
Data Streams & Communication Complexity
Lecture 1: Simple Stream Statistics in Small Space

Andrew McGregor, UMass Amherst

1/25

Data Stream Model

I Stream: m elements from universe of size n, e.g.,

〈x1, x2, . . . , xm〉 = 〈3, 5, 3, 7, 5, 4, . . .〉

I Goal: Compute some function of stream, e.g., number of distinct
elements, frequent items, longest increasing sequence, a clustering,
graph connectivity properties, . . .

I Catch:

1. Limited working memory, sublinear in n and m
2. Access data sequentially
3. Process each element quickly

I Origins in seventies but has become popular in last ten years. . .

2/25

Data Stream Model

I Stream: m elements from universe of size n, e.g.,

〈x1, x2, . . . , xm〉 = 〈3, 5, 3, 7, 5, 4, . . .〉

I Goal: Compute some function of stream, e.g., number of distinct
elements, frequent items, longest increasing sequence, a clustering,
graph connectivity properties, . . .

I Catch:

1. Limited working memory, sublinear in n and m
2. Access data sequentially
3. Process each element quickly

I Origins in seventies but has become popular in last ten years. . .

2/25

Data Stream Model

I Stream: m elements from universe of size n, e.g.,

〈x1, x2, . . . , xm〉 = 〈3, 5, 3, 7, 5, 4, . . .〉

I Goal: Compute some function of stream, e.g., number of distinct
elements, frequent items, longest increasing sequence, a clustering,
graph connectivity properties, . . .

I Catch:

1. Limited working memory, sublinear in n and m

2. Access data sequentially
3. Process each element quickly

I Origins in seventies but has become popular in last ten years. . .

2/25

Data Stream Model

I Stream: m elements from universe of size n, e.g.,

〈x1, x2, . . . , xm〉 = 〈3, 5, 3, 7, 5, 4, . . .〉

I Goal: Compute some function of stream, e.g., number of distinct
elements, frequent items, longest increasing sequence, a clustering,
graph connectivity properties, . . .

I Catch:

1. Limited working memory, sublinear in n and m
2. Access data sequentially

3. Process each element quickly

I Origins in seventies but has become popular in last ten years. . .

2/25

Data Stream Model

I Stream: m elements from universe of size n, e.g.,

〈x1, x2, . . . , xm〉 = 〈3, 5, 3, 7, 5, 4, . . .〉

I Goal: Compute some function of stream, e.g., number of distinct
elements, frequent items, longest increasing sequence, a clustering,
graph connectivity properties, . . .

I Catch:

1. Limited working memory, sublinear in n and m
2. Access data sequentially
3. Process each element quickly

I Origins in seventies but has become popular in last ten years. . .

2/25

Data Stream Model

I Stream: m elements from universe of size n, e.g.,

〈x1, x2, . . . , xm〉 = 〈3, 5, 3, 7, 5, 4, . . .〉

I Goal: Compute some function of stream, e.g., number of distinct
elements, frequent items, longest increasing sequence, a clustering,
graph connectivity properties, . . .

I Catch:

1. Limited working memory, sublinear in n and m
2. Access data sequentially
3. Process each element quickly

I Origins in seventies but has become popular in last ten years. . .

2/25

Why’s it become popular?

I Practical Appeal:
I Faster networks, cheaper data storage, ubiquitous data-logging

results in massive amount of data to be processed.
I Applications to network monitoring, query planning, I/O efficiency

for massive data, sensor networks aggregation. . .

I Theoretical Appeal:
I Easy to state problems but hard to solve.
I Links to communication complexity, compressed sensing, metric

embeddings, pseudo-random generators, approximation. . .

3/25

Why’s it become popular?

I Practical Appeal:
I Faster networks, cheaper data storage, ubiquitous data-logging

results in massive amount of data to be processed.
I Applications to network monitoring, query planning, I/O efficiency

for massive data, sensor networks aggregation. . .

I Theoretical Appeal:
I Easy to state problems but hard to solve.
I Links to communication complexity, compressed sensing, metric

embeddings, pseudo-random generators, approximation. . .

3/25

This Lecture: Basic Numerical Statistics

I Given a stream of m elements from universe [n] = {1, 2, . . . , n}, e.g.,

〈x1, x2, . . . , xm〉 = 〈3, 5, 3, 7, 5, 4, . . .〉

let f ∈ Nn be the frequency vector where fi is the frequency of i .

I Problems: What can we approximate in sub linear space?
I Frequency moments: Fk =

∑
i f

k
i .

I Max frequency: F∞ = maxi fi .
I Number of distinct element: F0 =

∑
i f

0
i

I Median: j such that f1 + f2 + . . . + fj ≈ m/2

Algorithms are often randomized and guarantees will be probabilistic.

I Keep things simple: Could consider fi ’s being increased or decreased
but for this talk we’ll focus on unit increments. Will also assume
algorithms have an unlimited store of random bits.

4/25

This Lecture: Basic Numerical Statistics

I Given a stream of m elements from universe [n] = {1, 2, . . . , n}, e.g.,

〈x1, x2, . . . , xm〉 = 〈3, 5, 3, 7, 5, 4, . . .〉

let f ∈ Nn be the frequency vector where fi is the frequency of i .

I Problems: What can we approximate in sub linear space?
I Frequency moments: Fk =

∑
i f

k
i .

I Max frequency: F∞ = maxi fi .
I Number of distinct element: F0 =

∑
i f

0
i

I Median: j such that f1 + f2 + . . . + fj ≈ m/2

Algorithms are often randomized and guarantees will be probabilistic.

I Keep things simple: Could consider fi ’s being increased or decreased
but for this talk we’ll focus on unit increments. Will also assume
algorithms have an unlimited store of random bits.

4/25

This Lecture: Basic Numerical Statistics

I Given a stream of m elements from universe [n] = {1, 2, . . . , n}, e.g.,

〈x1, x2, . . . , xm〉 = 〈3, 5, 3, 7, 5, 4, . . .〉

let f ∈ Nn be the frequency vector where fi is the frequency of i .

I Problems: What can we approximate in sub linear space?
I Frequency moments: Fk =

∑
i f

k
i .

I Max frequency: F∞ = maxi fi .
I Number of distinct element: F0 =

∑
i f

0
i

I Median: j such that f1 + f2 + . . . + fj ≈ m/2

Algorithms are often randomized and guarantees will be probabilistic.

I Keep things simple: Could consider fi ’s being increased or decreased
but for this talk we’ll focus on unit increments. Will also assume
algorithms have an unlimited store of random bits.

4/25

Outline

Sampling

Sketching: The Basics

Count-Min and Applications

Count-Sketch: Count-Min with a Twist

`p Sampling and Frequency Moments

5/25

Sampling and Statistics

I Sampling is a general technique for tackling massive amounts of data

I Example: To find an ε-approximate median, i.e., j such that

f1 + f2 + . . .+ fj = m/2± εm

then sampling O(ε−2) stream elements and returning the sample
median works with good probability.

I Beyond basic sampling: There are more powerful forms of sampling
and other techniques the make better use of the limited space.

6/25

Sampling and Statistics

I Sampling is a general technique for tackling massive amounts of data

I Example: To find an ε-approximate median, i.e., j such that

f1 + f2 + . . .+ fj = m/2± εm

then sampling O(ε−2) stream elements and returning the sample
median works with good probability.

I Beyond basic sampling: There are more powerful forms of sampling
and other techniques the make better use of the limited space.

6/25

Sampling and Statistics

I Sampling is a general technique for tackling massive amounts of data

I Example: To find an ε-approximate median, i.e., j such that

f1 + f2 + . . .+ fj = m/2± εm

then sampling O(ε−2) stream elements and returning the sample
median works with good probability.

I Beyond basic sampling: There are more powerful forms of sampling
and other techniques the make better use of the limited space.

6/25

AMS Sampling

I Problem: Estimate
∑

i g(fi) for some function g with g(0) = 0

I Basic Estimator: Sample xJ where J ∈R [m] and compute

r = |{j ≥ J : xj = xJ}|

Output X = m(g(r)− g(r − 1))

I Expectation:

E [X] =
∑
i

P [xJ = i]E [X |xJ = i]

=
∑
i

fi
m

(
fi∑

r=1

m(g(r)− g(r − 1))

fi

)
=

∑
i

g(fi)

I For high confidence: Compute t estimators in parallel and average.

7/25

AMS Sampling

I Problem: Estimate
∑

i g(fi) for some function g with g(0) = 0

I Basic Estimator: Sample xJ where J ∈R [m] and compute

r = |{j ≥ J : xj = xJ}|

Output X = m(g(r)− g(r − 1))

I Expectation:

E [X] =
∑
i

P [xJ = i]E [X |xJ = i]

=
∑
i

fi
m

(
fi∑

r=1

m(g(r)− g(r − 1))

fi

)
=

∑
i

g(fi)

I For high confidence: Compute t estimators in parallel and average.

7/25

AMS Sampling

I Problem: Estimate
∑

i g(fi) for some function g with g(0) = 0

I Basic Estimator: Sample xJ where J ∈R [m] and compute

r = |{j ≥ J : xj = xJ}|

Output X = m(g(r)− g(r − 1))

I Expectation:

E [X] =
∑
i

P [xJ = i]E [X |xJ = i]

=
∑
i

fi
m

(
fi∑

r=1

m(g(r)− g(r − 1))

fi

)
=

∑
i

g(fi)

I For high confidence: Compute t estimators in parallel and average.

7/25

AMS Sampling

I Problem: Estimate
∑

i g(fi) for some function g with g(0) = 0

I Basic Estimator: Sample xJ where J ∈R [m] and compute

r = |{j ≥ J : xj = xJ}|

Output X = m(g(r)− g(r − 1))

I Expectation:

E [X]

=
∑
i

P [xJ = i]E [X |xJ = i]

=
∑
i

fi
m

(
fi∑

r=1

m(g(r)− g(r − 1))

fi

)
=

∑
i

g(fi)

I For high confidence: Compute t estimators in parallel and average.

7/25

AMS Sampling

I Problem: Estimate
∑

i g(fi) for some function g with g(0) = 0

I Basic Estimator: Sample xJ where J ∈R [m] and compute

r = |{j ≥ J : xj = xJ}|

Output X = m(g(r)− g(r − 1))

I Expectation:

E [X] =
∑
i

P [xJ = i]E [X |xJ = i]

=
∑
i

fi
m

(
fi∑

r=1

m(g(r)− g(r − 1))

fi

)
=

∑
i

g(fi)

I For high confidence: Compute t estimators in parallel and average.

7/25

AMS Sampling

I Problem: Estimate
∑

i g(fi) for some function g with g(0) = 0

I Basic Estimator: Sample xJ where J ∈R [m] and compute

r = |{j ≥ J : xj = xJ}|

Output X = m(g(r)− g(r − 1))

I Expectation:

E [X] =
∑
i

P [xJ = i]E [X |xJ = i]

=
∑
i

fi
m

(
fi∑

r=1

m(g(r)− g(r − 1))

fi

)

=
∑
i

g(fi)

I For high confidence: Compute t estimators in parallel and average.

7/25

AMS Sampling

I Problem: Estimate
∑

i g(fi) for some function g with g(0) = 0

I Basic Estimator: Sample xJ where J ∈R [m] and compute

r = |{j ≥ J : xj = xJ}|

Output X = m(g(r)− g(r − 1))

I Expectation:

E [X] =
∑
i

P [xJ = i]E [X |xJ = i]

=
∑
i

fi
m

(
fi∑

r=1

m(g(r)− g(r − 1))

fi

)
=

∑
i

g(fi)

I For high confidence: Compute t estimators in parallel and average.

7/25

AMS Sampling

I Problem: Estimate
∑

i g(fi) for some function g with g(0) = 0

I Basic Estimator: Sample xJ where J ∈R [m] and compute

r = |{j ≥ J : xj = xJ}|

Output X = m(g(r)− g(r − 1))

I Expectation:

E [X] =
∑
i

P [xJ = i]E [X |xJ = i]

=
∑
i

fi
m

(
fi∑

r=1

m(g(r)− g(r − 1))

fi

)
=

∑
i

g(fi)

I For high confidence: Compute t estimators in parallel and average.

7/25

Example: Frequency Moments

I Frequency Moments: Define Fk =
∑

i f k
i for k ∈ {1, 2, 3, . . .}

I Use AMS estimator with X = m(rk − (r − 1)k).

I Expectation: E [X] = Fk

I Range: 0 ≤ X ≤ kmF k−1
∞ ≤ kn1−1/kFk

I Repeat t times and let F̃k be the average value. By Chernoff,

P
[
|F̃k − Fk | ≥ εFk

]
≤ 2 exp

(
− tFkε

2

3kn1−1/kFk

)
= 2 exp

(
− tε2

3kn1−1/k

)
I If t = 3ε−2kn1−1/k log(2δ−1) then P

[
|F̃k − Fk | ≥ εFk

]
≤ δ.

I Thm: In Õ(ε−2n1−1/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

8/25

Example: Frequency Moments

I Frequency Moments: Define Fk =
∑

i f k
i for k ∈ {1, 2, 3, . . .}

I Use AMS estimator with X = m(rk − (r − 1)k).

I Expectation: E [X] = Fk

I Range: 0 ≤ X ≤ kmF k−1
∞ ≤ kn1−1/kFk

I Repeat t times and let F̃k be the average value. By Chernoff,

P
[
|F̃k − Fk | ≥ εFk

]
≤ 2 exp

(
− tFkε

2

3kn1−1/kFk

)
= 2 exp

(
− tε2

3kn1−1/k

)
I If t = 3ε−2kn1−1/k log(2δ−1) then P

[
|F̃k − Fk | ≥ εFk

]
≤ δ.

I Thm: In Õ(ε−2n1−1/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

8/25

Example: Frequency Moments

I Frequency Moments: Define Fk =
∑

i f k
i for k ∈ {1, 2, 3, . . .}

I Use AMS estimator with X = m(rk − (r − 1)k).

I Expectation: E [X] = Fk

I Range: 0 ≤ X ≤ kmF k−1
∞ ≤ kn1−1/kFk

I Repeat t times and let F̃k be the average value. By Chernoff,

P
[
|F̃k − Fk | ≥ εFk

]
≤ 2 exp

(
− tFkε

2

3kn1−1/kFk

)
= 2 exp

(
− tε2

3kn1−1/k

)
I If t = 3ε−2kn1−1/k log(2δ−1) then P

[
|F̃k − Fk | ≥ εFk

]
≤ δ.

I Thm: In Õ(ε−2n1−1/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

8/25

Example: Frequency Moments

I Frequency Moments: Define Fk =
∑

i f k
i for k ∈ {1, 2, 3, . . .}

I Use AMS estimator with X = m(rk − (r − 1)k).

I Expectation: E [X] = Fk

I Range: 0 ≤ X ≤ kmF k−1
∞ ≤ kn1−1/kFk

I Repeat t times and let F̃k be the average value. By Chernoff,

P
[
|F̃k − Fk | ≥ εFk

]
≤ 2 exp

(
− tFkε

2

3kn1−1/kFk

)
= 2 exp

(
− tε2

3kn1−1/k

)
I If t = 3ε−2kn1−1/k log(2δ−1) then P

[
|F̃k − Fk | ≥ εFk

]
≤ δ.

I Thm: In Õ(ε−2n1−1/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

8/25

Example: Frequency Moments

I Frequency Moments: Define Fk =
∑

i f k
i for k ∈ {1, 2, 3, . . .}

I Use AMS estimator with X = m(rk − (r − 1)k).

I Expectation: E [X] = Fk

I Range: 0 ≤ X ≤ kmF k−1
∞ ≤ kn1−1/kFk

I Repeat t times and let F̃k be the average value. By Chernoff,

P
[
|F̃k − Fk | ≥ εFk

]
≤ 2 exp

(
− tFkε

2

3kn1−1/kFk

)
= 2 exp

(
− tε2

3kn1−1/k

)

I If t = 3ε−2kn1−1/k log(2δ−1) then P
[
|F̃k − Fk | ≥ εFk

]
≤ δ.

I Thm: In Õ(ε−2n1−1/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

8/25

Example: Frequency Moments

I Frequency Moments: Define Fk =
∑

i f k
i for k ∈ {1, 2, 3, . . .}

I Use AMS estimator with X = m(rk − (r − 1)k).

I Expectation: E [X] = Fk

I Range: 0 ≤ X ≤ kmF k−1
∞ ≤ kn1−1/kFk

I Repeat t times and let F̃k be the average value. By Chernoff,

P
[
|F̃k − Fk | ≥ εFk

]
≤ 2 exp

(
− tFkε

2

3kn1−1/kFk

)
= 2 exp

(
− tε2

3kn1−1/k

)
I If t = 3ε−2kn1−1/k log(2δ−1) then P

[
|F̃k − Fk | ≥ εFk

]
≤ δ.

I Thm: In Õ(ε−2n1−1/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

8/25

Example: Frequency Moments

I Frequency Moments: Define Fk =
∑

i f k
i for k ∈ {1, 2, 3, . . .}

I Use AMS estimator with X = m(rk − (r − 1)k).

I Expectation: E [X] = Fk

I Range: 0 ≤ X ≤ kmF k−1
∞ ≤ kn1−1/kFk

I Repeat t times and let F̃k be the average value. By Chernoff,

P
[
|F̃k − Fk | ≥ εFk

]
≤ 2 exp

(
− tFkε

2

3kn1−1/kFk

)
= 2 exp

(
− tε2

3kn1−1/k

)
I If t = 3ε−2kn1−1/k log(2δ−1) then P

[
|F̃k − Fk | ≥ εFk

]
≤ δ.

I Thm: In Õ(ε−2n1−1/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

8/25

Outline

Sampling

Sketching: The Basics

Count-Min and Applications

Count-Sketch: Count-Min with a Twist

`p Sampling and Frequency Moments

9/25

Random Projections
I Many stream algorithms use a random projection Z ∈ Rw×n, w � n

Z (f) =

 z1,1 z1,n
...

...
zw ,1 zw ,n




f1
f2
...

...
fn


=

 s1
...

sw

 = s

I Updatable: We can maintain sketch s in Õ(w) space since
incrementing fi corresponds to

s ← s +

 z1,i
...

zw ,i


I Useful: Choose a distribution for zi,j such that relevant function of f

can be estimated from s with high probability for sufficiently large w .

10/25

Random Projections
I Many stream algorithms use a random projection Z ∈ Rw×n, w � n

Z (f) =

 z1,1 z1,n
...

...
zw ,1 zw ,n




f1
f2
...

...
fn


=

 s1
...

sw

 = s

I Updatable: We can maintain sketch s in Õ(w) space since
incrementing fi corresponds to

s ← s +

 z1,i
...

zw ,i


I Useful: Choose a distribution for zi,j such that relevant function of f

can be estimated from s with high probability for sufficiently large w .

10/25

Random Projections
I Many stream algorithms use a random projection Z ∈ Rw×n, w � n

Z (f) =

 z1,1 z1,n
...

...
zw ,1 zw ,n




f1
f2
...

...
fn


=

 s1
...

sw

 = s

I Updatable: We can maintain sketch s in Õ(w) space since
incrementing fi corresponds to

s ← s +

 z1,i
...

zw ,i



I Useful: Choose a distribution for zi,j such that relevant function of f
can be estimated from s with high probability for sufficiently large w .

10/25

Random Projections
I Many stream algorithms use a random projection Z ∈ Rw×n, w � n

Z (f) =

 z1,1 z1,n
...

...
zw ,1 zw ,n




f1
f2
...

...
fn


=

 s1
...

sw

 = s

I Updatable: We can maintain sketch s in Õ(w) space since
incrementing fi corresponds to

s ← s +

 z1,i
...

zw ,i


I Useful: Choose a distribution for zi,j such that relevant function of f

can be estimated from s with high probability for sufficiently large w .

10/25

Examples

I If zi,j ∈R {−1, 1}, can estimate F2 with w = O(ε−2 log δ−1).

I If zi,j ∼ D where D is p-stable p ∈ (0, 2], can estimate Fp with
w = O(ε−2 log δ−1). For example, 1 and 2 stable distributions are:

Cauchy(x) =
1

π
· 1

1 + x2
Gaussian(x) =

1√
2π
· e−x

2/2

I Note that F0 = (1± ε)Fp if p = log(1 + ε)/ log m.

I For the rest of lecture we’ll focus on “hash-based” sketches. Given a
random hash function h : [n]→ [w], non-zero entries are zhi ,i .

Z =

 0 1 0 0 0 1
0 0 0 1 0 0
1 0 1 0 1 0



11/25

Examples

I If zi,j ∈R {−1, 1}, can estimate F2 with w = O(ε−2 log δ−1).

I If zi,j ∼ D where D is p-stable p ∈ (0, 2], can estimate Fp with
w = O(ε−2 log δ−1). For example, 1 and 2 stable distributions are:

Cauchy(x) =
1

π
· 1

1 + x2
Gaussian(x) =

1√
2π
· e−x

2/2

I Note that F0 = (1± ε)Fp if p = log(1 + ε)/ log m.

I For the rest of lecture we’ll focus on “hash-based” sketches. Given a
random hash function h : [n]→ [w], non-zero entries are zhi ,i .

Z =

 0 1 0 0 0 1
0 0 0 1 0 0
1 0 1 0 1 0



11/25

Examples

I If zi,j ∈R {−1, 1}, can estimate F2 with w = O(ε−2 log δ−1).

I If zi,j ∼ D where D is p-stable p ∈ (0, 2], can estimate Fp with
w = O(ε−2 log δ−1). For example, 1 and 2 stable distributions are:

Cauchy(x) =
1

π
· 1

1 + x2
Gaussian(x) =

1√
2π
· e−x

2/2

I Note that F0 = (1± ε)Fp if p = log(1 + ε)/ log m.

I For the rest of lecture we’ll focus on “hash-based” sketches. Given a
random hash function h : [n]→ [w], non-zero entries are zhi ,i .

Z =

 0 1 0 0 0 1
0 0 0 1 0 0
1 0 1 0 1 0



11/25

Examples

I If zi,j ∈R {−1, 1}, can estimate F2 with w = O(ε−2 log δ−1).

I If zi,j ∼ D where D is p-stable p ∈ (0, 2], can estimate Fp with
w = O(ε−2 log δ−1). For example, 1 and 2 stable distributions are:

Cauchy(x) =
1

π
· 1

1 + x2
Gaussian(x) =

1√
2π
· e−x

2/2

I Note that F0 = (1± ε)Fp if p = log(1 + ε)/ log m.

I For the rest of lecture we’ll focus on “hash-based” sketches. Given a
random hash function h : [n]→ [w], non-zero entries are zhi ,i .

Z =

 0 1 0 0 0 1
0 0 0 1 0 0
1 0 1 0 1 0



11/25

Outline

Sampling

Sketching: The Basics

Count-Min and Applications

Count-Sketch: Count-Min with a Twist

`p Sampling and Frequency Moments

12/25

Count-Min Sketch
I Maintain vector s ∈ Nw via random hash function h : [n]→ [w]

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ...

s[1] s[2] s[3] s[w]...

I Update: For each increment of fi , increment shi . Hence,

sk =
∑
j :hj=k

fj e.g., s3 = f6 + f7 + f13

I Query: Use f̃i = shi to estimate fi .

I Lemma: fi ≤ f̃i and P
[
f̃i ≥ fi + 2m/w

]
≤ 1/2

I Thm: Let w = 2/ε. Repeat the hashing lg(δ−1) times in parallel and
take the minimum estimate for fi

P
[
fi ≤ f̃i ≤ fi + εm

]
≥ 1− δ

13/25

Count-Min Sketch
I Maintain vector s ∈ Nw via random hash function h : [n]→ [w]

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ...

s[1] s[2] s[3] s[w]...

I Update: For each increment of fi , increment shi . Hence,

sk =
∑
j :hj=k

fj

e.g., s3 = f6 + f7 + f13

I Query: Use f̃i = shi to estimate fi .

I Lemma: fi ≤ f̃i and P
[
f̃i ≥ fi + 2m/w

]
≤ 1/2

I Thm: Let w = 2/ε. Repeat the hashing lg(δ−1) times in parallel and
take the minimum estimate for fi

P
[
fi ≤ f̃i ≤ fi + εm

]
≥ 1− δ

13/25

Count-Min Sketch
I Maintain vector s ∈ Nw via random hash function h : [n]→ [w]

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ...

s[1] s[2] s[3] s[w]...

I Update: For each increment of fi , increment shi . Hence,

sk =
∑
j :hj=k

fj e.g., s3 = f6 + f7 + f13

I Query: Use f̃i = shi to estimate fi .

I Lemma: fi ≤ f̃i and P
[
f̃i ≥ fi + 2m/w

]
≤ 1/2

I Thm: Let w = 2/ε. Repeat the hashing lg(δ−1) times in parallel and
take the minimum estimate for fi

P
[
fi ≤ f̃i ≤ fi + εm

]
≥ 1− δ

13/25

Count-Min Sketch
I Maintain vector s ∈ Nw via random hash function h : [n]→ [w]

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ...

s[1] s[2] s[3] s[w]...

I Update: For each increment of fi , increment shi . Hence,

sk =
∑
j :hj=k

fj e.g., s3 = f6 + f7 + f13

I Query: Use f̃i = shi to estimate fi .

I Lemma: fi ≤ f̃i and P
[
f̃i ≥ fi + 2m/w

]
≤ 1/2

I Thm: Let w = 2/ε. Repeat the hashing lg(δ−1) times in parallel and
take the minimum estimate for fi

P
[
fi ≤ f̃i ≤ fi + εm

]
≥ 1− δ

13/25

Count-Min Sketch
I Maintain vector s ∈ Nw via random hash function h : [n]→ [w]

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ...

s[1] s[2] s[3] s[w]...

I Update: For each increment of fi , increment shi . Hence,

sk =
∑
j :hj=k

fj e.g., s3 = f6 + f7 + f13

I Query: Use f̃i = shi to estimate fi .

I Lemma: fi ≤ f̃i and P
[
f̃i ≥ fi + 2m/w

]
≤ 1/2

I Thm: Let w = 2/ε. Repeat the hashing lg(δ−1) times in parallel and
take the minimum estimate for fi

P
[
fi ≤ f̃i ≤ fi + εm

]
≥ 1− δ

13/25

Count-Min Sketch
I Maintain vector s ∈ Nw via random hash function h : [n]→ [w]

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ...

s[1] s[2] s[3] s[w]...

I Update: For each increment of fi , increment shi . Hence,

sk =
∑
j :hj=k

fj e.g., s3 = f6 + f7 + f13

I Query: Use f̃i = shi to estimate fi .

I Lemma: fi ≤ f̃i and P
[
f̃i ≥ fi + 2m/w

]
≤ 1/2

I Thm: Let w = 2/ε. Repeat the hashing lg(δ−1) times in parallel and
take the minimum estimate for fi

P
[
fi ≤ f̃i ≤ fi + εm

]
≥ 1− δ

13/25

Proof of Lemma

I Define E by f̃i = fi + E and so

E =
∑

j 6=i :hi=hj

fj

I Since all fj ≥ 0, we have E ≥ 0.

I Since P [hi = hj] = 1/w ,

E [E] =
∑
j 6=i

fj · P [hi = hj] ≤ m/w

I By an application of the Markov bound,

P [E ≥ 2m/w] ≤ 1/2

14/25

Proof of Lemma

I Define E by f̃i = fi + E and so

E =
∑

j 6=i :hi=hj

fj

I Since all fj ≥ 0, we have E ≥ 0.

I Since P [hi = hj] = 1/w ,

E [E] =
∑
j 6=i

fj · P [hi = hj] ≤ m/w

I By an application of the Markov bound,

P [E ≥ 2m/w] ≤ 1/2

14/25

Proof of Lemma

I Define E by f̃i = fi + E and so

E =
∑

j 6=i :hi=hj

fj

I Since all fj ≥ 0, we have E ≥ 0.

I Since P [hi = hj] = 1/w ,

E [E] =
∑
j 6=i

fj · P [hi = hj]

≤ m/w

I By an application of the Markov bound,

P [E ≥ 2m/w] ≤ 1/2

14/25

Proof of Lemma

I Define E by f̃i = fi + E and so

E =
∑

j 6=i :hi=hj

fj

I Since all fj ≥ 0, we have E ≥ 0.

I Since P [hi = hj] = 1/w ,

E [E] =
∑
j 6=i

fj · P [hi = hj] ≤ m/w

I By an application of the Markov bound,

P [E ≥ 2m/w] ≤ 1/2

14/25

Proof of Lemma

I Define E by f̃i = fi + E and so

E =
∑

j 6=i :hi=hj

fj

I Since all fj ≥ 0, we have E ≥ 0.

I Since P [hi = hj] = 1/w ,

E [E] =
∑
j 6=i

fj · P [hi = hj] ≤ m/w

I By an application of the Markov bound,

P [E ≥ 2m/w] ≤ 1/2

14/25

Range Queries
I Range Query: For i , j ∈ [n], estimate f[i,j] = fi + fi+1 + . . .+ fj

I Dyadic Intervals: Restrict attention to intervals of the form

[1 + (i − 1)2j , i2j] where j ∈ {0, 1, . . . , lg n}, i ∈ {1, 2, . . . n/2j}

since any range can be partitioned as O(log n) such intervals. E.g.,

[48, 106] = [48, 48] ∪ [49, 64] ∪ [65, 96] ∪ [97, 104] ∪ [105, 106]

I To support dyadic intervals, construct Count-Min sketches
corresponding to intervals of width 1, 2, 4, 8, . . .

I E.g., for intervals of width 2 we have:

g[1] g[2] g[3] ...

s[1] s[2] s[3] s[w]...

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ... f[n-1]

g[n/2]

where update rule is now: for increment of f2i−1 or f2i , increment shi .

15/25

Range Queries
I Range Query: For i , j ∈ [n], estimate f[i,j] = fi + fi+1 + . . .+ fj
I Dyadic Intervals: Restrict attention to intervals of the form

[1 + (i − 1)2j , i2j] where j ∈ {0, 1, . . . , lg n}, i ∈ {1, 2, . . . n/2j}

since any range can be partitioned as O(log n) such intervals. E.g.,

[48, 106] = [48, 48] ∪ [49, 64] ∪ [65, 96] ∪ [97, 104] ∪ [105, 106]

I To support dyadic intervals, construct Count-Min sketches
corresponding to intervals of width 1, 2, 4, 8, . . .

I E.g., for intervals of width 2 we have:

g[1] g[2] g[3] ...

s[1] s[2] s[3] s[w]...

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ... f[n-1]

g[n/2]

where update rule is now: for increment of f2i−1 or f2i , increment shi .

15/25

Range Queries
I Range Query: For i , j ∈ [n], estimate f[i,j] = fi + fi+1 + . . .+ fj
I Dyadic Intervals: Restrict attention to intervals of the form

[1 + (i − 1)2j , i2j] where j ∈ {0, 1, . . . , lg n}, i ∈ {1, 2, . . . n/2j}

since any range can be partitioned as O(log n) such intervals. E.g.,

[48, 106] = [48, 48] ∪ [49, 64] ∪ [65, 96] ∪ [97, 104] ∪ [105, 106]

I To support dyadic intervals, construct Count-Min sketches
corresponding to intervals of width 1, 2, 4, 8, . . .

I E.g., for intervals of width 2 we have:

g[1] g[2] g[3] ...

s[1] s[2] s[3] s[w]...

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ... f[n-1]

g[n/2]

where update rule is now: for increment of f2i−1 or f2i , increment shi .

15/25

Range Queries
I Range Query: For i , j ∈ [n], estimate f[i,j] = fi + fi+1 + . . .+ fj
I Dyadic Intervals: Restrict attention to intervals of the form

[1 + (i − 1)2j , i2j] where j ∈ {0, 1, . . . , lg n}, i ∈ {1, 2, . . . n/2j}

since any range can be partitioned as O(log n) such intervals. E.g.,

[48, 106] = [48, 48] ∪ [49, 64] ∪ [65, 96] ∪ [97, 104] ∪ [105, 106]

I To support dyadic intervals, construct Count-Min sketches
corresponding to intervals of width 1, 2, 4, 8, . . .

I E.g., for intervals of width 2 we have:

g[1] g[2] g[3] ...

s[1] s[2] s[3] s[w]...

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ... f[n-1]

g[n/2]

where update rule is now: for increment of f2i−1 or f2i , increment shi .

15/25

Range Queries
I Range Query: For i , j ∈ [n], estimate f[i,j] = fi + fi+1 + . . .+ fj
I Dyadic Intervals: Restrict attention to intervals of the form

[1 + (i − 1)2j , i2j] where j ∈ {0, 1, . . . , lg n}, i ∈ {1, 2, . . . n/2j}

since any range can be partitioned as O(log n) such intervals. E.g.,

[48, 106] = [48, 48] ∪ [49, 64] ∪ [65, 96] ∪ [97, 104] ∪ [105, 106]

I To support dyadic intervals, construct Count-Min sketches
corresponding to intervals of width 1, 2, 4, 8, . . .

I E.g., for intervals of width 2 we have:

g[1] g[2] g[3] ...

s[1] s[2] s[3] s[w]...

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ... f[n-1]

g[n/2]

where update rule is now: for increment of f2i−1 or f2i , increment shi .

15/25

Quantiles and Heavy Hitters

I Quantiles: Find j such that

f1 + . . .+ fj ≈ m/2

Can approximate median via binary search of range queries.

I Heavy Hitter Problem: Find a set S ⊂ [n] where

{i : fi ≥ φm} ⊆ S ⊆ {i : fi ≥ (φ− ε)m}

Rather than checking each f̃i individually can save time by exploiting
the fact that if f̃[i,k] < φm then fj < φm for all j ∈ [i , k].

16/25

Quantiles and Heavy Hitters

I Quantiles: Find j such that

f1 + . . .+ fj ≈ m/2

Can approximate median via binary search of range queries.

I Heavy Hitter Problem: Find a set S ⊂ [n] where

{i : fi ≥ φm} ⊆ S ⊆ {i : fi ≥ (φ− ε)m}

Rather than checking each f̃i individually can save time by exploiting
the fact that if f̃[i,k] < φm then fj < φm for all j ∈ [i , k].

16/25

Quantiles and Heavy Hitters

I Quantiles: Find j such that

f1 + . . .+ fj ≈ m/2

Can approximate median via binary search of range queries.

I Heavy Hitter Problem: Find a set S ⊂ [n] where

{i : fi ≥ φm} ⊆ S ⊆ {i : fi ≥ (φ− ε)m}

Rather than checking each f̃i individually can save time by exploiting
the fact that if f̃[i,k] < φm then fj < φm for all j ∈ [i , k].

16/25

Quantiles and Heavy Hitters

I Quantiles: Find j such that

f1 + . . .+ fj ≈ m/2

Can approximate median via binary search of range queries.

I Heavy Hitter Problem: Find a set S ⊂ [n] where

{i : fi ≥ φm} ⊆ S ⊆ {i : fi ≥ (φ− ε)m}

Rather than checking each f̃i individually can save time by exploiting
the fact that if f̃[i,k] < φm then fj < φm for all j ∈ [i , k].

16/25

Quantiles and Heavy Hitters

I Quantiles: Find j such that

f1 + . . .+ fj ≈ m/2

Can approximate median via binary search of range queries.

I Heavy Hitter Problem: Find a set S ⊂ [n] where

{i : fi ≥ φm} ⊆ S ⊆ {i : fi ≥ (φ− ε)m}

Rather than checking each f̃i individually can save time by exploiting
the fact that if f̃[i,k] < φm then fj < φm for all j ∈ [i , k].

16/25

Outline

Sampling

Sketching: The Basics

Count-Min and Applications

Count-Sketch: Count-Min with a Twist

`p Sampling and Frequency Moments

17/25

Count-Sketch: Count-Min with a Twist
I Maintain s ∈ Nw via hash functions h : [n]→ [w], r : [n]→ {−1, 1}

-f[1] f[2] -f[3] f[4] f[5] -f[n]-f[6] ...

s[1] s[2] s[3] s[w]...

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ...

I Update: For each increment of fi , shi ← shi + ri . Hence,

sk =
∑
j :hj=k

fj rj e.g., s3 = f6 − f7 − f13

I Query: Use f̃i = shi ri to estimate fi .

I Lemma: E
[
f̃i
]

= fi and V
[
f̃i
]
≤ F2/w

I Thm: Let w = O(1/ε2). Repeating O(lg δ−1) in parallel and taking
the median estimate ensures

P
[
fi − ε

√
F2 ≤ f̃i ≤ fi + ε

√
F2

]
≥ 1− δ .

18/25

Count-Sketch: Count-Min with a Twist
I Maintain s ∈ Nw via hash functions h : [n]→ [w], r : [n]→ {−1, 1}

-f[1] f[2] -f[3] f[4] f[5] -f[n]-f[6] ...

s[1] s[2] s[3] s[w]...

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ...

I Update: For each increment of fi , shi ← shi + ri . Hence,

sk =
∑
j :hj=k

fj rj

e.g., s3 = f6 − f7 − f13

I Query: Use f̃i = shi ri to estimate fi .

I Lemma: E
[
f̃i
]

= fi and V
[
f̃i
]
≤ F2/w

I Thm: Let w = O(1/ε2). Repeating O(lg δ−1) in parallel and taking
the median estimate ensures

P
[
fi − ε

√
F2 ≤ f̃i ≤ fi + ε

√
F2

]
≥ 1− δ .

18/25

Count-Sketch: Count-Min with a Twist
I Maintain s ∈ Nw via hash functions h : [n]→ [w], r : [n]→ {−1, 1}

-f[1] f[2] -f[3] f[4] f[5] -f[n]-f[6] ...

s[1] s[2] s[3] s[w]...

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ...

I Update: For each increment of fi , shi ← shi + ri . Hence,

sk =
∑
j :hj=k

fj rj e.g., s3 = f6 − f7 − f13

I Query: Use f̃i = shi ri to estimate fi .

I Lemma: E
[
f̃i
]

= fi and V
[
f̃i
]
≤ F2/w

I Thm: Let w = O(1/ε2). Repeating O(lg δ−1) in parallel and taking
the median estimate ensures

P
[
fi − ε

√
F2 ≤ f̃i ≤ fi + ε

√
F2

]
≥ 1− δ .

18/25

Count-Sketch: Count-Min with a Twist
I Maintain s ∈ Nw via hash functions h : [n]→ [w], r : [n]→ {−1, 1}

-f[1] f[2] -f[3] f[4] f[5] -f[n]-f[6] ...

s[1] s[2] s[3] s[w]...

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ...

I Update: For each increment of fi , shi ← shi + ri . Hence,

sk =
∑
j :hj=k

fj rj e.g., s3 = f6 − f7 − f13

I Query: Use f̃i = shi ri to estimate fi .

I Lemma: E
[
f̃i
]

= fi and V
[
f̃i
]
≤ F2/w

I Thm: Let w = O(1/ε2). Repeating O(lg δ−1) in parallel and taking
the median estimate ensures

P
[
fi − ε

√
F2 ≤ f̃i ≤ fi + ε

√
F2

]
≥ 1− δ .

18/25

Count-Sketch: Count-Min with a Twist
I Maintain s ∈ Nw via hash functions h : [n]→ [w], r : [n]→ {−1, 1}

-f[1] f[2] -f[3] f[4] f[5] -f[n]-f[6] ...

s[1] s[2] s[3] s[w]...

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ...

I Update: For each increment of fi , shi ← shi + ri . Hence,

sk =
∑
j :hj=k

fj rj e.g., s3 = f6 − f7 − f13

I Query: Use f̃i = shi ri to estimate fi .

I Lemma: E
[
f̃i
]

= fi and V
[
f̃i
]
≤ F2/w

I Thm: Let w = O(1/ε2). Repeating O(lg δ−1) in parallel and taking
the median estimate ensures

P
[
fi − ε

√
F2 ≤ f̃i ≤ fi + ε

√
F2

]
≥ 1− δ .

18/25

Count-Sketch: Count-Min with a Twist
I Maintain s ∈ Nw via hash functions h : [n]→ [w], r : [n]→ {−1, 1}

-f[1] f[2] -f[3] f[4] f[5] -f[n]-f[6] ...

s[1] s[2] s[3] s[w]...

f[1] f[2] f[3] f[4] f[5] f[n]f[6] ...

I Update: For each increment of fi , shi ← shi + ri . Hence,

sk =
∑
j :hj=k

fj rj e.g., s3 = f6 − f7 − f13

I Query: Use f̃i = shi ri to estimate fi .

I Lemma: E
[
f̃i
]

= fi and V
[
f̃i
]
≤ F2/w

I Thm: Let w = O(1/ε2). Repeating O(lg δ−1) in parallel and taking
the median estimate ensures

P
[
fi − ε

√
F2 ≤ f̃i ≤ fi + ε

√
F2

]
≥ 1− δ .

18/25

Proof of Lemma
I Define E by f̃i = fi + Eri and so

E =
∑

j 6=i :hi=hj

fj rj

I Expectation: Since E [rj] = 0,

E [E] =
∑

j 6=i :hi=hj

fjE [rj] = 0

I Variance: Similarly,

V [E] ≤ E

(
∑

j 6=i :hi=hj

fj rj)
2

 =
∑
j,k 6=i

hi=hj=hk

fj fkE [rj rk]P [hi = hj = hk]

=
∑

j 6=i :hi=hj

f 2
j P [hi = hj] ≤ F2/w

19/25

Proof of Lemma
I Define E by f̃i = fi + Eri and so

E =
∑

j 6=i :hi=hj

fj rj

I Expectation: Since E [rj] = 0,

E [E] =
∑

j 6=i :hi=hj

fjE [rj] = 0

I Variance: Similarly,

V [E] ≤ E

(
∑

j 6=i :hi=hj

fj rj)
2

 =
∑
j,k 6=i

hi=hj=hk

fj fkE [rj rk]P [hi = hj = hk]

=
∑

j 6=i :hi=hj

f 2
j P [hi = hj] ≤ F2/w

19/25

Proof of Lemma
I Define E by f̃i = fi + Eri and so

E =
∑

j 6=i :hi=hj

fj rj

I Expectation: Since E [rj] = 0,

E [E] =
∑

j 6=i :hi=hj

fjE [rj] = 0

I Variance: Similarly,

V [E]

≤ E

(
∑

j 6=i :hi=hj

fj rj)
2

 =
∑
j,k 6=i

hi=hj=hk

fj fkE [rj rk]P [hi = hj = hk]

=
∑

j 6=i :hi=hj

f 2
j P [hi = hj] ≤ F2/w

19/25

Proof of Lemma
I Define E by f̃i = fi + Eri and so

E =
∑

j 6=i :hi=hj

fj rj

I Expectation: Since E [rj] = 0,

E [E] =
∑

j 6=i :hi=hj

fjE [rj] = 0

I Variance: Similarly,

V [E] ≤ E

(
∑

j 6=i :hi=hj

fj rj)
2



=
∑
j,k 6=i

hi=hj=hk

fj fkE [rj rk]P [hi = hj = hk]

=
∑

j 6=i :hi=hj

f 2
j P [hi = hj] ≤ F2/w

19/25

Proof of Lemma
I Define E by f̃i = fi + Eri and so

E =
∑

j 6=i :hi=hj

fj rj

I Expectation: Since E [rj] = 0,

E [E] =
∑

j 6=i :hi=hj

fjE [rj] = 0

I Variance: Similarly,

V [E] ≤ E

(
∑

j 6=i :hi=hj

fj rj)
2

 =
∑
j,k 6=i

hi=hj=hk

fj fkE [rj rk]P [hi = hj = hk]

=
∑

j 6=i :hi=hj

f 2
j P [hi = hj] ≤ F2/w

19/25

Proof of Lemma
I Define E by f̃i = fi + Eri and so

E =
∑

j 6=i :hi=hj

fj rj

I Expectation: Since E [rj] = 0,

E [E] =
∑

j 6=i :hi=hj

fjE [rj] = 0

I Variance: Similarly,

V [E] ≤ E

(
∑

j 6=i :hi=hj

fj rj)
2

 =
∑
j,k 6=i

hi=hj=hk

fj fkE [rj rk]P [hi = hj = hk]

=
∑

j 6=i :hi=hj

f 2
j P [hi = hj] ≤ F2/w

19/25

Outline

Sampling

Sketching: The Basics

Count-Min and Applications

Count-Sketch: Count-Min with a Twist

`p Sampling and Frequency Moments

20/25

`p Sampling

I `p Sampling: Return random values I ∈ [n] and R ∈ R where

P [I = i] = (1± ε) |fi |
p

Fp
and R = (1± ε)fi

I Applications:
I Will use `2 sampling to get optimal algorithm for Fk , k > 2.
I Will use `0 sampling for processing graph streams.
I Many other stream problems can be solved via `p sampling, e.g.,

duplicate finding, triangle counting, entropy estimation.

I Let’s see algorithm for p = 2. . .

21/25

`p Sampling

I `p Sampling: Return random values I ∈ [n] and R ∈ R where

P [I = i] = (1± ε) |fi |
p

Fp
and R = (1± ε)fi

I Applications:
I Will use `2 sampling to get optimal algorithm for Fk , k > 2.
I Will use `0 sampling for processing graph streams.
I Many other stream problems can be solved via `p sampling, e.g.,

duplicate finding, triangle counting, entropy estimation.

I Let’s see algorithm for p = 2. . .

21/25

`p Sampling

I `p Sampling: Return random values I ∈ [n] and R ∈ R where

P [I = i] = (1± ε) |fi |
p

Fp
and R = (1± ε)fi

I Applications:
I Will use `2 sampling to get optimal algorithm for Fk , k > 2.
I Will use `0 sampling for processing graph streams.
I Many other stream problems can be solved via `p sampling, e.g.,

duplicate finding, triangle counting, entropy estimation.

I Let’s see algorithm for p = 2. . .

21/25

`p Sampling

I `p Sampling: Return random values I ∈ [n] and R ∈ R where

P [I = i] = (1± ε) |fi |
p

Fp
and R = (1± ε)fi

I Applications:
I Will use `2 sampling to get optimal algorithm for Fk , k > 2.
I Will use `0 sampling for processing graph streams.
I Many other stream problems can be solved via `p sampling, e.g.,

duplicate finding, triangle counting, entropy estimation.

I Let’s see algorithm for p = 2. . .

21/25

`2 Sampling Algorithm

I Weight fi by γi =
√

1/ui where ui ∈R [0, 1] to form vector g :

f = (f1, f2, . . . , fn)

g = (g1, g2, . . . , gn) where gi = γi fi

I Return (i , fi) if g2
i ≥ t := F2(f)/ε

I Probability (i , fi) is returned:

P
[
g2
i ≥ t

]
= P

[
ui ≤ f 2

i /t
]

= f 2
i /t

I Probability some value is returned is
∑

i f 2
i /t = ε so repeating

O(ε−1 log δ−1) ensures a value is returned with probability 1− δ.

I Lemma: Using a Count-Sketch of size O(ε−1 log2 n) ensures a
(1± ε) approximation of any gi that passes the threshold.

22/25

`2 Sampling Algorithm

I Weight fi by γi =
√

1/ui where ui ∈R [0, 1] to form vector g :

f = (f1, f2, . . . , fn)

g = (g1, g2, . . . , gn) where gi = γi fi

I Return (i , fi) if g2
i ≥ t := F2(f)/ε

I Probability (i , fi) is returned:

P
[
g2
i ≥ t

]
= P

[
ui ≤ f 2

i /t
]

= f 2
i /t

I Probability some value is returned is
∑

i f 2
i /t = ε so repeating

O(ε−1 log δ−1) ensures a value is returned with probability 1− δ.

I Lemma: Using a Count-Sketch of size O(ε−1 log2 n) ensures a
(1± ε) approximation of any gi that passes the threshold.

22/25

`2 Sampling Algorithm

I Weight fi by γi =
√

1/ui where ui ∈R [0, 1] to form vector g :

f = (f1, f2, . . . , fn)

g = (g1, g2, . . . , gn) where gi = γi fi

I Return (i , fi) if g2
i ≥ t := F2(f)/ε

I Probability (i , fi) is returned:

P
[
g2
i ≥ t

]
= P

[
ui ≤ f 2

i /t
]

= f 2
i /t

I Probability some value is returned is
∑

i f 2
i /t = ε so repeating

O(ε−1 log δ−1) ensures a value is returned with probability 1− δ.

I Lemma: Using a Count-Sketch of size O(ε−1 log2 n) ensures a
(1± ε) approximation of any gi that passes the threshold.

22/25

`2 Sampling Algorithm

I Weight fi by γi =
√

1/ui where ui ∈R [0, 1] to form vector g :

f = (f1, f2, . . . , fn)

g = (g1, g2, . . . , gn) where gi = γi fi

I Return (i , fi) if g2
i ≥ t := F2(f)/ε

I Probability (i , fi) is returned:

P
[
g2
i ≥ t

]

= P
[
ui ≤ f 2

i /t
]

= f 2
i /t

I Probability some value is returned is
∑

i f 2
i /t = ε so repeating

O(ε−1 log δ−1) ensures a value is returned with probability 1− δ.

I Lemma: Using a Count-Sketch of size O(ε−1 log2 n) ensures a
(1± ε) approximation of any gi that passes the threshold.

22/25

`2 Sampling Algorithm

I Weight fi by γi =
√

1/ui where ui ∈R [0, 1] to form vector g :

f = (f1, f2, . . . , fn)

g = (g1, g2, . . . , gn) where gi = γi fi

I Return (i , fi) if g2
i ≥ t := F2(f)/ε

I Probability (i , fi) is returned:

P
[
g2
i ≥ t

]
= P

[
ui ≤ f 2

i /t
]

= f 2
i /t

I Probability some value is returned is
∑

i f 2
i /t = ε so repeating

O(ε−1 log δ−1) ensures a value is returned with probability 1− δ.

I Lemma: Using a Count-Sketch of size O(ε−1 log2 n) ensures a
(1± ε) approximation of any gi that passes the threshold.

22/25

`2 Sampling Algorithm

I Weight fi by γi =
√

1/ui where ui ∈R [0, 1] to form vector g :

f = (f1, f2, . . . , fn)

g = (g1, g2, . . . , gn) where gi = γi fi

I Return (i , fi) if g2
i ≥ t := F2(f)/ε

I Probability (i , fi) is returned:

P
[
g2
i ≥ t

]
= P

[
ui ≤ f 2

i /t
]

= f 2
i /t

I Probability some value is returned is
∑

i f 2
i /t = ε so repeating

O(ε−1 log δ−1) ensures a value is returned with probability 1− δ.

I Lemma: Using a Count-Sketch of size O(ε−1 log2 n) ensures a
(1± ε) approximation of any gi that passes the threshold.

22/25

`2 Sampling Algorithm

I Weight fi by γi =
√

1/ui where ui ∈R [0, 1] to form vector g :

f = (f1, f2, . . . , fn)

g = (g1, g2, . . . , gn) where gi = γi fi

I Return (i , fi) if g2
i ≥ t := F2(f)/ε

I Probability (i , fi) is returned:

P
[
g2
i ≥ t

]
= P

[
ui ≤ f 2

i /t
]

= f 2
i /t

I Probability some value is returned is
∑

i f 2
i /t = ε so repeating

O(ε−1 log δ−1) ensures a value is returned with probability 1− δ.

I Lemma: Using a Count-Sketch of size O(ε−1 log2 n) ensures a
(1± ε) approximation of any gi that passes the threshold.

22/25

Proof of Lemma

I Exercise: P [F2(g)/F2(f) ≤ c log n] ≥ 99/100 for some large c > 0
so we’ll condition on this event.

I Set w = 9cε−1 log n. Count-Sketch in O(w log2 n) space ensures

g̃i = gi ±
√

F2(g)/w

I Then g̃2
i ≥ F2(f)/ε implies√

F2(g)/w ≤
√

F2(f)/(9ε−1) ≤
√
εg̃2

i /(9ε−1) = εg̃i/3

and hence g̃2
i = (1± ε/3)2g2

i = (1± ε)g2
i as required.

I Under-the-rug: Need to ensure that conditioning doesn’t affect
sampling probability too much.

23/25

Proof of Lemma

I Exercise: P [F2(g)/F2(f) ≤ c log n] ≥ 99/100 for some large c > 0
so we’ll condition on this event.

I Set w = 9cε−1 log n. Count-Sketch in O(w log2 n) space ensures

g̃i = gi ±
√

F2(g)/w

I Then g̃2
i ≥ F2(f)/ε implies√

F2(g)/w ≤
√

F2(f)/(9ε−1) ≤
√
εg̃2

i /(9ε−1) = εg̃i/3

and hence g̃2
i = (1± ε/3)2g2

i = (1± ε)g2
i as required.

I Under-the-rug: Need to ensure that conditioning doesn’t affect
sampling probability too much.

23/25

Proof of Lemma

I Exercise: P [F2(g)/F2(f) ≤ c log n] ≥ 99/100 for some large c > 0
so we’ll condition on this event.

I Set w = 9cε−1 log n. Count-Sketch in O(w log2 n) space ensures

g̃i = gi ±
√

F2(g)/w

I Then g̃2
i ≥ F2(f)/ε implies√

F2(g)/w ≤
√

F2(f)/(9ε−1) ≤
√
εg̃2

i /(9ε−1) = εg̃i/3

and hence g̃2
i = (1± ε/3)2g2

i = (1± ε)g2
i as required.

I Under-the-rug: Need to ensure that conditioning doesn’t affect
sampling probability too much.

23/25

Proof of Lemma

I Exercise: P [F2(g)/F2(f) ≤ c log n] ≥ 99/100 for some large c > 0
so we’ll condition on this event.

I Set w = 9cε−1 log n. Count-Sketch in O(w log2 n) space ensures

g̃i = gi ±
√

F2(g)/w

I Then g̃2
i ≥ F2(f)/ε implies√

F2(g)/w ≤
√

F2(f)/(9ε−1) ≤
√
εg̃2

i /(9ε−1) = εg̃i/3

and hence g̃2
i = (1± ε/3)2g2

i = (1± ε)g2
i as required.

I Under-the-rug: Need to ensure that conditioning doesn’t affect
sampling probability too much.

23/25

Proof of Lemma

I Exercise: P [F2(g)/F2(f) ≤ c log n] ≥ 99/100 for some large c > 0
so we’ll condition on this event.

I Set w = 9cε−1 log n. Count-Sketch in O(w log2 n) space ensures

g̃i = gi ±
√

F2(g)/w

I Then g̃2
i ≥ F2(f)/ε implies√

F2(g)/w ≤
√

F2(f)/(9ε−1) ≤
√
εg̃2

i /(9ε−1) = εg̃i/3

and hence g̃2
i = (1± ε/3)2g2

i = (1± ε)g2
i as required.

I Under-the-rug: Need to ensure that conditioning doesn’t affect
sampling probability too much.

23/25

Fk Revisited
I Earlier we used O(n1−1/k) space to approximate Fk =

∑
i |fi |k .

I Algorithm: Let (I ,R) be an (1 + γ)-approximate `2 sample. Return

T = F̃2Rk−2 where F̃2 is a (1± γ) approximation for F2

I Expectation: Setting γ = ε/(4k),

E [T] = F̃2

∑
P [I = i] ((1±γ)fi)

k−2 = (1±γ)kF2

∑ f 2
i

F2
f k−2
i = (1± ε

2
)Fk

I Range: 0 ≤ T ≤ (1 + γ)F2F k−2
∞ = (1 + γ)n1−2/kFk .

I Averaging over t = O(ε−2n1−2/k log δ−1) parallel repetitions gives,

P
[
|F̃k − Fk | ≥ εFk

]
≤ δ

I Thm: In Õ(ε−2n1−2/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

24/25

Fk Revisited
I Earlier we used O(n1−1/k) space to approximate Fk =

∑
i |fi |k .

I Algorithm: Let (I ,R) be an (1 + γ)-approximate `2 sample. Return

T = F̃2Rk−2 where F̃2 is a (1± γ) approximation for F2

I Expectation: Setting γ = ε/(4k),

E [T] = F̃2

∑
P [I = i] ((1±γ)fi)

k−2 = (1±γ)kF2

∑ f 2
i

F2
f k−2
i = (1± ε

2
)Fk

I Range: 0 ≤ T ≤ (1 + γ)F2F k−2
∞ = (1 + γ)n1−2/kFk .

I Averaging over t = O(ε−2n1−2/k log δ−1) parallel repetitions gives,

P
[
|F̃k − Fk | ≥ εFk

]
≤ δ

I Thm: In Õ(ε−2n1−2/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

24/25

Fk Revisited
I Earlier we used O(n1−1/k) space to approximate Fk =

∑
i |fi |k .

I Algorithm: Let (I ,R) be an (1 + γ)-approximate `2 sample. Return

T = F̃2Rk−2 where F̃2 is a (1± γ) approximation for F2

I Expectation: Setting γ = ε/(4k),

E [T]

= F̃2

∑
P [I = i] ((1±γ)fi)

k−2 = (1±γ)kF2

∑ f 2
i

F2
f k−2
i = (1± ε

2
)Fk

I Range: 0 ≤ T ≤ (1 + γ)F2F k−2
∞ = (1 + γ)n1−2/kFk .

I Averaging over t = O(ε−2n1−2/k log δ−1) parallel repetitions gives,

P
[
|F̃k − Fk | ≥ εFk

]
≤ δ

I Thm: In Õ(ε−2n1−2/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

24/25

Fk Revisited
I Earlier we used O(n1−1/k) space to approximate Fk =

∑
i |fi |k .

I Algorithm: Let (I ,R) be an (1 + γ)-approximate `2 sample. Return

T = F̃2Rk−2 where F̃2 is a (1± γ) approximation for F2

I Expectation: Setting γ = ε/(4k),

E [T] = F̃2

∑
P [I = i] ((1±γ)fi)

k−2

= (1±γ)kF2

∑ f 2
i

F2
f k−2
i = (1± ε

2
)Fk

I Range: 0 ≤ T ≤ (1 + γ)F2F k−2
∞ = (1 + γ)n1−2/kFk .

I Averaging over t = O(ε−2n1−2/k log δ−1) parallel repetitions gives,

P
[
|F̃k − Fk | ≥ εFk

]
≤ δ

I Thm: In Õ(ε−2n1−2/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

24/25

Fk Revisited
I Earlier we used O(n1−1/k) space to approximate Fk =

∑
i |fi |k .

I Algorithm: Let (I ,R) be an (1 + γ)-approximate `2 sample. Return

T = F̃2Rk−2 where F̃2 is a (1± γ) approximation for F2

I Expectation: Setting γ = ε/(4k),

E [T] = F̃2

∑
P [I = i] ((1±γ)fi)

k−2 = (1±γ)kF2

∑ f 2
i

F2
f k−2
i

= (1± ε
2

)Fk

I Range: 0 ≤ T ≤ (1 + γ)F2F k−2
∞ = (1 + γ)n1−2/kFk .

I Averaging over t = O(ε−2n1−2/k log δ−1) parallel repetitions gives,

P
[
|F̃k − Fk | ≥ εFk

]
≤ δ

I Thm: In Õ(ε−2n1−2/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

24/25

Fk Revisited
I Earlier we used O(n1−1/k) space to approximate Fk =

∑
i |fi |k .

I Algorithm: Let (I ,R) be an (1 + γ)-approximate `2 sample. Return

T = F̃2Rk−2 where F̃2 is a (1± γ) approximation for F2

I Expectation: Setting γ = ε/(4k),

E [T] = F̃2

∑
P [I = i] ((1±γ)fi)

k−2 = (1±γ)kF2

∑ f 2
i

F2
f k−2
i = (1± ε

2
)Fk

I Range: 0 ≤ T ≤ (1 + γ)F2F k−2
∞ = (1 + γ)n1−2/kFk .

I Averaging over t = O(ε−2n1−2/k log δ−1) parallel repetitions gives,

P
[
|F̃k − Fk | ≥ εFk

]
≤ δ

I Thm: In Õ(ε−2n1−2/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

24/25

Fk Revisited
I Earlier we used O(n1−1/k) space to approximate Fk =

∑
i |fi |k .

I Algorithm: Let (I ,R) be an (1 + γ)-approximate `2 sample. Return

T = F̃2Rk−2 where F̃2 is a (1± γ) approximation for F2

I Expectation: Setting γ = ε/(4k),

E [T] = F̃2

∑
P [I = i] ((1±γ)fi)

k−2 = (1±γ)kF2

∑ f 2
i

F2
f k−2
i = (1± ε

2
)Fk

I Range: 0 ≤ T ≤ (1 + γ)F2F k−2
∞ = (1 + γ)n1−2/kFk .

I Averaging over t = O(ε−2n1−2/k log δ−1) parallel repetitions gives,

P
[
|F̃k − Fk | ≥ εFk

]
≤ δ

I Thm: In Õ(ε−2n1−2/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

24/25

Fk Revisited
I Earlier we used O(n1−1/k) space to approximate Fk =

∑
i |fi |k .

I Algorithm: Let (I ,R) be an (1 + γ)-approximate `2 sample. Return

T = F̃2Rk−2 where F̃2 is a (1± γ) approximation for F2

I Expectation: Setting γ = ε/(4k),

E [T] = F̃2

∑
P [I = i] ((1±γ)fi)

k−2 = (1±γ)kF2

∑ f 2
i

F2
f k−2
i = (1± ε

2
)Fk

I Range: 0 ≤ T ≤ (1 + γ)F2F k−2
∞ = (1 + γ)n1−2/kFk .

I Averaging over t = O(ε−2n1−2/k log δ−1) parallel repetitions gives,

P
[
|F̃k − Fk | ≥ εFk

]
≤ δ

I Thm: In Õ(ε−2n1−2/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

24/25

Fk Revisited
I Earlier we used O(n1−1/k) space to approximate Fk =

∑
i |fi |k .

I Algorithm: Let (I ,R) be an (1 + γ)-approximate `2 sample. Return

T = F̃2Rk−2 where F̃2 is a (1± γ) approximation for F2

I Expectation: Setting γ = ε/(4k),

E [T] = F̃2

∑
P [I = i] ((1±γ)fi)

k−2 = (1±γ)kF2

∑ f 2
i

F2
f k−2
i = (1± ε

2
)Fk

I Range: 0 ≤ T ≤ (1 + γ)F2F k−2
∞ = (1 + γ)n1−2/kFk .

I Averaging over t = O(ε−2n1−2/k log δ−1) parallel repetitions gives,

P
[
|F̃k − Fk | ≥ εFk

]
≤ δ

I Thm: In Õ(ε−2n1−2/k) space we can find a (1± ε) approximation
for Fk with probability at least 1− δ.

24/25

Summary
I Basic Sampling: Can do basic sampling where i is selected with

probability ∝ fi but we can be much smarter via sketches.
I Count-Min: fi ≤ f̃i ≤ fi + εF1 in O(ε−1) space.

Z =

 0 1 0 0 0 1
0 0 0 1 0 0
1 0 1 0 1 0


I Count-Sketch: fi − ε

√
F2 ≤ f̃i ≤ fi + ε

√
F2 in O(ε−2) space.

Z =

 0 1 0 0 0 −1
0 0 0 −1 0 0
−1 0 1 0 1 0


Above sketches solve range-queries, quantiles, heavy hitters, . . .

I `p-Sampling: Selecting i with probability ∝ f p
i in O(ε−2) space.

Z =

 0 γ2 0 0 0 −γ6
0 0 0 −γ4 0 0
−γ1 0 γ3 0 γ5 0


25/25

	Sampling
	Sketching: The Basics
	Count-Min and Applications
	Count-Sketch: Count-Min with a Twist
	p Sampling and Frequency Moments

