Homomorphic Sketches

Shrinking Big Data without Sacrificing Structure

Andrew McGregor
University of Massachusetts

[^0] -
-

```

-
-















\(\qquad\)
\(\qquad\)

\(\qquad\)

\[
=
\]
\(\qquad\)
\(\qquad\)



\(\qquad\)







 

都-


Can test whether two n bit files are identical by comparing \(\mathrm{O}(\log n)\) bit fingerprints of each file.


Can test whether two n bit files are identical by comparing \(\mathrm{O}(\log \mathrm{n})\) bit fingerprints of each file.


Can test whether two n bit files are identical by comparing \(\mathrm{O}(\log \mathrm{n})\) bit fingerprints of each file.


More generally, can construct sketches of files to estimate Hamming distance between the files.


More generally, can construct sketches of files to estimate Hamming distance between the files.

Many results such as distinct elements, entropy, frequency moments, quantiles, histograms, linear regression, clustering, shape approximation...


Basic Idea: Treat file as vector; use linear projections to reduce dimension while preserving properties.

Extensive theory with connections to compressed sensing, metric embeddings; widely applicable since parallelizable and suitable for stream processing.

Most existing work concerns numerical statistics of data such as frequency and feature vectors...


Basic Idea: Treat file as vector; use linear projections to reduce dimension while preserving properties.

Extensive theory with connections to compressed sensing, metric embeddings; widely applicable since parallelizable and suitable for stream processing.

Most existing work concerns numerical statistics of data such as frequency and feature vectors...


Basic Idea: Treat file as vector; use linear projections to reduce dimension while preserving properties.

Extensive theory with connections to compressed sensing, metric embeddings; widely applicable since parallelizable and suitable for stream processing.

Most existing work concerns numerical statistics of data such as frequency and feature vectors...


Basic Idea: Treat file as vector; use linear projections to reduce dimension while preserving properties.

Extensive theory with connections to compressed sensing, metric embeddings; widely applicable since parallelizable and suitable for stream processing.

Most existing work concerns numerical statistics of data such as frequency and feature vectors...


Basic Idea: Treat file as vector; use linear projections to reduce dimension while preserving properties.

Extensive theory with connections to compressed sensing, metric embeddings; widely applicable since parallelizable and suitable for stream processing.

Most existing work concerns numerical statistics of data such as frequency and feature vectors...


Basic Idea: Treat file as vector; use linear projections to reduce dimension while preserving properties.

Extensive theory with connections to compressed sensing, metric embeddings; widely applicable since parallelizable and suitable for stream processing.


Basic Idea: Treat file as vector; use linear projections to reduce dimension while preserving properties.

Extensive theory with connections to compressed sensing, metric embeddings; widely applicable since parallelizable and suitable for stream processing.

Most existing work concerns numerical statistics of data such as frequency and feature vectors...

Is it possible to analyze richer combinatorial and group-theoretic structure via linear sketches?

Is it possible to analyze richer combinatorial and group-theoretic structure via linear sketches?

Can we make compression
"homomorphic" and run algorithms on sketched data?

Is it possible to analyze richer combinatorial and group-theoretic structure via linear sketches?

Can we make compression "homomorphic" and run algorithms on sketched data?

\section*{BIG \\ DATA}

Is it possible to analyze richer combinatorial and group-theoretic structure via linear sketches?

\author{
Can we make compression "homomorphic" and run algorithms on sketched data?
}

\section*{BIG \\ DATA}

ANSWER

Is it possible to analyze richer combinatorial and group-theoretic structure via linear sketches?

> Can we make compression "homomorphic" and run algorithms on sketched data?


Is it possible to analyze richer combinatorial and group-theoretic structure via linear sketches?

\section*{Can we make compression "homomorphic" and run algorithms on sketched data?}


\section*{First Result...}


Problem: Fingerprint each row of nxn adjacency matrix such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O (polylog \(n\) ) bit suffice!
Surprising? Seems impossible if there are bridge edges.

\section*{First Result...}


Problem: Fingerprint each row of \(n \times n\) adjacency matrix such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O (polylog \(n\) ) bit suffice!
Surprising? Seems impossible if there are bridge edges.

\section*{First Result...}


Problem: Fingerprint each row of \(n \times n\) adjacency matrix such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O (polylog \(n\) ) bit suffice!

\section*{First Result...}


Problem: Fingerprint each row of \(n \times n\) adjacency matrix such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O (polylog \(n\) ) bit suffice!
Surprising? Seems impossible if there are bridge edges.

\section*{First Result...}


Problem: Fingerprint each row of nxn adjacency matrix such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O (polylog \(n\) ) bit suffice!
Surprising? Seems impossible if there are bridge edges.

\section*{First Result...}


Problem: Fingerprint each row of nxn adjacency matrix such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O (polylog \(n\) ) bit suffice!
Surprising? Seems impossible if there are bridge edges.

\section*{First Result...}


Problem: Fingerprint each row of nxn adjacency matrix such that we can check connectivity using fingerprints.

Theorem: Fingerprints of size O (polylog \(n\) ) bit suffice!
Surprising? Seems impossible if there are bridge edges.

Second Result...


\section*{Second Result...}
"The quick brown fox jumped over the Cazy dog."

"quick brown fox jumped over the Cazy dog. The"

\section*{Second Result...}

\author{
"The quick brown fox jumped over the lazy dog."
}


\author{
"quick brown fox jumped over the Cazy dog. The"
}

Problem: Fingerprint files such that we can test if files are close under some cyclic rotation.

\section*{Second Result...}
"The quick brown fox jumped over the lazy dog."



\author{
\section*{"quick brown fox jumped over the
lazy dog. The" jumped over the
lazy dog. The"}
}

Problem: Fingerprint files such that we can test if files are close under some cyclic rotation.

\section*{Second Result...}


Problem: Fingerprint files such that we can test if files are close under some cyclic rotation.

Theorem: Fingerprints of size \(\approx D(n)\) bits suffice where \(D(n)\) is the number of divisors of \(n\).

\section*{Second Result...}
```

"The quick brown. fox jumped over the Cazy dog."

```


Problem: Fingerprint files such that we can test if files are close under some cyclic rotation.

Theorem: Fingerprints of size \(\approx D(n)\) bits suffice where \(D(n)\) is the number of divisors of \(n\).

Surprising? Fingerprint size isn't monotonic in file size!

I. Connectivity

II. Misalignment

I. Connectivity

\section*{II. Misalignment}
a) Connectivity via \(O\) (polylog n) bit Fingerprints
b) Extension to Estimating Cuts and Eigenvalues

Joint work with Kook Jin Ahn and Sudipto Guha

\section*{Sketches for Connectivity}

- Theorem: Can check k-connectivity w.h.p. using O ( k polylog n ) bit fingerprint of each adjacency list.

\section*{Sketches for Connectivity}

- Theorem: Can check k-connectivity w.h.p. using \(\mathrm{O}(\mathrm{k}\) polylog n\()\) bit fingerprint of each adjacency list.
- Corollary: Can monitor connectivity in a dynamic graph stream where edges are both inserted and deleted.

\section*{Sketches for Connectivity}

- Theorem: Can check \(k\)-connectivity w.h.p. using O ( k polylog n ) bit fingerprint of each adjacency list.
- Corollary: Can monitor connectivity in a dynamic graph stream where edges are both inserted and deleted.
- Previous stream work assumed no edge deletions.
e.g., [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004, 2005], [McGregor 2005]
[Jowhari, Ghodsi 2005], [Zelke 2008], [Sarma, Gollapudi, Panigrahy 2008, 2009]
[Ahn, Guha 2009, 20 II], [Konrad, Magniez, Mathieu 20I2], [Goel, Kapralov, Khanna 20I2]

\section*{Sketches for Connectivity}

- Theorem: Can check k-connectivity w.h.p. using O ( k polylog n ) bit fingerprint of each adjacency list.
- Corollary: Can monitor connectivity in a dynamic graph stream where edges are both inserted and deleted.
- Previous stream work assumed no edge deletions.
e.g., [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004, 2005], [McGregor 2005]
[Jowhari, Ghodsi 2005], [Zelke 2008], [Sarma, Gollapudi, Panigrahy 2008, 2009]
[Ahn, Guha 2009, 20 II], [Konrad, Magniez, Mathieu 20I2], [Goel, Kapralov, Khanna 20I2]
- New sliding window graph results presented yesterday.
[Crouch, McGregor, Stubbs 20I3]

Basic Primitive: Neighborhood Sketches

\section*{Basic Primitive: Neighborhood Sketches}
- Defn: Let \(a_{i}\) be \(i^{\text {th }}\) row of signed vertex-edge matrix

\section*{Basic Primitive: Neighborhood Sketches}
- Defn: Let \(a_{i}\) be \(i^{\text {th }}\) row of signed vertex-edge matrix


\section*{Basic Primitive: Neighborhood Sketches}
- Defn: Let \(a_{i}\) be \(i^{\text {th }}\) row of signed vertex-edge matrix
\[
\mathbf{a}_{1}=\left(\begin{array}{ccccccccc}
\{1,2\} & \{1,3\} & \{1,4\} \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\]


\section*{Basic Primitive: Neighborhood Sketches}
- Defn: Let \(a_{i}\) be \(i^{\text {th }}\) row of signed vertex-edge matrix


\section*{Basic Primitive: Neighborhood Sketches}
- Defn: Let \(a_{i}\) be \(i^{\text {th }}\) row of signed vertex-edge matrix
\[
\left.\begin{array}{c}
\mathbf{a}_{1}=\left(\begin{array}{ccccccccc}
\{1,2\} \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\{1,3,4\} & 0
\end{array}\right) \\
\mathbf{a}_{2}=\left(\begin{array}{llllllll}
-1 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array} 0\right. \\
\hline\{2,5\}
\end{array}\right)
\]


For \(S \subset V\), non-zero entries of \(\sum_{i \in S} a_{i}\) equals \(E(S, V \backslash S)\)

\section*{Basic Primitive: Neighborhood Sketches}
- Defn: Let \(a_{i}\) be \(i^{\text {th }}\) row of signed vertex-edge matrix


For \(S \subset V\), non-zero entries of \(\sum_{i \in S} a_{i}\) equals \(E(S, V \backslash S)\)

\section*{Basic Primitive: Neighborhood Sketches}
- Defn: Let \(a_{i}\) be \(i^{\text {th }}\) row of signed vertex-edge matrix
\[
\begin{gathered}
\mathbf{a}_{1}=\left(\begin{array}{cccccccccc}
\{1,2\}\} \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0,4\} & \{1,5\} & \{2,3\} \\
-1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\mathbf{a}_{2}=\left(\begin{array}{llllllllll}
-1,5\} & \{3,4\} & \{3,5\} & \{4,5\} \\
\mathbf{a}_{1}+\mathbf{a}_{2} & =\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 0 & 0
\end{array} 0\right. & 0 & 0
\end{array}\right)
\end{gathered}
\]


For \(S \subset V\), non-zero entries of \(\sum_{i \in S} a_{i}\) equals \(E(S, V \backslash S)\)

\section*{Basic Primitive: Neighborhood Sketches}
- Defn: Let \(a_{i}\) be \(i^{\text {th }}\) row of signed vertex-edge matrix


For \(S \subset V\), non-zero entries of \(\sum_{i \in S} a_{i}\) equals \(E(S, V \backslash S)\)
- Fingerprint: Mai where \(M\) is \(\widetilde{O}(k)\) dim. proj. such that \(k\) non-zero entries of any \(x\) can be recovered from \(M x\).

\section*{Basic Primitive: Neighborhood Sketches}
- Defn: Let \(a_{i}\) be \(i^{\text {th }}\) row of signed vertex-edge matrix
\[
\begin{gathered}
\mathbf{a}_{1}=\left(\begin{array}{cccccccccc}
\{1,2\} & \{1,3\} & \{1,4\} & \{1,5\} & 0,3\} & 0 & 0 & 0 & 0 & \{2,5\} \\
13,4\} & \{3,5\} & \{4,5\} \\
-1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\mathbf{a}_{2}=\left(\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\mathbf{a}_{1}+\mathbf{a}_{2}
\end{gathered}=\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right)
\]


For \(S \subset V\), non-zero entries of \(\sum_{i \in S} a_{i}\) equals \(E(S, V \backslash S)\)
- Fingerprint: Mai where \(M\) is \(\tilde{O}(k)\) dim. proj. such that \(k\) non-zero entries of any \(x\) can be recovered from \(M x\).
- Utility: Can find min(all,k) edges across any cut S. Call the set of recovered edges a "k-skeleton".

\section*{Basic Primitive: Neighborhood Sketches}
- Defn: Let \(a_{i}\) be \(i^{\text {th }}\) row of signed vertex-edge matrix
\[
\begin{array}{r}
\mathbf{a}_{1}=\left(\begin{array}{cccccccccc}
\{1,2\} \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & \{1,4\} & \{1,5\} & \{2,3\} \\
-1 & 0 & 0 & \{2,5\} & \{3,4\} & \{3,5\} & (4,5\} \\
\mathbf{a}_{2} & =\left(\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\mathbf{a}_{1}+\mathbf{a}_{2} & =\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array} 0\right. & 0
\end{array}\right)
\end{array}
\]


For \(S \subset V\), non-zero entries of \(\sum_{i \in S} a_{i}\) equals \(E(S, V \backslash S)\)
- Fingerprint: \(M a_{i}\) where \(M\) is \(\tilde{O}(k)\) dim. proj. such that \(k\) non-zero entries of any \(x\) can be recovered from \(M x\).
- Utility: Can find min(all,k) edges across any cut S. Call the set of recovered edges a "k-skeleton".
\[
\sum_{j \in S} M \mathbf{a}_{j}=M\left(\sum_{j \in S} \mathbf{a}_{j}\right)
\]

\section*{Basic Primitive: Neighborhood Sketches}
- Defn: Let \(a_{i}\) be \(i^{\text {th }}\) row of signed vertex-edge matrix
\[
\begin{array}{r}
\mathbf{a}_{1}=\left(\begin{array}{cccccccccc}
\{1,2\} \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & \{1,4\} & \{1,5\} & \{2,3\} \\
-1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-12\} & \{3,4\} & \{3,5\} & \{4,5\} \\
\mathbf{a}_{2} & =\left(\begin{array}{llllllllll}
0
\end{array}\right) \\
\mathbf{a}_{1}+\mathbf{a}_{2} & =\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 0 & 0
\end{array} 0\right. & 0 & 0
\end{array}\right)
\end{array}
\]


For \(S \subset V\), non-zero entries of \(\sum_{i \in S} a_{i}\) equals \(E(S, V \backslash S)\)
- Fingerprint: \(M a_{i}\) where \(M\) is \(\tilde{O}(k)\) dim. proj. such that \(k\) non-zero entries of any \(x\) can be recovered from \(M x\).
- Utility: Can find min(all,k) edges across any cut S. Call the set of recovered edges a "k-skeleton".
\[
\sum_{j \in S} M \mathbf{a}_{j}=M\left(\sum_{j \in S} \mathbf{a}_{j}\right) \longrightarrow \min (a l l, k) \text { edges in } E(S, V \backslash S)
\]

\section*{Extension to Sparsification}


\section*{Extension to Sparsification}

- Theorem: Can \((I+\varepsilon)\)-approximate every graph cut using \(\mathrm{O}\left(\varepsilon^{-2}\right.\) polylog n\()\) bit fingerprints of each adjacency list.

\section*{Extension to Sparsification}

- Theorem: Can \((I+\varepsilon)\)-approximate every graph cut using \(\mathrm{O}\left(\varepsilon^{-2}\right.\) polylog n\()\) bit fingerprints of each adjacency list.
- Theorem: Can construct a spectral sparsifier H using \(\mathrm{O}\left(\varepsilon^{-2} \mathrm{n}^{2 / 3}\right.\) polylog n\()\) bit fingerprints of each adjacency list.
\(\forall x \in \mathbb{R}^{n}:(1-\epsilon) x^{T} L_{G} x \leq x^{T} L_{H} x \leq(1+\epsilon) x^{T} L_{G} X\)
where \(L_{G}\) and \(L_{H}\) are the Laplacians of \(G\) and \(H\).

Cut Sparsification

\section*{Cut Sparsification}
- Thm (Fung et al.) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} \log ^{2} n / c_{e}\) where \(c_{e}\) is size of min e cut, then all cuts are preserved up to factor \(1+\varepsilon\).

\section*{Cut Sparsification}
- Thm (Fung et al.) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} \log ^{2} n / c_{e}\) where \(c_{e}\) is size of min e cut, then all cuts are preserved up to factor \(1+\varepsilon\).
- Algorithm (Edge sampling via K-skeletons)

\section*{Cut Sparsification}
- Thm (Fung et al.) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} \log ^{2} n / c_{e}\) where \(c_{e}\) is size of min e cut, then all cuts are preserved up to factor \(1+\varepsilon\).
- Algorithm (Edge sampling via K-skeletons)
- Let \(G_{i}\) be graph with edges sampled w/p \(2^{-i}\).

\section*{Cut Sparsification}
- Thm (Fung et al.) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} \log ^{2} n / c_{e}\) where \(c_{e}\) is size of min e cut, then all cuts are preserved up to factor \(1+\varepsilon\).
- Algorithm (Edge sampling via K-skeletons)
- Let \(G_{i}\) be graph with edges sampled w/p \(2^{-i}\).
- Return \(k\)-skeleton \(H_{i}\) for each \(G_{i}\) where \(k=2 \varepsilon^{-2} \log ^{2} n\)

\section*{Cut Sparsification}
- Thm (Fung et al.) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} \log ^{2} n / c_{e}\) where \(c_{e}\) is size of min e cut, then all cuts are preserved up to factor \(1+\varepsilon\).
- Algorithm (Edge sampling via K-skeletons)
- Let \(G_{i}\) be graph with edges sampled w/p \(2^{-i}\).
- Return \(k\)-skeleton \(H_{i}\) for each \(G_{i}\) where \(k=2 \varepsilon^{-2} \log ^{2} n\)
- Thm: \(e=(u, v)\) is in some \(H_{i}\) with probability at least \(p_{e}\)

\section*{Cut Sparsification}
- Thm (Fung et al.) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} \log ^{2} n / c_{e}\) where \(c_{e}\) is size of min e cut, then all cuts are preserved up to factor \(1+\varepsilon\).
- Algorithm (Edge sampling via K-skeletons)
- Let \(G_{i}\) be graph with edges sampled w/p \(2^{-i}\).
- Return \(k\)-skeleton \(H_{i}\) for each \(G_{i}\) where \(k=2 \varepsilon^{-2} \log ^{2} n\)
- Thm: \(e=(u, v)\) is in some \(H_{i}\) with probability at least \(p_{e}\)
- Proof: Let \(C\) be edges in min \(u-v\) cut in \(G\).

\section*{Cut Sparsification}
- Thm (Fung et al.) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} \log ^{2} n / c_{e}\) where \(c_{e}\) is size of min e cut, then all cuts are preserved up to factor \(1+\varepsilon\).
- Algorithm (Edge sampling via K-skeletons)
- Let \(G_{i}\) be graph with edges sampled w/p \(2^{-i}\).
- Return \(k\)-skeleton \(H_{i}\) for each \(G_{i}\) where \(k=2 \varepsilon^{-2} \log ^{2} n\)
- Thm: \(e=(u, v)\) is in some \(H_{i}\) with probability at least \(p_{e}\)
- Proof: Let \(C\) be edges in min \(u-v\) cut in \(G\).
- For \(\mathrm{i}=-\log p_{e}, E\left[\left|C \cap G_{i}\right|\right]=\varepsilon^{-2} \log ^{2} n\) and whp \(\left|C \cap G_{i}\right| \leq k\).

\section*{Cut Sparsification}
- Thm (Fung et al.) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} \log ^{2} n / c_{e}\) where \(c_{e}\) is size of min e cut, then all cuts are preserved up to factor \(1+\varepsilon\).
- Algorithm (Edge sampling via K-skeletons)
- Let \(G_{i}\) be graph with edges sampled w/p \(2^{-i}\).
- Return \(k\)-skeleton \(H_{i}\) for each \(G_{i}\) where \(k=2 \varepsilon^{-2} \log ^{2} n\)
- Thm: \(e=(u, v)\) is in some \(H_{i}\) with probability at least \(p_{e}\)
- Proof: Let \(C\) be edges in min \(u-v\) cut in \(G\).
- For \(i=-\log p_{e}, E\left[\left|C \cap G_{i}\right|\right]=\varepsilon^{-2} \log ^{2} n\) and whp \(\left|C \cap G_{i}\right| \leq k\).
- Hence \(e \in H_{i}\) iff \(e \in G_{i}\) which happens w/p \(p_{e}\)

\section*{Spectral Sparsification}

\section*{Spectral Sparsification}
- Thm (Spielman-Srivastava) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} r_{e} \log n\) where \(r_{e}\) is the effective resistance, then preserve spectral properties.

\section*{Spectral Sparsification}
- Thm (Spielman-Srivastava) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} r_{e} \log n\) where \(r_{e}\) is the effective resistance, then preserve spectral properties.


\section*{Spectral Sparsification}
- Thm (Spielman-Srivastava) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} r_{e} \log n\) where \(r_{e}\) is the effective resistance, then preserve spectral properties.


\section*{Spectral Sparsification}
- Thm (Spielman-Srivastava) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} r_{e} \log n\) where \(r_{e}\) is the effective resistance, then preserve spectral properties.


\section*{Spectral Sparsification}
- Thm (Spielman-Srivastava) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} r_{e} \log n\) where \(r_{e}\) is the effective resistance, then preserve spectral properties.

- Lemma: \(1 / c_{e} \leq r_{e} \leq O\left(n^{2 / 3}\right) / c_{e}\) for edges in a simple graph.

\section*{Spectral Sparsification}
- Thm (Spielman-Srivastava) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} r_{e} \log n\) where \(r_{e}\) is the effective resistance, then preserve spectral properties.

- Lemma: \(1 / c_{e} \leq r_{e} \leq O\left(n^{2 / 3}\right) / c_{e}\) for edges in a simple graph.
- Proof: Find \(O\left(c_{e}\right)\) disjoint paths of length \(O\left(n / \sqrt{ } c_{e}\right)\)

\section*{Spectral Sparsification}
- Thm (Spielman-Srivastava) Sample edge e w/p \(p_{e}\) and weight by \(1 / p_{e}\). If \(p_{e}=\varepsilon^{-2} r_{e} \log n\) where \(r_{e}\) is the effective resistance, then preserve spectral properties.

\[
\begin{aligned}
& \text { Effective resistance of }(u, v) \\
& \text { is potential difference } \\
& \text { when unit of flow injected } \\
& \text { at } u \text { and extracted at } v
\end{aligned}
\]
- Lemma: \(1 / c_{e} \leq r_{e} \leq O\left(n^{2 / 3}\right) / c_{e}\) for edges in a simple graph.
- Proof: Find \(O\left(c_{e}\right)\) disjoint paths of length \(O\left(n / \sqrt{ } c_{e}\right)\)
- Corollary: Increasing sampling probability by \(O\left(n^{2 / 3}\right)\) in cut sparsification, also preserves spectral properties.

I. Connectivity

II. Misalignment

a) Testing Equality with Rotation
b) Matching Lower Bound

Joint work with Alexandr Andoni, Assaf Goldberger, Ely Porat

\section*{Fingerprints for Rotation}
"The quick brown
fox jumped. over the lazy dog."

"quick brown fox jumped over the lazy dog. The"

\section*{Fingerprints for Rotation}
"The quick brown
fox jumped over the lazy dog."

- Theorem: There's a \(D(n)\) polylog \(n\) bit fingerprint \(F\) that is:

\section*{Fingerprints for Rotation}
"The quick brown
fox jumped over the lazy dog."

- Theorem: There's a \(D(n)\) polylog \(n\) bit fingerprint \(F\) that is: - Useful: \(\mathrm{F}(\mathrm{a})\) and \(\mathrm{F}(\mathrm{b})\) determine if \(\mathrm{a}, \mathrm{b} \in \mathbb{Z}^{\mathrm{n}}\) are rotations w.h.p.

\section*{Fingerprints for Rotation}
"The quick brown
fox jumped over the lazy dog."

- Theorem: There's a \(D(n)\) polylog \(n\) bit fingerprint \(F\) that is:
- Useful: \(F(a)\) and \(F(b)\) determine if \(a, b \in \mathbb{Z}^{n}\) are rotations w.h.p. - Homomorphic: From F(a) can construct F(any rotation of a)

\section*{Fingerprints for Rotation}
"The quick brown
fox jumped over the lazy dog."

- Theorem: There's a \(D(n)\) polylog \(n\) bit fingerprint \(F\) that is:
- Useful: \(F(a)\) and \(F(b)\) determine if \(a, b \in \mathbb{Z}^{n}\) are rotations w.h.p.
- Homomorphic: From \(\mathrm{F}(\mathrm{a})\) can construct F (any rotation of a )
- Linear: From \(F(a)\) and \(F(b)\) can compute \(F(a+b)\).

\section*{Fingerprints for Rotation}
"The quick brown,
fox jumped
over the lazy dog."

- Theorem: There's a \(D(n)\) polylog \(n\) bit fingerprint \(F\) that is:
- Useful: \(F(a)\) and \(F(b)\) determine if \(a, b \in \mathbb{Z}^{n}\) are rotations w.h.p.
- Homomorphic: From \(\mathrm{F}(\mathrm{a})\) can construct \(\mathrm{F}(\) any rotation of a\()\)
- Linear: From \(F(a)\) and \(F(b)\) can compute \(F(a+b)\).
- Theorem: Fingerprints with above properties need \(D(n)\) bits.

\section*{Fingerprints for Rotation}
"The quick brown fox jumped over the lazy dog."

- Theorem: There's a \(D(n)\) polylog \(n\) bit fingerprint \(F\) that is:
- Useful: \(F(a)\) and \(F(b)\) determine if \(a, b \in \mathbb{Z}^{n}\) are rotations w.h.p.
- Homomorphic: From \(F(a)\) can construct \(F(\) any rotation of \(a)\)
- Linear: From \(F(a)\) and \(F(b)\) can compute \(F(a+b)\).
- Theorem: Fingerprints with above properties need \(D(n)\) bits.
- Extension: \((\mathrm{t}+\mathrm{D}(\mathrm{n}))\) polylog n bit fingerprints \(\mathrm{F}(\mathrm{a})\) and \(\mathrm{F}(\mathrm{b})\) determine if \(a, b\) are within \(t\) substitutions of being rotations.

False Start: Fermat's Little Theorem

\section*{False Start: Fermat's Little Theorem}
- Rabin-Karp: For some \(p\) and \(r\), encode \(a=a_{0} a_{1} a_{2} \ldots a_{n-1}\) as

\section*{False Start: Fermat's Little Theorem}
- Rabin-Karp: For some p and \(r\), encode \(a=a_{0} a_{1} a_{2} \ldots a_{n-1}\) as
\[
f(r, a)=a_{0}+a_{1} r+a_{2} r^{2}+\ldots a_{n-1} r^{n-1} \bmod p
\]

\section*{False Start: Fermat's Little Theorem}
- Rabin-Karp: For some \(p\) and \(r\), encode \(a=a_{0} a_{1} a_{2} \ldots a_{n-1}\) as
\[
f(r, a)=a_{0}+a_{1} r+a_{2} r^{2}+\ldots a_{n-1} r^{n-1} \bmod p
\]
- Fermat's Little Thm: If \(p=n+1\) prime, \(r^{n}=1 \bmod p\) and so,
\[
\begin{aligned}
r f\left(r, a_{0} a_{1} \ldots a_{n-1}\right) & =a_{0} r+a_{1} r^{2}+a_{2} r^{3}+\ldots+a_{n-1} r^{n} \\
& =a_{n-1}+a_{0} r+a_{1} r^{2}+\ldots+a_{n-2} r^{n-1} \\
& =f\left(r, a_{n-1} a_{0} \ldots a_{n-2}\right)
\end{aligned}
\]

\section*{False Start: Fermat's Little Theorem}
- Rabin-Karp: For some \(p\) and \(r\), encode \(a=a_{0} a_{1} a_{2} \ldots a_{n-1}\) as
\[
f(r, a)=a_{0}+a_{1} r+a_{2} r^{2}+\ldots a_{n-1} r^{n-1} \bmod p
\]
- Fermat's Little Thm: If \(p=n+1\) prime, \(r^{n}=1 \bmod p\) and so,
\[
\begin{aligned}
r f\left(r, a_{0} a_{1} \ldots a_{n-1}\right) & =a_{0} r+a_{1} r^{2}+a_{2} r^{3}+\ldots+a_{n-1} r^{n} \\
& =a_{n-1}+a_{0} r+a_{1} r^{2}+\ldots+a_{n-2} r^{n-1} \\
& =f\left(r, a_{n-1} a_{0} \ldots a_{n-2}\right)
\end{aligned}
\]
- So, if \(\mathbf{b}\) is \(k\)-shift of \(a\) then \(g(r)=r^{k} f(r, a)-f(r, b)=0\)

\section*{False Start: Fermat's Little Theorem}
- Rabin-Karp: For some \(p\) and \(r\), encode \(a=a_{0} a_{1} a_{2} \ldots a_{n-1}\) as
\[
f(r, a)=a_{0}+a_{1} r+a_{2} r^{2}+\ldots a_{n-1} r^{n-1} \bmod p
\]
- Fermat's Little Thm: If \(p=n+1\) prime, \(r^{n}=1 \bmod p\) and so,
\[
\begin{aligned}
r f\left(r, a_{0} a_{1} \ldots a_{n-1}\right) & =a_{0} r+a_{1} r^{2}+a_{2} r^{3}+\ldots+a_{n-1} r^{n} \\
& =a_{n-1}+a_{0} r+a_{1} r^{2}+\ldots+a_{n-2} r^{n-1} \\
& =f\left(r, a_{n-1} a_{0} \ldots a_{n-2}\right)
\end{aligned}
\]
- So, if b is k-shift of a then \(g(r)=r^{k} f(r, a)-f(r, b)=0\)
- Schwartz-Zippel: If \(r\) is random and \(g\) non-zero:
\[
P[g(r)=0] \leq(n-1) / p=1-O(1 / n)
\]

\section*{False Start: Fermat's Little Theorem}
- Rabin-Karp: For some \(p\) and \(r\), encode \(a=a_{0} a_{1} a_{2} \ldots a_{n-1}\) as
\[
f(r, a)=a_{0}+a_{1} r+a_{2} r^{2}+\ldots a_{n-1} r^{n-1} \bmod p
\]
- Fermat's Little Thm: If \(p=n+1\) prime, \(r^{n}=1 \bmod p\) and so,
\[
\begin{aligned}
r f\left(r, a_{0} a_{1} \ldots a_{n-1}\right) & =a_{0} r+a_{1} r^{2}+a_{2} r^{3}+\ldots+a_{n-1} r^{n} \\
& =a_{n-1}+a_{0} r+a_{1} r^{2}+\ldots+a_{n-2} r^{n-1} \\
& =f\left(r, a_{n-1} a_{0} \ldots a_{n-2}\right)
\end{aligned}
\]
- So, if b is k-shift of a then \(g(r)=r^{k} f(r, a)-f(r, b)=0\)
- Schwartz-Zippel: If \(r\) is random and \(g\) non-zero:
\[
P[g(r)=0] \leq(n-1) / p=1-O(1 / n)
\]
- Conclusion: No false negatives but likely false positives.

Beyond Schwartz-Zippel

\section*{Beyond Schwartz-Zippel}
- Evaluate \(g\) on roots of \(x^{n}-1\) but work in larger field

\section*{Beyond Schwartz-Zippel}
- Evaluate \(g\) on roots of \(x^{n}-1\) but work in larger field - \(x^{n}-1\) factorizes as \(D(n)\) irreducible polys over rationals:

\section*{Beyond Schwartz-Zippel}
- Evaluate \(g\) on roots of \(x^{n}-1\) but work in larger field - \(x^{n}-1\) factorizes as \(D(n)\) irreducible polys over rationals:
\[
\begin{aligned}
x^{10}-1 & =\Phi_{1}(x) \Phi_{2}(x) \Phi_{5}(x) \Phi_{10}(x) \\
& =(x-1)(1+x)\left(1-x+x^{2}-x^{3}+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)
\end{aligned}
\]

\section*{Beyond Schwartz-Zippel}
- Evaluate \(g\) on roots of \(x^{n}-1\) but work in larger field
- \(x^{n}-1\) factorizes as \(D(n)\) irreducible polys over rationals:
\[
\begin{aligned}
x^{10}-1 & =\Phi_{1}(x) \Phi_{2}(x) \Phi_{5}(x) \Phi_{10}(x) \\
& =(x-1)(1+x)\left(1-x+x^{2}-x^{3}+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)
\end{aligned}
\]
- At least one \(\phi_{\mathrm{i}}\) has no shared roots with g :

\section*{Beyond Schwartz-Zippel}
- Evaluate \(g\) on roots of \(x^{n}-1\) but work in larger field
- \(x^{n}-1\) factorizes as \(D(n)\) irreducible polys over rationals:
\[
\begin{aligned}
x^{10}-1 & =\Phi_{1}(x) \Phi_{2}(x) \Phi_{5}(x) \Phi_{10}(x) \\
& =(x-1)(1+x)\left(1-x+x^{2}-x^{3}+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)
\end{aligned}
\]
- At least one \(\phi_{\mathrm{i}}\) has no shared roots with g:
- If \(\phi_{\mathrm{i}}\) shares one root, \(\phi_{\mathrm{i}}\) divides g (Abel's Irred. Thm)

\section*{Beyond Schwartz-Zippel}
- Evaluate \(g\) on roots of \(x^{n}-1\) but work in larger field
- \(x^{n}-1\) factorizes as \(D(n)\) irreducible polys over rationals:
\[
\begin{aligned}
x^{10}-1 & =\Phi_{1}(x) \Phi_{2}(x) \Phi_{5}(x) \Phi_{10}(x) \\
& =(x-1)(1+x)\left(1-x+x^{2}-x^{3}+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)
\end{aligned}
\]
- At least one \(\phi_{\mathrm{i}}\) has no shared roots with g:
- If \(\phi_{i}\) shares one root, \(\phi_{i}\) divides g (Abel's Irred. Thm)
- Can't all divide \(g\) because \(g\) has degree \(\leq n-1\)

\section*{Beyond Schwartz-Zippel}
- Evaluate \(g\) on roots of \(x^{n}-1\) but work in larger field
- \(x^{n}-1\) factorizes as \(D(n)\) irreducible polys over rationals:
\[
\begin{aligned}
x^{10}-1 & =\Phi_{1}(x) \Phi_{2}(x) \Phi_{5}(x) \Phi_{10}(x) \\
& =(x-1)(1+x)\left(1-x+x^{2}-x^{3}+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)
\end{aligned}
\]
- At least one \(\phi\) i has no shared roots with g :
- If \(\phi_{\mathrm{i}}\) shares one root, \(\phi_{\mathrm{i}}\) divides g (Abel's Irred. Thm)
- Can't all divide \(g\) because \(g\) has degree \(\leq n-1\)
- Suffices to test \(g\) on an arbitrary root of each \(\phi_{\mathrm{i}}\)

\section*{Beyond Schwartz-Zippel}
- Evaluate \(g\) on roots of \(x^{n}-1\) but work in larger field - \(x^{n}-1\) factorizes as \(D(n)\) irreducible polys over rationals:
\[
\begin{aligned}
x^{10}-1 & =\Phi_{1}(x) \Phi_{2}(x) \Phi_{5}(x) \Phi_{10}(x) \\
& =(x-1)(1+x)\left(1-x+x^{2}-x^{3}+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)
\end{aligned}
\]
- At least one \(\phi\) i has no shared roots with g :
- If \(\phi_{\mathrm{i}}\) shares one root, \(\phi_{\mathrm{i}}\) divides g (Abel's Irred. Thm)
- Can't all divide \(g\) because \(g\) has degree \(\leq n-1\)
- Suffices to test \(g\) on an arbitrary root of each \(\phi_{\mathrm{i}}\)
- Bad News: Can't guarantee \(g(r)\) has finite precision.

\section*{Beyond Schwartz-Zippel}
- Evaluate \(g\) on roots of \(x^{n}-1\) but work in larger field
- \(x^{n}-1\) factorizes as \(D(n)\) irreducible polys over rationals:
\[
\begin{aligned}
x^{10}-1 & =\Phi_{1}(x) \Phi_{2}(x) \Phi_{5}(x) \Phi_{10}(x) \\
& =(x-1)(1+x)\left(1-x+x^{2}-x^{3}+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)
\end{aligned}
\]
- At least one \(\phi_{i}\) has no shared roots with g:
- If \(\phi_{\mathrm{i}}\) shares one root, \(\phi_{\mathrm{i}}\) divides g (Abel's Irred. Thm)
- Can't all divide \(g\) because \(g\) has degree \(\leq n-1\)
- Suffices to test \(g\) on an arbitrary root of each \(\phi_{i}\)
- Bad News: Can't guarantee \(g(r)\) has finite precision.
- Good News: Work modulo a random p. Can show \(\phi_{i}\) still doesn't share roots with g whp by analyzing resultant.

\section*{Lower Bound: Basic Idea}
- Can recover \(D(n)\) bits about a from \(F(a)\) by summing the fingerprints of rotations

\section*{Lower Bound: Basic Idea}
- Can recover \(D(n)\) bits about a from \(F(a)\) by summing the fingerprints of rotations
- To deduce \(\alpha=\sum a_{i}\) from \(F\left(a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}\right)\)
\[
F\left(a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}\right)+F\left(a_{1} a_{2} a_{3} a_{4} a_{5} a_{0}\right)+\ldots+F\left(a_{5} a_{0} a_{1} a_{2} a_{3} a_{4}\right)=F(\alpha \alpha \alpha \alpha \alpha \alpha)
\]

\section*{Lower Bound: Basic Idea}
- Can recover \(D(n)\) bits about a from \(F(a)\) by summing the fingerprints of rotations
- To deduce \(\alpha=\sum a_{i}\) from \(F\left(a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}\right)\)
\(F\left(a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}\right)+F\left(a_{1} a_{2} a_{3} a_{4} a_{5} a_{0}\right)+\ldots+F\left(a_{5} a_{0} a_{1} a_{2} a_{3} a_{4}\right)=F(\alpha \alpha \alpha \alpha \alpha \alpha)\) and compare \(F(\mathrm{gggggg})\) for all g until matches.

\section*{Lower Bound: Basic Idea}
- Can recover \(D(n)\) bits about a from \(F(a)\) by summing the fingerprints of rotations
- To deduce \(\alpha=\sum a_{i}\) from \(F\left(a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}\right)\)
\(F\left(a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}\right)+F\left(a_{1} a_{2} a_{3} a_{4} a_{5} a_{0}\right)+\ldots+F\left(a_{5} a_{0} a_{1} a_{2} a_{3} a_{4}\right)=F(\alpha \alpha \alpha \alpha \alpha \alpha)\)
and compare \(F(\mathrm{gggggg})\) for all g until matches.
- To deduce \(\beta=a_{1}+a_{3}+a_{5}\)
\[
F\left(a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}\right)+F\left(a_{2} a_{3} a_{4} a_{5} a_{0} a_{1}\right)+F\left(a_{4} a_{5} a_{0} a_{1} a_{2} a_{3}\right)=F(\beta \gamma \beta \gamma \beta \gamma)
\]

\section*{Lower Bound: Basic Idea}
- Can recover \(D(n)\) bits about a from \(F(a)\) by summing the fingerprints of rotations
- To deduce \(\alpha=\sum a_{i}\) from \(F\left(a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}\right)\)
\(F\left(a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}\right)+F\left(a_{1} a_{2} a_{3} a_{4} a_{5} a_{0}\right)+\ldots+F\left(a_{5} a_{0} a_{1} a_{2} a_{3} a_{4}\right)=F(\alpha \alpha \alpha \alpha \alpha \alpha)\)
and compare \(F\) (gggggg) for all g until matches.
- To deduce \(\beta=a_{1}+a_{3}+a_{5}\)
\(F\left(a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}\right)+F\left(a_{2} a_{3} a_{4} a_{5} a_{0} a_{1}\right)+F\left(a_{4} a_{5} a_{0} a_{1} a_{2} a_{3}\right)=F(\beta \gamma \beta \gamma \beta \gamma)\)
and compare \(F\left(g g^{\prime} g g^{\prime} g g^{\prime}\right)\) for all \(g, g^{\prime}=\alpha-g\) until matches.

\section*{Lower Bound: Basic Idea}
- Can recover \(D(n)\) bits about a from \(F(a)\) by summing the fingerprints of rotations
- To deduce \(\alpha=\sum a_{i}\) from \(F\left(a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}\right)\)
\(F\left(a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}\right)+F\left(a_{1} a_{2} a_{3} a_{4} a_{5} a_{0}\right)+\ldots+F\left(a_{5} a_{0} a_{1} a_{2} a_{3} a_{4}\right)=F(\alpha \alpha \alpha \alpha \alpha \alpha)\)
and compare \(F\) (gggggg) for all \(g\) until matches.
- To deduce \(\beta=a_{1}+a_{3}+a_{5}\)
\[
F\left(a_{0} a_{1} a_{2} a_{3} a_{4} a_{5}\right)+F\left(a_{2} a_{3} a_{4} a_{5} a_{0} a_{1}\right)+F\left(a_{4} a_{5} a_{0} a_{1} a_{2} a_{3}\right)=F(\beta \gamma \beta \gamma \beta \gamma)
\]
and compare \(F\left(g g^{\prime} g g^{\prime} g g^{\prime}\right)\) for all \(g, g^{\prime}=\alpha-g\) until matches.
- And so on for other divisors of n...

\section*{Thanks!}
- Homomorphic Sketches: Compress using sketches such that we can run algorithms on compressed data directly. Resulting algorithms are parallelizable + streamable.
- Graphs: Dimensionality reduction for preserving structural properties. Enables dynamic graph streaming.
- Fingerprinting with Misalignments: Tight bounds on size of fingerprint necessary for testing equality up to rotations.
```


[^0]:
 (:AM:
 (:AM:
 $$
 E=
 $$

 | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

