Data Streams & Communication Complexity

Lecture 1: Simple Stream Statistics in Small Space
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Data Stream Model

Stream: m elements from universe of size n, e.g.,

(x1,%2, ..., xm) = (3,5,3,7,5,4,...)

Goal: Compute some function of stream, e.g., number of distinct
elements, frequent items, longest increasing sequence, a clustering,
graph connectivity properties, ...
Catch:

1. Limited working memory, sublinear in n and m

2. Access data sequentially

3. Process each element quickly

Origins in seventies but has become popular in last ten years. ..
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» Practical Appeal:
> Faster networks, cheaper data storage, ubiquitous data-logging
results in massive amount of data to be processed.
> Applications to network monitoring, query planning, /O efficiency
for massive data, sensor networks aggregation. . .

» Theoretical Appeal:

» Easy to state problems but hard to solve.
> Links to communication complexity, compressed sensing, metric
embeddings, pseudo-random generators, approximation. ..
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» Given a stream of m elements from universe [n] = {1,2,...,n}, e.g.,
(x1,%0, ..., Xm) = (3,5,3,7,5,4,...)

let f € N" be the frequency vector where f; is the frequency of i.
» Problems: What can we approximate in sub linear space?

> Frequency moments: Fi =", fk.

> Max frequency: Foo = max; fi.
» Number of distinct element: Fo =, f°
» Median: jsuch that A+ fH+ ...+ ff~ m/2
Algorithms are often randomized and guarantees will be probabilistic.

» Keep things simple: Could consider f;'s being increased or decreased
but for this talk we'll focus on unit increments. Will also assume
algorithms have an unlimited store of random bits.
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Sampling and Statistics

» Sampling is a general technique for tackling massive amounts of data

» Example: To find an e-approximate median, i.e., j such that
A+h+...+ff=m/2+tem

then sampling O(e~2) stream elements and returning the sample
median works with good probability.

» Beyond basic sampling: There are more powerful forms of sampling
and other techniques the make better use of the limited space.
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AMS Sampling

» Problem: Estimate ). g(f;) for some function g with g(0) =0

» Basic Estimator: Sample x; where J €g [m] and compute
r=zJ:x=x1}

Output X = m(g(r) —g(r—1))

» Expectation:

E[X] Z]P’ ) = E[X|x; = i]

Z ( r—1))>

Zgi

» For high confidence: Compute t estimators in parallel and average.
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Example: Frequency Moments

Frequency Moments: Define Fy, =Y. fk for k € {1,2,3,...}
Use AMS estimator with X = m(rk — (r — 1)¥).

Expectation: E[X] = Fi

Range: 0 < X < kmFX~t < kn'~Y/kF,

Repeat t times and let Fj be the average value. By Chernoff,

= tF€? te2
P |Fk—Fk2€Fk}§2€Xp< k€>:2exp< 6)

© 3knl-lkF, © 3knl-1l/k

If t = 3¢ 2kn'~1/¥ log(26~1) then P {\ﬁk — R > eFk} <.

Thm: In O(e~2n*~1/) space we can find a (1 = ¢) approximation
for Fi with probability at least 1 — 4.
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Random Projections

» Many stream algorithms use a random projection Z € RY*", w < n

fi
f

fn

» Updatable: We can maintain sketch s in é(w) space since
incrementing f; corresponds to

Zy,i
S+ s+

Zyy,i

)

» Useful: Choose a distribution for z; ; such that relevant function of f
can be estimated from s with high probability for sufficiently large w.

10/25
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Examples

If z;; €g {—1,1}, can estimate F, with w = O(e 2 log§~1).

If z; j ~ D where D is p-stable p € (0,2], can estimate F, with
w = O(e 2log§~1). For example, 1 and 2 stable distributions are:

1 1 1
CaUChy( ) = ; . m Gaussian(X) = E . e_X2/2

> Note that Fo = (1 £ €)F, if p=log(1l+€)/logm.
For the rest of lecture we'll focus on “hash-based” sketches. Given a
random hash function h : [n] — [w], non-zero entries are z, ;.

01 00
Z=|10 0 0 1
1010
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» Maintain vector s € N" via random hash function h : [n] — [w]

[ ][] o] ] - [ ]

EIEIER . B

Update: For each increment of f;, increment s;,. Hence,

sc= > f eg., s3="fo+f+fi3
j:hj:k

Query: Use f= Sp, to estimate f;.

Lemma: f; < f: and P V, > f,-—l—2rn/w} <1/2

Thm: Let w = 2/e. Repeat the hashing Ig(6~!) times in parallel and
take the minimum estimate for f;

Plh<fi<fitem>1-5
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Proof of Lemma

Defineé’by?,-:f,-—i—gand so
E= Y f

Since all f; > 0, we have £ > 0.
Since P [hj = hj] = 1/w,

E[E] =) f-Plhi=h] <m/w
J#i

By an application of the Markov bound,

P[E >2m/w] <1/2
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Range Queries

> Range Query: For i,j € [n], estimate f;; j = fi + fiy1 + ...+ f
» Dyadic Intervals: Restrict attention to intervals of the form

[1+(i—1)2,iY] wherej€{0,1,...,lgn},i€{1,2,...n/2}

since any range can be partitioned as O(log n) such intervals. E.g.,
[48,106] = [48,48] U [49,64] U [65,96] U [97, 104] U [105, 106]

To support dyadic intervals, construct Count-Min sketches
corresponding to intervals of width 1,2, 4.8, ...
E.g., for intervals of width 2 we have:

BRI - EIEE

[0 [ e [ ] - [z |

‘ s[1] ] si2] ] s(3] ] .. l stw] |

where update rule is now: for increment of f;_1 or fp;, increment s,.
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Quantiles and Heavy Hitters

» Quantiles: Find j such that
Ai+...+f=m/2

Can approximate median via binary search of range queries.
» Heavy Hitter Problem: Find a set S C [n] where

{i:f>om CSCithi>(p—em}

Rather than checking each f; individually can save time by exploiting
the fact that if f; ) < ¢m then f; < ¢m for all j € [i, k].
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Count-Sketch: Count-Min with a Twist

» Maintain s € N* via hash functions h: [n] — [w], r : [n] = {-1,1}

[ [ [ [m] o] . [ ]

| (1] ] 2] ] (3] ] 4] ] 5] ] (6] ] l n) |

' s[1] ] si2] ] s[al ] .. l st |

Update: For each increment of f;, sp, < sp, + r;. Hence,

sk:ZGrj eg.,s3="fo—fr—f3

Jthi=k

Query: Use f= Sp; 17 to estimate f;.

Lemma: E [?,} =fand V [?,} < FR/w

Thm: Let w = O(1/€?). Repeating O(Igd~1) in parallel and taking
the median estimate ensures

Pli-eVR<f<fiteV/R|>1-6.
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Proof of Lemma
» Define £ by fi=f+Er and so

» Expectation: Since E[r;] =0,

El]= ) fE[5]=0

j#l’:h,‘:hj

» Variance: Similarly,

VIEL<E|( Y fin) N FAE[Gr] Pl = by = hy]

j#i:hi=h; JkF#i
h,‘=hj=hk

> FPhi=h]<R/w
j#l’:/‘l;:hj
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» (, Sampling: Return random values / € [n] and R € R where

P[/:/]:(ue)";'p

P

and R=(1+e)f;

» Applications:
> Will use ¢, sampling to get optimal algorithm for Fi, k > 2.
> Will use ¢o sampling for processing graph streams.
> Many other stream problems can be solved via £, sampling, e.g.,
duplicate finding, triangle counting, entropy estimation.

> Let's see algorithm for p = 2. ..
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¢, Sampling Algorithm

Weight f; by ~; = \/1/u; where u; €g [0, 1] to form vector g:

o= (fifosfo)
g = (g1,8,...,81) where g =~f;

Return (i, ;) if g2 > t := Fa(f)/e
Probability (i, f;) is returned:

Plg?>t] =P[u < f2/t] =2/t

Probability some value is returned is ), £2/t = € so repeating
O(e !logd~1) ensures a value is returned with probability 1 — 4.

Lemma: Using a Count-Sketch of size O(e~! log? n) ensures a
(1 £ €) approximation of any g; that passes the threshold.
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Proof of Lemma

> Exercise: P[Fa(g)/F2(f) < clogn] > 99/100 for some large ¢ > 0
so we'll condition on this event.

» Set w = 9ce 'log n. Count-Sketch in O(w log? n) space ensures

g=g+\VFl(g)/w

» Then g2 > F(f)/e implies

VFag)/w < VFf)/(9e71) < \/eg?/(9e71) = €8/3

and hence g2 = (1 + ¢/3)?g? = (14 ¢)g? as required.




Proof of Lemma

Exercise: P [F2(g)/F2(f) < clogn] > 99/100 for some large ¢ > 0
so we'll condition on this event.

Set w = 9ce ! log n. Count-Sketch in O(w log? n) space ensures

g=g+\VFl(g)/w

Then g2 > Fy(f)/e implies

VFag)/w < VFf)/(9e71) < \/eg?/(9e71) = €8/3

and hence g2 = (1 + ¢/3)?g? = (14 ¢)g? as required.

Under—the—rug. Need to ensure that conditioning doesn't affect
sampling probability too much.
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> Expectation: Setting v = €/(4k),

E[T]
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T=FER"2 where Fisa (1 £ ) approximation for F,
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E[T] =F) Pl =i((1+y)f) 2




F Revisited

> Earlier we used O(n'~1/k) space to approximate Fy = >, |f|¥.
» Algorithm: Let (I, R) be an (1 + ~y)-approximate ¢, sample. Return

T=FER"2 where Fisa (1 £ ) approximation for F,

> Expectation: Setting v = €/(4k),

B[T) = B Y U = (1407 = ()R Y L g




F Revisited

> Earlier we used O(n'~1/k) space to approximate Fy = >, |f|¥.
» Algorithm: Let (I, R) be an (1 + ~y)-approximate ¢, sample. Return

T=FER"2 where Fisa (1 £ ) approximation for F,

> Expectation: Setting v = €/(4k),

E[T] =F) Pl =i((1+y)f) 2 =(




F Revisited

> Earlier we used O(n'~1/k) space to approximate Fy = >, |f|¥.
» Algorithm: Let (I, R) be an (1 + ~y)-approximate ¢, sample. Return

T=FER"2 where Fisa (1 £ ) approximation for F,

> Expectation: Setting v = €/(4k),

E[T] =F) Pl =i((1+y)f) 2 =(

> Range: 0 < T < (1+7)FFk? = (1+7)n't"2/%F,.




F Revisited

> Earlier we used O(n'~1/k) space to approximate Fy = >, |f|¥.
Algorithm: Let (I, R) be an (1 + ~y)-approximate ¢, sample. Return

T=FER"2 where Fisa (1 £ ) approximation for F,

Expectation: Setting v = €/(4k),

E[T] =F) Pl =i((1+y)f) 2 =(

Range: 0 < T < (1 +7)FaFk2 = (1 +~)n'~2/%F,.
Averaging over t = O(e=2n*=2/Klog §=1) parallel repetitions gives,

]P |F_k—Fk‘ ZEFk} §5




F Revisited

Earlier we used O(n*~1/k) space to approximate F = >, |f|¥.
Algorithm: Let (I, R) be an (1 + ~y)-approximate ¢, sample. Return

T=FER"2 where Fisa (1 £ ) approximation for F,

Expectation: Setting v = €/(4k),

E[T] =F) Pl =i((1+y)f) 2 =(

Range: 0 < T < (1 +7)FaFk2 = (1 +~)n'~2/%F,.
Averaging over t = O(e=2n*=2/Klog §=1) parallel repetitions gives,

]P |F_k—Fk‘ ZEFk} §5

Thm: In O(e~2n'~2/) space we can find a (1 = €) approximation
for Fj with probability at least 1 — 4.
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Summary
» Basic Sampling: Can do basic sampling where i is selected with
probability o< f; but we can be much smarter via sketches.
» Count-Min: f; < f; < f; + eFy in O(e™ 1) space.

01
0 0
10

» Count-Sketch: fi — e\/Fo < f; < fi + ey/F2 in O(e~?) space.

Above sketches solve range-queries, quantiles, heavy hitters, ...
» (,-Sampling: Selecting i with probability oc £ in O(¢~2) space.
0 2 0 0 0 -7
0 0 —y O 0
0 m» 0 9 O
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