Data Streams & Communication Complexity

Lecture 1: Simple Stream Statistics in Small Space

Andrew McGregor, UMass Amherst

Data Stream Model

» Stream: m elements from universe of size n, e.g.,

(x1, %2, .-, xm) = (3,5,3,7,5,4,...

Data Stream Model

» Stream: m elements from universe of size n, e.g.,

(x1,%2, ..., xm) = (3,5,3,7,5,4,...)

» Goal: Compute some function of stream, e.g., number of distinct
elements, frequent items, longest increasing sequence, a clustering,
graph connectivity properties, ...

Data Stream Model

» Stream: m elements from universe of size n, e.g.,

(x1,%2, ..., xm) = (3,5,3,7,5,4,...)

» Goal: Compute some function of stream, e.g., number of distinct
elements, frequent items, longest increasing sequence, a clustering,
graph connectivity properties, ...

» Catch:

1. Limited working memory, sublinear in n and m

Data Stream Model

» Stream: m elements from universe of size n, e.g.,

(x1,%2, ..., xm) = (3,5,3,7,5,4,...)

» Goal: Compute some function of stream, e.g., number of distinct
elements, frequent items, longest increasing sequence, a clustering,
graph connectivity properties, ...

» Catch:

1. Limited working memory, sublinear in n and m
2. Access data sequentially

Data Stream Model

» Stream: m elements from universe of size n, e.g.,

(x1,%2, ..., xm) = (3,5,3,7,5,4,...)

» Goal: Compute some function of stream, e.g., number of distinct
elements, frequent items, longest increasing sequence, a clustering,
graph connectivity properties, ...

» Catch:

1. Limited working memory, sublinear in n and m

2. Access data sequentially
3. Process each element quickly

Data Stream Model

Stream: m elements from universe of size n, e.g.,

(x1,%2, ..., xm) = (3,5,3,7,5,4,...)

Goal: Compute some function of stream, e.g., number of distinct
elements, frequent items, longest increasing sequence, a clustering,
graph connectivity properties, ...
Catch:

1. Limited working memory, sublinear in n and m

2. Access data sequentially

3. Process each element quickly

Origins in seventies but has become popular in last ten years. ..

Why's it become popular?

» Practical Appeal:
> Faster networks, cheaper data storage, ubiquitous data-logging
results in massive amount of data to be processed.
> Applications to network monitoring, query planning, /O efficiency
for massive data, sensor networks aggregation. . .

Why's it become popular?

» Practical Appeal:
> Faster networks, cheaper data storage, ubiquitous data-logging
results in massive amount of data to be processed.
> Applications to network monitoring, query planning, /O efficiency
for massive data, sensor networks aggregation. . .

» Theoretical Appeal:

» Easy to state problems but hard to solve.
> Links to communication complexity, compressed sensing, metric
embeddings, pseudo-random generators, approximation. ..

This Lecture: Basic Numerical Statistics

» Given a stream of m elements from universe [n] = {1,2,...,n}, e.g.,
(x1,%0, ..., Xm) = (3,5,3,7,5,4,...)

let f € N" be the frequency vector where f; is the frequency of i.

This Lecture: Basic Numerical Statistics

» Given a stream of m elements from universe [n] = {1,2,...,n}, e.g.,
(x1,%0, ..., Xm) = (3,5,3,7,5,4,...)

let f € N" be the frequency vector where f; is the frequency of i.
» Problems: What can we approximate in sub linear space?

> Frequency moments: Fi =", fk.

> Max frequency: Foo = max; fi.
» Number of distinct element: Fo =, f°
» Median: jsuch that A+ fH+ ...+ ff~ m/2

Algorithms are often randomized and guarantees will be probabilistic.

This Lecture: Basic Numerical Statistics

» Given a stream of m elements from universe [n] = {1,2,...,n}, e.g.,
(x1,%0, ..., Xm) = (3,5,3,7,5,4,...)

let f € N" be the frequency vector where f; is the frequency of i.
» Problems: What can we approximate in sub linear space?

> Frequency moments: Fi =", fk.

> Max frequency: Foo = max; fi.
» Number of distinct element: Fo =, f°
» Median: jsuch that A+ fH+ ...+ ff~ m/2
Algorithms are often randomized and guarantees will be probabilistic.

» Keep things simple: Could consider f;'s being increased or decreased
but for this talk we'll focus on unit increments. Will also assume
algorithms have an unlimited store of random bits.

Outline

Sampling

Sampling and Statistics

» Sampling is a general technique for tackling massive amounts of data

Sampling and Statistics

» Sampling is a general technique for tackling massive amounts of data

» Example: To find an e-approximate median, i.e., j such that
A+h+...+ff=m/2+tem

then sampling O(e~2) stream elements and returning the sample
median works with good probability.

Sampling and Statistics

» Sampling is a general technique for tackling massive amounts of data

» Example: To find an e-approximate median, i.e., j such that
A+h+...+ff=m/2+tem

then sampling O(e~2) stream elements and returning the sample
median works with good probability.

» Beyond basic sampling: There are more powerful forms of sampling
and other techniques the make better use of the limited space.

AMS Sampling

» Problem: Estimate). g(f;) for some function g with g(0) =0

AMS Sampling

» Problem: Estimate). g(f;) for some function g with g(0) =0

» Basic Estimator: Sample x; where J €g [m] and compute

r=j=J:x=x}

AMS Sampling

» Problem: Estimate). g(f;) for some function g with g(0) =0

» Basic Estimator: Sample x; where J €g [m] and compute
r=j=J:x=x}

Output X = m(g(r) —g(r—1))

AMS Sampling

» Problem: Estimate). g(f;) for some function g with g(0) =0

» Basic Estimator: Sample x; where J €g [m] and compute
r=j=J:x=x}

Output X = m(g(r) —g(r—1))

» Expectation:

E[X]

AMS Sampling

» Problem: Estimate). g(f;) for some function g with g(0) =0

» Basic Estimator: Sample x; where J €g [m] and compute
r=j=J:x=x}

Output X = m(g(r) —g(r—1))

» Expectation:

E[X] = ZP[XJ =i E[X|x; = i]

AMS Sampling

» Problem: Estimate). g(f;) for some function g with g(0) =0

» Basic Estimator: Sample x; where J €g [m] and compute
r=j=J:x=x}

Output X = m(g(r) —g(r—1))

» Expectation:

E[X] Z]P’) = E[X|x; = i]

Z ((r—l)))

AMS Sampling

> Problem: Estimate). g(f;) for some function g with g(0)

» Basic Estimator: Sample x; where J €g [m] and compute
r=j=J:x=x}

Output X = m(g(r) —g(r—1))

» Expectation:

E[X] Z]P’) = E[X|x; = i]

Z (r—1))>

Zg(f;)

=0

AMS Sampling

» Problem: Estimate). g(f;) for some function g with g(0) =0

» Basic Estimator: Sample x; where J €g [m] and compute
r=zJ:x=x1}

Output X = m(g(r) —g(r—1))

» Expectation:

E[X] Z]P’) = E[X|x; = i]

Z (r—1))>

Zgi

» For high confidence: Compute t estimators in parallel and average.

Example: Frequency Moments

» Frequency Moments: Define Fy =Y, fk for k € {1,2,3,...}

Example: Frequency Moments

» Frequency Moments: Define F, =Y, £k for k € {1,2,3,...
» Use AMS estimator with X = m(rk — (r — 1)¥).

Example: Frequency Moments

» Frequency Moments: Define Fy =Y, fk for k € {1,2,3,...}
» Use AMS estimator with X = m(rk — (r — 1)¥).
» Expectation: E[X] = Fx

Example: Frequency Moments

Frequency Moments: Define Fy, =Y. fk for k € {1,2,3,...}
Use AMS estimator with X = m(rk — (r — 1)¥).
Expectation: E[X] = Fi

Range: 0 < X < kmFX~t < kn'~Y/kF,

Example: Frequency Moments

Frequency Moments: Define Fy, =Y. fk for k € {1,2,3,...}
Use AMS estimator with X = m(rk — (r — 1)¥).

Expectation: E[X] = Fi

Range: 0 < X < kmFX~t < kn'~Y/kF,

Repeat t times and let Fj be the average value. By Chernoff,

= tF€? te2
P |Fk—Fk2€Fk}§2€Xp< k€>:2exp< 6)

© 3knl-lkF, © 3knl-1l/k

Example: Frequency Moments

Frequency Moments: Define Fy, =Y. fk for k € {1,2,3,...}
Use AMS estimator with X = m(rk — (r — 1)¥).

Expectation: E[X] = Fi

Range: 0 < X < kmFX~t < kn'~Y/kF,

Repeat t times and let Fj be the average value. By Chernoff,

= tF€? te2
P |Fk—Fk2€Fk}§2€Xp< k€>:2exp< 6)

© 3knl-lkF, © 3knl-1l/k

If t = 3¢ 2kn'~1/¥ log(26~1) then P {\ﬁk — R > eFk} <.

Example: Frequency Moments

Frequency Moments: Define Fy, =Y. fk for k € {1,2,3,...}
Use AMS estimator with X = m(rk — (r — 1)¥).

Expectation: E[X] = Fi

Range: 0 < X < kmFX~t < kn'~Y/kF,

Repeat t times and let Fj be the average value. By Chernoff,

= tF€? te2
P |Fk—Fk2€Fk}§2€Xp< k€>:2exp< 6)

© 3knl-lkF, © 3knl-1l/k

If t = 3¢ 2kn'~1/¥ log(26~1) then P {\ﬁk — R > eFk} <.

Thm: In O(e~2n*~1/) space we can find a (1 = ¢) approximation
for Fi with probability at least 1 — 4.

Outline

Sketching: The Basics

Random Projections

» Many stream algorithms use a random projection Z € RY*", w < n

fi
f

Random Projections

» Many stream algorithms use a random projection Z € RY*", w < n

fi
f

- fn_

» Updatable: We can maintain sketch s in b(W) space since
incrementing f; corresponds to

Random Projections

» Many stream algorithms use a random projection Z € RY*", w < n

fi
f

fn

» Updatable: We can maintain sketch s in b(W) space since
incrementing f; corresponds to

zy i

S« s+

Random Projections

» Many stream algorithms use a random projection Z € RY*", w < n

fi
f

fn

» Updatable: We can maintain sketch s in é(w) space since
incrementing f; corresponds to

Zy,i
S+ s+

Zyy,i

)

» Useful: Choose a distribution for z; ; such that relevant function of f
can be estimated from s with high probability for sufficiently large w.

10/25

Examples

» If z;; €r {—1,1}, can estimate F> with w = O(e 2logd~1).

Examples

» If z;; €r {—1,1}, can estimate F> with w = O(e 2logd~1).

> If z;j ~ D where D is p-stable p € (0,2], can estimate F, with
w = O(e 2log§~1). For example, 1 and 2 stable distributions are:

Cauchy(x) = Gaussian(x) = e/

14 2

Examples

» If z;; €r {—1,1}, can estimate F> with w = O(e 2logd~1).

> If z;j ~ D where D is p-stable p € (0,2], can estimate F, with
w = O(e 2log§~1). For example, 1 and 2 stable distributions are:

1 1
Cauchy(x) = e Gaussian(x) = e/

> Note that Fo = (1 £ €)F, if p=log(1l+€)/logm.

Examples

If z;; €g {—1,1}, can estimate F, with w = O(e 2 log§~1).

If z; j ~ D where D is p-stable p € (0,2], can estimate F, with
w = O(e 2log§~1). For example, 1 and 2 stable distributions are:

1 1 1
CaUChy() = ; . m Gaussian(X) = E . e_X2/2

> Note that Fo = (1 £ €)F, if p=log(1l+€)/logm.
For the rest of lecture we'll focus on “hash-based” sketches. Given a
random hash function h : [n] — [w], non-zero entries are z, ;.

01 00
Z=|10 0 0 1
1010

Outline

Count-Min and Applications

Count-Min Sketch

» Maintain vector s € N" via random hash function h : [n] — [w]

[][] o]] } []

EBIEIE . B

Count-Min Sketch

» Maintain vector s € N" via random hash function h : [n] — [w]

[][] o]] - []

EIEIER . B

» Update: For each increment of f;, increment sp,,. Hence,

Sk:ij

j:hj:k

Count-Min Sketch

» Maintain vector s € N" via random hash function h : [n] — [w]

[][] o]] - []

EIEIER . B

» Update: For each increment of f;, increment sp,,. Hence,

k=D fi eg.s=rfh+f+hs

j:hj:k

Count-Min Sketch

» Maintain vector s € N" via random hash function h : [n] — [w]

[][] o]] - []

EIEIER . B

» Update: For each increment of f;, increment sp,,. Hence,

sc= > f eg., s3="fo+f+fi3
j:hj:k

> Query: Use f= Sp, to estimate f;.

Count-Min Sketch

» Maintain vector s € N" via random hash function h : [n] — [w]

[][] o]] - []

EIEIER . B

» Update: For each increment of f;, increment sp,,. Hence,

k=D fi eg.s=rfh+f+hs

j:hj:k

> Query: Use f= Sp, to estimate f;.
» Lemma: f < f and P V, >fi+2m/w| <1/2

Count-Min Sketch

» Maintain vector s € N" via random hash function h : [n] — [w]

[][] o]] - []

EIEIER . B

Update: For each increment of f;, increment s;,. Hence,

sc= > f eg., s3="fo+f+fi3
j:hj:k

Query: Use f= Sp, to estimate f;.

Lemma: f; < f: and P V, > f,-—l—2rn/w} <1/2

Thm: Let w = 2/e. Repeat the hashing Ig(6~!) times in parallel and
take the minimum estimate for f;

Plh<fi<fitem>1-5

Proof of Lemma

» Define £ by fi = f; + & and so

Proof of Lemma

» Define £ by fi = f; + & and so

» Since all f; > 0, we have £ > 0.

Proof of Lemma

» Define £ by fi = f; + & and so
E= Y f

» Since all f; > 0, we have £ > 0.
» Since P[h; = hj] =1/w,

E[€]=)_fi-Ph = h)

J#i

Proof of Lemma

» Define £ by fi = f; + & and so
E= Y f

» Since all f; > 0, we have £ > 0.
» Since P[h; = hj] =1/w,

E[E] =) f-Plhi=h] <m/w
J#i

Proof of Lemma

Defineé’by?,-:f,-—i—gand so
E= Y f

Since all f; > 0, we have £ > 0.
Since P [hj = hj] = 1/w,

E[E] =) f-Plhi=h] <m/w
J#i

By an application of the Markov bound,

P[E >2m/w] <1/2

Range Queries
> Range Query: For i,j € [n], estimate f;; j = fi + fiy1 + ...+ f

Range Queries

> Range Query: For i,j € [n], estimate f;; j = fi + fiy1 + ...+ f
» Dyadic Intervals: Restrict attention to intervals of the form

[1+(i—1)2,i2] whereje{0,1,...,lgn},ic{1,2,...n/2}

Range Queries

> Range Query: For i,j € [n], estimate f;; j = fi + fiy1 + ...+ f
» Dyadic Intervals: Restrict attention to intervals of the form

[1+(i—1)2,i2] whereje{0,1,...,lgn},ic{1,2,...n/2}

since any range can be partitioned as O(log n) such intervals. E.g.,

[48,106] = [48, 48] U [49, 64] U [65, 96] U [97, 104] U [105, 106]

Range Queries

> Range Query: For i,j € [n], estimate f;; j = fi + fiy1 + ...+ f
» Dyadic Intervals: Restrict attention to intervals of the form

[1+(i—1)2,i2] whereje{0,1,...,lgn},ic{1,2,...n/2}

since any range can be partitioned as O(log n) such intervals. E.g.,
[48,106] = [48,48] U [49,64] U [65,96] U [97, 104] U [105, 106]

» To support dyadic intervals, construct Count-Min sketches
corresponding to intervals of width 1,2, 4.8, ...

Range Queries

> Range Query: For i,j € [n], estimate f;; j = fi + fiy1 + ...+ f
» Dyadic Intervals: Restrict attention to intervals of the form

[1+(i—1)2,iY] wherej€{0,1,...,lgn},i€{1,2,...n/2}

since any range can be partitioned as O(log n) such intervals. E.g.,
[48,106] = [48,48] U [49,64] U [65,96] U [97, 104] U [105, 106]

To support dyadic intervals, construct Count-Min sketches
corresponding to intervals of width 1,2, 4.8, ...
E.g., for intervals of width 2 we have:

BRI - EIEE

[0 [e [] - [z |

‘ s[1]] si2]] s(3]] .. l stw] |

where update rule is now: for increment of f;_1 or fp;, increment s,.

15/25

Quantiles and Heavy Hitters

Quantiles and Heavy Hitters

» Quantiles: Find j such that

fit.. . +f~

Quantiles and Heavy Hitters

» Quantiles: Find j such that
i+...+f=m/2

Can approximate median via binary search of range queries.

Quantiles and Heavy Hitters

» Quantiles: Find j such that
Ai+...+f=m/2

Can approximate median via binary search of range queries.
» Heavy Hitter Problem: Find a set S C [n] where

{i:f>om CSCithi>(p—em}

Quantiles and Heavy Hitters

» Quantiles: Find j such that
Ai+...+f=m/2

Can approximate median via binary search of range queries.
» Heavy Hitter Problem: Find a set S C [n] where

{i:f>om CSCithi>(p—em}

Rather than checking each f; individually can save time by exploiting
the fact that if f;) < ¢m then f; < ¢m for all j € [i, k].

Outline

Count-Sketch: Count-Min with a Twist

Count-Sketch: Count-Min with a Twist

» Maintain s € N* via hash functions h: [n] — [w], r : [n] = {-1,1}

[[[[m] o] []

| (1]] 2]] (3]] 4]] 5]] (6]] l n) |

' s[1]] si2]] s[al]

Count-Sketch: Count-Min with a Twist

» Maintain s € N* via hash functions h: [n] — [w], r : [n] = {-1,1}

[[[[m] o] []

| (1]] 2]] (3]] 4]] 5]] (6]] l n) |

' s[1]] si2]] s[al] .. l st |

» Update: For each increment of f;, sp, < sp, + r;. Hence,

sk=Y_ fir

Jthi=k

Count-Sketch: Count-Min with a Twist

» Maintain s € N* via hash functions h: [n] — [w], r : [n] = {-1,1}

[[[[m] o] []

| (1]] 2]] (3]] 4]] 5]] (6]] l n) |

' s[1]] si2]] s[al] .. l st |

» Update: For each increment of f;, sp, < sp, + r;. Hence,

sk:ZGrj eg.,s3="fo—fr—f3

Jthi=k

Count-Sketch: Count-Min with a Twist

» Maintain s € N* via hash functions h: [n] — [w], r : [n] = {-1,1}

[[[[m] o] []

| (1]] 2]] (3]] 4]] 5]] (6]] l n) |

' s[1]] si2]] s[al] .. l st |

» Update: For each increment of f;, sp, < sp, + r;. Hence,

sk:ZGrj eg.,s3="fo—fr—f3

Jthi=k

> Query: Use f= Sp; 17 to estimate f;.

Count-Sketch: Count-Min with a Twist

» Maintain s € N* via hash functions h: [n] — [w], r : [n] = {-1,1}

[[[[m] o] []

| (1]] 2]] (3]] 4]] 5]] (6]] l n) |

' s[1]] si2]] s[al] .. l st |

» Update: For each increment of f;, sp, < sp, + r;. Hence,

sk:ZGrj eg.,s3="fo—fr—f3

Jthi=k

> Query: Use f= Sp; 17 to estimate f;.
» Lemma: E [?,} =fand V [?,} < FR/w

Count-Sketch: Count-Min with a Twist

» Maintain s € N* via hash functions h: [n] — [w], r : [n] = {-1,1}

[[[[m] o] . []

| (1]] 2]] (3]] 4]] 5]] (6]] l n) |

' s[1]] si2]] s[al] .. l st |

Update: For each increment of f;, sp, < sp, + r;. Hence,

sk:ZGrj eg.,s3="fo—fr—f3

Jthi=k

Query: Use f= Sp; 17 to estimate f;.

Lemma: E [?,} =fand V [?,} < FR/w

Thm: Let w = O(1/€?). Repeating O(Igd~1) in parallel and taking
the median estimate ensures

Pli-eVR<f<fiteV/R|>1-6.

18/25

Proof of Lemma
» Define £ by fi=f+Er and so

Proof of Lemma
» Define £ by fi=f+Er and so

» Expectation: Since E[r;] =0,

El]= Y fE[5]=0

j#i:hi:hj

Proof of Lemma
» Define £ by fi=f+Er and so

» Expectation: Since E[r;] =0,

El]=) fE[5]=0

j#i:hi:hj

» Variance: Similarly,

V]

Proof of Lemma
» Define £ by fi=f+Er and so

» Expectation: Since E[r;] =0,

El]=) fE[5]=0

j#i:hi:hj

» Variance: Similarly,

VIEI<E (Y fin)

j#l‘:h,‘:hj

Proof of Lemma
» Define £ by fi=f+Er and so

» Expectation: Since E[r;] =0,

El]=) fE[5]=0

j#l’:h,‘:hj

» Variance: Similarly,

VIEL<E|(Y fin) N FAE[Gr] Pl = by = hy]

j#i:hi=h; JkF#i
h,‘=hj=hk

Proof of Lemma
» Define £ by fi=f+Er and so

» Expectation: Since E[r;] =0,

El]=) fE[5]=0

j#l’:h,‘:hj

» Variance: Similarly,

VIEL<E|(Y fin) N FAE[Gr] Pl = by = hy]

j#i:hi=h; JkF#i
h,‘=hj=hk

> FPhi=h]<R/w
j#l’:/‘l;:hj

Outline

¢, Sampling and Frequency Moments

¢, Sampling

¢, Sampling

» (, Sampling: Return random values / € [n] and R € R where

P[/:/]:(ue)";'p

P

and R=(1+e)f;

¢, Sampling

» (, Sampling: Return random values / € [n] and R € R where

P[/:/]:(ue)";'p

P

and R=(1+e)f;

» Applications:
> Will use ¢, sampling to get optimal algorithm for Fi, k > 2.
> Will use ¢o sampling for processing graph streams.
> Many other stream problems can be solved via £, sampling, e.g.,
duplicate finding, triangle counting, entropy estimation.

¢, Sampling

» (, Sampling: Return random values / € [n] and R € R where

P[/:/]:(ue)";'p

P

and R=(1+e)f;

» Applications:
> Will use ¢, sampling to get optimal algorithm for Fi, k > 2.
> Will use ¢o sampling for processing graph streams.
> Many other stream problems can be solved via £, sampling, e.g.,
duplicate finding, triangle counting, entropy estimation.

> Let's see algorithm for p = 2. ..

¢, Sampling Algorithm

¢, Sampling Algorithm

» Weight f; by 7, = \/1/u; where u; €g [0, 1] to form vector g:

o= (A f)
g (81,82,---,8n) where g; = 7if;

¢, Sampling Algorithm

» Weight f; by 7, = \/1/u; where u; €g [0, 1] to form vector g:

o= (fifosfo)
g = (g1,8,...,81) where g =~f;

» Return (i, f) if g2 >t := F(f)/e

¢, Sampling Algorithm

» Weight f; by v; = \/m where u; €g [0,1] to form vector g:
f = (hh,....f)
g = (81,82,---,8n) where gi =1;f;

» Return (i, f) if g2 >t := F(f)/e
> Probability (i, ;) is returned:

P[g? > t]

¢, Sampling Algorithm

» Weight f; by 7, = \/1/u; where u; €g [0, 1] to form vector g:
f = (hh,....f)
g = (81,82,---,8n) where gi =1;f;

» Return (i, f) if g2 >t := F(f)/e

> Probability (i, ;) is returned:

Plg?>t] =P [u; < f2/t] = f/t

¢, Sampling Algorithm

Weight f; by v; = \/m where u; €g [0,1] to form vector g:
f = (hh,....f)
g = (81,82,---,8n) where gi =1;f;

Return (i, ;) if g2 > t := Fa(f)/e
Probability (i, f;) is returned:

Plg?>t] =P[u < f2/t] =2/t

Probability some value is returned is), £2/t = € so repeating
O(e !logd~1) ensures a value is returned with probability 1 — 4.

¢, Sampling Algorithm

Weight f; by ~; = \/1/u; where u; €g [0, 1] to form vector g:

o= (fifosfo)
g = (g1,8,...,81) where g =~f;

Return (i, ;) if g2 > t := Fa(f)/e
Probability (i, f;) is returned:

Plg?>t] =P[u < f2/t] =2/t

Probability some value is returned is), £2/t = € so repeating
O(e !logd~1) ensures a value is returned with probability 1 — 4.

Lemma: Using a Count-Sketch of size O(e~! log? n) ensures a
(1 £ €) approximation of any g; that passes the threshold.

Proof of Lemma

Proof of Lemma

> Exercise: P[Fa(g)/F2(f) < clogn] > 99/100 for some large ¢ > 0
so we'll condition on this event.

Proof of Lemma

> Exercise: P[Fa(g)/F2(f) < clogn] > 99/100 for some large ¢ > 0
so we'll condition on this event.

» Set w = 9ce 'log n. Count-Sketch in O(w log? n) space ensures

g=g+\VFl(g)/w

Proof of Lemma

> Exercise: P[Fa(g)/F2(f) < clogn] > 99/100 for some large ¢ > 0
so we'll condition on this event.

» Set w = 9ce 'log n. Count-Sketch in O(w log? n) space ensures

g=g+\VFl(g)/w

» Then g2 > F(f)/e implies

VFag)/w < VFf)/(9e71) < \/eg?/(9e71) = €8/3

and hence g2 = (1 + ¢/3)?g? = (14 ¢)g? as required.

Proof of Lemma

Exercise: P [F2(g)/F2(f) < clogn] > 99/100 for some large ¢ > 0
so we'll condition on this event.

Set w = 9ce ! log n. Count-Sketch in O(w log? n) space ensures

g=g+\VFl(g)/w

Then g2 > Fy(f)/e implies

VFag)/w < VFf)/(9e71) < \/eg?/(9e71) = €8/3

and hence g2 = (1 + ¢/3)?g? = (14 ¢)g? as required.

Under—the—rug. Need to ensure that conditioning doesn't affect
sampling probability too much.

F Revisited

> Earlier we used O(n'~1/k) space to approximate Fy = >, |f|¥.

F Revisited

> Earlier we used O(n'~1/k) space to approximate Fy = >, |f|¥.

» Algorithm: Let (I, R) be an (1 + ~y)-approximate ¢, sample. Return

T=FER"2 where i is a (1 £) approximation for F,

F Revisited

> Earlier we used O(n'~1/k) space to approximate Fy = >, |f|¥.

» Algorithm: Let (I, R) be an (1 + ~y)-approximate ¢, sample. Return
T = F,R*"2 where F, is a (1 4) approximation for F,

> Expectation: Setting v = €/(4k),

E[T]

F Revisited

> Earlier we used O(n'~1/k) space to approximate Fy = >, |f|¥.
» Algorithm: Let (I, R) be an (1 + ~y)-approximate ¢, sample. Return

T=FER"2 where Fisa (1 £) approximation for F,

> Expectation: Setting v = €/(4k),

E[T] =F) Pl =i((1+y)f) 2

F Revisited

> Earlier we used O(n'~1/k) space to approximate Fy = >, |f|¥.
» Algorithm: Let (I, R) be an (1 + ~y)-approximate ¢, sample. Return

T=FER"2 where Fisa (1 £) approximation for F,

> Expectation: Setting v = €/(4k),

B[T) = B Y U = (1407 = ()R Y L g

F Revisited

> Earlier we used O(n'~1/k) space to approximate Fy = >, |f|¥.
» Algorithm: Let (I, R) be an (1 + ~y)-approximate ¢, sample. Return

T=FER"2 where Fisa (1 £) approximation for F,

> Expectation: Setting v = €/(4k),

E[T] =F) Pl =i((1+y)f) 2 =(

F Revisited

> Earlier we used O(n'~1/k) space to approximate Fy = >, |f|¥.
» Algorithm: Let (I, R) be an (1 + ~y)-approximate ¢, sample. Return

T=FER"2 where Fisa (1 £) approximation for F,

> Expectation: Setting v = €/(4k),

E[T] =F) Pl =i((1+y)f) 2 =(

> Range: 0 < T < (1+7)FFk? = (1+7)n't"2/%F,.

F Revisited

> Earlier we used O(n'~1/k) space to approximate Fy = >, |f|¥.
Algorithm: Let (I, R) be an (1 + ~y)-approximate ¢, sample. Return

T=FER"2 where Fisa (1 £) approximation for F,

Expectation: Setting v = €/(4k),

E[T] =F) Pl =i((1+y)f) 2 =(

Range: 0 < T < (1 +7)FaFk2 = (1 +~)n'~2/%F,.
Averaging over t = O(e=2n*=2/Klog §=1) parallel repetitions gives,

]P |F_k—Fk‘ ZEFk} §5

F Revisited

Earlier we used O(n*~1/k) space to approximate F = >, |f|¥.
Algorithm: Let (I, R) be an (1 + ~y)-approximate ¢, sample. Return

T=FER"2 where Fisa (1 £) approximation for F,

Expectation: Setting v = €/(4k),

E[T] =F) Pl =i((1+y)f) 2 =(

Range: 0 < T < (1 +7)FaFk2 = (1 +~)n'~2/%F,.
Averaging over t = O(e=2n*=2/Klog §=1) parallel repetitions gives,

]P |F_k—Fk‘ ZEFk} §5

Thm: In O(e~2n'~2/) space we can find a (1 = €) approximation
for Fj with probability at least 1 — 4.

24/25

Summary
» Basic Sampling: Can do basic sampling where i is selected with
probability o< f; but we can be much smarter via sketches.
» Count-Min: f; < f; < f; + eFy in O(e™ 1) space.

01
0 0
10

» Count-Sketch: fi — e\/Fo < f; < fi + ey/F2 in O(e~?) space.

Above sketches solve range-queries, quantiles, heavy hitters, ...
» (,-Sampling: Selecting i with probability oc £ in O(¢~2) space.
0 2 0 0 0 -7
0 0 —y O 0
0 m» 0 9 O

	Sampling
	Sketching: The Basics
	Count-Min and Applications
	Count-Sketch: Count-Min with a Twist
	p Sampling and Frequency Moments

