
Homomorphic Sketches
Shrinking Big Data without Sacrificing Structure

Andrew McGregor
University of Massachusetts

Can test whether two n bit files are identical by
comparing O(log n) bit fingerprints of each file.

Can test whether two n bit files are identical by
comparing O(log n) bit fingerprints of each file.

Can test whether two n bit files are identical by
comparing O(log n) bit fingerprints of each file.

?=?

?≈?

More generally, can construct sketches of files to
estimate Hamming distance between the files.

?≈?

More generally, can construct sketches of files to
estimate Hamming distance between the files.

Many results such as distinct elements, entropy,
frequency moments, quantiles, histograms, linear
regression, clustering, shape approximation...

Basic Idea: Treat file as vector; use linear projections
to reduce dimension while preserving properties.

Extensive theory with connections to compressed
sensing, metric embeddings; widely applicable since
parallelizable and suitable for stream processing.

Most existing work concerns numerical statistics of
data such as frequency and feature vectors...

Basic Idea: Treat file as vector; use linear projections
to reduce dimension while preserving properties.

Extensive theory with connections to compressed
sensing, metric embeddings; widely applicable since
parallelizable and suitable for stream processing.

Most existing work concerns numerical statistics of
data such as frequency and feature vectors...

2

666666664

v

3

777777775

=

2

4Mv

3

5

Basic Idea: Treat file as vector; use linear projections
to reduce dimension while preserving properties.

Extensive theory with connections to compressed
sensing, metric embeddings; widely applicable since
parallelizable and suitable for stream processing.

Most existing work concerns numerical statistics of
data such as frequency and feature vectors...

2

666666664

v

3

777777775

Basic Idea: Treat file as vector; use linear projections
to reduce dimension while preserving properties.

Extensive theory with connections to compressed
sensing, metric embeddings; widely applicable since
parallelizable and suitable for stream processing.

Most existing work concerns numerical statistics of
data such as frequency and feature vectors...

2

666666664

v

3

777777775

2

4 M

3

5

Basic Idea: Treat file as vector; use linear projections
to reduce dimension while preserving properties.

Extensive theory with connections to compressed
sensing, metric embeddings; widely applicable since
parallelizable and suitable for stream processing.

Most existing work concerns numerical statistics of
data such as frequency and feature vectors...

2

666666664

v

3

777777775

2

4 M

3

5 =

2

4Mv

3

5 =

2

4Mv

3

5

Basic Idea: Treat file as vector; use linear projections
to reduce dimension while preserving properties.

Extensive theory with connections to compressed
sensing, metric embeddings; widely applicable since
parallelizable and suitable for stream processing.

2

666666664

v

3

777777775

2

4 M

3

5 =

2

4Mv

3

5 =

2

4Mv

3

5

Basic Idea: Treat file as vector; use linear projections
to reduce dimension while preserving properties.

Extensive theory with connections to compressed
sensing, metric embeddings; widely applicable since
parallelizable and suitable for stream processing.

Most existing work concerns numerical statistics of
data such as frequency and feature vectors...

2

666666664

v

3

777777775

2

4 M

3

5 =

2

4Mv

3

5 =

2

4Mv

3

5

Is it possible to analyze richer
combinatorial and group-theoretic

structure via linear sketches?

Is it possible to analyze richer
combinatorial and group-theoretic

structure via linear sketches?

Can we make compression
“homomorphic” and run

algorithms on sketched data?

Is it possible to analyze richer
combinatorial and group-theoretic

structure via linear sketches?

Can we make compression
“homomorphic” and run

algorithms on sketched data?

BIG
DATA

Is it possible to analyze richer
combinatorial and group-theoretic

structure via linear sketches?

Can we make compression
“homomorphic” and run

algorithms on sketched data?

Algorithm

ANSWER

BIG
DATA

Is it possible to analyze richer
combinatorial and group-theoretic

structure via linear sketches?

Can we make compression
“homomorphic” and run

algorithms on sketched data?

Algorithm

ANSWER

BIG
DATA

Compress small
data

Is it possible to analyze richer
combinatorial and group-theoretic

structure via linear sketches?

Can we make compression
“homomorphic” and run

algorithms on sketched data?

Algorithm

ANSWER

BIG
DATA

Alg
ori

thm

Compress small
data

Problem: Fingerprint each row of nxn adjacency matrix
such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O(polylog n) bit suffice!

Surprising? Seems impossible if there are bridge edges.

First Result...

Problem: Fingerprint each row of nxn adjacency matrix
such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O(polylog n) bit suffice!

Surprising? Seems impossible if there are bridge edges.

First Result...

Problem: Fingerprint each row of nxn adjacency matrix
such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O(polylog n) bit suffice!

First Result...

Problem: Fingerprint each row of nxn adjacency matrix
such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O(polylog n) bit suffice!

Surprising? Seems impossible if there are bridge edges.

First Result...

Problem: Fingerprint each row of nxn adjacency matrix
such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O(polylog n) bit suffice!

Surprising? Seems impossible if there are bridge edges.

First Result...

Problem: Fingerprint each row of nxn adjacency matrix
such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O(polylog n) bit suffice!

Surprising? Seems impossible if there are bridge edges.

First Result...

Problem: Fingerprint each row of nxn adjacency matrix
such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O(polylog n) bit suffice!

Surprising? Seems impossible if there are bridge edges.

First Result...

Second Result...

“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox
jumped over the
lazy dog. The”

Second Result...

Problem: Fingerprint files such that we can test if files
are close under some cyclic rotation.

“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox
jumped over the
lazy dog. The”

Second Result...

Problem: Fingerprint files such that we can test if files
are close under some cyclic rotation.

“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox
jumped over the
lazy dog. The”

Second Result...

Problem: Fingerprint files such that we can test if files
are close under some cyclic rotation.

Theorem: Fingerprints of size ≈ D(n) bits suffice where
D(n) is the number of divisors of n.

“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox
jumped over the
lazy dog. The”

CYCLIC SHIFT

FINGERPRINT OPERATION

Second Result...

Problem: Fingerprint files such that we can test if files
are close under some cyclic rotation.

Theorem: Fingerprints of size ≈ D(n) bits suffice where
D(n) is the number of divisors of n.

Surprising? Fingerprint size isn’t monotonic in file size!

“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox
jumped over the
lazy dog. The”

CYCLIC SHIFT

FINGERPRINT OPERATION

Second Result...

II. MisalignmentI. Connectivity

II. MisalignmentI. ConnectivityI. Connectivity

a) Connectivity via O(polylog n) bit Fingerprints
b) Extension to Estimating Cuts and Eigenvalues

Joint work with Kook Jin Ahn and Sudipto Guha

Sketches for Connectivity

• Theorem: Can check k-connectivity w.h.p. using O(k polylog n)
bit fingerprint of each adjacency list.

Sketches for Connectivity

• Theorem: Can check k-connectivity w.h.p. using O(k polylog n)
bit fingerprint of each adjacency list.

• Corollary: Can monitor connectivity in a dynamic graph stream
where edges are both inserted and deleted.

Sketches for Connectivity

• Theorem: Can check k-connectivity w.h.p. using O(k polylog n)
bit fingerprint of each adjacency list.

• Corollary: Can monitor connectivity in a dynamic graph stream
where edges are both inserted and deleted.

• Previous stream work assumed no edge deletions.
• e.g., [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004, 2005], [McGregor 2005]
• [Jowhari, Ghodsi 2005], [Zelke 2008], [Sarma, Gollapudi, Panigrahy 2008, 2009]
• [Ahn, Guha 2009, 2011], [Konrad, Magniez, Mathieu 2012], [Goel, Kapralov, Khanna 2012]

http://www.informatik.uni-trier.de/~ley/pers/hd/m/Magniez:Fr=eacute=d=eacute=ric.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Magniez:Fr=eacute=d=eacute=ric.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mathieu:Claire.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mathieu:Claire.html

Sketches for Connectivity

• Theorem: Can check k-connectivity w.h.p. using O(k polylog n)
bit fingerprint of each adjacency list.

• Corollary: Can monitor connectivity in a dynamic graph stream
where edges are both inserted and deleted.

• Previous stream work assumed no edge deletions.
• e.g., [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004, 2005], [McGregor 2005]
• [Jowhari, Ghodsi 2005], [Zelke 2008], [Sarma, Gollapudi, Panigrahy 2008, 2009]
• [Ahn, Guha 2009, 2011], [Konrad, Magniez, Mathieu 2012], [Goel, Kapralov, Khanna 2012]

• New sliding window graph results presented yesterday.
	
 [Crouch, McGregor, Stubbs 2013]

http://www.informatik.uni-trier.de/~ley/pers/hd/m/Magniez:Fr=eacute=d=eacute=ric.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Magniez:Fr=eacute=d=eacute=ric.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mathieu:Claire.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mathieu:Claire.html

Basic Primitive: Neighborhood Sketches

Defn: Let ai be ith row of signed vertex-edge matrix

Basic Primitive: Neighborhood Sketches

Defn: Let ai be ith row of signed vertex-edge matrix

Basic Primitive: Neighborhood Sketches

1

2

3

5

4

Defn: Let ai be ith row of signed vertex-edge matrix

Basic Primitive: Neighborhood Sketches

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

Defn: Let ai be ith row of signed vertex-edge matrix

Basic Primitive: Neighborhood Sketches

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

Defn: Let ai be ith row of signed vertex-edge matrix

For S⊂V, non-zero entries of equals E(S,V\S)

Basic Primitive: Neighborhood Sketches

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

P
i2S ai

Defn: Let ai be ith row of signed vertex-edge matrix

For S⊂V, non-zero entries of equals E(S,V\S)

Basic Primitive: Neighborhood Sketches

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

P
i2S ai

Defn: Let ai be ith row of signed vertex-edge matrix

For S⊂V, non-zero entries of equals E(S,V\S)

Basic Primitive: Neighborhood Sketches

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

P
i2S ai

Defn: Let ai be ith row of signed vertex-edge matrix

For S⊂V, non-zero entries of equals E(S,V\S)

Fingerprint: Mai where M is Õ(k) dim. proj. such that k
non-zero entries of any x can be recovered from Mx.

Basic Primitive: Neighborhood Sketches

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

P
i2S ai

Defn: Let ai be ith row of signed vertex-edge matrix

For S⊂V, non-zero entries of equals E(S,V\S)

Fingerprint: Mai where M is Õ(k) dim. proj. such that k
non-zero entries of any x can be recovered from Mx.
Utility: Can find min(all,k) edges across any cut S. Call
the set of recovered edges a “k-skeleton”.

Basic Primitive: Neighborhood Sketches

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

P
i2S ai

Defn: Let ai be ith row of signed vertex-edge matrix

For S⊂V, non-zero entries of equals E(S,V\S)

Fingerprint: Mai where M is Õ(k) dim. proj. such that k
non-zero entries of any x can be recovered from Mx.
Utility: Can find min(all,k) edges across any cut S. Call
the set of recovered edges a “k-skeleton”.

Basic Primitive: Neighborhood Sketches

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

P
i2S ai

X

j2S

Maj = M(
X

j2S

aj)

Defn: Let ai be ith row of signed vertex-edge matrix

For S⊂V, non-zero entries of equals E(S,V\S)

Fingerprint: Mai where M is Õ(k) dim. proj. such that k
non-zero entries of any x can be recovered from Mx.
Utility: Can find min(all,k) edges across any cut S. Call
the set of recovered edges a “k-skeleton”.

Basic Primitive: Neighborhood Sketches

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

P
i2S ai

X

j2S

Maj = M(
X

j2S

aj) �! min(all, k) edges in E (S ,V \ S)

Extension to Sparsification

D
IA

G
R

A
M

 C
O

U
RT

ES
Y

O

F
N

IC
K

 H
A

RV
EY

Extension to Sparsification

• Theorem: Can (1+ε)-approximate every graph cut using
O(ε-2 polylog n) bit fingerprints of each adjacency list.

D
IA

G
R

A
M

 C
O

U
RT

ES
Y

O

F
N

IC
K

 H
A

RV
EY

Extension to Sparsification

• Theorem: Can (1+ε)-approximate every graph cut using
O(ε-2 polylog n) bit fingerprints of each adjacency list.

• Theorem: Can construct a spectral sparsifier H using
O(ε-2 n2/3 polylog n) bit fingerprints of each adjacency list.

• where LG and LH are the Laplacians of G and H.

D
IA

G
R

A
M

 C
O

U
RT

ES
Y

O

F
N

IC
K

 H
A

RV
EY

Cut Sparsification

Cut Sparsification

Thm (Fung et al.) Sample edge e w/p pe and weight by
1/pe. If pe = ε-2 log2 n/ce where ce is size of min e cut,
then all cuts are preserved up to factor 1+ε.

Cut Sparsification

Thm (Fung et al.) Sample edge e w/p pe and weight by
1/pe. If pe = ε-2 log2 n/ce where ce is size of min e cut,
then all cuts are preserved up to factor 1+ε.
Algorithm (Edge sampling via k-skeletons)

Cut Sparsification

Thm (Fung et al.) Sample edge e w/p pe and weight by
1/pe. If pe = ε-2 log2 n/ce where ce is size of min e cut,
then all cuts are preserved up to factor 1+ε.
Algorithm (Edge sampling via k-skeletons)

Let Gi be graph with edges sampled w/p 2-i.

Cut Sparsification

Thm (Fung et al.) Sample edge e w/p pe and weight by
1/pe. If pe = ε-2 log2 n/ce where ce is size of min e cut,
then all cuts are preserved up to factor 1+ε.
Algorithm (Edge sampling via k-skeletons)

Let Gi be graph with edges sampled w/p 2-i.
Return k-skeleton Hi for each Gi where k= 2ε-2 log2 n

Cut Sparsification

Thm (Fung et al.) Sample edge e w/p pe and weight by
1/pe. If pe = ε-2 log2 n/ce where ce is size of min e cut,
then all cuts are preserved up to factor 1+ε.
Algorithm (Edge sampling via k-skeletons)

Let Gi be graph with edges sampled w/p 2-i.
Return k-skeleton Hi for each Gi where k= 2ε-2 log2 n

Thm: e=(u,v) is in some Hi with probability at least pe

Cut Sparsification

Thm (Fung et al.) Sample edge e w/p pe and weight by
1/pe. If pe = ε-2 log2 n/ce where ce is size of min e cut,
then all cuts are preserved up to factor 1+ε.
Algorithm (Edge sampling via k-skeletons)

Let Gi be graph with edges sampled w/p 2-i.
Return k-skeleton Hi for each Gi where k= 2ε-2 log2 n

Thm: e=(u,v) is in some Hi with probability at least pe

Proof: Let C be edges in min u-v cut in G.

Cut Sparsification

Thm (Fung et al.) Sample edge e w/p pe and weight by
1/pe. If pe = ε-2 log2 n/ce where ce is size of min e cut,
then all cuts are preserved up to factor 1+ε.
Algorithm (Edge sampling via k-skeletons)

Let Gi be graph with edges sampled w/p 2-i.
Return k-skeleton Hi for each Gi where k= 2ε-2 log2 n

Thm: e=(u,v) is in some Hi with probability at least pe

Proof: Let C be edges in min u-v cut in G.
For i= -log pe, E[|C∩Gi|]=ε-2 log2 n and whp |C∩Gi|≤k.

Cut Sparsification

Thm (Fung et al.) Sample edge e w/p pe and weight by
1/pe. If pe = ε-2 log2 n/ce where ce is size of min e cut,
then all cuts are preserved up to factor 1+ε.
Algorithm (Edge sampling via k-skeletons)

Let Gi be graph with edges sampled w/p 2-i.
Return k-skeleton Hi for each Gi where k= 2ε-2 log2 n

Thm: e=(u,v) is in some Hi with probability at least pe

Proof: Let C be edges in min u-v cut in G.
For i= -log pe, E[|C∩Gi|]=ε-2 log2 n and whp |C∩Gi|≤k.

Hence e∊Hi iff e∊Gi which happens w/p pe

Spectral Sparsification

Spectral Sparsification

Thm (Spielman-Srivastava) Sample edge e w/p pe and
weight by 1/pe. If pe = ε-2 re log n where re is the
effective resistance, then preserve spectral properties.

Spectral Sparsification

Thm (Spielman-Srivastava) Sample edge e w/p pe and
weight by 1/pe. If pe = ε-2 re log n where re is the
effective resistance, then preserve spectral properties.

1

2

3

5

4

Spectral Sparsification

Thm (Spielman-Srivastava) Sample edge e w/p pe and
weight by 1/pe. If pe = ε-2 re log n where re is the
effective resistance, then preserve spectral properties.

1

2

3

5

4

Spectral Sparsification

Thm (Spielman-Srivastava) Sample edge e w/p pe and
weight by 1/pe. If pe = ε-2 re log n where re is the
effective resistance, then preserve spectral properties.

1

2

3

5

4

Effective resistance of (u,v)
is potential difference

when unit of flow injected
at u and extracted at v

Spectral Sparsification

Thm (Spielman-Srivastava) Sample edge e w/p pe and
weight by 1/pe. If pe = ε-2 re log n where re is the
effective resistance, then preserve spectral properties.

Lemma: 1/ce ≤ re ≤ O(n2/3)/ce for edges in a simple graph.

1

2

3

5

4

Effective resistance of (u,v)
is potential difference

when unit of flow injected
at u and extracted at v

Spectral Sparsification

Thm (Spielman-Srivastava) Sample edge e w/p pe and
weight by 1/pe. If pe = ε-2 re log n where re is the
effective resistance, then preserve spectral properties.

Lemma: 1/ce ≤ re ≤ O(n2/3)/ce for edges in a simple graph.
Proof: Find O(ce) disjoint paths of length O(n/√ce)

1

2

3

5

4

Effective resistance of (u,v)
is potential difference

when unit of flow injected
at u and extracted at v

Spectral Sparsification

Thm (Spielman-Srivastava) Sample edge e w/p pe and
weight by 1/pe. If pe = ε-2 re log n where re is the
effective resistance, then preserve spectral properties.

Lemma: 1/ce ≤ re ≤ O(n2/3)/ce for edges in a simple graph.
Proof: Find O(ce) disjoint paths of length O(n/√ce)
Corollary: Increasing sampling probability by O(n2/3) in
cut sparsification, also preserves spectral properties.

1

2

3

5

4

Effective resistance of (u,v)
is potential difference

when unit of flow injected
at u and extracted at v

II. MisalignmentI. Connectivity

II. MisalignmentI. Connectivity II. Misalignment

a) Testing Equality with Rotation
b) Matching Lower Bound

Joint work with Alexandr Andoni, Assaf Goldberger, Ely Porat

Fingerprints for Rotation

“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox
jumped over the
lazy dog. The”

CYCLIC ROTATION

Fingerprints for Rotation

• Theorem: There’s a D(n) polylog n bit fingerprint F that is:

“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox
jumped over the
lazy dog. The”

CYCLIC ROTATION

Fingerprints for Rotation

• Theorem: There’s a D(n) polylog n bit fingerprint F that is:

‣ Useful: F(a) and F(b) determine if a, b∈ℤn are rotations w.h.p.

“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox
jumped over the
lazy dog. The”

CYCLIC ROTATION

Fingerprints for Rotation

• Theorem: There’s a D(n) polylog n bit fingerprint F that is:

‣ Useful: F(a) and F(b) determine if a, b∈ℤn are rotations w.h.p.

‣ Homomorphic: From F(a) can construct F(any rotation of a)

“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox
jumped over the
lazy dog. The”

CYCLIC ROTATION

Fingerprints for Rotation

• Theorem: There’s a D(n) polylog n bit fingerprint F that is:

‣ Useful: F(a) and F(b) determine if a, b∈ℤn are rotations w.h.p.

‣ Homomorphic: From F(a) can construct F(any rotation of a)
‣ Linear: From F(a) and F(b) can compute F(a+b).

“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox
jumped over the
lazy dog. The”

CYCLIC ROTATION

Fingerprints for Rotation

• Theorem: There’s a D(n) polylog n bit fingerprint F that is:

‣ Useful: F(a) and F(b) determine if a, b∈ℤn are rotations w.h.p.

‣ Homomorphic: From F(a) can construct F(any rotation of a)
‣ Linear: From F(a) and F(b) can compute F(a+b).

• Theorem: Fingerprints with above properties need D(n) bits.

“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox
jumped over the
lazy dog. The”

CYCLIC ROTATION

Fingerprints for Rotation

• Theorem: There’s a D(n) polylog n bit fingerprint F that is:

‣ Useful: F(a) and F(b) determine if a, b∈ℤn are rotations w.h.p.

‣ Homomorphic: From F(a) can construct F(any rotation of a)
‣ Linear: From F(a) and F(b) can compute F(a+b).

• Theorem: Fingerprints with above properties need D(n) bits.

• Extension: (t + D(n)) polylog n bit fingerprints F(a) and F(b)
determine if a,b are within t substitutions of being rotations.

“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox
jumped over the
lazy dog. The”

CYCLIC ROTATION

False Start: Fermat’s Little Theorem

Rabin-Karp: For some p and r, encode a=a0a1a2...an-1 as

False Start: Fermat’s Little Theorem

Rabin-Karp: For some p and r, encode a=a0a1a2...an-1 as

False Start: Fermat’s Little Theorem

f (r , a) = a0 + a1r + a2r
2
+ ... an�1r

n�1
mod p

Rabin-Karp: For some p and r, encode a=a0a1a2...an-1 as

Fermat’s Little Thm: If p=n+1 prime, rn=1 mod p and so,

False Start: Fermat’s Little Theorem

f (r , a) = a0 + a1r + a2r
2
+ ... an�1r

n�1
mod p

rf (r , a0a1 ... an�1) = a0r + a1r
2 + a2r

3 + ... + an�1r
n

= an�1 + a0r + a1r
2 + ... + an�2r

n�1

= f (r , an�1a0 ... an�2)

Rabin-Karp: For some p and r, encode a=a0a1a2...an-1 as

Fermat’s Little Thm: If p=n+1 prime, rn=1 mod p and so,

So, if b is k-shift of a then

False Start: Fermat’s Little Theorem

f (r , a) = a0 + a1r + a2r
2
+ ... an�1r

n�1
mod p

g(r) = r k f (r , a)� f (r , b) = 0

rf (r , a0a1 ... an�1) = a0r + a1r
2 + a2r

3 + ... + an�1r
n

= an�1 + a0r + a1r
2 + ... + an�2r

n�1

= f (r , an�1a0 ... an�2)

Rabin-Karp: For some p and r, encode a=a0a1a2...an-1 as

Fermat’s Little Thm: If p=n+1 prime, rn=1 mod p and so,

So, if b is k-shift of a then
Schwartz-Zippel: If r is random and g non-zero:

False Start: Fermat’s Little Theorem

P[g(r) = 0] (n � 1)/p = 1� O(1/n)

f (r , a) = a0 + a1r + a2r
2
+ ... an�1r

n�1
mod p

g(r) = r k f (r , a)� f (r , b) = 0

rf (r , a0a1 ... an�1) = a0r + a1r
2 + a2r

3 + ... + an�1r
n

= an�1 + a0r + a1r
2 + ... + an�2r

n�1

= f (r , an�1a0 ... an�2)

Rabin-Karp: For some p and r, encode a=a0a1a2...an-1 as

Fermat’s Little Thm: If p=n+1 prime, rn=1 mod p and so,

So, if b is k-shift of a then
Schwartz-Zippel: If r is random and g non-zero:

Conclusion: No false negatives but likely false positives.

False Start: Fermat’s Little Theorem

P[g(r) = 0] (n � 1)/p = 1� O(1/n)

f (r , a) = a0 + a1r + a2r
2
+ ... an�1r

n�1
mod p

g(r) = r k f (r , a)� f (r , b) = 0

rf (r , a0a1 ... an�1) = a0r + a1r
2 + a2r

3 + ... + an�1r
n

= an�1 + a0r + a1r
2 + ... + an�2r

n�1

= f (r , an�1a0 ... an�2)

Beyond Schwartz-Zippel

Evaluate g on roots of xn-1 but work in larger field

Beyond Schwartz-Zippel

Evaluate g on roots of xn-1 but work in larger field
xn-1 factorizes as D(n) irreducible polys over rationals:

Beyond Schwartz-Zippel

Evaluate g on roots of xn-1 but work in larger field
xn-1 factorizes as D(n) irreducible polys over rationals:

Beyond Schwartz-Zippel

x

10 � 1 = �1(x)�2(x)�5(x)�10(x)

= (x � 1)(1 + x)(1� x + x

2 � x

3 + x

4)(1 + x + x

2 + x

3 + x

4)

Evaluate g on roots of xn-1 but work in larger field
xn-1 factorizes as D(n) irreducible polys over rationals:

At least one ɸi has no shared roots with g:

Beyond Schwartz-Zippel

x

10 � 1 = �1(x)�2(x)�5(x)�10(x)

= (x � 1)(1 + x)(1� x + x

2 � x

3 + x

4)(1 + x + x

2 + x

3 + x

4)

Evaluate g on roots of xn-1 but work in larger field
xn-1 factorizes as D(n) irreducible polys over rationals:

At least one ɸi has no shared roots with g:
If ɸi shares one root, ɸi divides g (Abel’s Irred. Thm)

Beyond Schwartz-Zippel

x

10 � 1 = �1(x)�2(x)�5(x)�10(x)

= (x � 1)(1 + x)(1� x + x

2 � x

3 + x

4)(1 + x + x

2 + x

3 + x

4)

Evaluate g on roots of xn-1 but work in larger field
xn-1 factorizes as D(n) irreducible polys over rationals:

At least one ɸi has no shared roots with g:
If ɸi shares one root, ɸi divides g (Abel’s Irred. Thm)
Can’t all divide g because g has degree ≤ n-1

Beyond Schwartz-Zippel

x

10 � 1 = �1(x)�2(x)�5(x)�10(x)

= (x � 1)(1 + x)(1� x + x

2 � x

3 + x

4)(1 + x + x

2 + x

3 + x

4)

Evaluate g on roots of xn-1 but work in larger field
xn-1 factorizes as D(n) irreducible polys over rationals:

At least one ɸi has no shared roots with g:
If ɸi shares one root, ɸi divides g (Abel’s Irred. Thm)
Can’t all divide g because g has degree ≤ n-1

Suffices to test g on an arbitrary root of each ɸi

Beyond Schwartz-Zippel

x

10 � 1 = �1(x)�2(x)�5(x)�10(x)

= (x � 1)(1 + x)(1� x + x

2 � x

3 + x

4)(1 + x + x

2 + x

3 + x

4)

Evaluate g on roots of xn-1 but work in larger field
xn-1 factorizes as D(n) irreducible polys over rationals:

At least one ɸi has no shared roots with g:
If ɸi shares one root, ɸi divides g (Abel’s Irred. Thm)
Can’t all divide g because g has degree ≤ n-1

Suffices to test g on an arbitrary root of each ɸi
Bad News: Can’t guarantee g(r) has finite precision.

Beyond Schwartz-Zippel

x

10 � 1 = �1(x)�2(x)�5(x)�10(x)

= (x � 1)(1 + x)(1� x + x

2 � x

3 + x

4)(1 + x + x

2 + x

3 + x

4)

Evaluate g on roots of xn-1 but work in larger field
xn-1 factorizes as D(n) irreducible polys over rationals:

At least one ɸi has no shared roots with g:
If ɸi shares one root, ɸi divides g (Abel’s Irred. Thm)
Can’t all divide g because g has degree ≤ n-1

Suffices to test g on an arbitrary root of each ɸi
Bad News: Can’t guarantee g(r) has finite precision.
Good News: Work modulo a random p. Can show ɸi still
doesn’t share roots with g whp by analyzing resultant.

Beyond Schwartz-Zippel

x

10 � 1 = �1(x)�2(x)�5(x)�10(x)

= (x � 1)(1 + x)(1� x + x

2 � x

3 + x

4)(1 + x + x

2 + x

3 + x

4)

Lower Bound: Basic Idea

Can recover D(n) bits about a from F(a) by summing the
fingerprints of rotations

Lower Bound: Basic Idea

Can recover D(n) bits about a from F(a) by summing the
fingerprints of rotations
To deduce from

Lower Bound: Basic Idea

F (a0a1a2a3a4a5)↵ =
X

ai

F (a0a1a2a3a4a5) + F (a1a2a3a4a5a0) + ... + F (a5a0a1a2a3a4) = F (↵↵↵↵↵↵)

Can recover D(n) bits about a from F(a) by summing the
fingerprints of rotations
To deduce from

and compare for all g until matches.

Lower Bound: Basic Idea

F (gggggg)

F (a0a1a2a3a4a5)↵ =
X

ai

F (a0a1a2a3a4a5) + F (a1a2a3a4a5a0) + ... + F (a5a0a1a2a3a4) = F (↵↵↵↵↵↵)

Can recover D(n) bits about a from F(a) by summing the
fingerprints of rotations
To deduce from

and compare for all g until matches.
To deduce

Lower Bound: Basic Idea

F (gggggg)

� = a1 + a3 + a5

F (a0a1a2a3a4a5)

F (a0a1a2a3a4a5) + F (a2a3a4a5a0a1) + F (a4a5a0a1a2a3) = F (������)

↵ =
X

ai

F (a0a1a2a3a4a5) + F (a1a2a3a4a5a0) + ... + F (a5a0a1a2a3a4) = F (↵↵↵↵↵↵)

Can recover D(n) bits about a from F(a) by summing the
fingerprints of rotations
To deduce from

and compare for all g until matches.
To deduce

and compare for all g, g’=α-g until matches.

Lower Bound: Basic Idea

F (gggggg)

� = a1 + a3 + a5

F (gg 0gg 0gg 0)

F (a0a1a2a3a4a5)

F (a0a1a2a3a4a5) + F (a2a3a4a5a0a1) + F (a4a5a0a1a2a3) = F (������)

↵ =
X

ai

F (a0a1a2a3a4a5) + F (a1a2a3a4a5a0) + ... + F (a5a0a1a2a3a4) = F (↵↵↵↵↵↵)

Can recover D(n) bits about a from F(a) by summing the
fingerprints of rotations
To deduce from

and compare for all g until matches.
To deduce

and compare for all g, g’=α-g until matches.

And so on for other divisors of n...

Lower Bound: Basic Idea

F (gggggg)

� = a1 + a3 + a5

F (gg 0gg 0gg 0)

F (a0a1a2a3a4a5)

F (a0a1a2a3a4a5) + F (a2a3a4a5a0a1) + F (a4a5a0a1a2a3) = F (������)

↵ =
X

ai

F (a0a1a2a3a4a5) + F (a1a2a3a4a5a0) + ... + F (a5a0a1a2a3a4) = F (↵↵↵↵↵↵)

Thanks!

• Homomorphic Sketches: Compress using sketches such
that we can run algorithms on compressed data directly.
Resulting algorithms are parallelizable + streamable.

• Graphs: Dimensionality reduction for preserving
structural properties. Enables dynamic graph streaming.

• Fingerprinting with Misalignments: Tight bounds on size of
fingerprint necessary for testing equality up to rotations.

