ∗ 106 labeled emails.

2 433167 users.

3 ∼ 40 ∗ 106 unique features.

Construct a personalized spam filter using hashing:
〈w , φ(x)〉+ 〈w , φu(x)〉

(baseline = global only predictor)

Hashing in learning 6= linear projection

Experiment 1: Hash features, then Learn
Experiment 2: Learn, then Hash features and weights.
Under linear projection these are equivalent.

The truth: 1 beats 2.
Label Hashed Features

1 1 1 0

0 1 0 1

Weights 0.33 0.67 -0.33
Average Squared loss: 0

Label Features Hashed

1 1 1 0 0 1 1 0

0 0 0 1 1 1 0 1

Weights 0.5 0.5 0 0 0.5 0.5 0
Average Squared Loss 0.25

Hashing in learning 6= linear projection

Experiment 1: Hash features, then Learn
Experiment 2: Learn, then Hash features and weights.
Under linear projection these are equivalent.
The truth: 1 beats 2.

Label Hashed Features

1 1 1 0

0 1 0 1

Weights 0.33 0.67 -0.33
Average Squared loss: 0

Label Features Hashed

1 1 1 0 0 1 1 0

0 0 0 1 1 1 0 1

Weights 0.5 0.5 0 0 0.5 0.5 0
Average Squared Loss 0.25

The Bloom Filter(ish) view [SPDLSV09]

N identical features + infinite examples ⇒ performance like Bloom
filter with N hashes.

All N features unique and necessary + infinite examples ⇒ need
multiple hashes of each feature like Bloom filter.
Reality is messier: finite examples + problem dependent partial
redundancy in features.
What is an efficient and effective algorithm to determine the
optimal hash size online?
What is an efficient and effective algorithm to determine the
optimal redundancy online?

The Bloom Filter(ish) view [SPDLSV09]

N identical features + infinite examples ⇒ performance like Bloom
filter with N hashes.
All N features unique and necessary + infinite examples ⇒ need
multiple hashes of each feature like Bloom filter.

Reality is messier: finite examples + problem dependent partial
redundancy in features.
What is an efficient and effective algorithm to determine the
optimal hash size online?
What is an efficient and effective algorithm to determine the
optimal redundancy online?

The Bloom Filter(ish) view [SPDLSV09]

N identical features + infinite examples ⇒ performance like Bloom
filter with N hashes.
All N features unique and necessary + infinite examples ⇒ need
multiple hashes of each feature like Bloom filter.
Reality is messier: finite examples + problem dependent partial
redundancy in features.

What is an efficient and effective algorithm to determine the
optimal hash size online?
What is an efficient and effective algorithm to determine the
optimal redundancy online?

The Bloom Filter(ish) view [SPDLSV09]

N identical features + infinite examples ⇒ performance like Bloom
filter with N hashes.
All N features unique and necessary + infinite examples ⇒ need
multiple hashes of each feature like Bloom filter.
Reality is messier: finite examples + problem dependent partial
redundancy in features.
What is an efficient and effective algorithm to determine the
optimal hash size online?
What is an efficient and effective algorithm to determine the
optimal redundancy online?

Other Problems

$1K reward: Efficient Robust Conditional Probability Estimation
http://hunch.net/?p=1253
$0.5K reward: Cross Validation Analysis
http://hunch.net/?p=29

http://hunch.net/?p=1253
http://hunch.net/?p=29

Papers

[ACDL11] Alekh Agarwal, Olivier Chapelle, Miroslav Dudik, John
Langford, A Reliable Effective Terascale Linear Learning System,
http://arxiv.org/abs/1110.4198
[DHKKLRZ11] Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos
Karampatziakis, John Langford, Lev Reyzin, and Tong Zhang,
Efficient Optimal Leanring for Contextual Bandits, UAI 2011.
[BHLZ10] Alina Beygelzimer, Daniel Hsu, John Langford, and Tong
Zhang Agnostic Active Learning Without Constraints NIPS 2010.
[KL11] Nikos Karampatziakis and John Langford, Importance
Weight Aware Gradient Updates, UAI 2011.
[WALS09] Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, Josh Attenberg, Feature Hashing for Large Scale
Multitask Learning, ICML 2009
[SPDLSV09] Qinfeng Shi, James Petterson, Gideon Dror, John
Langford, Alex Smola, and SVN Vishwanathan, Hash Kernels for
Structured Data, AISTAT 2009 and JMLR 2009.

