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More generally, can construct sketches of files to 
estimate Hamming distance between the files.

Many results such as distinct elements, entropy, 
frequency moments, quantiles, histograms, linear 
regression, clustering, shape approximation...
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sensing, metric embeddings; widely applicable since 
parallelizable and suitable for stream processing.

Most existing work concerns numerical statistics of 
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Problem: Fingerprint files such that we can test if files 
are close under some cyclic rotation. 

Theorem: Fingerprints of size ≈ D(n) bits suffice where 
D(n) is the number of divisors of n.

Surprising? Fingerprint size isn’t monotonic in file size!

“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox 
jumped over the 
lazy dog. The”

CYCLIC SHIFT

FINGERPRINT OPERATION

Second Result...
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II. MisalignmentI. ConnectivityI. Connectivity

a) Connectivity via O(polylog n) bit Fingerprints
b) Extension to Estimating Cuts and Eigenvalues 

Joint work with Kook Jin Ahn and Sudipto Guha
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• Corollary: Can monitor connectivity in a dynamic graph stream 
where edges are both inserted and deleted.

• Previous stream work assumed no edge deletions.
• e.g., [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004, 2005], [McGregor 2005]
• [Jowhari, Ghodsi 2005], [Zelke 2008], [Sarma, Gollapudi, Panigrahy 2008, 2009]
• [Ahn, Guha 2009, 2011], [Konrad, Magniez, Mathieu 2012], [Goel, Kapralov, Khanna 2012]

• New sliding window graph results presented yesterday.
	
 [Crouch, McGregor, Stubbs 2013]
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Extension to Sparsification

• Theorem: Can (1+ε)-approximate every graph cut using 
O(ε-2 polylog n) bit fingerprints of each adjacency list.

• Theorem: Can construct a spectral sparsifier H using 
O(ε-2 n2/3 polylog n) bit fingerprints of each adjacency list.

• where LG and LH are the Laplacians of G and H.
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Cut Sparsification

Thm (Fung et al.) Sample edge e w/p pe and weight by 
1/pe. If pe = ε-2 log2 n/ce where ce is size of min e cut, 
then all cuts are preserved up to factor 1+ε.
Algorithm (Edge sampling via k-skeletons) 

Let Gi be graph with edges sampled w/p 2-i. 
Return k-skeleton Hi for each Gi where k= 2ε-2 log2 n

Thm: e=(u,v) is in some Hi with probability at least pe

Proof: Let C be edges in min u-v cut in G.
For i= -log pe, E[|C∩Gi|]=ε-2 log2 n and whp |C∩Gi|≤k. 

Hence e∊Hi iff e∊Gi which happens w/p pe 
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Thm (Spielman-Srivastava) Sample edge e w/p pe and 
weight by 1/pe. If pe = ε-2 re log n where re is the 
effective resistance, then preserve spectral properties.

Lemma: 1/ce ≤ re ≤ O(n2/3)/ce for edges in a simple graph.
Proof: Find O(ce) disjoint paths of length O(n/√ce)
Corollary: Increasing sampling probability by O(n2/3) in 
cut sparsification, also preserves spectral properties.
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a) Testing Equality with Rotation
b) Matching Lower Bound 

Joint work with Alexandr Andoni, Assaf Goldberger, Ely Porat
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Fingerprints for Rotation

• Theorem: There’s a D(n) polylog n bit fingerprint F that is:

‣ Useful: F(a) and F(b) determine if a, b∈ℤn are rotations w.h.p.

‣ Homomorphic: From F(a) can construct F(any rotation of a)
‣ Linear: From F(a) and F(b) can compute F(a+b).

• Theorem: Fingerprints with above properties need D(n) bits. 

• Extension: (t + D(n)) polylog n bit fingerprints F(a) and F(b) 
determine if a,b are within t substitutions of being rotations.
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fox jumped

 over the lazy dog.”

“quick brown fox 
jumped over the 
lazy dog. The”

CYCLIC ROTATION
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Rabin-Karp: For some p and r, encode a=a0a1a2...an-1 as 

Fermat’s Little Thm: If p=n+1 prime, rn=1 mod p and so,

So, if b is k-shift of a then
Schwartz-Zippel: If r is random and g non-zero: 

Conclusion: No false negatives but likely false positives.
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Evaluate g on roots of xn-1 but work in larger field 
xn-1 factorizes as D(n) irreducible polys over rationals:

At least one ɸi has no shared roots with g:
If ɸi shares one root, ɸi divides g (Abel’s Irred. Thm)
Can’t all divide g because g has degree ≤ n-1

Suffices to test g on an arbitrary root of each ɸi 
Bad News: Can’t guarantee g(r) has finite precision.
Good News: Work modulo a random p. Can show ɸi still 
doesn’t share roots with g whp by analyzing resultant.
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And so on for other divisors of n...
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Thanks!

• Homomorphic Sketches: Compress using sketches such 
that we can run algorithms on compressed data directly. 
Resulting algorithms are parallelizable + streamable.

• Graphs: Dimensionality reduction for preserving 
structural properties. Enables dynamic graph streaming.

• Fingerprinting with Misalignments: Tight bounds on size of 
fingerprint necessary for testing equality up to rotations.




