Data Streams & Communication Complexity
Lecture 1: Simple Stream Statistics in Small Space

Andrew McGregor, UMass Amherst
Data Stream Model

- **Stream**: m elements from universe of size n, e.g.,

$$\langle x_1, x_2, \ldots, x_m \rangle = \langle 3, 5, 3, 7, 5, 4, \ldots \rangle$$
Data Stream Model

- **Stream**: m elements from universe of size n, e.g.,

\[
\langle x_1, x_2, \ldots, x_m \rangle = \langle 3, 5, 3, 7, 5, 4, \ldots \rangle
\]

- **Goal**: Compute some function of stream, e.g., number of distinct elements, frequent items, longest increasing sequence, a clustering, graph connectivity properties, \ldots
Data Stream Model

- **Stream**: m elements from universe of size n, e.g.,

$$\langle x_1, x_2, \ldots, x_m \rangle = \langle 3, 5, 3, 7, 5, 4, \ldots \rangle$$

- **Goal**: Compute some function of stream, e.g., number of distinct elements, frequent items, longest increasing sequence, a clustering, graph connectivity properties, …

- **Catch**:
 1. Limited working memory, sublinear in n and m
Data Stream Model

- **Stream**: m elements from universe of size n, e.g.,

\[
\langle x_1, x_2, \ldots, x_m \rangle = \langle 3, 5, 3, 7, 5, 4, \ldots \rangle
\]

- **Goal**: Compute some function of stream, e.g., number of distinct elements, frequent items, longest increasing sequence, a clustering, graph connectivity properties, . . .

- **Catch**:
 1. Limited working memory, sublinear in n and m
 2. Access data sequentially
Data Stream Model

- **Stream**: m elements from universe of size n, e.g.,

 $$\langle x_1, x_2, \ldots, x_m \rangle = \langle 3, 5, 3, 7, 5, 4, \ldots \rangle$$

- **Goal**: Compute some function of stream, e.g., number of distinct elements, frequent items, longest increasing sequence, a clustering, graph connectivity properties, . . .

- **Catch**:
 1. Limited working memory, sublinear in n and m
 2. Access data sequentially
 3. Process each element quickly
Data Stream Model

- **Stream**: m elements from universe of size n, e.g.,

\[\langle x_1, x_2, \ldots, x_m \rangle = \langle 3, 5, 3, 7, 5, 4, \ldots \rangle \]

- **Goal**: Compute some function of stream, e.g., number of distinct elements, frequent items, longest increasing sequence, a clustering, graph connectivity properties, . . .

- **Catch**:
 1. Limited working memory, sublinear in n and m
 2. Access data sequentially
 3. Process each element quickly

- Origins in seventies but has become popular in last ten years...
Why’s it become popular?

- **Practical Appeal:**
 - Faster networks, cheaper data storage, ubiquitous data-logging results in massive amount of data to be processed.
 - Applications to network monitoring, query planning, I/O efficiency for massive data, sensor networks aggregation...
Why’s it become popular?

- **Practical Appeal:**
 - Faster networks, cheaper data storage, ubiquitous data-logging results in massive amount of data to be processed.
 - Applications to network monitoring, query planning, I/O efficiency for massive data, sensor networks aggregation.

- **Theoretical Appeal:**
 - Easy to state problems but hard to solve.
 - Links to communication complexity, compressed sensing, metric embeddings, pseudo-random generators, approximation.
Given a stream of m elements from universe $[n] = \{1, 2, \ldots, n\}$, e.g.,

$$\langle x_1, x_2, \ldots, x_m \rangle = \langle 3, 5, 3, 7, 5, 4, \ldots \rangle$$

let $f \in \mathbb{N}^n$ be the frequency vector where f_i is the frequency of i.

Algorithms are often randomized and guarantees will be probabilistic.

Keep things simple: Could consider f_i's being increased or decreased but for this talk we'll focus on unit increments. Will also assume algorithms have an unlimited store of random bits.
Given a stream of \(m \) elements from universe \([n] = \{1, 2, \ldots, n\} \), e.g.,

\[
\langle x_1, x_2, \ldots, x_m \rangle = \langle 3, 5, 3, 7, 5, 4, \ldots \rangle
\]

let \(f \in \mathbb{N}^n \) be the frequency vector where \(f_i \) is the frequency of \(i \).

Problems: What can we approximate in sub linear space?

- Frequency moments: \(F_k = \sum_i f_i^k \).
- Max frequency: \(F_\infty = \max_i f_i \).
- Number of distinct element: \(F_0 = \sum_i f_i^0 \).
- Median: \(j \) such that \(f_1 + f_2 + \ldots + f_j \approx m/2 \)

Algorithms are often randomized and guarantees will be probabilistic.
This Lecture: Basic Numerical Statistics

- Given a stream of m elements from universe $[n] = \{1, 2, \ldots, n\}$, e.g.,

\[
\langle x_1, x_2, \ldots, x_m \rangle = \langle 3, 5, 3, 7, 5, 4, \ldots \rangle
\]

let $f \in \mathbb{N}^n$ be the **frequency vector** where f_i is the frequency of i.

- **Problems:** What can we approximate in sub linear space?
 - Frequency moments: $F_k = \sum_i f_i^k$.
 - Max frequency: $F_\infty = \max_i f_i$.
 - Number of distinct element: $F_0 = \sum_i f_i^0$
 - Median: j such that $f_1 + f_2 + \ldots + f_j \approx m/2$

Algorithms are often randomized and guarantees will be probabilistic.

- **Keep things simple:** Could consider f_i's being increased or decreased but for this talk we’ll focus on unit increments. Will also assume algorithms have an unlimited store of random bits.
Outline

Sampling

Sketching: The Basics

Count-Min and Applications

Count-Sketch: Count-Min with a Twist

ℓ_p Sampling and Frequency Moments
Sampling and Statistics

- Sampling is a general technique for tackling massive amounts of data.
Sampling and Statistics

- Sampling is a general technique for tackling massive amounts of data.
- **Example:** To find an ϵ-approximate median, i.e., j such that

 \[f_1 + f_2 + \ldots + f_j = \frac{m}{2} \pm \epsilon m \]

 then sampling $O(\epsilon^{-2})$ stream elements and returning the sample median works with good probability.
Sampling is a general technique for tackling massive amounts of data.

Example: To find an ϵ-approximate median, i.e., j such that

$$f_1 + f_2 + \ldots + f_j = m/2 \pm \epsilon m$$

then sampling $O(\epsilon^{-2})$ stream elements and returning the sample median works with good probability.

Beyond basic sampling: There are more powerful forms of sampling and other techniques that make better use of the limited space.
AMS Sampling

- **Problem:** Estimate $\sum_i g(f_i)$ for some function g with $g(0) = 0$
AMS Sampling

- **Problem:** Estimate $\sum_i g(f_i)$ for some function g with $g(0) = 0$
- **Basic Estimator:** Sample x_J where $J \in \mathbb{R} [m]$ and compute

 $$r = |\{j \geq J : x_j = x_J\}|$$
AMS Sampling

- **Problem:** Estimate $\sum_i g(f_i)$ for some function g with $g(0) = 0$
- **Basic Estimator:** Sample x_J where $J \in \mathbb{R} [m]$ and compute

$$r = |\{j \geq J : x_j = x_J\}|$$

Output $X = m(g(r) - g(r - 1))$
AMS Sampling

- **Problem:** Estimate $\sum_i g(f_i)$ for some function g with $g(0) = 0$
- **Basic Estimator:** Sample x_J where $J \in \mathbb{R} [m]$ and compute

$$r = |\{j \geq J : x_j = x_J\}|$$

Output $X = m(g(r) - g(r - 1))$

- **Expectation:**

$$\mathbb{E}[X]$$
AMS Sampling

- **Problem**: Estimate \(\sum_i g(f_i) \) for some function \(g \) with \(g(0) = 0 \)
- **Basic Estimator**: Sample \(x_J \) where \(J \in \mathbb{R}[m] \) and compute

\[
 r = |\{j \geq J : x_j = x_J\}|
\]

Output \(\mathcal{X} = m(g(r) - g(r - 1)) \)

- **Expectation**:

\[
\mathbb{E}[\mathcal{X}] = \sum_i \mathbb{P}[x_J = i] \mathbb{E}[\mathcal{X} | x_J = i]
\]
AMS Sampling

- **Problem:** Estimate $\sum_i g(f_i)$ for some function g with $g(0) = 0$
- **Basic Estimator:** Sample x_J where $J \in \mathbb{R}[m]$ and compute

$$r = |\{j \geq J : x_j = x_J\}|$$

Output $X = m(g(r) - g(r - 1))$

- **Expectation:**

$$\mathbb{E}[X] = \sum_i \mathbb{P}[x_J = i] \mathbb{E}[X|x_J = i]$$

$$= \sum_i \frac{f_i}{m} \left(\sum_{r=1}^{f_i} \frac{m(g(r) - g(r - 1))}{f_i} \right)$$
AMS Sampling

- **Problem:** Estimate $\sum_i g(f_i)$ for some function g with $g(0) = 0$
- **Basic Estimator:** Sample x_J where $J \in \mathbb{R} [m]$ and compute

 \[r = |\{j \geq J : x_j = x_J\}| \]

 Output $X = m(g(r) - g(r - 1))$

- **Expectation:**

 \[
 \mathbb{E}[X] = \sum_i \mathbb{P}[x_J = i] \mathbb{E}[X | x_J = i]
 \]

 \[
 = \sum_i \frac{f_i}{m} \left(\sum_{r=1}^{f_i} \frac{m(g(r) - g(r - 1))}{f_i} \right)
 \]

 \[
 = \sum_i g(f_i)
 \]
AMS Sampling

- **Problem:** Estimate $\sum_i g(f_i)$ for some function g with $g(0) = 0$
- **Basic Estimator:** Sample x_J where $J \in \mathbb{R}[m]$ and compute

$$r = |\{j \geq J : x_j = x_J\}|$$

Output $X = m(g(r) - g(r - 1))$

- **Expectation:**

$$\mathbb{E}[X] = \sum_i \mathbb{P}[x_J = i] \mathbb{E}[X|x_J = i]$$

$$= \sum_i \frac{f_i}{m} \left(\sum_{r=1}^{f_i} \frac{m(g(r) - g(r - 1))}{f_i} \right)$$

$$= \sum_i g(f_i)$$

- **For high confidence:** Compute t estimators in parallel and average.
Example: Frequency Moments

- **Frequency Moments:** Define $F_k = \sum_i f_i^k$ for $k \in \{1, 2, 3, \ldots\}$
Example: Frequency Moments

- **Frequency Moments**: Define $F_k = \sum_i f_i^k$ for $k \in \{1, 2, 3, \ldots\}$
- Use AMS estimator with $X = m(r^k - (r - 1)^k)$.
Example: Frequency Moments

- **Frequency Moments**: Define $F_k = \sum_i f_i^k$ for $k \in \{1, 2, 3, \ldots\}$
- Use AMS estimator with $X = m(r^k - (r - 1)^k)$.
- **Expectation**: $\mathbb{E}[X] = F_k$
Example: Frequency Moments

- **Frequency Moments:** Define $F_k = \sum_i f_i^k$ for $k \in \{1, 2, 3, \ldots\}$
- Use AMS estimator with $X = m(r^k - (r-1)^k)$.
- **Expectation:** $\mathbb{E}[X] = F_k$
- **Range:** $0 \leq X \leq kmF^k_\infty \leq kn^{1-1/k}F_k$
Example: Frequency Moments

- **Frequency Moments**: Define $F_k = \sum_i f_i^k$ for $k \in \{1, 2, 3, \ldots\}$
- Use AMS estimator with $X = m(r^k - (r - 1)^k)$.
- **Expectation**: $\mathbb{E}[X] = F_k$
- **Range**: $0 \leq X \leq kmF_{\infty}^{k-1} \leq kn^{1-1/k} F_k$
- Repeat t times and let \tilde{F}_k be the average value. By Chernoff,

$$\mathbb{P}\left[|\tilde{F}_k - F_k| \geq \epsilon F_k\right] \leq 2 \exp\left(-\frac{tF_k\epsilon^2}{3kn^{1-1/k} F_k}\right) = 2 \exp\left(-\frac{t\epsilon^2}{3kn^{1-1/k}}\right)$$
Example: Frequency Moments

- **Frequency Moments:** Define $F_k = \sum_i f_i^k$ for $k \in \{1, 2, 3, \ldots\}$
- Use AMS estimator with $X = m(r^k - (r - 1)^k)$.
- **Expectation:** $\mathbb{E}[X] = F_k$
- **Range:** $0 \leq X \leq kmF_{\infty}^{k-1} \leq kn^{1-1/k}F_k$
- Repeat t times and let \tilde{F}_k be the average value. By Chernoff,
 \[
 \mathbb{P}\left[|\tilde{F}_k - F_k| \geq \epsilon F_k\right] \leq 2 \exp\left(-\frac{tF_k\epsilon^2}{3kn^{1-1/k}F_k}\right) = 2 \exp\left(-\frac{t\epsilon^2}{3kn^{1-1/k}}\right)
 \]
- If $t = 3\epsilon^{-2}kn^{1-1/k} \log(2\delta^{-1})$ then $\mathbb{P}\left[|\tilde{F}_k - F_k| \geq \epsilon F_k\right] \leq \delta$.
Example: Frequency Moments

- **Frequency Moments:** Define $F_k = \sum_i f_i^k$ for $k \in \{1, 2, 3, \ldots\}$
- Use AMS estimator with $X = m(r^k - (r - 1)^k)$.
- **Expectation:** $\mathbb{E}[X] = F_k$
- **Range:** $0 \leq X \leq kmF_{\infty}^{k-1} \leq kn^{1-1/k}F_k$
- Repeat t times and let \tilde{F}_k be the average value. By Chernoff,

$$\mathbb{P}\left[|\tilde{F}_k - F_k| \geq \epsilon F_k\right] \leq 2 \exp\left(-\frac{tF_k\epsilon^2}{3kn^{1-1/k}F_k}\right) = 2 \exp\left(-\frac{t\epsilon^2}{3kn^{1-1/k}}\right)$$

- If $t = 3\epsilon^{-2}kn^{1-1/k} \log(2\delta^{-1})$ then $\mathbb{P}\left[|\tilde{F}_k - F_k| \geq \epsilon F_k\right] \leq \delta$.
- **Thm:** In $\tilde{O}(\epsilon^{-2}n^{1-1/k})$ space we can find a $(1 \pm \epsilon)$ approximation for F_k with probability at least $1 - \delta$.
Outline

Sampling

Sketching: The Basics

Count-Min and Applications

Count-Sketch: Count-Min with a Twist

ℓ_p Sampling and Frequency Moments
Random Projections

Many stream algorithms use a random projection $Z \in \mathbb{R}^{w \times n}$, $w \ll n$

$$Z(f) = \begin{bmatrix} z_{1,1} & \cdots & \cdots & z_{1,n} \\ \vdots & & & \vdots \\ z_{w,1} & \cdots & \cdots & z_{w,n} \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix} = \begin{bmatrix} s_1 \\ \vdots \\ s_w \end{bmatrix} = s$$

Updatable: We can maintain sketch s in $\tilde{O}(w)$ space since incrementing f_i corresponds to $s \leftarrow s + \begin{bmatrix} z_{1,i} \\ \vdots \\ z_{w,i} \end{bmatrix}$

Useful: Choose a distribution for $z_{i,j}$ such that relevant function of f can be estimated from s with high probability for sufficiently large w.
Random Projections

- Many stream algorithms use a random projection $Z \in \mathbb{R}^{w \times n}$, $w \ll n$

$$Z(f) = \begin{bmatrix} z_{1,1} & \cdots & \cdots & z_{1,n} \\ \vdots & & & \vdots \\ z_{w,1} & \cdots & \cdots & z_{w,n} \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix} = \begin{bmatrix} s_1 \\ \vdots \\ s_w \end{bmatrix} = s$$

- Updatable: We can maintain sketch s in $\tilde{O}(w)$ space since incrementing f_i corresponds to
Random Projections

- Many stream algorithms use a random projection $Z \in \mathbb{R}^{w \times n}$, $w \ll n$

$$Z(f) = \begin{bmatrix}
 z_{1,1} & \cdots & \cdots & z_{1,n} \\
 \vdots & & & \vdots \\
 z_{w,1} & \cdots & \cdots & z_{w,n}
\end{bmatrix} \begin{bmatrix}
 f_1 \\
 f_2 \\
 \vdots \\
 f_n
\end{bmatrix} = \begin{bmatrix}
 s_1 \\
 \vdots \\
 s_w
\end{bmatrix} = s$$

- **Updatable:** We can maintain sketch s in $\tilde{O}(w)$ space since incrementing f_i corresponds to

$$s \leftarrow s + \begin{bmatrix}
 z_{1,i} \\
 \vdots \\
 z_{w,i}
\end{bmatrix}$$
Random Projections

- Many stream algorithms use a random projection $Z \in \mathbb{R}^{w \times n}$, $w \ll n$

$$Z(f) = \begin{bmatrix}
 z_{1,1} & \cdots & \cdots & z_{1,n} \\
 \vdots & \ddots & \ddots & \vdots \\
 z_{w,1} & \cdots & \cdots & z_{w,n}
\end{bmatrix}
\begin{bmatrix}
 f_1 \\
 f_2 \\
 \vdots \\
 f_n
\end{bmatrix}
= \begin{bmatrix}
 s_1 \\
 \vdots \\
 s_w
\end{bmatrix} = s$$

- **Updatable**: We can maintain sketch s in $\tilde{O}(w)$ space since incrementing f_i corresponds to

$$s \leftarrow s + \begin{bmatrix}
 z_{1,i} \\
 \vdots \\
 z_{w,i}
\end{bmatrix}$$

- **Useful**: Choose a distribution for $z_{i,j}$ such that relevant function of f can be estimated from s with high probability for sufficiently large w.

10/25
Examples

- If \(z_{i,j} \in_R \{-1, 1\} \), can estimate \(F_2 \) with \(w = O(\epsilon^{-2} \log \delta^{-1}) \).
Examples

- If $z_{i,j} \in R \{-1, 1\}$, can estimate F_2 with $w = O(\epsilon^{-2} \log \delta^{-1})$.
- If $z_{i,j} \sim D$ where D is p-stable $p \in (0, 2]$, can estimate F_p with $w = O(\epsilon^{-2} \log \delta^{-1})$. For example, 1 and 2 stable distributions are:

 \[
 \text{Cauchy}(x) = \frac{1}{\pi} \cdot \frac{1}{1 + x^2} \quad \text{Gaussian}(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}
 \]
Examples

- If $z_{i,j} \in \mathbb{R} \{−1, 1\}$, can estimate F_2 with $w = O(\epsilon^{-2} \log \delta^{-1})$.
- If $z_{i,j} \sim \mathcal{D}$ where \mathcal{D} is p-stable $p \in (0, 2]$, can estimate F_p with $w = O(\epsilon^{-2} \log \delta^{-1})$. For example, 1 and 2 stable distributions are:
 \[
 \text{Cauchy}(x) = \frac{1}{\pi} \cdot \frac{1}{1 + x^2} \quad \text{Gaussian}(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}
 \]
- Note that $F_0 = (1 \pm \epsilon)F_p$ if $p = \log(1 + \epsilon)/\log m$.

\[
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}
\]
Examples

▶ If $z_{i,j} \in_R \{-1, 1\}$, can estimate F_2 with $w = O(\epsilon^{-2} \log \delta^{-1})$.
▶ If $z_{i,j} \sim \mathcal{D}$ where \mathcal{D} is p-stable $p \in (0, 2]$, can estimate F_p with $w = O(\epsilon^{-2} \log \delta^{-1})$. For example, 1 and 2 stable distributions are:

$$\text{Cauchy}(x) = \frac{1}{\pi} \cdot \frac{1}{1 + x^2} \quad \text{Gaussian}(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$$

▶ Note that $F_0 = (1 \pm \epsilon)F_p$ if $p = \log(1 + \epsilon)/\log m$.
▶ For the rest of lecture we’ll focus on “hash-based” sketches. Given a random hash function $h : [n] \rightarrow [w]$, non-zero entries are $z_{h_i,i}$.

$$Z = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$
Outline

Sampling

Sketching: The Basics

Count-Min and Applications

Count-Sketch: Count-Min with a Twist

ℓ_p Sampling and Frequency Moments
Count-Min Sketch

- Maintain vector \(s \in \mathbb{N}^w \) via random hash function \(h : [n] \to [w] \)

\[
\begin{array}{ccccccc}
\end{array}
\]

- Update: For each increment of \(f_i \), increment \(s_{h_i} \). Hence, \(s_k = \sum_{j} f_j \) for \(h_j = k \).

\(e.g. \), \(s_3 = f_6 + f_7 + f_{13} \)

- Query: Use \(\tilde{f}_i = s_{h_i} \) to estimate \(f_i \).

- Lemma: \(f_i \leq \tilde{f}_i \) and \(P[\tilde{f}_i \geq f_i + \frac{2}{w} \epsilon] \leq \frac{1}{2} \)

- Thm: Let \(w = \frac{2}{\epsilon} \). Repeat the hashing \(\log(\delta^{-1}) \) times in parallel and take the minimum estimate for \(f_i \).

\(P[f_i \leq \tilde{f}_i \leq f_i + \epsilon w] \geq 1 - \delta \)
Count-Min Sketch

- Maintain vector $s \in \mathbb{N}^w$ via random hash function $h : [n] \rightarrow [w]$

![Diagram showing the Count-Min Sketch algorithm]

- **Update:** For each increment of f_i, increment s_{h_i}. Hence,

$$s_k = \sum_{j: h_j = k} f_j$$
Count-Min Sketch

- Maintain vector $s \in \mathbb{N}^w$ via random hash function $h : [n] \rightarrow [w]$

- **Update:** For each increment of f_i, increment s_{h_i}. Hence,

 $$s_k = \sum_{j : h_j = k} f_j$$

 e.g., $s_3 = f_6 + f_7 + f_{13}$
Count-Min Sketch

- Maintain vector $s \in \mathbb{N}^w$ via random hash function $h : [n] \rightarrow [w]$

 ![Diagram of Count-Min Sketch]

- **Update:** For each increment of f_i, increment s_{h_i}. Hence,

 $$s_k = \sum_{j : h_j = k} f_j \quad \text{e.g., } s_3 = f_6 + f_7 + f_{13}$$

- **Query:** Use $\tilde{f}_i = s_{h_i}$ to estimate f_i.

 Lemma: $f_i \leq \tilde{f}_i$ and
 $$P[\tilde{f}_i \geq f_i + 2m/w] \leq 1/2$$

 Thm: Let $w = 2/\epsilon$. Repeat the hashing $\lg(\delta - 1)$ times in parallel and take the minimum estimate for f_i

 $$P[f_i \leq \tilde{f}_i \leq f_i + \epsilon m] \geq 1 - \delta$$
Count-Min Sketch

- Maintain vector $s \in \mathbb{N}^w$ via random hash function $h : [n] \rightarrow [w]$

 quieres un ejemplo de la imagen que has proporcionado.

- **Update:** For each increment of f_i, increment s_{h_i}. Hence,

 $$s_k = \sum_{j : h_j = k} f_j$$

 e.g., $s_3 = f_6 + f_7 + f_{13}$

- **Query:** Use $\tilde{f}_i = s_{h_i}$ to estimate f_i.

- **Lemma:** $f_i \leq \tilde{f}_i$ and $\Pr[\tilde{f}_i \geq f_i + 2m/w] \leq 1/2$
Count-Min Sketch

- Maintain vector $s \in \mathbb{N}^w$ via random hash function $h : [n] \rightarrow [w]$

 ![Hashing Scheme]

- **Update:** For each increment of f_i, increment s_{h_i}. Hence,

 $$s_k = \sum_{j : h_j = k} f_j \quad \text{e.g., } s_3 = f_6 + f_7 + f_{13}$$

- **Query:** Use $\tilde{f}_i = s_{h_i}$ to estimate f_i.

- **Lemma:** $f_i \leq \tilde{f}_i$ and $\Pr[\tilde{f}_i \geq f_i + 2m/w] \leq 1/2$

- **Thm:** Let $w = 2/\epsilon$. Repeat the hashing $\lg(\delta^{-1})$ times in parallel and take the minimum estimate for f_i

 $$\Pr[f_i \leq \tilde{f}_i \leq f_i + \epsilon m] \geq 1 - \delta$$
Proof of Lemma

- Define \mathcal{E} by $\tilde{f}_i = f_i + \mathcal{E}$ and so

$$\mathcal{E} = \sum_{j \neq i : h_i = h_j} f_j$$

Since all $f_j \geq 0$, we have $\mathcal{E} \geq 0$.

Since $\mathbb{P}[h_i = h_j] = 1/w$, $\mathbb{E}[\mathcal{E}] = \sum_{j \neq i : h_i = h_j} f_j \cdot \mathbb{P}[h_i = h_j] \leq m/w$.

By an application of the Markov bound,

$$\mathbb{P}[\mathcal{E} \geq 2m/w] \leq \frac{1}{2}$$
Proof of Lemma

- Define \mathcal{E} by $\tilde{f}_i = f_i + \mathcal{E}$ and so

$$\mathcal{E} = \sum_{j \neq i: h_i = h_j} f_j$$

- Since all $f_j \geq 0$, we have $\mathcal{E} \geq 0$.
Proof of Lemma

- Define \mathcal{E} by $\tilde{f}_i = f_i + \mathcal{E}$ and so
 \[
 \mathcal{E} = \sum_{j \neq i: h_i = h_j} f_j
 \]

- Since all $f_j \geq 0$, we have $\mathcal{E} \geq 0$.

- Since $\mathbb{P}[h_i = h_j] = 1/w$,
 \[
 \mathbb{E}[\mathcal{E}] = \sum_{j \neq i} f_j \cdot \mathbb{P}[h_i = h_j]
 \]
Proof of Lemma

- Define \mathcal{E} by $\tilde{f}_i = f_i + \mathcal{E}$ and so

$$\mathcal{E} = \sum_{j \neq i : h_i = h_j} f_j$$

- Since all $f_j \geq 0$, we have $\mathcal{E} \geq 0$.
- Since $\mathbb{P}[h_i = h_j] = 1/w$,

$$\mathbb{E}[\mathcal{E}] = \sum_{j \neq i} f_j \cdot \mathbb{P}[h_i = h_j] \leq m/w$$
Proof of Lemma

- Define \mathcal{E} by $\tilde{f}_i = f_i + \mathcal{E}$ and so

$$
\mathcal{E} = \sum_{j \neq i: h_i = h_j} f_j
$$

- Since all $f_j \geq 0$, we have $\mathcal{E} \geq 0$.
- Since $\mathbb{P}[h_i = h_j] = 1/w$,

$$
\mathbb{E}[\mathcal{E}] = \sum_{j \neq i} f_j \cdot \mathbb{P}[h_i = h_j] \leq m/w
$$

- By an application of the Markov bound,

$$
\mathbb{P}[\mathcal{E} \geq 2m/w] \leq 1/2
$$
Range Queries

- **Range Query:** For $i, j \in [n]$, estimate $f_{[i,j]} = f_i + f_{i+1} + \ldots + f_j$
Range Queries

- **Range Query**: For \(i, j \in [n]\), estimate \(f_{i,j} = f_i + f_{i+1} + \ldots + f_j\)

- **Dyadic Intervals**: Restrict attention to intervals of the form

\[
[1 + (i - 1)2^j, i2^j] \quad \text{where} \quad j \in \{0, 1, \ldots, \lg n\}, \quad i \in \{1, 2, \ldots, n/2^j\}
\]
Range Queries

- **Range Query:** For $i, j \in [n]$, estimate $f_{[i,j]} = f_i + f_{i+1} + \ldots + f_j$
- **Dyadic Intervals:** Restrict attention to intervals of the form

 $$[1 + (i - 1)2^j, i2^j]$$ where $j \in \{0, 1, \ldots, \lg n\}$, $i \in \{1, 2, \ldots n/2^j\}$

since any range can be partitioned as $O(\log n)$ such intervals. E.g.,

 $$[48, 106] = [48, 48] \cup [49, 64] \cup [65, 96] \cup [97, 104] \cup [105, 106]$$
Range Queries

- **Range Query:** For $i, j \in [n]$, estimate $f_{i,j} = f_i + f_{i+1} + \ldots + f_j$

- **Dyadic Intervals:** Restrict attention to intervals of the form

 $$[1 + (i - 1)2^j, i2^j] \quad \text{where } j \in \{0, 1, \ldots, \lg n\}, i \in \{1, 2, \ldots n/2^j\}$$

 since any range can be partitioned as $O(\log n)$ such intervals. E.g.,

 $$[48, 106] = [48, 48] \cup [49, 64] \cup [65, 96] \cup [97, 104] \cup [105, 106]$$

- To support dyadic intervals, construct Count-Min sketches corresponding to intervals of width 1, 2, 4, 8, \ldots
Range Queries

- **Range Query**: For $i, j \in [n]$, estimate $f_{i,j} = f_i + f_{i+1} + \ldots + f_j$
- **Dyadic Intervals**: Restrict attention to intervals of the form $[1 + (i - 1)2^j, i2^j]$ where $j \in \{0, 1, \ldots, \lg n\}$, $i \in \{1, 2, \ldots n/2^j\}$ since any range can be partitioned as $O(\log n)$ such intervals. E.g.,

 $[48, 106] = [48, 48] \cup [49, 64] \cup [65, 96] \cup [97, 104] \cup [105, 106]$

- To support dyadic intervals, construct Count-Min sketches corresponding to intervals of width 1, 2, 4, 8, \ldots
- E.g., for intervals of width 2 we have:

\[
\begin{array}{cccccccc}
 g[1] & g[2] & g[3] & \ldots & g[n/2] \\
\end{array}
\]

where update rule is now: for increment of f_{2i-1} or f_{2i}, increment s_{hi}.

Quantiles and Heavy Hitters

Quantiles:

Find j such that $f_1 + \ldots + f_j \approx m/2$

Can approximate median via binary search of range queries.

Heavy Hitter Problem:

Find a set $S \subset [n]$ where \{ $i : f_i \geq \phi m$ \} $\subseteq S \subseteq$ \{ $i : f_i \geq (\phi - \epsilon)m$ \}.

Rather than checking each \tilde{f}_i individually, can save time by exploiting the fact that if $\tilde{f}_i[j, k] < \phi m$ then $f_j < \phi m$ for all $j \in [i, k]$.

16/25
Quantiles and Heavy Hitters

- **Quantiles**: Find j such that

$$f_1 + \ldots + f_j \approx m/2$$
Quantiles and Heavy Hitters

- **Quantiles**: Find j such that

\[f_1 + \ldots + f_j \approx \frac{m}{2} \]

Can approximate median via binary search of range queries.

- **Heavy Hitter Problem**: Find a set $S \subseteq [n]$ where

\[\{ i : f_i \geq \phi m \} \subseteq S \subseteq \{ i : f_i \geq (\phi - \epsilon) m \} \]

Rather than checking each \tilde{f} individually can save time by exploiting the fact that if $\tilde{f}[i, k] < \phi m$ then $f_j < \phi m$ for all $j \in [i, k]$.
Quantiles and Heavy Hitters

- **Quantiles:** Find j such that
 \[f_1 + \ldots + f_j \approx \frac{m}{2} \]
 Can approximate median via binary search of range queries.

- **Heavy Hitter Problem:** Find a set $S \subset [n]$ where
 \[\{i : f_i \geq \phi m\} \subseteq S \subseteq \{i : f_i \geq (\phi - \epsilon)m\} \]
Quantiles and Heavy Hitters

- **Quantiles**: Find j such that

$$f_1 + \ldots + f_j \approx m/2$$

Can approximate median via binary search of range queries.

- **Heavy Hitter Problem**: Find a set $S \subseteq [n]$ where

$$\{i : f_i \geq \phi m\} \subseteq S \subseteq \{i : f_i \geq (\phi - \epsilon)m\}$$

Rather than checking each \tilde{f}_i individually can save time by exploiting the fact that if $\tilde{f}_{[i,k]} < \phi m$ then $f_j < \phi m$ for all $j \in [i, k]$.
Outline

Sampling

Sketching: The Basics

Count-Min and Applications

Count-Sketch: Count-Min with a Twist

ℓ_p Sampling and Frequency Moments
Count-Sketch: Count-Min with a Twist

- Maintain $s \in \mathbb{N}^w$ via hash functions $h : [n] \rightarrow [w]$, $r : [n] \rightarrow \{-1, 1\}$
Count-Sketch: Count-Min with a Twist

- Maintain \(s \in \mathbb{N}^w \) via hash functions \(h : [n] \rightarrow [w] \), \(r : [n] \rightarrow \{-1, 1\} \)

- **Update**: For each increment of \(f_i \), \(s_{hi} \leftarrow s_{hi} + r_i \). Hence,

\[
s_k = \sum_{j: h_j = k} f_j r_j
\]
Count-Sketch: Count-Min with a Twist

- Maintain $s \in \mathbb{N}^w$ via hash functions $h : [n] \to [w]$, $r : [n] \to \{-1, 1\}$

- **Update:** For each increment of f_i, $s_{h_i} \leftarrow s_{h_i} + r_i$. Hence,

$$s_k = \sum_{j: h_j = k} f_j r_j \quad \text{e.g., } s_3 = f_6 - f_7 - f_{13}$$
Count-Sketch: Count-Min with a Twist

- Maintain $s \in \mathbb{N}^w$ via hash functions $h : [n] \rightarrow [w]$, $r : [n] \rightarrow \{-1, 1\}$

- **Update:** For each increment of f_i, $s_{h_i} \leftarrow s_{h_i} + r_i$. Hence,

\[
s_k = \sum_{j : h_j = k} f_j r_j \quad \text{e.g., } s_3 = f_6 - f_7 - f_{13}
\]

- **Query:** Use $\tilde{f}_i = s_{h_i} r_i$ to estimate f_i.

\[\frac{18}{25}\]
Count-Sketch: Count-Min with a Twist

- Maintain $s \in \mathbb{N}^w$ via hash functions $h : [n] \rightarrow [w]$, $r : [n] \rightarrow \{-1, 1\}$

- **Update:** For each increment of f_i, $s_{h_i} \leftarrow s_{h_i} + r_i$. Hence,
 $$s_k = \sum_{j : h_j = k} f_j r_j$$
 e.g., $s_3 = f_6 - f_7 - f_{13}$

- **Query:** Use $\tilde{f}_i = s_{h_i} r_i$ to estimate f_i.

- **Lemma:** $\mathbb{E} \left[\tilde{f}_i \right] = f_i$ and $\mathbb{V} \left[\tilde{f}_i \right] \leq F_2/w$
Count-Sketch: Count-Min with a Twist

- Maintain \(s \in \mathbb{N}^w \) via hash functions \(h: [n] \rightarrow [w], \ r: [n] \rightarrow \{-1, 1\} \)

- **Update**: For each increment of \(f_i \), \(s_{h_i} \leftarrow s_{h_i} + r_i \). Hence,

 \[
 s_k = \sum_{j: h_j = k} f_j r_j \quad \text{e.g., } s_3 = f_6 - f_7 - f_{13}
 \]

- **Query**: Use \(\tilde{f}_i = s_{h_i} r_i \) to estimate \(f_i \).

- **Lemma**: \(\mathbb{E} \left[\tilde{f}_i \right] = f_i \) and \(\mathbb{V} \left[\tilde{f}_i \right] \leq \frac{F_2}{w} \)

- **Thm**: Let \(w = O(1/\epsilon^2) \). Repeating \(O(\lg \delta^{-1}) \) in parallel and taking the median estimate ensures

 \[
 \mathbb{P} \left[f_i - \epsilon \sqrt{F_2} \leq \tilde{f}_i \leq f_i + \epsilon \sqrt{F_2} \right] \geq 1 - \delta.
 \]
Proof of Lemma

- Define \mathcal{E} by $\tilde{f}_i = f_i + \mathcal{E}r_i$ and so

$$\mathcal{E} = \sum_{j \neq i: h_i = h_j} f_j r_j$$
Proof of Lemma

- Define \mathcal{E} by $\tilde{f}_i = f_i + \mathcal{E}r_i$ and so

$$\mathcal{E} = \sum_{j \neq i : h_i = h_j} f_j r_j$$

- **Expectation:** Since $\mathbb{E}[r_j] = 0$,

$$\mathbb{E}[\mathcal{E}] = \sum_{j \neq i : h_i = h_j} f_j \mathbb{E}[r_j] = 0$$
Proof of Lemma

- Define \(\mathcal{E} \) by \(\tilde{f}_i = f_i + \mathcal{E}r_i \) and so

\[
\mathcal{E} = \sum_{j \neq i: h_i = h_j} f_j r_j
\]

- **Expectation:** Since \(\mathbb{E}[r_j] = 0 \),

\[
\mathbb{E}[\mathcal{E}] = \sum_{j \neq i: h_i = h_j} f_j \mathbb{E}[r_j] = 0
\]

- **Variance:** Similarly,

\[
\mathbb{V}[\mathcal{E}]
\]
Proof of Lemma

- Define \mathcal{E} by $\tilde{f}_i = f_i + \mathcal{E} r_i$ and so

$$
\mathcal{E} = \sum_{j \neq i: h_i = h_j} f_j r_j
$$

- **Expectation:** Since $\mathbb{E}[r_j] = 0$,

$$
\mathbb{E}[\mathcal{E}] = \sum_{j \neq i: h_i = h_j} f_j \mathbb{E}[r_j] = 0
$$

- **Variance:** Similarly,

$$
\mathbb{V}[\mathcal{E}] \leq \mathbb{E}\left[\left(\sum_{j \neq i: h_i = h_j} f_j r_j\right)^2\right]
$$
Proof of Lemma

- Define \mathcal{E} by $\tilde{f}_i = f_i + \mathcal{E} r_i$ and so
 \[\mathcal{E} = \sum_{j \neq i : h_i = h_j} f_j r_j \]

- **Expectation:** Since $\mathbb{E}[r_j] = 0$,
 \[\mathbb{E}[\mathcal{E}] = \sum_{j \neq i : h_i = h_j} f_j \mathbb{E}[r_j] = 0 \]

- **Variance:** Similarly,
 \[\nabla[\mathcal{E}] \leq \mathbb{E} \left[\left(\sum_{j \neq i : h_i = h_j} f_j r_j \right)^2 \right] = \sum_{j, k \neq i} f_j f_k \mathbb{E}[r_j r_k] \mathbb{P}[h_i = h_j = h_k] \]
Proof of Lemma

- Define E by $\tilde{f}_i = f_i + E r_i$ and so

$$E = \sum_{j \neq i: h_i = h_j} f_j r_j$$

- **Expectation:** Since $E [r_j] = 0$,

$$E [E] = \sum_{j \neq i: h_i = h_j} f_j E [r_j] = 0$$

- **Variance:** Similarly,

$$\mathbb{V} [E] \leq \mathbb{E} \left[\left(\sum_{j \neq i: h_i = h_j} f_j r_j \right)^2 \right] = \sum_{j, k \neq i} f_j f_k E [r_j r_k] \mathbb{P} [h_i = h_j = h_k]$$

$$= \sum_{j \neq i: h_i = h_j} f_j^2 \mathbb{P} [h_i = h_j] \leq F_2 / w$$
Outline

Sampling

Sketching: The Basics

Count-Min and Applications

Count-Sketch: Count-Min with a Twist

ℓ_p Sampling and Frequency Moments
\(\ell_p \) Sampling

\[Sampling: \quad \text{Return random values} \]
\[I \in [n] \quad \text{and} \quad R \in \mathbb{R} \]
\[P[I = i] = (1 \pm \epsilon) |f_i| \]
\[F_p \]

Applications:

\(\ell_2 \) sampling to get optimal algorithm for \(F_k, k > 2 \).

\(\ell_0 \) sampling for processing graph streams.

Many other stream problems can be solved via \(\ell_p \) sampling, e.g., duplicate finding, triangle counting, entropy estimation.

Let's see algorithm for \(p = 2 \).
\[\ell_p \text{ Sampling} \]

- **\(\ell_p \text{ Sampling} \):** Return random values \(I \in [n] \) and \(R \in \mathbb{R} \) where

\[
\mathbb{P}[l = i] = (1 \pm \epsilon) \frac{|f_i|^p}{F_p} \quad \text{and} \quad R = (1 \pm \epsilon)f_i
\]

- Applications:
 - Will use \(\ell_2 \) sampling to get optimal algorithm for \(F_k, k > 2 \).
 - Will use \(\ell_0 \) sampling for processing graph streams.
 - Many other stream problems can be solved via \(\ell_p \) sampling, e.g., duplicate finding, triangle counting, entropy estimation.
\(\ell_p \) Sampling

- **\(\ell_p \) Sampling**: Return random values \(I \in [n] \) and \(R \in \mathbb{R} \) where

\[
\mathbb{P}[I = i] = (1 \pm \epsilon) \frac{|f_i|^p}{F_p} \quad \text{and} \quad R = (1 \pm \epsilon)f_i
\]

- **Applications**:
 - Will use \(\ell_2 \) sampling to get optimal algorithm for \(F_k, k > 2 \).
 - Will use \(\ell_0 \) sampling for processing graph streams.
 - Many other stream problems can be solved via \(\ell_p \) sampling, e.g., duplicate finding, triangle counting, entropy estimation.
ℓ_p Sampling

- **ℓ_p Sampling**: Return random values $I \in [n]$ and $R \in \mathbb{R}$ where

 $$
 \mathbb{P}[I = i] = (1 \pm \epsilon) \frac{|f_i|^p}{F_p}
 \quad \text{and} \quad
 R = (1 \pm \epsilon)f_i
 $$

- **Applications:**
 - Will use ℓ_2 sampling to get optimal algorithm for F_k, $k > 2$.
 - Will use ℓ_0 sampling for processing graph streams.
 - Many other stream problems can be solved via ℓ_p sampling, e.g., duplicate finding, triangle counting, entropy estimation.

- Let’s see algorithm for $p = 2 \ldots$
ℓ_2 Sampling Algorithm

Weight f_i by $\gamma_i = \sqrt{1/u_i}$ where $u_i \in \mathbb{R}[0,1]$ to form vector g:

$f = (f_1, f_2, \ldots, f_n)$

$g = (g_1, g_2, \ldots, g_n)$ where $g_i = \gamma_i f_i$

Return (i, f_i) if $g_2i \geq \tau := F_2(f)/\epsilon$

Probability (i, f_i) is returned:

$P[g_2i \geq \tau] = P[u_i \leq f_2i/\tau] = f_2i/\tau$

Probability some value is returned is $\sum_i f_2i/\tau = \epsilon$ so repeating $O(\epsilon^{-1} \log 2n^{-1})$ ensures a value is returned with probability $1 - \delta$.

Lemma: Using a Count-Sketch of size $O(\epsilon^{-1} \log 2n^{-1})$ ensures a $(1 \pm \epsilon)$ approximation of any g_i that passes the threshold.
\(\ell_2 \) Sampling Algorithm

- Weight \(f_i \) by \(\gamma_i = \sqrt{1/u_i} \) where \(u_i \in R [0, 1] \) to form vector \(g \):

\[
\begin{align*}
 f &= (f_1, f_2, \ldots, f_n) \\
 g &= (g_1, g_2, \ldots, g_n) \text{ where } g_i = \gamma_i f_i
\end{align*}
\]
ℓ_2 Sampling Algorithm

- Weight f_i by $\gamma_i = \sqrt{1/u_i}$ where $u_i \in \mathbb{R} [0, 1]$ to form vector g:

 $$f = (f_1, f_2, \ldots, f_n)$$
 $$g = (g_1, g_2, \ldots, g_n) \text{ where } g_i = \gamma_i f_i$$

- Return (i, f_i) if $g_i^2 \geq t := F_2(f)/\epsilon$
\(\ell_2 \) Sampling Algorithm

- Weight \(f_i \) by \(\gamma_i = \sqrt{1/u_i} \) where \(u_i \in \mathbb{R} [0, 1] \) to form vector \(g \):
 \[
 f = (f_1, f_2, \ldots, f_n) \\
 g = (g_1, g_2, \ldots, g_n) \quad \text{where} \quad g_i = \gamma_i f_i
 \]

- Return \((i, f_i)\) if \(g_i^2 \geq t : = F_2(f)/\epsilon \)

- Probability \((i, f_i)\) is returned:
 \[
 \mathbb{P} [g_i^2 \geq t]
 \]

- Lemma: Using a Count-Sketch of size \(O(\epsilon^{-1} \log 2^n) \) ensures an \((1 \pm \epsilon)\) approximation of any \(g_i \) that passes the threshold.
\(l_2 \) Sampling Algorithm

- Weight \(f_i \) by \(\gamma_i = \sqrt{1/u_i} \) where \(u_i \in R \ [0, 1] \) to form vector \(g \):

\[
\begin{align*}
 f & = (f_1, f_2, \ldots, f_n) \\
 g & = (g_1, g_2, \ldots, g_n) \quad \text{where} \quad g_i = \gamma_i f_i
\end{align*}
\]

- Return \((i, f_i)\) if \(g_i^2 \geq t := F_2(f)/\epsilon \)

- Probability \((i, f_i)\) is returned:

\[
\mathbb{P}[g_i^2 \geq t] = \mathbb{P}[u_i \leq f_i^2/t] = f_i^2/t
\]
\(\ell_2 \) Sampling Algorithm

- Weight \(f_i \) by \(\gamma_i = \sqrt{1/u_i} \) where \(u_i \in \mathbb{R} [0, 1] \) to form vector \(g \):

\[
 f = (f_1, f_2, \ldots, f_n) \\
 g = (g_1, g_2, \ldots, g_n) \quad \text{where} \quad g_i = \gamma_i f_i
\]

- Return \((i, f_i)\) if \(g_i^2 \geq t \coloneqq F_2(f)/\epsilon \)

- Probability \((i, f_i)\) is returned:

\[
 \mathbb{P} [g_i^2 \geq t] = \mathbb{P} [u_i \leq f_i^2/t] = f_i^2/t
\]

- Probability some value is returned is \(\sum_i f_i^2/t = \epsilon \) so repeating \(O(\epsilon^{-1} \log \delta^{-1}) \) ensures a value is returned with probability \(1 - \delta \).
\(\ell_2 \) Sampling Algorithm

- Weight \(f_i \) by \(\gamma_i = \sqrt{1/u_i} \) where \(u_i \in \mathbb{R} [0, 1] \) to form vector \(g \):

\[
\begin{align*}
 f & = (f_1, f_2, \ldots, f_n) \\
 g & = (g_1, g_2, \ldots, g_n) \quad \text{where } g_i = \gamma_i f_i
\end{align*}
\]

- Return \((i, f_i)\) if \(g_i^2 \geq t := F_2(f) / \epsilon \)

- Probability \((i, f_i)\) is returned:

\[
\Pr \left[g_i^2 \geq t \right] = \Pr \left[u_i \leq f_i^2 / t \right] = f_i^2 / t
\]

- Probability some value is returned is \(\sum_i f_i^2 / t = \epsilon \) so repeating \(O(\epsilon^{-1} \log \delta^{-1}) \) ensures a value is returned with probability \(1 - \delta \).

- **Lemma:** Using a Count-Sketch of size \(O(\epsilon^{-1} \log^2 n) \) ensures a \((1 \pm \epsilon)\) approximation of any \(g_i \) that passes the threshold.
Exercise: \[P[F_2(g)] \leq c \log n \geq \frac{99}{100} \] for some large \(c > 0 \), so we'll condition on this event.

Set \(w = 9 c \epsilon^{-1} \log n \). Count-Sketch in \(O(w \log 2 n) \) space ensures \(\tilde{g}_i = g_i \pm \sqrt{F_2(g)} / w \).

Then \(\tilde{g}_2^2 \geq F_2(f) / \epsilon \) implies \(\sqrt{F_2(g)} / w \leq \sqrt{F_2(f)} / (9 \epsilon - 1) \leq \sqrt{\epsilon} \tilde{g}_i / (9 \epsilon - 1) = \epsilon \tilde{g}_i / 3 \) and hence \(\tilde{g}_2 = (1 \pm \epsilon / 3)^2 g_2 = (1 \pm \epsilon) g_2 \) as required.

Under-the-rug: Need to ensure that conditioning doesn't affect sampling probability too much.
Proof of Lemma

- **Exercise:** $\mathbb{P} \left[F_2(g)/F_2(f) \leq c \log n \right] \geq 99/100$ for some large $c > 0$ so we'll condition on this event.

Under-the-rug: Need to ensure that conditioning doesn't affect sampling probability too much.
Proof of Lemma

- **Exercise:** \(\mathbb{P} \left[\frac{F_2(g)}{F_2(f)} \leq c \log n \right] \geq \frac{99}{100} \) for some large \(c > 0 \) so we'll condition on this event.
- Set \(w = 9c \epsilon^{-1} \log n \). Count-Sketch in \(O(w \log^2 n) \) space ensures

\[
\tilde{g}_i = g_i \pm \sqrt{\frac{F_2(g)}{w}}
\]
Proof of Lemma

- **Exercise:** \(\mathbb{P} \left[\frac{F_2(g)}{F_2(f)} \leq c \log n \right] \geq 99/100 \) for some large \(c > 0 \) so we'll condition on this event.

- Set \(w = 9c\epsilon^{-1} \log n \). Count-Sketch in \(O(w \log^2 n) \) space ensures

\[
\tilde{g}_i = g_i \pm \sqrt{F_2(g)/w}
\]

- Then \(\tilde{g}_i^2 \geq F_2(f)/\epsilon \) implies

\[
\sqrt{F_2(g)/w} \leq \sqrt{F_2(f)/(9\epsilon^{-1})} \leq \sqrt{\epsilon \tilde{g}_i^2/(9\epsilon^{-1})} = \epsilon \tilde{g}_i/3
\]

and hence \(\tilde{g}_i^2 = (1 \pm \epsilon/3)^2 g_i^2 = (1 \pm \epsilon)g_i^2 \) as required.
Proof of Lemma

- **Exercise:** $\Pr \left[\frac{F_2(g)}{F_2(f)} \leq c \log n \right] \geq 99/100$ for some large $c > 0$ so we'll condition on this event.
- Set $w = 9c\epsilon^{-1} \log n$. Count-Sketch in $O(w \log^2 n)$ space ensures
 \[\tilde{g}_i = g_i \pm \sqrt{\frac{F_2(g)}{w}} \]
- Then $\tilde{g}_i^2 \geq \frac{F_2(f)}{\epsilon}$ implies
 \[\sqrt{\frac{F_2(g)}{w}} \leq \sqrt{\frac{F_2(f)}{(9\epsilon^{-1})}} \leq \sqrt{\frac{\epsilon \tilde{g}_i^2}{(9\epsilon^{-1})}} = \frac{\epsilon \tilde{g}_i}{3} \]
 and hence $\tilde{g}_i^2 = (1 \pm \epsilon/3)^2 g_i^2 = (1 \pm \epsilon)g_i^2$ as required.
- **Under-the-rug:** Need to ensure that conditioning doesn’t affect sampling probability too much.
F_k Revisited

Earlier we used $O(n^{1-1/k})$ space to approximate $F_k = \sum_i |f_i|^k$.
F_k Revisited

- Earlier we used $O(n^{1-1/k})$ space to approximate $F_k = \sum_i |f_i|^k$.
- **Algorithm:** Let (I, R) be an $(1 + \gamma)$-approximate ℓ_2 sample. Return
 $$T = \tilde{F}_2 R^{k-2}$$
 where \tilde{F}_2 is a $(1 \pm \gamma)$ approximation for F_2.

Expectation

Setting $\gamma = \epsilon / (4k)$,

$$E[T] = \tilde{F}_2 \sum P[I = i] ((1 \pm \gamma) f_i)^k - 2 = (1 \pm \epsilon) F_k \sum f_i^2 F_k f_k - 2 = (1 \pm \epsilon) F_k$$

Range

$$0 \leq T \leq (1 + \gamma) F_k R^{k-2} \leq (1 + \gamma) n^{1-2/k} F_k$$

Averaging over $t = O(\epsilon^{-2} n^{1-2/k} \log \delta^{-1})$ parallel repetitions gives,

$$P[|\tilde{F}_k - F_k| \geq \epsilon F_k] \leq \delta$$

Thm

In $\tilde{O}(\epsilon^{-2} n^{1-2/k} \log \delta^{-1})$ space we can find a $(1 \pm \epsilon)$ approximation for F_k with probability at least $1 - \delta$.

This page represents a natural language description of the F_k problem revisited, focusing on the use of space to approximate F_k and an algorithm to achieve this approximation. The text describes the earlier use of space, introduces an algorithm, and provides an expectation analysis with a range and averaging consideration. A theorem is stated about the approximation with a bounded probability of error. The description is concise and covers the key aspects of the problem in a structured manner.
F_k Revisited

- Earlier we used $O(n^{1-1/k})$ space to approximate $F_k = \sum_i |f_i|^k$.
- Algorithm: Let (I, R) be an $(1 + \gamma)$-approximate ℓ_2 sample. Return
 \[
 T = \tilde{F}_2 R^{k-2}
 \]
 where \tilde{F}_2 is a $(1 \pm \gamma)$ approximation for F_2
- Expectation: Setting $\gamma = \epsilon/(4k)$,
 \[
 \mathbb{E}[T]
 \]
F_k Revisited

- Earlier we used $O(n^{1-1/k})$ space to approximate $F_k = \sum_i |f_i|^k$.
- **Algorithm:** Let (I, R) be an $(1 + \gamma)$-approximate ℓ_2 sample. Return

 $$T = \tilde{F}_2 R^{k-2}$$

 where \tilde{F}_2 is a $(1 \pm \gamma)$ approximation for F_2.

- **Expectation:** Setting $\gamma = \epsilon/(4k)$,

 $$\mathbb{E}[T] = \tilde{F}_2 \sum \mathbb{P}[I = i] ((1 \pm \gamma)f_i)^{k-2}$$
F_k Revisited

- Earlier we used $O(n^{1-1/k})$ space to approximate $F_k = \sum_i |f_i|^k$.
- Algorithm: Let (I, R) be an $(1 + \gamma)$-approximate ℓ_2 sample. Return

 $$T = \tilde{F}_2 R^{k-2}$$

 where \tilde{F}_2 is a $(1 \pm \gamma)$ approximation for F_2

- Expectation: Setting $\gamma = \epsilon/(4k)$,

 $$\mathbb{E}[T] = \tilde{F}_2 \sum \mathbb{P}[I = i] ((1\pm\gamma)f_i)^{k-2} = (1\pm\gamma)^k F_2 \sum \frac{f_i^2}{F_2} f_i^{k-2}$$

- Range: $0 \leq T \leq (1 + \gamma) F_2 F_k^{k-2} = (1 + \gamma)^n n^{1-2/k}$.

- Averaging over $t = O(\epsilon^{-2} n^{1-2/k} \log \delta^{-1})$ parallel repetitions gives,

 $$\mathbb{P}[|\tilde{F}_k - F_k| \geq \epsilon F_k] \leq \delta$$

- Thm: In $\tilde{O}(\epsilon^{-2} n^{1-2/k} \log \delta^{-1})$ space we can find a $(1 \pm \epsilon)$ approximation for F_k with probability at least $1 - \delta$.

F_k Revisited

- Earlier we used $O(n^{1-1/k})$ space to approximate $F_k = \sum_i |f_i|^k$.
- **Algorithm:** Let (I, R) be an $(1 + \gamma)$-approximate ℓ_2 sample. Return
 \[
 T = \tilde{F}_2 R^{k-2} \quad \text{where } \tilde{F}_2 \text{ is a } (1 \pm \gamma) \text{ approximation for } F_2
 \]
- **Expectation:** Setting $\gamma = \epsilon/(4k)$,
 \[
 \mathbb{E}[T] = \tilde{F}_2 \sum P[I = i] ((1\pm \gamma)f_i)^{k-2} = (1\pm \gamma)^k F_2 \sum \frac{f_i^2}{F_2} f_i^{k-2} = (1\pm \frac{\epsilon}{2}) F_k
 \]
F_k Revisited

- Earlier we used $O(n^{1-1/k})$ space to approximate $F_k = \sum_i |f_i|^k$.
- **Algorithm:** Let (I, R) be an $(1 + \gamma)$-approximate ℓ_2 sample. Return

 $$T = \tilde{F}_2 R^{k-2}$$

 where \tilde{F}_2 is a $(1 \pm \gamma)$ approximation for F_2

- **Expectation:** Setting $\gamma = \epsilon/(4k)$,

 $$\mathbb{E}[T] = \tilde{F}_2 \sum \mathbb{P}[I = i] ((1 \pm \gamma)f_i)^{k-2} = (1 \pm \gamma)^k F_2 \sum \frac{f_i^2}{F_2} f_i^{k-2} = (1 \pm \frac{\epsilon}{2}) F_k$$

- **Range:** $0 \leq T \leq (1 + \gamma) F_2 F_\infty^{k-2} = (1 + \gamma) n^{1-2/k} F_k$.

F_k Revisited

- Earlier we used $O(n^{1-1/k})$ space to approximate $F_k = \sum_i |f_i|^k$.
- Algorithm: Let (I, R) be an $(1 + \gamma)$-approximate ℓ_2 sample. Return
 \[T = \tilde{F}_2 R^{k-2} \]
 where \tilde{F}_2 is a $(1 \pm \gamma)$ approximation for F_2

- Expectation: Setting $\gamma = \epsilon/(4k)$,
 \[\mathbb{E}[T] = \tilde{F}_2 \sum P[I = i] ((1 \pm \gamma) f_i)^{k-2} = (1 \pm \gamma)^k F_2 \sum \frac{f_i^2}{F_2} f_i^{k-2} = (1 \pm \frac{\epsilon}{2}) F_k \]

- Range: $0 \leq T \leq (1 + \gamma) F_2 F_\infty^{k-2} = (1 + \gamma) n^{1-2/k} F_k$.
- Averaging over $t = O(\epsilon^{-2} n^{1-2/k} \log \delta^{-1})$ parallel repetitions gives,
 \[\mathbb{P}\left[|\tilde{F}_k - F_k| \geq \epsilon F_k\right] \leq \delta \]
F_k Revisited

- Earlier we used $O(n^{1-1/k})$ space to approximate $F_k = \sum_i |f_i|^k$.

- **Algorithm:** Let (I, R) be an $(1 + \gamma)$-approximate ℓ_2 sample. Return

 $$T = \tilde{F}_2 R^{k-2}$$

 where \tilde{F}_2 is a $(1 \pm \gamma)$ approximation for F_2.

- **Expectation:** Setting $\gamma = \epsilon/(4k)$,

 $$\mathbb{E}[T] = \tilde{F}_2 \sum \mathbb{P}[I = i] ((1 \pm \gamma) f_i)^{k-2} = (1 \pm \gamma)^k F_2 \sum \frac{f_i^2}{F_2} f_i^{k-2} = (1 \pm \frac{\epsilon}{2}) F_k$$

- **Range:** $0 \leq T \leq (1 + \gamma) F_2 F_\infty^{k-2} = (1 + \gamma) n^{1-2/k} F_k$.

- Averaging over $t = O(\epsilon^{-2} n^{1-2/k} \log \delta^{-1})$ parallel repetitions gives,

 $$\mathbb{P} \left[|\tilde{F}_k - F_k| \geq \epsilon F_k \right] \leq \delta$$

- **Thm:** In $\tilde{O}(\epsilon^{-2} n^{1-2/k})$ space we can find a $(1 \pm \epsilon)$ approximation for F_k with probability at least $1 - \delta$.

24/25
Summary

- **Basic Sampling**: Can do basic sampling where \(i \) is selected with probability \(\propto f_i \) but we can be much smarter via sketches.

- **Count-Min**: \(f_i \leq \tilde{f}_i \leq f_i + \epsilon F_1 \) in \(O(\epsilon^{-1}) \) space.

\[
Z = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}
\]

- **Count-Sketch**: \(f_i - \epsilon \sqrt{F_2} \leq \tilde{f}_i \leq f_i + \epsilon \sqrt{F_2} \) in \(O(\epsilon^{-2}) \) space.

\[
Z = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}
\]

Above sketches solve range-queries, quantiles, heavy hitters, …

- **\(\ell_p \)-Sampling**: Selecting \(i \) with probability \(\propto f_i^p \) in \(O(\epsilon^{-2}) \) space.

\[
Z = \begin{bmatrix}
0 & \gamma_2 & 0 & 0 & 0 & -\gamma_6 \\
0 & 0 & 0 & -\gamma_4 & 0 & 0 \\
-\gamma_1 & 0 & \gamma_3 & 0 & \gamma_5 & 0
\end{bmatrix}
\]