Island Hopping and Path Colouring

Andrew McGregor UPenn → UC San Diego
Bruce Shepherd Bell Labs → McGill
Optical Network Design
Optical Network Design

- Route a set of signals, s_i to t_i, in a graph G
Optical Network Design

- Route a set of signals, s_i to t_i, in a graph G
- Advantages of optical communication:

 A single optical fiber can carry multiple signals if each is assigned a different wavelength.

 Decreased latency if signals can avoid expensive optical-electrical-optical-optical (OEO) conversions.
Optical Network Design

• Route a set of signals, s_i to t_i, in a graph G

• Advantages of optical communication:

 A single optical fiber can carry **multiple signals** if each is assigned a different wavelength.

 Decreased latency if signals can avoid expensive optical-electrical-optical (OEO) conversions.

• Many interesting theory problems arise...
Minimizing Fiber Costs
Minimizing Fiber Costs

- In each link e of G, a fiber that can carry a single signal of each wavelength $\{1, ..., \lambda\}$ can be installed with cost c_e.
Minimizing Fiber Costs

- In each link e of G, a fiber that can carry a single signal of each wavelength $\{1, ..., \lambda\}$ can be installed with cost c_e.

- **MinFiber**: Minimize the cost of fibers installed such that every signal can be routed monochromatically.
Minimizing Fiber Costs

- In each link e of G, a fiber that can carry a single signal of each wavelength $\{1, \ldots, \lambda\}$ can be installed with cost c_e.

- **MinFiber**: Minimize the cost of fibers installed such that every signal can be routed monochromatically.

- **Approx**: $O(\log n)$ and $\Omega(\log^{1/4-\varepsilon} n)$

 [Andrews, Zhang ’05]
Minimizing Fiber Costs

- In each link e of G, a fiber that can carry a single signal of each wavelength $\{1, \ldots, \lambda\}$ can be installed with cost c_e.

- **MinFiber**: Minimize the cost of fibers installed such that every signal can be routed monochromatically.

- **Approx**: $O(\log n)$ and $\Omega(\log^{1/4-\varepsilon} n)$ [Andrews, Zhang ’05]

- **Exact solution if G is a path** [Winkler, Zhang ’03]
Minimizing Fiber Costs

- In each link e of G, a fiber that can carry a single signal of each wavelength $\{1, \ldots, \lambda\}$ can be installed with cost c_e.

- **MinFiber**: Minimize the cost of fibers installed such that every signal can be routed monochromatically.

- **Approx**: $O(\log n)$ and $\Omega(\log^{1/4-\epsilon} n)$ [Andrews, Zhang '05]

- **Exact solution if G is a path** [Winkler, Zhang '03]

- **Our results**: Exact solution if G is a directed tree and 3.55 approx if demands are single-source.
Minimizing Fiber Costs

• In each link e of G, a fiber that can carry a single signal of each wavelength $\{1, ..., \lambda\}$ can be installed with cost c_e.

• **MinFiber**: Minimize the cost of fibers installed such that every signal can be routed monochromatically.

• **Approx**: $O(\log n)$ and $\Omega(\log^{1/4-\epsilon} n)$
 [Andrews, Zhang '05]

• **Exact solution if G is a path**
 [Winkler, Zhang '03]

• **Our results**: Exact solution if G is a directed tree and 3.55 approx if demands are single-source.
Minimizing “Hops”
Minimizing “Hops”

- At each node, can only switch signals optically within sets of c incident fibers.
Minimizing “Hops”

- At each node, can only switch signals optically within sets of c incident fibers.

![ROADM diagram](image-url)
Minimizing “Hops”

- At each node, can only switch signals optically within sets of c incident fibers.
Minimizing “Hops”

- At each node, can only switch signals optically within sets of c incident fibers.
- Any signal not switched optically requires an OEO conversion or “hop.”
Minimizing “Hops”

- At each node, can only switch signals optically within sets of c incident fibers.
- Any signal not switched optically requires an OEO conversion or “hop.”
- MinHop_c: Given a single infinite capacity fiber in each link, route demands simply and set Roadms to minimize average number of hops.
Minimizing “Hops”

- At each node, can only switch signals optically within sets of c incident fibers.
- Any signal not switched optically requires an OEO conversion or “hop.”
- MinHop_c: Given a single infinite capacity fiber in each link, route demands simply and set Roadms to minimize average number of hops.
Minimizing “Hops”

- At each node, can only switch signals optically within sets of c incident fibers.

- Any signal not switched optically requires an OEO conversion or “hop.”

- MinHop_c: Given a single infinite capacity fiber in each link, route demands simply and set Roadms to minimize average number of hops.

- Approx: $O(\log n)$ and >2 for $c=2$
 [Anshelevich, Zhang ’05]
Minimizing "Hops"

- At each node, can only switch signals optically within sets of c incident fibers.

- Any signal not switched optically requires an OEO conversion or "hop."

- MinHop_c: Given a single infinite capacity fiber in each link, route demands simply and set Roadms to minimize average number of hops.

- Approx: $O(\log n)$ and >2 for $c=2$
 [Anshelevich, Zhang '05]

- Our Results: $\Omega(\log^{1-\epsilon} n)$ for $c=2$...
1. Min-Hop
2. Min-Fiber
3. Min-Both?
MinHop\textsubscript{\textit{c}}

- **Input:** Supply network \(G=(V,E) \) and demands \(H \).
- **Solution:**

a) Decomposition of \(E \) into “transparent islands”

b) Simple routing path \(P_h \) for each demand \(h \)

- **Goal:** Minimize average number of times each \(P_h \) needs to hop between transparent islands.
An $O(\log n)$ Approx
Undirected Graphs & 2-arm Roadms
An $O(\log n)$ Approx

Undirected Graphs & 2-arm Roadms

• Choose any spanning tree T of G rooted at r
An $O(\log n)$ Approx

Undirected Graphs & 2-arm Roadms

- Choose any spanning tree T of G rooted at r
- Route signals along the spanning via r
An $O(\log n)$ Approx
Undirected Graphs & 2-arm Roadms

• Choose any spanning tree T of G rooted at r
• Route signals along the spanning via r
• Setting Roadms optimally ensures each signal requires at most $2 \log n$ hops. [Anshelevich, Zhang ’05]
An $O(\log n)$ Approx
Undirected Graphs & 2-arm Roadms

- Choose any spanning tree T of G rooted at r
- Route signals along the spanning via r
- Setting Roadms optimally ensures each signal requires at most $2 \log n$ hops.

[Anshelevich, Zhang ’05]
An $O(\log n)$ Approx

Undirected Graphs & 2-arm Roadms

- Choose any spanning tree T of G rooted at r
- Route signals along the spanning via r
- Setting Roadms optimally ensures each signal requires at most $2 \log n$ hops.

 [Anshelevich, Zhang '05]
$\Omega(\log^{1-\varepsilon} n)$ Hardness

Undirected Graphs & 2-arm Roadms
\[\Omega(\log^{1-\epsilon} n) \] Hardness

Undirected Graphs & 2-arm Roadms

- Reduction from **LongPath**:
 - Given a 3-regular Hamiltonian graph find a long path
 - Constant approximation is hard
 [Bazgan, Santha, Tuza ’99]
\(\Omega(\log^{1-\varepsilon} n) \) Hardness

Undirected Graphs & 2-arm Roadms

- Reduction from **LongPath**:

 Given a 3-regular Hamiltonian graph find a long path

 Constant approximation is hard [Bazgan, Santha, Tuza '99]

- Let \(L \) be an instance of **LongPath** on \(t \) nodes:

 Replace each node \(u \) with \(K_{2,3} = \{u_1, u_2, v_1, v_2, v_3\} \) and match \(v_1, v_2, v_3 \) to neighbours of \(u \).
$\Omega(\log^{1-\varepsilon} n)$ Hardness
Undirected Graphs & 2-arm Roadms

- Reduction from **LongPath**:
 Given a 3-regular Hamiltonian graph find a long path
 Constant approximation is hard [Bazgan, Santha, Tuza '99]
- Let L be an instance of **LongPath** on t nodes:
 Replace each node u with $K_{2,3} = \{u_1, u_2, v_1, v_2, v_3\}$ and
 match v_1, v_2, v_3 to neighbours of u.

![Diagram of graph transformation](image)
\(\Omega(\log^{1-\varepsilon} n) \) Hardness

Undirected Graphs & 2-arm Roadms

Insert multiple copies of \(L' \) into \((t-1)\)-ary tree in which each edge is duplicated.
$\Omega(\log^{1-\epsilon} n)$ Hardness

Undirected Graphs & 2-arm Roadms

Consider demands from leaves to root

Insert multiple copies of L' into $(t-1)$-ary tree in which each edge is duplicated.
$\Omega(\log^{1-\epsilon} n)$ Hardness

Undirected Graphs & 2-arm Roadms

Consider demands from leaves to root
L is Hamiltonian so $\text{MinHop}_2(G) = 1$

Insert multiple copies of L' into $(t-1)$-ary tree in which each edge is duplicated.
\(\Omega(\log^{1-\varepsilon} n) \) Hardness

Undirected Graphs & 2-arm Roadmats

Consider demands from leaves to root

\(L \) is Hamiltonian so \(\text{MinHop}_2(G) = 1 \)

Finding a solution of cost \(o(\log^{1-\varepsilon} n) \) requires finding length \(\Omega(t) \) path in \(L \).

Insert multiple copies of \(L' \) into \((t-1)\)-ary tree in which each edge is duplicated.
$\Omega(n^{1-\varepsilon})$ Hardness

Directed Graphs & 2-arm Roadms
Ω(n^{1-\varepsilon}) Hardness

Directed Graphs & 2-arm Roadms

- Reduction from 2DirPaths:
 For directed graph L and s_1, t_1, s_2, t_2, it is NP-hard to determine if there is edge disjoint paths between s_1 and t_1; and s_2 and t_2.

[Fortune, Hopcroft, Wyllie '80]
\(\Omega(n^{1-\varepsilon}) \) Hardness

Directed Graphs & 2-arm Roadms

- Reduction from 2DirPaths:
 For directed graph \(L \) and \(s_1, t_1, s_2, t_2 \), it is NP-hard to determine if there is edge disjoint paths between \(s_1 \) and \(t_1 \); and \(s_2 \) and \(t_2 \).
 [Fortune, Hopcroft, Wyllie ’80]

- Form supply graph \(G \) with demands \((a,b) \) and \((b,a) \)
$\Omega(n^{1-\epsilon})$ Hardness

Directed Graphs & 2-arm Roadms

- Reduction from 2DirPaths:
 For directed graph L and s_1,t_1,s_2,t_2, it is NP-hard to determine if there is edge disjoint paths between s_1 and t_1; and s_2 and t_2.

 [Fortune, Hopcroft, Wyllie ’80]

- Form supply graph G with demands (a,b) and (b,a)

- If there exists edge disjoint paths then $\text{MinHop}_2(G) = 1$ and otherwise $\text{MinHop}_2(G) = \Omega(n^{1-\epsilon})$.

Ω(𝑛^{1-ε}) Hardness

Directed Graphs & 2-arm Roadmaps

- **Reduction from 2DirPaths:**
 For directed graph \(L \) and \(s_1, t_1, s_2, t_2 \), it is NP-hard to determine if there is edge disjoint paths between \(s_1 \) and \(t_1 \); and \(s_2 \) and \(t_2 \).

 [Fortune, Hopcroft, Wyllie '80]

- Form supply graph \(G \) with demands \((a,b)\) and \((b,a)\)

- If there exists edge disjoint paths then \(\text{MinHop}_2(G) = 1 \) and otherwise \(\text{MinHop}_2(G) = \Omega(n^{1-\epsilon}) \).

- Can assume \(G \) is strongly connected...
An $O(n^{1/2})$ Approx
Directed Acyclic Graphs & 2 arm Roadms
An $O(n^{1/2})$ Approx
Directed Acyclic Graphs & 2 arm Roadms

- Thm: An $O(n^{1/2})$ approximation for DAGS.
An $O(n^{1/2})$ Approx
Directed Acyclic Graphs & 2 arm Roadms

- **Thm:** An $O(n^{1/2})$ approximation for DAGS.

- **Lemma:** Call a sequence $a_1, ..., a_n$ boosted if $a_i \neq a_{i+1}$ and if $a_i = a_k$, then $a_j \leq a_k$ for all $i < j < k$. Length of a boosted sequence with alphabet $\{1, 2, ..., k\}$ is at most $2k$.
An $O(n^{1/2})$ Approx
Directed Acyclic Graphs & 2 arm Roadms

• **Thm:** An $O(n^{1/2})$ approximation for DAGS.

• **Lemma:** Call a sequence $a_1, ..., a_n$ *boosted* if $a_i \neq a_{i+1}$ and if $a_i = a_k$, then $a_j \leq a_k$ for all $i < j < k$. Length of a boosted sequence with alphabet $\{1, 2, ..., k\}$ is at most $2k$.

Proof: Induction on k:

$k=1$ trivial!

Let q be minimum repeated element and let sequence be of the form $S\, q \, I_1 \, q \, I_2 \, q \, ... \, I_j \, q \, P$.

Assume $I_1 \, I_2 \, ... \, I_j$ has length r and so $I_1 \, q \, I_2 \, q \, ... \, I_j \, q$ has length at most $2r$.

Sequence $S\, q \, P$ is boosted and has alphabet size $k-r$ hence length is $2(k-r)$ by induction.
An $O(n^{1/2})$ Approx
Directed Acyclic Graphs & 2 arm Roadms

• Thm: An $O(n^{1/2})$ approximation for DAGS.

Proof (Sketch):

Define “long” paths P_1, P_2, \ldots, P_k that route some demands

P_j: If shortest route in G augmented by edges of distance n^{-2} between all pairs of nodes in P_i for all $i<j$ is length at least $n^{1/2}$ then let P_j be this route.

Define transparent islands as maximal sub-paths of $P_j \setminus (P_1, \ldots, P_{j-1})$ and all remaining individual edges.

G is a DAG implies that $k=O(n^{1/2})$

Boosting lemma implies every routing requires $O(k)$ hops.
Multi-arm Roadmaps
Multi-arm Roadms

- **Thm:** MinHop$_3$ has $O(\log n)$ approx for strongly connected graphs. (c.f. $\Omega(n^{1-\varepsilon})$ MinHop$_2$)
Multi-arm Roadms

• **Thm:** MinHop$_3$ has $O(\log n)$ approx for strongly connected graphs. (c.f. $\Omega(n^{1-\varepsilon})$ MinHop$_2$)

• **Thm:** For G planar:

 $\text{MinHop}_2(G)=1$ if G is 4-node connected.

 Graph is Hamiltonian [Tutte ’56] and a degree-3 spanning tree can be found in polytime [Fürer, Raghavachari ’56].
Multi-arm Roadms

- **Thm:** MinHop$_3$ has $O(\log n)$ approx for strongly connected graphs. (c.f. $\Omega(n^{1-\epsilon})$ MinHop$_2$)

- **Thm:** For G planar:

 \[
 \text{MinHop}_2(G) = 1 \text{ if } G \text{ is 4-node connected.}
 \]

 Graph is Hamiltonian [Tutte ’56] and a degree-3 spanning tree can be found in polytime [Fürer, Raghavachari ’56].

 \[
 \text{MinHop}_3(G) = 1 \text{ if } G \text{ is 3-node connected.}
 \]

 Graph has a degree-3 spanning tree and this can be found in polytime [Barnette ’66].
Multi-arm Roadms

• **Thm:** MinHop\(_3\) has \(O(\log n)\) approx for strongly connected graphs. (c.f. \(\Omega(n^{1-\epsilon})\) MinHop\(_2\))

• **Thm:** For \(G\) planar:

\[
\text{MinHop}_2(G) = 1 \text{ if } G \text{ is 4-node connected.}
\]

Graph is Hamiltonian [Tutte '56] and *a degree-3 spanning tree can be found in polytime* [Fürer, Raghavachari '56].

\[
\text{MinHop}_3(G) = 1 \text{ if } G \text{ is 3-node connected.}
\]

Graph has a degree-3 spanning tree and this can be found in polytime [Barnette '66].

\[
\text{MinHop}_3(G) = \Omega(\log n) \text{ for some 2-node connected } G.
\]
Multi-arm Roadms

- **Thm:** MinHop\(_3\) has \(O(\log n)\) approx for strongly connected graphs. (c.f. \(\Omega(n^{1-\varepsilon})\) MinHop\(_2\))

- **Thm:** For \(G\) planar:

\[
\text{MinHop}_2(G) = 1 \text{ if } G \text{ is 4-node connected.}
\]

Graph is Hamiltonian [Tutte '56] *and a degree-3 spanning tree can be found in polytime* [Fürer, Raghavachari '56].

\[
\text{MinHop}_3(G) = 1 \text{ if } G \text{ is 3-node connected.}
\]

Graph has a degree-3 spanning tree and this can be found in polytime [Barnette '66].

\[
\text{MinHop}_3(G) = \Omega(\log n) \text{ for some 2-node connected } G.
\]
Summary of MinHop

<table>
<thead>
<tr>
<th></th>
<th>2-arm Roadms</th>
<th>3-arm Roadms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
<td>Hardness</td>
<td>Algorithm</td>
</tr>
<tr>
<td>Undirected</td>
<td>$O(\log n)$</td>
<td>$\Omega(\log^{1-\varepsilon} n)$</td>
</tr>
<tr>
<td>Strongly Connected</td>
<td>$O(n)$</td>
<td>$\Omega(n^{1-\varepsilon})$</td>
</tr>
<tr>
<td>DAG</td>
<td>$O(n^{1/2})$</td>
<td>$\Omega(\log n)$</td>
</tr>
</tbody>
</table>
Summary of MinHop

<table>
<thead>
<tr>
<th></th>
<th>2-arm Roadms</th>
<th>3-arm Roadms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>Hardness</td>
<td>Ω(log^{1-ε} n)</td>
<td>Ω(n^{1-ε})</td>
</tr>
<tr>
<td>Undirected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly Connected</td>
<td>O(n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>DAG</td>
<td>O(n^{1/2})</td>
<td>O(n^{1/2})</td>
</tr>
</tbody>
</table>

- **Open Question:** Resolve the hardness of directed acyclic graphs
1. Min-Hop
2. Min-Fiber
3. Min-Both?
MinFiber

- **Input:** Supply network $G=(V,E)$, demand graph H, costs c_e to install a fiber in link e, and fiber capacity λ.

- **Solution:**

 a) Multiple l_e of fibers at link e

 b) Simple routing path P_h for each demand

 c) Assignment of one of λ colours to each P_h such that the number of paths of the same colour using any edge is at most l_e.

- **Goal:** Minimize $\sum c_e l_e$
Integer Decomposition Property
A polyhedron P has the **integer decomposition property (IDP)** if for any $x \in P$ and integer k such that kx is integral then we have

$$kx = \sum_{i \in [k]} x_i$$

where x_i is an integral vector in P.

Integer Decomposition Property
A polyhedron P has the **integer decomposition property (IDP)** if for any $x \in P$ and integer k such that kx is integral, then we have

$$kx = \sum_{i \in [k]} x_i$$

where x_i is an integral vector in P.

Thm (Baum, Trotter): Matrix A is totally unimodular iff $\{x : Ax \leq b, x \geq 0\}$ has the IDP for every integer vector b.

Integer Decomposition Property

- A polyhedron P has the integer decomposition property (IDP) if for any $x \in P$ and integer k such that kx is integral then we have $kx = \sum_{i \in [k]} x_i$ where x_i is an integral vector in P.

- **Thm (Baum, Trotter):** Matrix A is totally unimodular iff $\{x : Ax \leq b, x \geq 0\}$ has the IDP for every integer vector b.

WDM Flows on Directed Trees

- **Thm:** Exact solution MinFib on directed tree instances.
- **Proof (Sketch):**

 Let B be the matrix with $B_{ah} = 1$ if routing for demand h goes through arc a. B and $[B^T l]^T$ are totally unimodular.

 Let l an allocation of fibers that satisfies capacity requirements.

 Define $P_l = \{ x : B \cdot x \leq l, 0 \leq x \leq 1 \}$ and note P_l is IDP.

 By assumption $(1/\lambda, 1/\lambda, ..., 1/\lambda)$ is in P_l and hence there exists a decomposition of demands into λ classes such that each class can be assigned the same colour.
1. Min-Hop
2. Min-Fiber
3. Min-Both?
Open Question

- **Incompatible Assumptions:**

 MinHop assumes an existing infinite capacity fiber in each link.

 MinFiber assumes full wavelength selective switching (i.e. infinite-arm Roadms)

- **How can we unify both problems?**

 In MinHop, consider purchasing extra fibers in each link at some cost.

 If we have to hop, can’t we get a wavelength conversion for free?
MinFiber:
Exact Solution for Directed Trees
3.55 Approximation for Single-Source
via “Fractional implies Integral” results

MinHop:

<table>
<thead>
<tr>
<th></th>
<th>2-arm Roadms</th>
<th>3-arm Roadms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Algorithm</td>
<td>Hardness</td>
</tr>
<tr>
<td>Undirected</td>
<td>$O(\log n)$</td>
<td>$\Omega(\log^{1-\epsilon} n)$</td>
</tr>
<tr>
<td>Strongly Connected</td>
<td>$O(n)$</td>
<td>$\Omega(n^{1-\epsilon})$</td>
</tr>
<tr>
<td>DAG</td>
<td>$O(n^{1/2})$</td>
<td>$\Omega(\log n)$</td>
</tr>
</tbody>
</table>