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Basic Communication Complexity

» Three friends Alice, Bob, and Charlie each have some information
x,y,z and Charlie wants to compute some function P(x, y, z).

X

» To help Charlie, Alice sends a message m; to Bob, and then Bob
sends a message my to Charlie.
» Question: How large must the total length of the messages be for
Charlie to evaluate P(x,y, z) correctly?
> Deterministic: my(x), ma(my,y), out(mz,z) = P(x,y, z)
> Random: mi(x,r), ma(mu,y,r), out(ms, z, r) where r is public
random string. Require P,[out(my, z, r) = P(x,y, z)] > 9/10.
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Stream Algorithms Yield Communication Protocols

> Let @ be some stream problem. Suppose there's a reduction x — Sy,
y — Sz, z — S3 such that knowing Q(S; 0 S, 0 S3) solves P(x, y, z).

> An s-bit stream algorithm A for Q yields 2s-bit protocol for P: Alice
runs A of S;; sends memory state to Bob; Bob instantiates A with
state and runs it on S;; sends state to Charlie who finishes running
A on S3 and infers P(x,y,z) from Q(S510 5,0 S3).
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Communication Lower Bounds imply Stream Lower Bounds

» Had there been t players, the s-bit stream algorithm for @ would
have lead to a (t — 1)s bit protocol P.

» Hence, a lower bound of L on the communication required for P
implies s > L/(t — 1) bits of space are required to solve Q.
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» Consider a binary string x € {0,1}" and j € [n], e.g.,
x=(010110) j=3

and define INDEX(x, j) = x;
» Suppose Alice knows x and Bob knows ;.

» How many bits need to be sent by Alice for Bob to determine
INDEX(x, j) with probability 9/107 Q(n)
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Application: Median Finding

Thm: Any algorithm that returns the exact median of length 2n — 1
stream requires §(n) memory.

Reduction from Index: On input x € {0,1}", Alice generates
S; ={2i+x;:i€[n]}. Oninput j € [n], Bob generates
S, = {n—j copies of 0 and j — 1 copies of 2n + 2}. E.g.,

x=(010110) — {256,911,12}
j=3 — {0,0,0,14,14}

Then median(S5; U S2) = 2j + x; and this determines INDEX(x, j).
An s-space algorithm implies an s-bit protocol so

s =Q(n)

by the communication complexity of indexing.
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and let D1sJ;(C) = 1 if there is an all 1's column and 0 otherwise.
» Consider t players where P; knows i-th row of C.
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Application: Frequency Moments

1—2/k)

» Thm: A 2-approximation algorithm for Fy needs Q(n space.




Application: Frequency Moments

1—2/k)

» Thm: A 2-approximation algorithm for Fy needs Q(n space.

» Reduction from Set Disjointness:




Application: Frequency Moments

1—2/k)

» Thm: A 2-approximation algorithm for Fy needs Q(n space.

» Reduction from Set Disjointness: The i-th player generates set
Si={ji: =1}, eg,

0
— {4a 1747 5; 274a4}

0
0
0




Application: Frequency Moments

» Thm: A 2-approximation algorithm for Fy needs Q(n
» Reduction from Set Disjointness: The i-th player generates set
Si={ji: =1}, eg,

1-2/k) space.

— {4a 1747 5; 274a4}

> If all columns have weight 0 or 1: F,(S) <n




Application: Frequency Moments

1—2/k)

» Thm: A 2-approximation algorithm for Fy needs Q(n space.

» Reduction from Set Disjointness: The i-th player generates set
Si={ji: =1}, eg,

— {4a 1747 5; 274a4}

> If all columns have weight 0 or 1: F,(S) <n
> If there's column of weight t: Fi(S) > tk




Application: Frequency Moments

1—2/k)

Thm: A 2-approximation algorithm for Fy needs Q(n space.

Reduction from Set Disjointness: The i-th player generates set
Si={ji: =1}, eg,

— {4a 1747 5; 274a4}

If all columns have weight 0 or 1: Fi(S) < n
> If there's column of weight t: Fi(S) > tk
If t > 21/knl/k then a 2 approximation of Fi(S) distinguishes cases.




Application: Frequency Moments

1—2/k)

Thm: A 2-approximation algorithm for Fy needs Q(n space.

Reduction from Set Disjointness: The i-th player generates set
Si={ji: =1}, eg,

— {4a 1747 5; 2»4a4}

If all columns have weight 0 or 1: Fi(S) < n
If there's column of weight t: Fi(S) > t
If t > 21/knl/k then a 2 approximation of Fi(S) distinguishes cases.

An s-space 2-approximation implies an s(t — 1) bit protocol so
s = Q(n/t?) = Q(n'~?/¥)

by the communication complexity of set-disjointness.
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» Consider 2 binary vectors x,y € {0,1}", e.g.,
x=(0 1011 0)

y=(1 100 1 1)
and define the Hamming distance A(x,y) = |{i : x; # yi}|.

» Suppose Alice knows x and Bob knows y.

» How many bits need to be communicated to estimate A(x,y) up to
an additive /n error? Q(n) bits.
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Application: Distinct Elements

Thm: A (1 + €)-approximation algorithm for Fy needs Q(e~2) space.

Reduction from Hamming Approximation: On input x,y € {0,1}",
players form S; = {j: xj =1} and S, = {j : y; = 1}, eg,

(0101 10),(1 100 1 1)— {451,256}

Note that 2Fy(S) = |x| + |y| + A(x, y).

We may assume |x| and |y| are known Bob. Hence, a (1 + ¢)
approximation of Fy yields an additive approximation to A(x, y) of

e(Ix + Iyl + A(x,y))/2 < ne

This is less than \/nif e < 1/4/n
An s-space (1 + €)-approximation implies an s bit protocol so

s=Q(n) = Q(1/6)
by communication complexity of approximating Hamming distance.
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» Information statistics approach is based on analyzing the
“information revealed” about the input from the messages.

» Useful for proving bounds on complicated functions in terms of
simpler problems, e.g., proving a bound on

Diss; (M) = \/ AND(Myj, ..., M)

J€ln]

by first establishing a bound on AND;.
» We'll first give some definitions and then run through an example.
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Information Theory Definitions

Let X and Y be random variables.

Entropy: H(X) =3, —P[X =i]lgP[X =i]

Conditional Entropy: H(X|Y) :=E, y[H(X|Y = y)] < H(X)
Mutual Information: 1(X : Y) = H(X) — H(X]Y)

HOO H(Y)
Useful Facts:

> If X takes at most 2¢ values, then H(X) <
» If X and Y are independent, then /(XY : Z) > (X : Z)+ I(Y : Z).
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» Suppose you have a protocol I1 for a two-party communication
problem P in which Alice and Bob have random inputs X and Y.

» Let M be the (random) message sent by Alice and define:
cost(M) = max|M|

and
icost(M) = I(M : X)

» Note that

icost(M) = I(M : X) < H(M) < cost() .
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Example: Indexing

» We'll prove a lower bound on the information cost of INDEX where
X €r {0,1}" in terms a simpler problem “Ecno.”
» Ecno: Alice has a single bit B €g {0,1} and Bob wants to output
B with probability at least 1 — 4.
» A protocol lMNiypex for INDEX yields a protocol MNgeno,i for ECHO
where | is hard-coded into the protocol:
1. Given B, Alice picks X; €r {0,1} for j # i and generates:

X = (X1, X, .., Xi—1, B, Xis1, ..., Xn)

2. She sends the message M she'd have sent in Mixpex if she'd had X.
3. Bob receives M and outputs the value he'd have returned in MNixpex
had his input been j.
> Note 1: If Mixpex is correct with probability 1 — ¢ then Mgcgo,i is
also correct with probability 1 — 4.

» Note 2: The message in MNixpex on input X €g {0,1}" is distributed
identically to the message in Mgepo,; on input B €g {0,1}.
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Relating Information Cost of INDEX and ECHO

» Since Xi, X3, ..., X, are independent:

cost(Mixpex) > icost(Minpex)
(X0 Xa ... Xy : M)
I(Xy : M)+ 11X M)+ ...+ (X, : M)
= icost(Mgeuo,1) + icost(Meeuo.2) + - - - + icost(Mecuo,n)

» By Fano's inequality, solving ECHO with probability > 1 — § requires
icost(Mgeno,i) = H(B) — H(B|M) > 1 — H,(9)

where Hy(p) = —plgp — (1 — p)lg(1 — p).
» Hence, cost(Mpex) > (1 — Ha(d))n.
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> Express DisJ; in terms of AND; where AND;(xi,...,x:) = []; xi:

Disyy(C) = \/ AND (G, ..., Crj)

J€ln]

Define input C by Cp; €r {0,1} for D; € [t]. All other entries 0.

Let M = (My,..., M;_1) be the messages sent in a t-party protocol
and define the information cost of a protocol as:

icost(M|D) = I(C : M|D) where D =(Dy,...,D,).

A protocol for DiSJ;, yields n different protocols Maxp,,i for AND;:

icost(Mpys,, |D) > Z icost(Manp,,i|D) -
i€[n]

Result follows by showing icost(Maxp,.i|D) = Q(1/t).
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Hamming Approximation Lower Bound

Some communication results can be proved via a reduction from other
communication results.

Theorem
If Alice and Bob have x,y € {0,1}" and Bob wants to determine A(x,y)
up to ++/n with probability 9/10, then Alice must send Q(n) bits.
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knows j € [t]. Let's assume |z| = t/2 and this is odd.
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>

Reduction from INDEX problem: Alice knows z € {0,1}* and Bob
knows j € [t]. Let's assume |z| = t/2 and this is odd.

» Alice and Bob pick r €g {—1,1}* using public random bits.
> Alice computes sign(r.z) and Bob computes sign(r;)
» Lemma: For some constant ¢ > 0,

_ _ 1/2 if z7=10
P [sign(r.z) = sign(r;)] = { 1/24+c/Vt ifz=1

Repeat n = 25t/c? times to construct
x; = I[sign(r.z) =+] and y; = I[sign(r;) = +]

Note that
zj=0=E[A(x,y)] = n/2
zi=1=E[A(x,y)]=n/2—-5Vn
and by Chernoff bounds P [|A(x,y) — E[A(x, y)] | = 2y/n] < 1/10.



Hamming Approximation Lower Bound

>

Reduction from INDEX problem: Alice knows z € {0,1}* and Bob
knows j € [t]. Let's assume |z| = t/2 and this is odd.

» Alice and Bob pick r €g {—1,1}* using public random bits.
> Alice computes sign(r.z) and Bob computes sign(r;)

» Lemma: For some constant ¢ > 0,

_ _ 1/2 if z7=10
P [sign(r.z) = sign(r;)] = { 1/24+c/Vt ifz=1

Repeat n = 25t/c? times to construct
x; = I[sign(r.z) =+] and y; = I[sign(r;) = +]

Note that
zi=0=E[A(x,y)] =n/2
5 =1=E[A(y)] = n/2— 57
and by Chernoff bounds P [|A(x,y) — E[A(x, y)] | = 2y/n] < 1/10.
Hence, a +/n approx. of A(x,y) determines z; with prob. > 9/10.
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Claim
Let A be the event A = {sign(r.z) = r;j}. For some constant ¢ > 0,

1/2 ifzj=0
P[A]_{ 1/24+c/Vt ifzj=1

> If z; = 0: sign(r.z) and r; are independent so P[A] = 1/2.
> If zi =1: Let s = r.z — rj, the sum of an even number (¢ =t/2 — 1)
of independent +1 values. Then,

P[A] =P[Als =0]P[s = 0] + P[A|s # 0] P[s # 0]

» P[s=0] = (Zfz)/Zz = 2¢/+/t for some constant ¢ > 0.

» P[Als=0]=1sinces=0=rz=r = A

» P[Als#0]=1/2sinces#0=s={...,—4,-2,2,4,...}. Hence,
sign(r.z) = sign(s) which is independent of r;.

> SOP[A]:p[szo]jL@:%jL@:%Jrﬁ_
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