More on the Reliability Function of the BSC

Alexander Barg
DIMACS, Rutgers University

Andrew McGregor
University of Pennsylvania

ISIT 2003, Yokohama
Some Definitions
Some Definitions

- Communicating over a binary symmetric channel with cross-over probability p.
Some Definitions

- Communicating over a binary symmetric channel with cross-over probability p.
- We use a length n binary code $C = \{x_1, x_2, \ldots, x_{|C|}\}$ with rate $\geq R$ ie.
Some Definitions

- Communicating over a binary symmetric channel with cross-over probability p.
- We use a length n binary code $C = \{x_1, x_2, \ldots, x_{|C|}\}$ with rate $\geq R$ i.e.
 \[|C| \geq 2^{nR} \]
Some Definitions

- Communicating over a **binary symmetric channel** with cross-over probability p.

- We use a length n **binary code** $C = \{ x_1, x_2, \ldots, x_{|C|} \}$ with rate $\geq R$ i.e.

$$|C| \geq 2^{nR}$$

- No matter what code we use there is the possibility of making errors - for a given rate of transmission there is some degree of error that is inherent to the channel itself.
Making Decoding Errors

- **Maximum Likelihood Decoding**: When we receive a word y we’ll guess that the sent codeword is the codeword that lies closest to it.

- For each codeword x we define the Voronoi region:

- Let $P_e(x)$ be the probability that, when codeword x is transmitted, this decoding procedure leads to an error. Therefore we have
Making Decoding Errors

- **Maximum Likelihood Decoding**: When we receive a word y we’ll guess that the sent codeword is the codeword that lies closest to it.

- For each codeword x we define the *Voronoi region*:

 $$D(x) = \{ y \in \{0,1\}^n : d(x, y) < d(x_j, y) \forall x_j \in C \setminus x \}$$

- Let $P_e(x)$ be the probability that, when codeword x is transmitted, this decoding procedure leads to an error. Therefore we have
Making Decoding Errors

- **Maximum Likelihood Decoding**: When we receive a word y we’ll guess that the sent codeword is the codeword that lies closest to it.

- For each codeword x we define the **Voronoi region**:

 $$D(x) = \{ y \in \{0,1\}^n : d(x, y) < d(x_j, y) \forall x_j \in C \setminus x \}$$

- Let $P_e(x)$ be the probability that, when codeword x is transmitted, this decoding procedure leads to an error. Therefore we have

 $$P_e(x) = P_x (\{0,1\}^n \setminus D(x))$$
The Reliability Function

- The average error probability of decoding is

- We’re interested in

- We present a new lower bound for this quantity, or equivalently, an upper bound on the reliability function or error exponent of the channel:
The Reliability Function

- The average error probability of decoding is
 \[P_e(C) = \frac{1}{|C|} \sum_{x \in C} P_e(x) \]
- We’re interested in
- We present a new lower bound for this quantity, or equivalently, an upper bound on the reliability function or error exponent of the channel:
The Reliability Function

- The average error probability of decoding is
 \[P_e(C) = \frac{1}{|C|} \sum_{x \in C} P_e(x) \]

- We’re interested in
 \[P_e(R) = \min_{C: \text{Rate}(C) > R} P_e(C) \]

- We present a new lower bound for this quantity, or equivalently, an upper bound on the reliability function or error exponent of the channel:
The Reliability Function

- The average error probability of decoding is
 \[P_e(C) = \frac{1}{|C|} \sum_{x \in C} P_e(x) \]
- We’re interested in
 \[P_e(R) = \min_{C : \text{Rate}(C) > R} P_e(C) \]
- We present a new lower bound for this quantity, or equivalently, an upper bound on the reliability function or error exponent of the channel:
 \[E(R, p) = -\lim_{n \to \infty} \frac{1}{n} \log \left(\min_{C : \text{Rate}(C) > R} P_e(C) \right) \]
Bounds on the Error Exponent:

• Combination of Best Lower Bounds: [Gallager, 63] & [Elias, ‘56]

• Combination of Best Upper Bounds prior to 1999: [Elias, ‘56] & [McEliece et al., ’77]

• Litsyn’s Bound: [Litsyn ’99]

• Our New Bound $E(R,p)$ for $p=0.01$
Bounds on the Error Exponent:
- Combination of Best Lower Bounds: [Gallager, '63] & [Elias, '56]
- Combination of Best Upper Bounds prior to 1999: [Elias, '56], [Shannon et al, '67] & [McEliece et al, '77]

$E(R,p)$

$p=0.01$
Bounds on the Error Exponent:

- Combination of Best Lower Bounds: [Gallager, 63] & [Elias, ‘56]
- Litsyn’s Bound: [Litsyn ‘99]
Bounds on the Error Exponent:

- Combination of Best Lower Bounds: [Gallager, 63] & [Elias, ‘56]
- Litsyn’s Bound: [Litsyn ‘99]
- Our New Bound
Litsyn’s Distance Distribution Bound

- Define

- Litsyn’s Distance Distribution Bound: For any code C of rate R there exists a w such that
Litsyn’s Distance Distribution Bound

- Define
 \[B_w(x) = |\{ x_j : d(x, x_j) = w\} | \]

- Litsyn’s Distance Distribution Bound:
 For any code \(C \) of rate \(R \) there exists a \(w \) such that
Litsyn’s Distance Distribution Bound

- Define

\[B_w(x) = |\{ x_j : d(x, x_j) = w \} | \]

- Litsyn’s Distance Distribution Bound: For any code \(C \) of rate \(R \) there exists a \(w \) such that

\[B_w(x) \geq \mu(R, w) \]
Estimating $P_e(x)$

$$P_e(x) = P_x(\{0,1\}^n \setminus D(x))$$
Estimating \(P_e(x) \)

The Voronoi Region

\[
P_e(x) = \sum_{y \in C : d(y, x_j) \leq d(y, x)} p^{d(y,x)} (1 - p)^{n - d(y,x)}
\]

\(y \in C : d(y, x_j) \leq d(y, x) \) for some \(x_j \in C \)
Estimating $P_e(x)$

Use the distance distribution result...

$$P_e(x) = \sum_{y \in C : d(y, x_j) \leq d(y, x) \text{ for some } x_j \in C} p^{d(y, x)} (1 - p)^{n-d(y, x)}$$
Estimating $P_e(x)$

Approximating the Voronoi Region...

$$P_e(x) \geq \sum_{y \in C : d(y, x_j) \leq d(y, x)} p^{d(y, x)} (1 - p)^{n - d(y, x)}$$

for some $x_j \in C$ where $d(x, x_j) = w$
Estimating $P_e(x)$

Introducing the X_j...

For each neighbour x_j define a set X_j such that

$$y \in X_j \Rightarrow d(y, x_j) \leq d(y, x)$$

$$P_e(x) \geq P_x \left(\bigcup_{j: d(x, x_j) = w} X_j \right)$$
Estimating $P_e(x)$

"Pruning" the X_j...

For each neighbour x_j assign a priority n_j at random. Let

$$Y_j = X_j \setminus \bigcup_{k:n_k>n_j} X_k$$

$$P_e(x) \geq \sum_{j:d(x,x_j)=w} P_x(Y_j)$$
Estimating $P_e(x)$

Applying the Reverse Union Bound...

The Reverse Union Bound:

Giving us our final shape of our bound:
Estimating $P_e(x)$

Applying the Reverse Union Bound...

The Reverse Union Bound:

$$P_x(Y_j) = P_x(X_j \setminus \bigcup_{k:n_k > n_j} X_k)$$

$$\geq P_x(X_j)(1 - \sum_{k:n_k > n_j} P_x(X_k \mid X_j))$$

Giving us our final shape of our bound:
Estimating $P_e(x)$

Applying the Reverse Union Bound...

The Reverse Union Bound:

$$P_x(Y_j) = P_x(X_j \setminus \bigcup_{k: n_k > n_j} X_k)$$

$$\geq P_x(X_j)(1 - \sum_{k: n_k > n_j} P_x(X_k | X_j))$$

Giving us our final shape of our bound:

$$P_e(x) \geq \sum_{j: d(x, x_j) = w} P_x(X_j)(1 - \sum_{k: n_k > n_j} P_x(X_k | X_j))$$
Now look across the entire code. Let X_{ij} and Y_{ij} be the sets for the neighbourhood of codeword x_i.

Therefore we have:

and

where, the amount of “pruning” is

What we do now depends on the values of the K_{ij}...
Now look across the entire code. Let X_{ij} and Y_{ij} be the sets for the neighbourhood of codeword x_i.

Therefore we have:

$$P_e(x_i) \geq \sum_{j: d(x_i, x_j) = w} P_i(Y_{ij})$$

and

where, the amount of “pruning” is

What we do now depends on the values of the K_{ij}...
Now look across the entire code. Let X_{ij} and Y_{ij} be the sets for the neighbourhood of codeword x_i.

Therefore we have:

\[P_e(x_i) \geq \sum_{j: d(x_i, x_j) = w} P_i(Y_{ij}) \]

and

\[P(Y_{ij}) \geq P_i(X_{ij})(1 - K_{ij}) \]

where, the amount of “pruning” is

What we do now depends on the values of the K_{ij}...
Now look across the entire code. Let X_{ij} and Y_{ij} be the sets for the neighbourhood of codeword x_i.

Therefore we have:

$$P_e(x_i) \geq \sum_{j:d(x_i,x_j)=w} P_i(Y_{ij})$$

and

$$P(Y_{ij}) \geq P_i(X_{ij})(1 - K_{ij})$$

where, the amount of “pruning” is

$$K_{ij} = \sum_{k:n_{ik} > n_{ij}} P_i(X_{ik} \mid X_{ij})$$

What we do now depends on the values of the K_{ij}…
Consider the set of codewords
Consider the set of codewords

\[S=\{x_j : K_{ij} > 1/2 \text{ for some } i\} \]
Consider the set of codewords

\[S = \{ x_j : K_{ij} > 1/2 \text{ for some } i \} \]

Either this is a “substantially” sized subcode or it isn’t.
Consider the set of codewords

$$S = \{ x_j : K_{ij} > 1/2 \text{ for some } i \}$$

Either this is a “substantially” sized subcode or it isn’t.

I.e., either we had to do a lot of pruning or we didn’t have to do a lot of pruning.
If S was not substantially sized...

- Just remove codewords in S from the code!
- Then in the remaining code we have for all Y_{ij}
 \[P_i(Y_{ij}) \geq P_i(X_{ij})/2 \]
- Hence, modulo constant factors, the average error probability satisfies
 \[P_e(C,p) \geq A(w)\mu(w) \]
- where $A(w) = P_i(X_{ij})$
If \(S \) was substantially sized…

- Consider

where

- Consider a codeword \(x_j \) such that \(K_{ij} > \frac{1}{2} \). Then there exists an \(l' \) such that

\[
B_{l'}(x_j) > \frac{1}{2nB(w,l')}
\]

- The upshot of \(S \) being substantial is that we discover a nuisance level \(l_1 \), such that

\[
P_e(x_j) \geq \frac{A(w)}{B(w,l_1)}
\]

and a substantial number of codewords have the

\[
B_{l_1}(x_j) > \frac{1}{B(w,l_1)}
\]
If S was substantially sized...

- Consider

$$K_{ij} = \sum_{k: n_{ik} > n_{ij}} P_i(X_{ik} \mid X_{ij}) = \sum_{l=0}^{n} \left(\sum_{k: n_{ik} > n_{ij}, d(x_j, x_k) = l} B(w, l) \right)$$

where

- Consider a codeword x_j such that $K_{ij} > 1/2$. Then there exists an l' such that

$$B_{l'}(x_j) > 1/(2nB(w,l'))$$

- The upshot of S being substantial is that we discover a nuisance level l_1, such that

$$P_e(x_j) \geq A(w)/B(w,l_1)$$

and a substantial number of codewords have the

$$B_{l_1}(x_j) > 1/B(w,l_1)$$
If S was substantially sized...

- Consider

\[K_{ij} = \sum_{k:n_{ik} > n_{ij}} P_i(X_{ik} \mid X_{ij}) = \sum_{l=0}^{n} \left(\sum_{k:n_{ik} > n_{ij}, d(x_j,x_k) = l} B(w,l) \right) \]

where

\[B(w,l) = P_i(X_{ik} \mid X_{ij}) \text{ where } d(x_i,x_j) = d(x_i,x_k) = w, \quad d(x_j,x_k) = l \]

- Consider a codeword x_j such that $K_{ij} > 1/2$. Then there exists an l' such that

\[B_{l'}(x_j) > 1/(2nB(w,l')) \]

- The upshot of S being substantial is that we discover a nuisance level l_1, such that

\[P_e(x_j) \geq A(w)/B(w,l_1) \]

and a substantial number of codewords have the

\[B_{l_1}(x_j) > 1/B(w,l_1) \]
A priori we don’t know whether we required a lot or a little pruning. We therefore take the weaker of the two bounds:

But if there existed a nuisance level l_1 then we know that for a substantial number of codewords such that

Hence we can repeat the process with this new bound on the distribution.
A priori we don’t know whether we required a lot or a little pruning. We therefore take the weaker of the two bounds:

\[P_e(C, p) \geq \min \left[A(w)\mu(w), \frac{A(w)}{B(w, l_1)} \right] \]

But if there existed a nuisance level \(l_1 \) then we know that for a substantial number codewords such that

Hence we can repeat the process with this new bound on the distribution.
A priori we don’t know whether we required a lot or a little pruning. We therefore take the weaker of the two bounds:

$$P_e(C, p) \geq \min\left[A(w)\mu(w), \frac{A(w)}{B(w, l_1)} \right]$$

But if there existed a nuisance level l_1 then we know that for a substantial number codewords such that

$$B_{l_1}(x) \geq \frac{1}{B(w, l_1)}$$

Hence we can repeat the process with this new bound on the distribution.
Our Bound

- Continuing in this way we eventually get

\[P_e(C, p) \geq \min \left[A(w)\mu(w) - \frac{A(l)}{B(w,l)} \right] \]

where \(0 \leq l \leq w \leq \delta_{LP} n \)

- Minimizing over \(l \) and \(w \) gives us our final bound.
Random Linear Codes

- It can be shown that, with high probability, the weight distribution of a random linear code converges to
 \[B_w = \exp[n(R + h(w) - 1)] \]

- Using this instead of Litsyn’s expression \(\mu \) leads us to believe that the expurgation bound
 \[E(R, p) \geq -\delta_{GV}(p)/2 \log 2p(1-p) \]
 is tight for a random linear code for very low rates.