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What’s big data?

The practical viewpoint:

1 O(n2) algorithm feasible: small data

2 Fits on one machine: medium data

3 Doesn’t fit on one machine: big data

An example: predicting which ad is interesting. [ACDL11]
2.1T sparse features
17B Examples
16M parameters
1K nodes

We train an optimal linear predictor in 70 minutes = 500M
features/second: faster than the IO bandwidth of a single
machine⇒ we beat all possible single machine linear learning
algorithms.
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Algorithm

The algorithm (sketch: many details):
1 On each node use online learning independently to find a

parameter vector.
2 Use AllReduce to average the weights.
3 On each node, compute the sum of the gradient for each

example.
4 Use AllReduce to add the gradients at each node.
5 Use L-BFGS to update the weight vector, goto (3) 20 times.
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Empirical Results
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Analysis

Theorem: ??

We can prove that the algorithm makes sense as an optimization.
We don’t know how to prove anything meaningful about
generalization.
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Where does data come from?

Repeatedly:

1 A user comes to Yahoo!MSN (with history of previous visits, IP
address, data related to his Yahoo!MSN account)

2 Yahoo!MSN chooses information to present (urls, ads, news stories)

3 The user reacts to the presented information (clicks on something,
clicks, comes back and clicks again,...)

Yahoo!MSN wants to interactively choose content and use the observed

feedback to improve future content choices.



The Contextual Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal: Efficiently compete with a large reference class of policies
Π = {π : X → A}:

Regret = max
π∈Π

averaget(rπ(x) − ra)

Examples of Π:

Context-free policies prescribing the same treatment to all.

A machine learning system (e.g., all linear predictors)

A discrete set based on domain-specific hunches or hypotheses
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Randomized UCB
[DHKKLRZ11]

Given an oracle finding arg maxπ∈Π
∑

(x ,~r) rπ(x):

Randomized UCB

For each t = 1, 2, . . .

1 Choose distribution P over Π minizing variance for empirical
good policies and limiting variance for empirical bad policies.

2 observe x

3 Let p(a) = fraction of P choosing a given x .

4 Choose a ∼ p and observe reward r

Theorem: For all sets of policies Π, for all distributions D(x ,~r), if
the world is IID w.r.t. D, with high probability Randomized UCB

has regret O

(√
K ln |Π|

T

)
in time Poly(t,K , log |Π|)

All other approaches require O(|Π|) time!



The Problem

...It uses the ellipsoid algorithm for convex programming.

The grand challenge: Can we make a quasilinear time algorithm
given an optimization oracle?

Some evidence: We succeeded with active learning [BHLZ10]
[KL11]
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Feature Hashing
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Most algorithms use a hashmap to change a word into an index for
a weight.
A hash function takes almost no RAM, is x10 faster, and is easily
parallelized.



The spam example [WALS09]

1 3.2 ∗ 106 labeled emails.

2 433167 users.

3 ∼ 40 ∗ 106 unique features.

Construct a personalized spam filter using hashing:
〈w , φ(x)〉+ 〈w , φu(x)〉

(baseline = global only predictor)
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Hashing in learning 6= linear projection

Experiment 1: Hash features, then Learn
Experiment 2: Learn, then Hash features and weights.
Under linear projection these are equivalent.

The truth: 1 beats 2.
Label Hashed Features

1 1 1 0

0 1 0 1

Weights 0.33 0.67 -0.33
Average Squared loss: 0

Label Features Hashed

1 1 1 0 0 1 1 0

0 0 0 1 1 1 0 1

Weights 0.5 0.5 0 0 0.5 0.5 0
Average Squared Loss 0.25
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The Bloom Filter(ish) view [SPDLSV09]

N identical features + infinite examples ⇒ performance like Bloom
filter with N hashes.

All N features unique and necessary + infinite examples ⇒ need
multiple hashes of each feature like Bloom filter.
Reality is messier: finite examples + problem dependent partial
redundancy in features.
What is an efficient and effective algorithm to determine the
optimal hash size online?
What is an efficient and effective algorithm to determine the
optimal redundancy online?
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Other Problems

$1K reward: Efficient Robust Conditional Probability Estimation
http://hunch.net/?p=1253
$0.5K reward: Cross Validation Analysis
http://hunch.net/?p=29

http://hunch.net/?p=1253
http://hunch.net/?p=29
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