Data Streams & Communication Complexity
Lecture 2: Graph Spanners, Sparsifiers, & Sketches

Andrew McGregor, UMass Amherst

Graph Streams

» Consider a stream of m edges

(e1,€2,. 00 ..., €m)

defining a graph G with nodes V = [n] and E = {ey, ...

Graph Streams

» Consider a stream of m edges

(e1,€2,. 00 ..., €m)

defining a graph G with nodes V = [n] and E = {ey,...,en}
» Semi-streaming: What can we compute with O(n - polylog n) space?

Outline

Spanners and Distances

Sparsifiers and Cuts

Sketches and Dynamic Graphs
Connectivity
k-Connectivity
Minimum Cut

Outline

Spanners and Distances

Graph Distances

» Goal: Approximate length of the shortest path dg(u, v) between a
pair of nodes u,v € G,

Graph Distances

» Goal: Approximate length of the shortest path dg(u, v) between a
pair of nodes u,v € G,

Definition
An a-spanner of graph G is a subgraph H such that for any nodes u, v,

de(u,v) < dy(u,v) < adg(u, v) .

Warm-Up: Connectivity

» Goal: Compute the number of connected components.

Warm-Up: Connectivity

» Goal: Compute the number of connected components.
» Algorithm: Maintain a spanning forest F

Warm-Up: Connectivity

» Goal: Compute the number of connected components.
» Algorithm: Maintain a spanning forest F
» F+ 0

Warm-Up: Connectivity

» Goal: Compute the number of connected components.
» Algorithm: Maintain a spanning forest F

> F+ 0
» For each edge (u, v), if v and v aren’t connected in F,

F+ FU{(u,v)}

Warm-Up: Connectivity

» Goal: Compute the number of connected components.
» Algorithm: Maintain a spanning forest F

> F+ 0
» For each edge (u, v), if v and v aren’t connected in F,

F+ FU{(u,v)}

> Analysis:

Warm-Up: Connectivity

» Goal: Compute the number of connected components.
» Algorithm: Maintain a spanning forest F

> F+ 0
» For each edge (u, v), if v and v aren’t connected in F,

F+ FU{(u,v)}

> Analysis:
> F has the same number of connected components as G

Warm-Up: Connectivity

» Goal: Compute the number of connected components.
» Algorithm: Maintain a spanning forest F

> F+ 0
» For each edge (u, v), if v and v aren’t connected in F,

F+ FU{(u,v)}

> Analysis:
> F has the same number of connected components as G
> F has at most n — 1 edges.

Warm-Up: Connectivity

Goal: Compute the number of connected components.
Algorithm: Maintain a spanning forest F

» F+ 0

» For each edge (u, v), if v and v aren’t connected in F,

F+ FU{(u,v)}

Analysis:
> F has the same number of connected components as G
> F has at most n — 1 edges.

Thm: Can count connected components in O(nlog n) space.

Spanners

» Algorithm:

Spanners

» Algorithm:
> H<« 0.

Spanners

» Algorithm:

> H+ 0.
» For each edge (u, v), if du(u,v) >2t, H+ HU{(u,v)}

Spanners

» Algorithm:

> H« 0.

» For each edge (u, v), if du(u,v) >2t, H+ HU{(u,v)}
> Analysis:

Spanners

» Algorithm:

> H« 0.

» For each edge (u, v), if du(u,v) >2t, H+ HU{(u,v)}
> Analysis:

» Distances increase by at most a factor 2t — 1 since an edge (u, v) is
only forgotten if there's already a detour of length at most 2t — 1.

Spanners

» Algorithm:
> H<« 0.
» For each edge (u, v), if du(u,v) >2t, H+ HU{(u,v)}
> Analysis:
» Distances increase by at most a factor 2t — 1 since an edge (u, v) is
only forgotten if there's already a detour of length at most 2t — 1.
> Lemma: H has O(n”l/t) edges since all cycles have length > 2t 4 1.

Spanners

» Algorithm:
> H<« 0.
» For each edge (u, v), if du(u,v) >2t, H+ HU{(u,v)}
> Analysis:
» Distances increase by at most a factor 2t — 1 since an edge (u, v) is
only forgotten if there's already a detour of length at most 2t — 1.
> Lemma: H has O(n”l/t) edges since all cycles have length > 2t 4 1.

Theorem
Can (2t — 1)-approximate all distances using only O(n**/t) space.

Proof of Lemma

Lemma
A graph H on n nodes with no cycles of length < 2t has O(n”l/t) edges.

Proof of Lemma

Lemma
A graph H on n nodes with no cycles of length < 2t has O(n”l/t) edges.

> Let d = 2m/n be average degree of H.

Proof of Lemma

Lemma
A graph H on n nodes with no cycles of length < 2t has O(n”l/t) edges.

> Let d = 2m/n be average degree of H.

> Let J be the graph formed by removing all nodes with degree less
than d/2.

Proof of Lemma

Lemma
A graph H on n nodes with no cycles of length < 2t has O(n”l/t) edges.

> Let d = 2m/n be average degree of H.

> Let J be the graph formed by removing all nodes with degree less
than d/2. Note J # () because < n(d/2) = m edges are removed.

Proof of Lemma

Lemma
A graph H on n nodes with no cycles of length < 2t has O(n”l/t) edges.

> Let d = 2m/n be average degree of H.

> Let J be the graph formed by removing all nodes with degree less
than d/2. Note J # () because < n(d/2) = m edges are removed.

» Grow a BFS of depth t from an arbitrary node in J.

Proof of Lemma

Lemma
A graph H on n nodes with no cycles of length < 2t has O(n”l/t) edges.

> Let d = 2m/n be average degree of H.

> Let J be the graph formed by removing all nodes with degree less
than d/2. Note J # () because < n(d/2) = m edges are removed.

» Grow a BFS of depth t from an arbitrary node in J.

» Because a) no cycles of length less than 2t + 1 and b) all degrees in
J are at least d/2, number of nodes at t-th level of BFS is at least

(d/2—1)"=(m/n—1)f

Proof of Lemma

Lemma
A graph H on n nodes with no cycles of length < 2t has O(n”l/t) edges.

> Let d = 2m/n be average degree of H.

> Let J be the graph formed by removing all nodes with degree less
than d/2. Note J # () because < n(d/2) = m edges are removed.

» Grow a BFS of depth t from an arbitrary node in J.

» Because a) no cycles of length less than 2t + 1 and b) all degrees in
J are at least d/2, number of nodes at t-th level of BFS is at least

(d/2—1)"=(m/n—1)f

» But (m/n— 1)t <|J| < n and therefore m < n + n**1/t,

Outline

Sparsifiers and Cuts

Cuts and Sparsifiers

> Goal: Approximate capacity Cg(S) of any cut (S,V\ S) in G.

Cuts and Sparsifiers

> Goal: Approximate capacity Cg(S) of any cut (S,V\ S) in G.

Definition
An a-sparsifier of graph G is a weighted subgraph H such that for any
cut (S,V'\S),

Co(S) < Cu(S) < ale(S) -

where Cg and Cy is the capacity of the cut in G and H respectively.

Cuts and Sparsifiers

> Goal: Approximate capacity Cg(S) of any cut (S5,V \ S) in G.

Definition
An a-sparsifier of graph G is a weighted subgraph H such that for any
cut (S,V'\S),

Co(S) < Cu(S) < ale(S) -

where Cg and Cy is the capacity of the cut in G and H respectively.

Theorem (Batson, Spielman, Srivastava)
Exists offline algorithm A returning (1 + €)-sparsifier with O(ne=2) edges.

Cuts and Sparsifiers

> Goal: Approximate capacity Cg(S) of any cut (S5,V \ S) in G.

Definition
An a-sparsifier of graph G is a weighted subgraph H such that for any
cut (S,V'\S),

Co(S) < Cu(S) < ale(S) -

where Cg and Cy is the capacity of the cut in G and H respectively.

Theorem (Batson, Spielman, Srivastava)
Exists offline algorithm A returning (1 + €)-sparsifier with O(ne=2) edges.

> Idea: Use A as a black box to recursively sparsify graph stream.

Basic Properties of Sparsifiers

Lemma
If Hy and H, are a-sparsifiers of Gy and G,. Then Hy U H; is an
a-sparsifier of Gy U G;.

Basic Properties of Sparsifiers

Lemma
If Hy and H, are a-sparsifiers of Gy and G,. Then Hy U H; is an
a-sparsifier of Gy U G;.

Lemma
If J is an a-sparsifiers of H and H is an a-sparsifier of G. Then J is an
a?-sparsifier of G.

Stream Sparsification

» Divide stream into segments Gy, G, ... each of t = O(ne~?2) edges.

Stream Sparsification

» Divide stream into segments Gy, G, ... each of t = O(ne~?2) edges.
» Consider binary tree over segments

[G=G1UG20G3UGAUG5UGEUGTUGS]

G1uG2uG3uG4 G5uGBUG7UG8

[G1uG2] [G3UG4] [G5UG6] [G70G8

]
G1/ [\GZ [Ga/ l\G4 e / [\GG [@ / [\GS

Stream Sparsification

» Divide stream into segments Gy, G, ... each of t = O(ne~?2) edges.
» Consider binary tree over segments

[G=G1UG20G3UGAUG5UGEUGTUGS]

G1uG2uG3uG4 G5uGBUG7UG8

[G1uG2] [G3UG4] [G5UG6] [G70G8

]
G1/ [\GZ [Ga/ l\G4 e / [\GG [@ / [\GS

» Recursively use A with parameter 1 + ~:

Stream Sparsification

» Divide stream into segments Gy, G, ... each of t = O(ne~?2) edges.
» Consider binary tree over segments

[G=G1UG20G3UGAUG5UGEUGTUGS]

G1uG2uG3uG4 G5uGBUG7UG8

[G1uG2] [G3UG4] [G5UG6] [G70G8

]
G1/ [\GZ [Ga/ l\G4 e / [\GG [@ / [\GS

» Recursively use A with parameter 1 + ~:
> Read in Gi: compute A(Gi) and forget G;

Stream Sparsification

» Divide stream into segments Gy, G, ... each of t = O(ne~?2) edges.
» Consider binary tree over segments

[G=G1UG20G3UGAUG5UGEUGTUGS]

G1uG2uG3uG4 G5uGBUG7UG8

[G1uG2] [G3UG4] [G5UG6] [G70G8

]
G1/ [\GZ [Ga/ l\G4 e / [\GG [@ / [\GS

» Recursively use A with parameter 1 + ~:
> Read in Gi: compute A(Gi) and forget G;
» Read in G,: compute A(G,) and forget G,

Stream Sparsification

» Divide stream into segments Gy, G, ... each of t = O(ne~?2) edges.
» Consider binary tree over segments

[G=G1UG20G3UGAUG5UGEUGTUGS]

G1uG2uG3uG4 G5uGBUG7UG8

[G1uG2] [G3UG4] [G5UG6] [G70G8

]
G1/ [\GZ [Ga/ l\G4 e / [\GG [@ / [\GS

» Recursively use A with parameter 1 + ~:
> Read in Gi: compute A(Gi) and forget G;
» Read in G,: compute A(G,) and forget G,
» Compute A(A(G1) U.A(G)) and forget A(G:1) and A(G)

Stream Sparsification

» Divide stream into segments Gy, G, ... each of t = O(ne~?2) edges.
» Consider binary tree over segments

[G=G1UG20G3UGAUG5UGEUGTUGS]

G1uG2uG3uG4 G5uGBUG7UG8

[G1uG2] [G3UG4] [G5UG6] [G70G8

]
Gw/ [\GZ [Ga/ l\G4 e / [\GG [@ / [\GS

» Recursively use A with parameter 1 + ~:
> Read in Gi: compute A(Gi) and forget G;
Read in Gy: compute A(Gz) and forget Gy
Compute A(A(G1) U A(G,)) and forget A(G1) and A(G,)
Read in G3: compute A(Gs) and forget Gz

Stream Sparsification

» Divide stream into segments Gy, G, ... each of t = O(ne~?2) edges.
» Consider binary tree over segments

[G=G1UG20G3UGAUG5UGEUGTUGS]

G1uG2uG3uG4 G5uGBUG7UG8

[G1uG2] [G3UG4] [G5UG6] [G70G8

]
Gw/ [\GZ [Ga/ l\G4 e / [\GG [@ / [\GS

» Recursively use A with parameter 1 + ~:
> Read in Gi: compute A(Gi) and forget G;
Read in Gy: compute A(Gz) and forget Gy
Compute A(A(G1) U A(G,)) and forget A(G1) and A(G,)
Read in G3: compute A(Gs) and forget Gz
Read in G;: compute A(G;) and forget G,

Stream Sparsification

» Divide stream into segments Gy, G, ... each of t = O(ne~?2) edges.
» Consider binary tree over segments

[G=G1UG20G3UGAUG5UGEUGTUGS]

G1uG2uG3uG4 G5uGBUG7UG8

[G1uG2] [G3UG4] [G5UG6] [G70G8

]
Gw/ [\GZ [Ga/ l\G4 e / [\GG [@ / [\GS

» Recursively use A with parameter 1 + ~:
> Read in Gi: compute A(Gi) and forget G;
Read in Gy: compute A(Gz) and forget Gy
Compute A(A(G1) U A(G,)) and forget A(G1) and A(G,)
Read in G3: compute A(Gs) and forget Gz
Read in G;: compute A(G;) and forget G,
Compute A(A(Gs) U .A(Gs)) and forget A(Gs) and A(Gs)

Stream Sparsification

» Divide stream into segments Gy, G, ... each of t = O(ne~?2) edges.
» Consider binary tree over segments

[G=G1UG20G3UGAUG5UGEUGTUGS]

G1uG2uG3uG4 G5uGBUG7UG8

[G1uG2] [G3UG4] [G5UG6] [G70G8

]
Gw/ [\GZ [Ga/ l\G4 e / [\GG [@ / [\GS

» Recursively use A with parameter 1 + ~:

> Read in Gi: compute A(Gi) and forget G;
Read in Gy: compute A(Gz) and forget Gy
Compute A(A(G1) U A(G,)) and forget A(G1) and A(G,)
Read in G3: compute A(Gs) and forget Gz
Read in G;: compute A(G;) and forget G,
Compute A(A(Gs) U .A(Gs)) and forget A(Gs) and A(Gs)
Compute A(A(A(G1) U A(G2)) U A(A(Gs) U.A(Gs))) and forget ...

Stream Sparsification

» Divide stream into segments Gy, G, ... each of t = O(ne~?2) edges.
» Consider binary tree over segments

[G=G1UG20G3UGAUG5UGEUGTUGS]

G1uG2uG3uG4 G5uGBUG7UG8

[G1uG2] [G3UG4] [G5UG6] [G70G8

]
Gw/ [\GZ [Ga/ l\G4 e / [\GG [@ / [\GS

» Recursively use A with parameter 1 + ~:
> Read in Gi: compute A(Gi) and forget G;
Read in Gy: compute A(Gz) and forget Gy
Compute A(A(G1) U A(G,)) and forget A(G1) and A(G,)
Read in G3: compute A(Gs) and forget Gz
Read in G;: compute A(G;) and forget G,
Compute A(A(Gs) U .A(Gs)) and forget A(Gs) and A(Gs)
» Compute A(A(A(G1) U A(G)) U A(A(Gs) U.A(Gs))) and forget ...
» Results in a (1 + «)'°8 M-sparsifier for G in O(ny~2log m) space.

12/25

Stream Sparsification

Divide stream into segments Gy, Gy, ... each of t = O(ne~2) edges.
Consider binary tree over segments

[G=G1UG20G3UGAUG5UGEUGTUGS]

G1uG2uG3uG4 G5uGBUG7UG8

[G1uG2] [G3UG4] [G5UG6] [G70G8

]
Gw/ [\GZ [Ga/ l\G4 e / [\GG [@ / [\GS

Recursively use A with parameter 1 + ~:
> Read in Gi: compute A(Gi) and forget G;
Read in Gy: compute A(Gz) and forget Gy
Compute A(A(G1) U A(G,)) and forget A(G1) and A(G,)
Read in G3: compute A(Gs) and forget Gz
Read in G;: compute A(G;) and forget G,
Compute A(A(Gs) U .A(Gs)) and forget A(Gs) and A(Gs)
» Compute A(A(A(G1) U A(G)) U A(A(Gs) U.A(Gs))) and forget ...
Results in a (1 + 7)'°® ™-sparsifier for G in O(ny~2 log m) space.
If v = O(e/ log m), we get (1 + ¢)-sparsifier in O(ne2 log® m) space.

12/25

Outline

Sketches and Dynamic Graphs
Connectivity
k-Connectivity
Minimum Cut

Dynamic Graph Streams

» Consider a stream of edges inserts and deletions, e.g.,
(add(1,2),add(1,4),add(2, 3), add(1,3), add(4,5), add(3, 4), del(1, 4))

would result in the following graph

Dynamic Graph Streams

» Consider a stream of edges inserts and deletions, e.g.,
(add(1,2),add(1,4),add(2, 3), add(1,3), add(4,5), add(3, 4), del(1, 4))

would result in the following graph

() ()
od
(—
» Dynamic semi-streaming: What can we compute about a dynamic
graph with only O(n - polylog n) space?

Outline

Spanners and Distances

Sparsifiers and Cuts

Sketches and Dynamic Graphs
Connectivity

Connectivity

» Goal: Test whether G is connected.

Connectivity

» Goal: Test whether G is connected.

» Our algorithm will actually return a spanning forest of G.

Connectivity

» Goal: Test whether G is connected.

» Our algorithm will actually return a spanning forest of G.

Lemma
Consider the offline algorithm:

1. For each node, select an incident edge
2. Contract selected edges.
3. Repeat until no edges remain.

After log n steps, number of nodes is number of connected components
in G. Furthermore, set of selected edges contains a spanning forest.

Connectivity

» Goal: Test whether G is connected.

» Our algorithm will actually return a spanning forest of G.

Lemma
Consider the offline algorithm:

1. For each node, select an incident edge
2. Contract selected edges.
3. Repeat until no edges remain.

After log n steps, number of nodes is number of connected components
in G. Furthermore, set of selected edges contains a spanning forest.

» /dea: Emulate above algorithm in a single pass using £p-sampling of
a particular vector representation of G.

Useful Graph Representation
» Represent graph on [n] with edges E C [n] x [n], as matrix
G e {-1,0,1}()
with non-zero entries G;) = 1, Gy) = —1if (j, k) € E.

Useful Graph Representation
» Represent graph on [n] with edges E C [n] x [n], as matrix
G e {-1,0,1}()
with non-zero entries G; ;) = 1, Gy) = —1if (j, k) € E. E.g,,

becomes,

(12) (13) (1,4) (1,5) (23) (24) (25 (34) (3
0 0
1
-1

0

Useful Graph Representation
» Represent graph on [n] with edges E C [n] x [n], as matrix
G e {-1,0,1}()
with non-zero entries G; ;) = 1, Gy) = —1if (j, k) € E. E.g,,

becomes,

(12) (13) (L4 (15 (23) (24 (25 (G4 @
0 0
1
-1
~1
0 0

» Lemma: For S C [n], support(}_;cs ai) = E(S) where a; is ith row
of A and E(S) are edges across cut (S, V' \ S).

17/25

Connectivity Algorithm

> Let A(a1),A(a2),...,A(an) be sketches for ¢5 sampling. Can
post-process each sketch to find incident edge on each node.

Connectivity Algorithm

> Let A(a1),A(a2),...,A(an) be sketches for ¢5 sampling. Can
post-process each sketch to find incident edge on each node.

> Suppose we found edges that connected, e.g., S = {a1, a2, a3}. How
can find an edge e € E(S) without taking another pass?

Connectivity Algorithm

> Let A(a1),A(a2),...,A(an) be sketches for ¢5 sampling. Can
post-process each sketch to find incident edge on each node.

> Suppose we found edges that connected, e.g., S = {a1, a2, a3}. How
can find an edge e € E(S) without taking another pass?

» Linearity: Because of linearity we can just add sketches,

A(al) + A(az) + A(a3) = A(31 + ax + 33) —> e c E(S)

Connectivity Algorithm

Let A(a1), A(a2), - .., A(a,) be sketches for £y sampling. Can
post-process each sketch to find incident edge on each node.

Suppose we found edges that connected, e.g., S = {a1, a, a3}. How
can find an edge e € E(S) without taking another pass?

Linearity: Because of linearity we can just add sketches,
A(ar) + A(a2) + Aas) = A(a1 + a + a3) — e € E(S)

Under-the-rug: Actually we need to use log n independent sketch
matrices B, C, D, ... to emulate each round of algorithm. But this is
fine: we can compute each B(a;), C(a;), D(a;), ... during same pass.

Outline

Spanners and Distances

Sparsifiers and Cuts

Sketches and Dynamic Graphs

k-Connectivity

k-Connectivity

» Goal: Test whether all cuts of G have size at least k.

k-Connectivity

» Goal: Test whether all cuts of G have size at least k.

» Our algorithm actually returns a certificate of k-connectivity.

k-Connectivity

» Goal: Test whether all cuts of G have size at least k.

» Our algorithm actually returns a certificate of k-connectivity.

Definition
We say subgraph H is a k-certificate for G if,

Veuts (5,V\S): Cu(S) > min(Cg(S), k) .

k-Connectivity

» Goal: Test whether all cuts of G have size at least k.

» Our algorithm actually returns a certificate of k-connectivity.

Definition
We say subgraph H is a k-certificate for G if,

Veuts (5,V\S): Cu(S) > min(Cg(S), k) .

Lemma
Let F; be a spanning forest of G and, for i > 2, let F; be a spanning
forest of G\ (FLU...UF;_1). Then FU...UFy is a k-certificate for G.

k-Connectivity

» Goal: Test whether all cuts of G have size at least k.

» Our algorithm actually returns a certificate of k-connectivity.

Definition
We say subgraph H is a k-certificate for G if,

Veuts (5,V\S): Cu(S) > min(Cg(S), k) .

Lemma
Let F; be a spanning forest of G and, for i > 2, let F; be a spanning
forest of G\ (FLU...UF;_1). Then FU...UFy is a k-certificate for G.

> [dea: Emulate above algorithm in a single pass by exploiting linearity
of CONNECTIVITY algorithm.

k-Connectivity Algorithm

» Can find F; using the CONNECTIVITY algorithm.

k-Connectivity Algorithm

» Can find F; using the CONNECTIVITY algorithm.
» But how can we find F, without taking another pass over the data?

k-Connectivity Algorithm

» Can find F; using the CONNECTIVITY algorithm.
» But how can we find F, without taking another pass over the data?

> Linearity: Suppose we have independent CONNECTIVITY sketches
A(G) and B(G) of the graph G.

k-Connectivity Algorithm

» Can find F; using the CONNECTIVITY algorithm.
» But how can we find F, without taking another pass over the data?

> Linearity: Suppose we have independent CONNECTIVITY sketches
A(G) and B(G) of the graph G.
1. Construct F; from A(G)

k-Connectivity Algorithm

» Can find F; using the CONNECTIVITY algorithm.
» But how can we find F, without taking another pass over the data?

> Linearity: Suppose we have independent CONNECTIVITY sketches
A(G) and B(G) of the graph G.
1. Construct F; from A(G)
2. Construct B(F1)

k-Connectivity Algorithm

» Can find F; using the CONNECTIVITY algorithm.
» But how can we find F, without taking another pass over the data?

> Linearity: Suppose we have independent CONNECTIVITY sketches
A(G) and B(G) of the graph G.
1. Construct F; from A(G)
2. Construct B(F1)
3. Then B(G) — B(F1) = B(G \ F1) can be used to construct F».

k-Connectivity Algorithm

Can find F; using the CONNECTIVITY algorithm.
But how can we find F, without taking another pass over the data?

Linearity: Suppose we have independent CONNECTIVITY sketches
A(G) and B(G) of the graph G.

1. Construct F; from A(G)

2. Construct B(F1)

3. Then B(G) — B(F1) = B(G \ F1) can be used to construct F».
Given A(G), B(G), C(G) we would find F; and F, as above. We
then find F3 from

C(G) — C(Fl) — C(Fg) = C(G \ FU Fz) R

k-Connectivity Algorithm

Can find F; using the CONNECTIVITY algorithm.
» But how can we find F, without taking another pass over the data?

> Linearity: Suppose we have independent CONNECTIVITY sketches
A(G) and B(G) of the graph G.
1. Construct F; from A(G)
2. Construct B(F1)
3. Then B(G) — B(F1) = B(G \ F1) can be used to construct F».

Given A(G), B(G), C(G) we would find F; and F, as above. We
then find F3 from

C(G) — C(Fl) — C(Fg) = C(G \ FU Fz) R

And so on... resulting algorithm, CONNECTIVITY, requires one
pass and uses O(k - n - polylog n) space.

Outline

Spanners and Distances

Sparsifiers and Cuts

Sketches and Dynamic Graphs

Minimum Cut

Estimating Minimum Cut

» Goal: Estimate the size of the min-cut up to a (1 + €) factor.

Estimating Minimum Cut

» Goal: Estimate the size of the min-cut up to a (1 + €) factor.

» If min-cut size is O(e~2 - polylog n) then CONNECTIVITY algorithm
can find exact min-cut exactly in O(e=2 - n - polylog n) space.

Estimating Minimum Cut

» Goal: Estimate the size of the min-cut up to a (1 + €) factor.

» If min-cut size is O(e~2 - polylog n) then CONNECTIVITY algorithm
can find exact min-cut exactly in O(e=2 - n - polylog n) space.

» What can be done if min-cut is large?

Estimating Minimum Cut

» Goal: Estimate the size of the min-cut up to a (1 + €) factor.

» If min-cut size is O(e~2 - polylog n) then CONNECTIVITY algorithm
can find exact min-cut exactly in O(e=2 - n - polylog n) space.

» What can be done if min-cut is large?

Theorem (Karger)

Let G = (V, E) be an unweighted graph with min-cut value . If we
sample each edge with probability

p>p =61t 2logn

and assign weight 1/p to sampled edges, then the resulting graph is an
(1 + €)-sparsification of G with high probability.

Estimating Minimum Cut

» Goal: Estimate the size of the min-cut up to a (1 + €) factor.

» If min-cut size is O(e~2 - polylog n) then CONNECTIVITY algorithm
can find exact min-cut exactly in O(e=2 - n - polylog n) space.

» What can be done if min-cut is large?

Theorem (Karger)

Let G = (V, E) be an unweighted graph with min-cut value . If we
sample each edge with probability

p>p =61t 2logn

and assign weight 1/p to sampled edges, then the resulting graph is an
(1 + €)-sparsification of G with high probability.

» /dea: Subsample the input graph at different rates and use
CONNECTIVITY to compute min-cut size if it's small enough.

Min-Cut Algorithm

> Let h; be a hash function such that for each e € [n] x [n]

Plhi(e) =1] =1/2

Min-Cut Algorithm

> Let h; be a hash function such that for each e € [n] x [n]

Plhi(e) =1] =1/2

> Let G; = (V,E) where E; = {e € E: hi(e) =1}

Min-Cut Algorithm

> Let h; be a hash function such that for each e € [n] x [n]

Plhi(e) =1] =1/2

> Let G; = (V,E) where E; = {e € E: hi(e) =1}
» Let H; = CONNECTIVITY(G;) where k := 24¢2logn

Min-Cut Algorithm
> Let h; be a hash function such that for each e € [n] x [n]
Plhi(e) =1] =1/2

> Let G; = (V,E) where E; = {e € E: hi(e) =1}
» Let H; = CONNECTIVITY(G;) where k := 24¢2logn

» Post-Processing: Let p; be min-cut size of H;. Return

2y where j = min{i: pu; < k}

Min-Cut Algorithm
> Let h; be a hash function such that for each e € [n] x [n]
Plhi(e) =1] =1/2

Let G; = (V, E;) where E; ={e € E : hj(e) =1}
Let H; = CONNECTIVITY,(G;) where k := 24e~2log n

Post-Processing: Let u; be min-cut size of H;. Return

2y where j = min{i: pu; < k}

Analysis:
> Let \; be the size of min-cut of G;

Min-Cut Algorithm
> Let h; be a hash function such that for each e € [n] x [n]
Plhi(e) =1] =1/2

Let G; = (V, E;) where E; ={e € E : hj(e) =1}
Let H; = CONNECTIVITY,(G;) where k := 24e~2log n

Post-Processing: Let u; be min-cut size of H;. Return

2.y where j =min{i: pu; < k}

Analysis:
> Let A; be the size of min-cut of G;
> Karger's result implies 2'\; = (1 £ €)X forall i =0,1,...,[lg1l/p"].

Min-Cut Algorithm
> Let h; be a hash function such that for each e € [n] x [n]
Plhi(e) =1] =1/2

Let G; = (V, E;) where E; ={e € E : hj(e) =1}
Let H; = CONNECTIVITY,(G;) where k := 24e~2log n

Post-Processing: Let u; be min-cut size of H;. Return

2.y where j =min{i: pu; < k}

Analysis:
> Let \; be the size of min-cut of G;
> Karger's result implies 2'\; = (1 £ €)X for all i = 0,1,..., |lg1/p*].
> If A\ < k, CONNECTIVITY algorithm guarantees \; = p;.

Min-Cut Algorithm
> Let h; be a hash function such that for each e € [n] x [n]
Plhi(e) =1] =1/2

Let G; = (V, E;) where E; ={e € E : hj(e) =1}
Let H; = CONNECTIVITY,(G;) where k := 24e~2log n

Post-Processing: Let u; be min-cut size of H;. Return

2.y where j =min{i: pu; < k}

Analysis:

Let \; be the size of min-cut of G;

Karger's result implies 2'\; = (1 £ e)X forall i =0,1,...,|lg1/p"].
If A\ < k, CONNECTIVITY algorithm guarantees \;j = p;.

Lemma: j < |lg1/p*|

vy vy VY

Min-Cut Algorithm

> Let h; be a hash function such that for each e € [n] x [n]

Plhi(e) =1] =1/2

Let G; = (V, E;) where E; ={e € E : hj(e) =1}
Let H; = CONNECTIVITY,(G;) where k := 24e~2log n

Post-Processing: Let u; be min-cut size of H;. Return
2.y where j =min{i: pu; < k}

Analysis:

Let \; be the size of min-cut of G;

Karger's result implies 2'\; = (1 £ e)X forall i =0,1,...,|lg1/p"].
If A\ < k, CONNECTIVITY algorithm guarantees \;j = p;.

Lemma: j < |lg1/p*|

vy vy VY

Total space is O(k - n - polylog n) = O(¢~2 - n - polylog n).

Min-Cut Algorithm

> Let h; be a hash function such that for each e € [n] x [n]
Plhi(e) =1] =1/2

> Let G; = (V,E) where E; = {e € E: hi(e) =1}
» Let H; = CONNECTIVITY(G;) where k := 24¢2logn

» Post-Processing: Let p; be min-cut size of H;. Return

2.y where j =min{i: pu; < k}

Analysis:

Let \; be the size of min-cut of G;

Karger's result implies 2'\; = (1 £ e)X forall i =0,1,...,|lg1/p"].
If A\ < k, CONNECTIVITY algorithm guarantees \;j = p;.

Lemma: j < |lg1/p*|

vy vy VY

Total space is O(k - n - polylog n) = O(¢~2 - n - polylog n).
» Can extend these ideas to get (1 + €)-sparsification of a dynamic
graph in a single pass and O(¢~2 - n - polylog n) space.

24/25

Proof of Lemma

» Consider i = |lg1/p*| and so sampling probability for G; is

27" < 2p* =120t logn

Proof of Lemma

» Consider i = |lg1/p*| and so sampling probability for G; is
27" < 2p* =120t logn

» Consider a cut in G of size A\. Expected number of edges across
same cut is G; is at most

2p* - A =12¢"2logn

and is < @ = k with high probability. Hence, A\; < k.

	Spanners and Distances
	Sparsifiers and Cuts
	Sketches and Dynamic Graphs
	Connectivity
	k-Connectivity
	Minimum Cut

