Data Streams & Communication Complexity Lecture 2: Graph Spanners, Sparsifiers, & Sketches

Andrew McGregor, UMass Amherst

Graph Streams

Consider a stream of *m* edges

$$\langle e_1, e_2, \ldots, e_m \rangle$$

defining a graph G with nodes V = [n] and $E = \{e_1, \ldots, e_m\}$

Graph Streams

Consider a stream of *m* edges

$$\langle e_1, e_2, \ldots, e_m \rangle$$

defining a graph G with nodes V = [n] and $E = \{e_1, \dots, e_m\}$

• Semi-streaming: What can we compute with $O(n \cdot \text{polylog } n)$ space?

Outline

Spanners and Distances

Sparsifiers and Cuts

Sketches and Dynamic Graphs

Connectivity *k*-Connectivity Minimum Cut

Outline

Spanners and Distances

Sparsifiers and Cuts

Sketches and Dynamic Graphs Connectivity *k*-Connectivity Minimum Cut

Graph Distances

Goal: Approximate length of the shortest path d_G(u, v) between a pair of nodes u, v ∈ G,

Graph Distances

Goal: Approximate length of the shortest path d_G(u, v) between a pair of nodes u, v ∈ G,

Definition

An α -spanner of graph G is a subgraph H such that for any nodes u, v,

$$d_G(u,v) \leq d_H(u,v) \leq \alpha d_G(u,v)$$
.

• *Goal:* Compute the number of connected components.

- *Goal:* Compute the number of connected components.
- Algorithm: Maintain a spanning forest F

- *Goal:* Compute the number of connected components.
- ► Algorithm: Maintain a spanning forest F

► $F \leftarrow \emptyset$

- *Goal:* Compute the number of connected components.
- ► Algorithm: Maintain a spanning forest F
 - ► $F \leftarrow \emptyset$
 - For each edge (u, v), if u and v aren't connected in F,

 $F \leftarrow F \cup \{(u, v)\}$

• *Goal:* Compute the number of connected components.

- Algorithm: Maintain a spanning forest F
 - ► $F \leftarrow \emptyset$
 - For each edge (u, v), if u and v aren't connected in F,

$$F \leftarrow F \cup \{(u, v)\}$$

► Analysis:

- *Goal:* Compute the number of connected components.
- Algorithm: Maintain a spanning forest F
 - ► $F \leftarrow \emptyset$
 - ▶ For each edge (u, v), if u and v aren't connected in F,

$$F \leftarrow F \cup \{(u, v)\}$$

- ► Analysis:
 - F has the same number of connected components as G

- *Goal:* Compute the number of connected components.
- Algorithm: Maintain a spanning forest F
 - ► $F \leftarrow \emptyset$
 - ▶ For each edge (u, v), if u and v aren't connected in F,

$$F \leftarrow F \cup \{(u, v)\}$$

► Analysis:

- ► F has the same number of connected components as G
- *F* has at most n-1 edges.

• *Goal:* Compute the number of connected components.

- Algorithm: Maintain a spanning forest F
 - ► $F \leftarrow \emptyset$
 - For each edge (u, v), if u and v aren't connected in F,

$$F \leftarrow F \cup \{(u, v)\}$$

► Analysis:

- ► F has the same number of connected components as G
- *F* has at most n-1 edges.
- Thm: Can count connected components in $O(n \log n)$ space.

► Algorithm:

► Algorithm:

► $H \leftarrow \emptyset$.

► Algorithm:

- ► $H \leftarrow \emptyset$.
- ▶ For each edge (u, v), if $d_H(u, v) \ge 2t$, $H \leftarrow H \cup \{(u, v)\}$

► Algorithm:

- ► $H \leftarrow \emptyset$.
- ▶ For each edge (u, v), if $d_H(u, v) \ge 2t$, $H \leftarrow H \cup \{(u, v)\}$

► Analysis:

► Algorithm:

- ► $H \leftarrow \emptyset$.
- ▶ For each edge (u, v), if $d_H(u, v) \ge 2t$, $H \leftarrow H \cup \{(u, v)\}$
- Analysis:
 - ▶ Distances increase by at most a factor 2t 1 since an edge (u, v) is only forgotten if there's already a detour of length at most 2t - 1.

► Algorithm:

- ► $H \leftarrow \emptyset$.
- ▶ For each edge (u, v), if $d_H(u, v) \ge 2t$, $H \leftarrow H \cup \{(u, v)\}$
- Analysis:
 - ▶ Distances increase by at most a factor 2t 1 since an edge (u, v) is only forgotten if there's already a detour of length at most 2t - 1.
 - Lemma: H has $O(n^{1+1/t})$ edges since all cycles have length $\geq 2t + 1$.

► Algorithm:

- ► $H \leftarrow \emptyset$.
- ▶ For each edge (u, v), if $d_H(u, v) \ge 2t$, $H \leftarrow H \cup \{(u, v)\}$
- Analysis:
 - ▶ Distances increase by at most a factor 2t 1 since an edge (u, v) is only forgotten if there's already a detour of length at most 2t - 1.
 - Lemma: H has $O(n^{1+1/t})$ edges since all cycles have length $\geq 2t + 1$.

Theorem

Can (2t - 1)-approximate all distances using only $O(n^{1+1/t})$ space.

Lemma

Lemma

A graph H on n nodes with no cycles of length $\leq 2t$ has $O(n^{1+1/t})$ edges.

• Let d = 2m/n be average degree of H.

Lemma

- Let d = 2m/n be average degree of H.
- Let J be the graph formed by removing all nodes with degree less than d/2.

Lemma

- Let d = 2m/n be average degree of H.
- Let J be the graph formed by removing all nodes with degree less than d/2. Note J ≠ Ø because < n(d/2) = m edges are removed.</p>

Lemma

- Let d = 2m/n be average degree of H.
- Let J be the graph formed by removing all nodes with degree less than d/2. Note J ≠ Ø because < n(d/2) = m edges are removed.</p>
- Grow a BFS of depth t from an arbitrary node in J.

Lemma

- Let d = 2m/n be average degree of H.
- ▶ Let J be the graph formed by removing all nodes with degree less than d/2. Note $J \neq \emptyset$ because < n(d/2) = m edges are removed.
- Grow a BFS of depth *t* from an arbitrary node in *J*.
- Because a) no cycles of length less than 2t + 1 and b) all degrees in J are at least d/2, number of nodes at t-th level of BFS is at least

$$(d/2-1)^t = (m/n-1)^t$$

Lemma

A graph H on n nodes with no cycles of length $\leq 2t$ has $O(n^{1+1/t})$ edges.

- Let d = 2m/n be average degree of H.
- ▶ Let J be the graph formed by removing all nodes with degree less than d/2. Note $J \neq \emptyset$ because < n(d/2) = m edges are removed.
- Grow a BFS of depth *t* from an arbitrary node in *J*.
- Because a) no cycles of length less than 2t + 1 and b) all degrees in J are at least d/2, number of nodes at t-th level of BFS is at least

$$(d/2-1)^t = (m/n-1)^t$$

• But $(m/n-1)^t \leq |J| \leq n$ and therefore $m \leq n + n^{1+1/t}$.

Outline

Spanners and Distances

Sparsifiers and Cuts

Sketches and Dynamic Graphs Connectivity *k*-Connectivity Minimum Cut

• Goal: Approximate capacity $C_G(S)$ of any cut $(S, V \setminus S)$ in G.

• Goal: Approximate capacity $C_G(S)$ of any cut $(S, V \setminus S)$ in G.

Definition

An α -sparsifier of graph G is a weighted subgraph H such that for any cut $(S, V \setminus S)$,

 $C_G(S) \leq C_H(S) \leq \alpha C_G(S)$.

where C_G and C_H is the capacity of the cut in G and H respectively.

▶ *Goal:* Approximate capacity $C_G(S)$ of any cut $(S, V \setminus S)$ in G.

Definition

An α -sparsifier of graph G is a weighted subgraph H such that for any cut $(S, V \setminus S)$,

 $C_G(S) \leq C_H(S) \leq \alpha C_G(S)$.

where C_G and C_H is the capacity of the cut in G and H respectively.

Theorem (Batson, Spielman, Srivastava)

Exists offline algorithm A returning $(1 + \epsilon)$ -sparsifier with $O(n\epsilon^{-2})$ edges.

• Goal: Approximate capacity $C_G(S)$ of any cut $(S, V \setminus S)$ in G.

Definition

An α -sparsifier of graph G is a weighted subgraph H such that for any cut $(S, V \setminus S)$,

 $C_G(S) \leq C_H(S) \leq \alpha C_G(S)$.

where C_G and C_H is the capacity of the cut in G and H respectively.

Theorem (Batson, Spielman, Srivastava)

Exists offline algorithm A returning $(1 + \epsilon)$ -sparsifier with $O(n\epsilon^{-2})$ edges.

• *Idea*: Use A as a black box to recursively sparsify graph stream.

Basic Properties of Sparsifiers

Lemma

If H_1 and H_2 are α -sparsifiers of G_1 and G_2 . Then $H_1 \cup H_2$ is an α -sparsifier of $G_1 \cup G_2$.

Basic Properties of Sparsifiers

Lemma

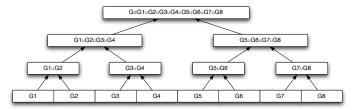
If H_1 and H_2 are α -sparsifiers of G_1 and G_2 . Then $H_1 \cup H_2$ is an α -sparsifier of $G_1 \cup G_2$.

Lemma

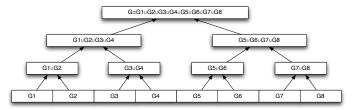
If J is an α -sparsifiers of H and H is an α -sparsifier of G. Then J is an α^2 -sparsifier of G.

▶ Divide stream into segments $G_1, G_2, ...$ each of $t = O(n\epsilon^{-2})$ edges.

- Divide stream into segments G_1, G_2, \ldots each of $t = O(n\epsilon^{-2})$ edges.
- Consider binary tree over segments

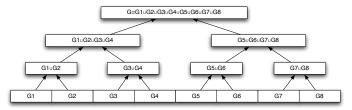


- ▶ Divide stream into segments $G_1, G_2, ...$ each of $t = O(n\epsilon^{-2})$ edges.
- Consider binary tree over segments



• Recursively use A with parameter $1 + \gamma$:

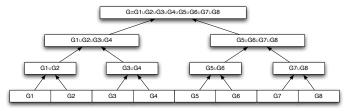
- ▶ Divide stream into segments $G_1, G_2, ...$ each of $t = O(n\epsilon^{-2})$ edges.
- Consider binary tree over segments



• Recursively use A with parameter $1 + \gamma$:

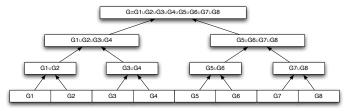
• Read in G_1 : compute $\mathcal{A}(G_1)$ and forget G_1

- ▶ Divide stream into segments $G_1, G_2, ...$ each of $t = O(n\epsilon^{-2})$ edges.
- Consider binary tree over segments



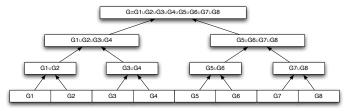
- Read in G_1 : compute $\mathcal{A}(G_1)$ and forget G_1
- Read in G_2 : compute $\mathcal{A}(G_2)$ and forget G_2

- ▶ Divide stream into segments $G_1, G_2, ...$ each of $t = O(n\epsilon^{-2})$ edges.
- Consider binary tree over segments



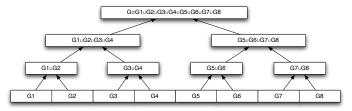
- Read in G_1 : compute $\mathcal{A}(G_1)$ and forget G_1
- Read in G_2 : compute $\mathcal{A}(G_2)$ and forget G_2
- Compute $\mathcal{A}(\mathcal{A}(G_1) \cup \mathcal{A}(G_2))$ and forget $\mathcal{A}(G_1)$ and $\mathcal{A}(G_2)$

- ▶ Divide stream into segments $G_1, G_2, ...$ each of $t = O(n\epsilon^{-2})$ edges.
- Consider binary tree over segments



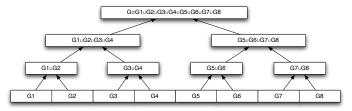
- Read in G_1 : compute $\mathcal{A}(G_1)$ and forget G_1
- Read in G_2 : compute $\mathcal{A}(G_2)$ and forget G_2
- Compute $\mathcal{A}(\mathcal{A}(G_1) \cup \mathcal{A}(G_2))$ and forget $\mathcal{A}(G_1)$ and $\mathcal{A}(G_2)$
- Read in G_3 : compute $\mathcal{A}(G_3)$ and forget G_3

- ▶ Divide stream into segments $G_1, G_2, ...$ each of $t = O(n\epsilon^{-2})$ edges.
- Consider binary tree over segments



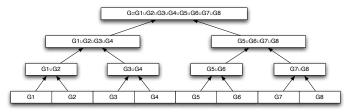
- Read in G_1 : compute $\mathcal{A}(G_1)$ and forget G_1
- Read in G_2 : compute $\mathcal{A}(G_2)$ and forget G_2
- ▶ Compute $A(A(G_1) \cup A(G_2))$ and forget $A(G_1)$ and $A(G_2)$
- Read in G_3 : compute $\mathcal{A}(G_3)$ and forget G_3
- Read in G_4 : compute $\mathcal{A}(G_4)$ and forget G_4

- ▶ Divide stream into segments $G_1, G_2, ...$ each of $t = O(n\epsilon^{-2})$ edges.
- Consider binary tree over segments



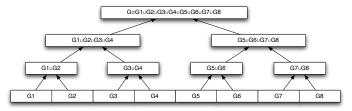
- Read in G_1 : compute $\mathcal{A}(G_1)$ and forget G_1
- ▶ Read in G₂: compute A(G₂) and forget G₂
- ▶ Compute $A(A(G_1) \cup A(G_2))$ and forget $A(G_1)$ and $A(G_2)$
- Read in G_3 : compute $\mathcal{A}(G_3)$ and forget G_3
- Read in G_4 : compute $\mathcal{A}(G_4)$ and forget G_4
- Compute $\mathcal{A}(\mathcal{A}(G_3) \cup \mathcal{A}(G_4))$ and forget $\mathcal{A}(G_3)$ and $\mathcal{A}(G_4)$

- ▶ Divide stream into segments $G_1, G_2, ...$ each of $t = O(n\epsilon^{-2})$ edges.
- Consider binary tree over segments



- Read in G_1 : compute $\mathcal{A}(G_1)$ and forget G_1
- ▶ Read in G₂: compute A(G₂) and forget G₂
- ▶ Compute $A(A(G_1) \cup A(G_2))$ and forget $A(G_1)$ and $A(G_2)$
- Read in G_3 : compute $\mathcal{A}(G_3)$ and forget G_3
- Read in G_4 : compute $\mathcal{A}(G_4)$ and forget G_4
- Compute $\mathcal{A}(\mathcal{A}(G_3) \cup \mathcal{A}(G_4))$ and forget $\mathcal{A}(G_3)$ and $\mathcal{A}(G_4)$
- ▶ Compute $\mathcal{A}(\mathcal{A}(\mathcal{A}(G_1) \cup \mathcal{A}(G_2)) \cup \mathcal{A}(\mathcal{A}(G_3) \cup \mathcal{A}(G_4)))$ and forget ...

- ▶ Divide stream into segments $G_1, G_2, ...$ each of $t = O(n\epsilon^{-2})$ edges.
- Consider binary tree over segments

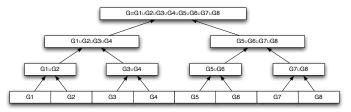


• Recursively use A with parameter $1 + \gamma$:

- Read in G_1 : compute $\mathcal{A}(G_1)$ and forget G_1
- ▶ Read in G₂: compute A(G₂) and forget G₂
- ▶ Compute $A(A(G_1) \cup A(G_2))$ and forget $A(G_1)$ and $A(G_2)$
- Read in G_3 : compute $\mathcal{A}(G_3)$ and forget G_3
- Read in G_4 : compute $\mathcal{A}(G_4)$ and forget G_4
- Compute $\mathcal{A}(\mathcal{A}(G_3) \cup \mathcal{A}(G_4))$ and forget $\mathcal{A}(G_3)$ and $\mathcal{A}(G_4)$
- ▶ Compute $\mathcal{A}(\mathcal{A}(\mathcal{A}(G_1) \cup \mathcal{A}(G_2)) \cup \mathcal{A}(\mathcal{A}(G_3) \cup \mathcal{A}(G_4)))$ and forget ...

• Results in a $(1 + \gamma)^{\log m}$ -sparsifier for G in $O(n\gamma^{-2}\log m)$ space.

- ▶ Divide stream into segments $G_1, G_2, ...$ each of $t = O(n\epsilon^{-2})$ edges.
- Consider binary tree over segments



- Read in G_1 : compute $\mathcal{A}(G_1)$ and forget G_1
- Read in G_2 : compute $\mathcal{A}(G_2)$ and forget G_2
- ▶ Compute $A(A(G_1) \cup A(G_2))$ and forget $A(G_1)$ and $A(G_2)$
- Read in G_3 : compute $\mathcal{A}(G_3)$ and forget G_3
- Read in G_4 : compute $\mathcal{A}(G_4)$ and forget G_4
- Compute $\mathcal{A}(\mathcal{A}(G_3) \cup \mathcal{A}(G_4))$ and forget $\mathcal{A}(G_3)$ and $\mathcal{A}(G_4)$
- ▶ Compute $A(A(G_1) \cup A(G_2)) \cup A(A(G_3) \cup A(G_4)))$ and forget ...
- Results in a $(1 + \gamma)^{\log m}$ -sparsifier for G in $O(n\gamma^{-2}\log m)$ space.
- If $\gamma = O(\epsilon/\log m)$, we get $(1 + \epsilon)$ -sparsifier in $O(n\epsilon^{-2}\log^3 m)$ space.

Outline

Spanners and Distances

Sparsifiers and Cuts

Sketches and Dynamic Graphs

Connectivity *k*-Connectivity Minimum Cut

Dynamic Graph Streams

Consider a stream of edges inserts and deletions, e.g.,

 $\langle \texttt{add}(1,2),\texttt{add}(1,4),\texttt{add}(2,3),\texttt{add}(1,3),\texttt{add}(4,5),\texttt{add}(3,4),\texttt{del}(1,4)\rangle$

would result in the following graph

Dynamic Graph Streams

Consider a stream of edges inserts and deletions, e.g.,

 $\langle \texttt{add}(1,2),\texttt{add}(1,4),\texttt{add}(2,3),\texttt{add}(1,3),\texttt{add}(4,5),\texttt{add}(3,4),\texttt{del}(1,4)\rangle$

would result in the following graph

► Dynamic semi-streaming: What can we compute about a dynamic graph with only O(n · polylog n) space?

Outline

Spanners and Distances

Sparsifiers and Cuts

Sketches and Dynamic Graphs Connectivity *k*-Connectivity Minimum Cut

• *Goal:* Test whether *G* is connected.

- Goal: Test whether G is connected.
- Our algorithm will actually return a spanning forest of G.

- *Goal:* Test whether *G* is connected.
- Our algorithm will actually return a spanning forest of G.

Lemma

Consider the offline algorithm:

- 1. For each node, select an incident edge
- 2. Contract selected edges.
- 3. Repeat until no edges remain.

After log n steps, number of nodes is number of connected components in G. Furthermore, set of selected edges contains a spanning forest.

- *Goal:* Test whether *G* is connected.
- Our algorithm will actually return a spanning forest of G.

Lemma

Consider the offline algorithm:

- 1. For each node, select an incident edge
- 2. Contract selected edges.
- 3. Repeat until no edges remain.

After log n steps, number of nodes is number of connected components in G. Furthermore, set of selected edges contains a spanning forest.

▶ *Idea:* Emulate above algorithm in a single pass using ℓ_0 -sampling of a particular vector representation of *G*.

Useful Graph Representation

▶ Represent graph on [n] with edges $E \subset [n] \times [n]$, as matrix

 $G \in \{-1,0,1\}^{n \times \binom{n}{2}}$

with non-zero entries $G_{j,(j,k)} = 1$, $G_{k,(j,k)} = -1$ if $(j,k) \in E$.

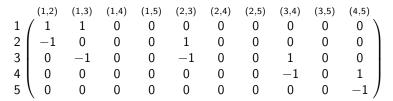
Useful Graph Representation

▶ Represent graph on [n] with edges $E \subset [n] \times [n]$, as matrix

 $G \in \{-1,0,1\}^{n \times \binom{n}{2}}$

with non-zero entries $G_{j,(j,k)} = 1$, $G_{k,(j,k)} = -1$ if $(j,k) \in E$. E.g.,

becomes,



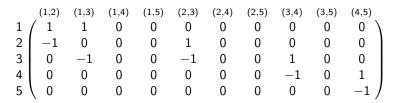
Useful Graph Representation

▶ Represent graph on [n] with edges $E \subset [n] \times [n]$, as matrix

 $G \in \{-1,0,1\}^{n \times \binom{n}{2}}$

with non-zero entries $G_{j,(j,k)} = 1$, $G_{k,(j,k)} = -1$ if $(j,k) \in E$. E.g.,

becomes,



▶ Lemma: For $S \subset [n]$, support $(\sum_{i \in S} a_i) = E(S)$ where a_i is *i*th row of A and E(S) are edges across cut $(S, V \setminus S)$.

Let A(a₁), A(a₂),..., A(a_n) be sketches for ℓ₀ sampling. Can post-process each sketch to find incident edge on each node.

- ▶ Let A(a₁), A(a₂),..., A(a_n) be sketches for ℓ₀ sampling. Can post-process each sketch to find incident edge on each node.
- ▶ Suppose we found edges that connected, e.g., $S = \{a_1, a_2, a_3\}$. How can find an edge $e \in E(S)$ without taking another pass?

- Let A(a₁), A(a₂),..., A(a_n) be sketches for ℓ₀ sampling. Can post-process each sketch to find incident edge on each node.
- Suppose we found edges that connected, e.g., S = {a₁, a₂, a₃}. How can find an edge e ∈ E(S) without taking another pass?
- Linearity: Because of linearity we can just add sketches,

$$A(a_1) + A(a_2) + A(a_3) = A(a_1 + a_2 + a_3) \longrightarrow e \in E(S)$$

- Let A(a₁), A(a₂),..., A(a_n) be sketches for ℓ₀ sampling. Can post-process each sketch to find incident edge on each node.
- Suppose we found edges that connected, e.g., $S = \{a_1, a_2, a_3\}$. How can find an edge $e \in E(S)$ without taking another pass?
- Linearity: Because of linearity we can just add sketches,

$$A(a_1) + A(a_2) + A(a_3) = A(a_1 + a_2 + a_3) \longrightarrow e \in E(S)$$

► Under-the-rug: Actually we need to use log n independent sketch matrices B, C, D, ... to emulate each round of algorithm. But this is fine: we can compute each B(a_i), C(a_i), D(a_i), ... during same pass.

Outline

Spanners and Distances

Sparsifiers and Cuts

Sketches and Dynamic Graphs Connectivity *k*-Connectivity Minimum Cut

• Goal: Test whether all cuts of G have size at least k.

- Goal: Test whether all cuts of G have size at least k.
- Our algorithm actually returns a *certificate* of *k*-connectivity.

- Goal: Test whether all cuts of G have size at least k.
- Our algorithm actually returns a *certificate* of *k*-connectivity.

Definition

We say subgraph H is a k-certificate for G if,

 $\forall \text{ cuts } (S, V \setminus S) : \quad C_H(S) \geq \min(C_G(S), k) \;.$

- Goal: Test whether all cuts of G have size at least k.
- Our algorithm actually returns a *certificate* of *k*-connectivity.

Definition

We say subgraph H is a k-certificate for G if,

```
\forall \text{ cuts } (S, V \setminus S) : \quad C_H(S) \geq \min(C_G(S), k) .
```

Lemma

Let F_1 be a spanning forest of G and, for $i \ge 2$, let F_i be a spanning forest of $G \setminus (F_1 \cup \ldots \cup F_{i-1})$. Then $F_1 \cup \ldots \cup F_k$ is a k-certificate for G.

- Goal: Test whether all cuts of G have size at least k.
- Our algorithm actually returns a *certificate* of *k*-connectivity.

Definition

We say subgraph H is a k-certificate for G if,

$$\forall \text{ cuts } (S, V \setminus S) : \quad C_H(S) \geq \min(C_G(S), k) .$$

Lemma

Let F_1 be a spanning forest of G and, for $i \ge 2$, let F_i be a spanning forest of $G \setminus (F_1 \cup \ldots \cup F_{i-1})$. Then $F_1 \cup \ldots \cup F_k$ is a k-certificate for G.

Idea: Emulate above algorithm in a single pass by exploiting linearity of CONNECTIVITY algorithm.

• Can find F_1 using the CONNECTIVITY algorithm.

- Can find F_1 using the CONNECTIVITY algorithm.
- But how can we find F_2 without taking another pass over the data?

- ► Can find *F*₁ using the CONNECTIVITY algorithm.
- But how can we find F_2 without taking another pass over the data?
- Linearity: Suppose we have independent CONNECTIVITY sketches A(G) and B(G) of the graph G.

- ► Can find *F*₁ using the CONNECTIVITY algorithm.
- But how can we find F_2 without taking another pass over the data?
- Linearity: Suppose we have independent CONNECTIVITY sketches A(G) and B(G) of the graph G.
 - 1. Construct F_1 from A(G)

- ► Can find *F*₁ using the CONNECTIVITY algorithm.
- But how can we find F_2 without taking another pass over the data?
- Linearity: Suppose we have independent CONNECTIVITY sketches A(G) and B(G) of the graph G.
 - 1. Construct F_1 from A(G)
 - 2. Construct $B(F_1)$

- ► Can find *F*₁ using the CONNECTIVITY algorithm.
- But how can we find F_2 without taking another pass over the data?
- Linearity: Suppose we have independent CONNECTIVITY sketches A(G) and B(G) of the graph G.
 - 1. Construct F_1 from A(G)
 - 2. Construct $B(F_1)$
 - 3. Then $B(G) B(F_1) = B(G \setminus F_1)$ can be used to construct F_2 .

- ► Can find *F*₁ using the CONNECTIVITY algorithm.
- ▶ But how can we find F₂ without taking another pass over the data?
- Linearity: Suppose we have independent CONNECTIVITY sketches A(G) and B(G) of the graph G.
 - 1. Construct F_1 from A(G)
 - 2. Construct $B(F_1)$
 - 3. Then $B(G) B(F_1) = B(G \setminus F_1)$ can be used to construct F_2 .
- ► Given A(G), B(G), C(G) we would find F₁ and F₂ as above. We then find F₃ from

$$C(G) - C(F_1) - C(F_2) = C(G \setminus F_1 \cup F_2) ,$$

- ► Can find *F*₁ using the CONNECTIVITY algorithm.
- ▶ But how can we find F₂ without taking another pass over the data?
- Linearity: Suppose we have independent CONNECTIVITY sketches A(G) and B(G) of the graph G.
 - 1. Construct F_1 from A(G)
 - 2. Construct $B(F_1)$
 - 3. Then $B(G) B(F_1) = B(G \setminus F_1)$ can be used to construct F_2 .
- ▶ Given A(G), B(G), C(G) we would find F₁ and F₂ as above. We then find F₃ from

$$C(G) - C(F_1) - C(F_2) = C(G \setminus F_1 \cup F_2) ,$$

► And so on... resulting algorithm, CONNECTIVITY_k, requires one pass and uses O(k · n · polylog n) space.

Outline

Spanners and Distances

Sparsifiers and Cuts

Sketches and Dynamic Graphs

k-Connectivity Minimum Cut

• Goal: Estimate the size of the min-cut up to a $(1 + \epsilon)$ factor.

- Goal: Estimate the size of the min-cut up to a $(1 + \epsilon)$ factor.
- ▶ If min-cut size is $O(\epsilon^{-2} \cdot \text{polylog } n)$ then CONNECTIVITY_k algorithm can find exact min-cut exactly in $O(\epsilon^{-2} \cdot n \cdot \text{polylog } n)$ space.

- Goal: Estimate the size of the min-cut up to a $(1 + \epsilon)$ factor.
- ▶ If min-cut size is $O(\epsilon^{-2} \cdot \text{polylog } n)$ then CONNECTIVITY_k algorithm can find exact min-cut exactly in $O(\epsilon^{-2} \cdot n \cdot \text{polylog } n)$ space.
- What can be done if min-cut is large?

- Goal: Estimate the size of the min-cut up to a $(1 + \epsilon)$ factor.
- ▶ If min-cut size is $O(\epsilon^{-2} \cdot \text{polylog } n)$ then CONNECTIVITY_k algorithm can find exact min-cut exactly in $O(\epsilon^{-2} \cdot n \cdot \text{polylog } n)$ space.
- What can be done if min-cut is large?

Theorem (Karger)

Let G = (V, E) be an unweighted graph with min-cut value λ . If we sample each edge with probability

$$p \ge p^* := 6\lambda^{-1}\epsilon^{-2}\log n$$

and assign weight 1/p to sampled edges, then the resulting graph is an $(1 + \epsilon)$ -sparsification of G with high probability.

- Goal: Estimate the size of the min-cut up to a $(1 + \epsilon)$ factor.
- ▶ If min-cut size is $O(\epsilon^{-2} \cdot \text{polylog } n)$ then CONNECTIVITY_k algorithm can find exact min-cut exactly in $O(\epsilon^{-2} \cdot n \cdot \text{polylog } n)$ space.
- What can be done if min-cut is large?

Theorem (Karger)

Let G = (V, E) be an unweighted graph with min-cut value λ . If we sample each edge with probability

$$p \ge p^* := 6\lambda^{-1}\epsilon^{-2}\log n$$

and assign weight 1/p to sampled edges, then the resulting graph is an $(1 + \epsilon)$ -sparsification of G with high probability.

Idea: Subsample the input graph at different rates and use CONNECTIVITY_k to compute min-cut size if it's small enough.

$$\mathbb{P}\left[h_i(e)=1\right]=1/2^i$$

▶ Let h_i be a hash function such that for each $e \in [n] \times [n]$

$$\mathbb{P}\left[h_i(e)=1\right]=1/2^i$$

▶ Let $G_i = (V, E_i)$ where $E_i = \{e \in E : h_i(e) = 1\}$

$$\mathbb{P}\left[h_i(e)=1\right]=1/2^i$$

- Let $G_i = (V, E_i)$ where $E_i = \{e \in E : h_i(e) = 1\}$
- Let $H_i = \text{CONNECTIVITY}_k(G_i)$ where $k := 24\epsilon^{-2} \log n$

$$\mathbb{P}\left[h_i(e)=1\right]=1/2^i$$

- ▶ Let $G_i = (V, E_i)$ where $E_i = \{e \in E : h_i(e) = 1\}$
- Let $H_i = \text{CONNECTIVITY}_k(G_i)$ where $k := 24\epsilon^{-2} \log n$
- ▶ Post-Processing: Let μ_i be min-cut size of H_i . Return

$$2^j \cdot \mu_j$$
 where $j = \min\{i : \mu_i < k\}$

$$\mathbb{P}\left[h_i(e)=1\right]=1/2^i$$

- ▶ Let $G_i = (V, E_i)$ where $E_i = \{e \in E : h_i(e) = 1\}$
- Let $H_i = \text{CONNECTIVITY}_k(G_i)$ where $k := 24\epsilon^{-2} \log n$
- ▶ Post-Processing: Let μ_i be min-cut size of H_i . Return

$$2^j \cdot \mu_j \quad ext{ where } j = \min\{i: \mu_i < k\}$$

- Analysis:
 - Let λ_i be the size of min-cut of G_i

• Let h_i be a hash function such that for each $e \in [n] \times [n]$

$$\mathbb{P}\left[h_i(e)=1\right]=1/2^i$$

- ▶ Let $G_i = (V, E_i)$ where $E_i = \{e \in E : h_i(e) = 1\}$
- Let $H_i = \text{CONNECTIVITY}_k(G_i)$ where $k := 24\epsilon^{-2} \log n$
- ▶ Post-Processing: Let μ_i be min-cut size of H_i . Return

$$2^j \cdot \mu_j \quad ext{ where } j = \min\{i: \mu_i < k\}$$

- Let λ_i be the size of min-cut of G_i
- Karger's result implies 2ⁱλ_i = (1 ± ε)λ for all i = 0, 1, ..., ⌊lg 1/p^{*}⌋.

• Let h_i be a hash function such that for each $e \in [n] \times [n]$

$$\mathbb{P}\left[h_i(e)=1\right]=1/2^i$$

- ▶ Let $G_i = (V, E_i)$ where $E_i = \{e \in E : h_i(e) = 1\}$
- Let $H_i = \text{CONNECTIVITY}_k(G_i)$ where $k := 24\epsilon^{-2} \log n$
- ▶ Post-Processing: Let μ_i be min-cut size of H_i . Return

$$2^j \cdot \mu_j$$
 where $j = \min\{i : \mu_i < k\}$

- Let λ_i be the size of min-cut of G_i
- Karger's result implies $2^i \lambda_i = (1 \pm \epsilon) \lambda$ for all $i = 0, 1, \dots, \lfloor \lg 1/p^* \rfloor$.
- If $\lambda_i < k$, CONNECTIVITY_k algorithm guarantees $\lambda_i = \mu_i$.

• Let h_i be a hash function such that for each $e \in [n] \times [n]$

$$\mathbb{P}\left[h_i(e)=1\right]=1/2^i$$

- Let $G_i = (V, E_i)$ where $E_i = \{e \in E : h_i(e) = 1\}$
- Let $H_i = \text{CONNECTIVITY}_k(G_i)$ where $k := 24\epsilon^{-2} \log n$
- ▶ Post-Processing: Let μ_i be min-cut size of H_i . Return

$$2^j \cdot \mu_j \quad ext{ where } j = \min\{i: \mu_i < k\}$$

- Let λ_i be the size of min-cut of G_i
- Karger's result implies 2ⁱλ_i = (1 ± ε)λ for all i = 0, 1, ..., ⌊lg 1/p^{*}⌋.
- If $\lambda_i < k$, CONNECTIVITY_k algorithm guarantees $\lambda_i = \mu_i$.
- Lemma: j ≤ [lg 1/p*]

• Let h_i be a hash function such that for each $e \in [n] \times [n]$

$$\mathbb{P}\left[h_i(e)=1\right]=1/2^i$$

- Let $G_i = (V, E_i)$ where $E_i = \{e \in E : h_i(e) = 1\}$
- Let $H_i = \text{CONNECTIVITY}_k(G_i)$ where $k := 24\epsilon^{-2} \log n$
- ▶ Post-Processing: Let μ_i be min-cut size of H_i . Return

$$2^j \cdot \mu_j$$
 where $j = \min\{i : \mu_i < k\}$

Analysis:

- Let λ_i be the size of min-cut of G_i
- Karger's result implies 2ⁱλ_i = (1 ± ε)λ for all i = 0, 1, ..., ⌊lg 1/p^{*}⌋.
- If $\lambda_i < k$, CONNECTIVITY_k algorithm guarantees $\lambda_i = \mu_i$.
- ▶ Lemma: j ≤ [lg 1/p*]

• Total space is $O(k \cdot n \cdot \text{polylog } n) = O(\epsilon^{-2} \cdot n \cdot \text{polylog } n)$.

• Let h_i be a hash function such that for each $e \in [n] \times [n]$

$$\mathbb{P}\left[h_i(e)=1\right]=1/2^i$$

- Let $G_i = (V, E_i)$ where $E_i = \{e \in E : h_i(e) = 1\}$
- Let $H_i = \text{CONNECTIVITY}_k(G_i)$ where $k := 24\epsilon^{-2} \log n$
- ▶ Post-Processing: Let μ_i be min-cut size of H_i . Return

$$2^j \cdot \mu_j \quad ext{ where } j = \min\{i: \mu_i < k\}$$

- Let λ_i be the size of min-cut of G_i
- Karger's result implies 2ⁱλ_i = (1 ± ε)λ for all i = 0, 1, ..., ⌊lg 1/p^{*}⌋.
- If $\lambda_i < k$, CONNECTIVITY_k algorithm guarantees $\lambda_i = \mu_i$.
- Lemma: j ≤ [lg 1/p*]
- Total space is $O(k \cdot n \cdot \text{polylog } n) = O(e^{-2} \cdot n \cdot \text{polylog } n)$.
- Can extend these ideas to get (1 + ε)-sparsification of a dynamic graph in a single pass and O(ε⁻² ⋅ n ⋅ polylog n) space.

Proof of Lemma

• Consider $i = \lfloor \lg 1/p^* \rfloor$ and so sampling probability for G_i is $2^{-i} < 2p^* = 12\lambda^{-1}\epsilon^{-2}\log n$

Proof of Lemma

• Consider $i = \lfloor \lg 1/p^* \rfloor$ and so sampling probability for G_i is

$$2^{-i} < 2p^* = 12\lambda^{-1}\epsilon^{-2}\log n$$

Consider a cut in G of size λ. Expected number of edges across same cut is G_i is at most

$$2p^* \cdot \lambda = 12\epsilon^{-2}\log n$$

and is $< \frac{24 \log n}{\epsilon^2} = k$ with high probability. Hence, $\lambda_i < k$.