Crash Course on Data Stream Algorithms

Part I: Basic Definitions and Numerical Streams

Andrew McGregor
University of Massachusetts Amherst

Goals of the Crash Course

- Goal: Give a flavor for the theoretical results and techniques from the 100 's of papers on the design and analysis of stream algorithms.

Goals of the Crash Course

- Goal: Give a flavor for the theoretical results and techniques from the 100 's of papers on the design and analysis of stream algorithms.
"When we abstract away the application-specific details, what are the basic algorithmic ideas and challenges in stream processing?

What is and isn't possible?"

Goals of the Crash Course

- Goal: Give a flavor for the theoretical results and techniques from the 100 's of papers on the design and analysis of stream algorithms.
"When we abstract away the application-specific details, what are the basic algorithmic ideas and challenges in stream processing? What is and isn't possible?"
- Disclaimer: Talks will be theoretical/mathematical but shouldn't require much in the way of prerequisites.

Goals of the Crash Course

- Goal: Give a flavor for the theoretical results and techniques from the 100 's of papers on the design and analysis of stream algorithms.
"When we abstract away the application-specific details, what are the basic algorithmic ideas and challenges in stream processing? What is and isn't possible?"
- Disclaimer: Talks will be theoretical/mathematical but shouldn't require much in the way of prerequisites.
- Request:

Goals of the Crash Course

- Goal: Give a flavor for the theoretical results and techniques from the 100 's of papers on the design and analysis of stream algorithms.
"When we abstract away the application-specific details, what are the basic algorithmic ideas and challenges in stream processing?

What is and isn't possible?"

- Disclaimer: Talks will be theoretical/mathematical but shouldn't require much in the way of prerequisites.
- Request:
- If you get bored, ask questions...

Goals of the Crash Course

- Goal: Give a flavor for the theoretical results and techniques from the 100 's of papers on the design and analysis of stream algorithms.
"When we abstract away the application-specific details, what are the basic algorithmic ideas and challenges in stream processing?

What is and isn't possible?"

- Disclaimer: Talks will be theoretical/mathematical but shouldn't require much in the way of prerequisites.
- Request:
- If you get bored, ask questions...
- If you get lost, ask questions...

Goals of the Crash Course

- Goal: Give a flavor for the theoretical results and techniques from the 100 's of papers on the design and analysis of stream algorithms.
"When we abstract away the application-specific details, what are the basic algorithmic ideas and challenges in stream processing?

What is and isn't possible?"

- Disclaimer: Talks will be theoretical/mathematical but shouldn't require much in the way of prerequisites.
- Request:
- If you get bored, ask questions...
- If you get lost, ask questions...
- If you'd like to ask questions, ask questions...

Outline

Basic Definitions

Sampling

Sketching

Counting Distinct Items

Summary of Some Other Results

Outline

Basic Definitions

Sampling

Sketching

Counting Distinct Items

Summary of Some Other Results

Data Stream Model

- Stream: m elements from universe of size n, e.g.,

$$
\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle=3,5,3,7,5,4, \ldots
$$

Data Stream Model

- Stream: m elements from universe of size n, e.g.,

$$
\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle=3,5,3,7,5,4, \ldots
$$

- Goal: Compute a function of stream, e.g., median, number of distinct elements, longest increasing sequence.

Data Stream Model

- Stream: m elements from universe of size n, e.g.,

$$
\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle=3,5,3,7,5,4, \ldots
$$

- Goal: Compute a function of stream, e.g., median, number of distinct elements, longest increasing sequence.
- Catch:

1. Limited working memory, sublinear in n and m

Data Stream Model

- Stream: m elements from universe of size n, e.g.,

$$
\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle=3,5,3,7,5,4, \ldots
$$

- Goal: Compute a function of stream, e.g., median, number of distinct elements, longest increasing sequence.
- Catch:

1. Limited working memory, sublinear in n and m
2. Access data sequentially

Data Stream Model

- Stream: m elements from universe of size n, e.g.,

$$
\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle=3,5,3,7,5,4, \ldots
$$

- Goal: Compute a function of stream, e.g., median, number of distinct elements, longest increasing sequence.
- Catch:

1. Limited working memory, sublinear in n and m
2. Access data sequentially
3. Process each element quickly

Data Stream Model

- Stream: m elements from universe of size n, e.g.,

$$
\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle=3,5,3,7,5,4, \ldots
$$

- Goal: Compute a function of stream, e.g., median, number of distinct elements, longest increasing sequence.
- Catch:

1. Limited working memory, sublinear in n and m
2. Access data sequentially
3. Process each element quickly

- Origins in 70s but has become popular in last ten years because of growing theory and very applicable.

Why's it become popular?

- Practical Appeal:
- Faster networks, cheaper data storage, ubiquitous data-logging results in massive amount of data to be processed.
- Applications to network monitoring, query planning, I/O efficiency for massive data, sensor networks aggregation...

Why's it become popular?

- Practical Appeal:
- Faster networks, cheaper data storage, ubiquitous data-logging results in massive amount of data to be processed.
- Applications to network monitoring, query planning, I/O efficiency for massive data, sensor networks aggregation...
- Theoretical Appeal:
- Easy to state problems but hard to solve.
- Links to communication complexity, compressed sensing, embeddings, pseudo-random generators, approximation...

Outline

Basic Definitions

Sampling

Sketching

Counting Distinct Items

Summary of Some Other Results

Sampling and Statistics

- Sampling is a general technique for tackling massive amounts of data

Sampling and Statistics

- Sampling is a general technique for tackling massive amounts of data
- Example: To compute the median packet size of some IP packets, we could just sample some and use the median of the sample as an estimate for the true median. Statistical arguments relate the size of the sample to the accuracy of the estimate.

Sampling and Statistics

- Sampling is a general technique for tackling massive amounts of data
- Example: To compute the median packet size of some IP packets, we could just sample some and use the median of the sample as an estimate for the true median. Statistical arguments relate the size of the sample to the accuracy of the estimate.
- Challenge: But how do you take a sample from a stream of unknown length or from a "sliding window"?

Reservoir Sampling

- Problem: Find uniform sample s from a stream of unknown length

Reservoir Sampling

- Problem: Find uniform sample s from a stream of unknown length
- Algorithm:
- Initially $s=x_{1}$
- On seeing the t-th element, $s \leftarrow x_{t}$ with probability $1 / t$

Reservoir Sampling

- Problem: Find uniform sample s from a stream of unknown length
- Algorithm:
- Initially $s=x_{1}$
- On seeing the t-th element, $s \leftarrow x_{t}$ with probability $1 / t$
- Analysis:
- What's the probability that $s=x_{i}$ at some time $t \geq i$?

Reservoir Sampling

- Problem: Find uniform sample s from a stream of unknown length
- Algorithm:
- Initially $s=x_{1}$
- On seeing the t-th element, $s \leftarrow x_{t}$ with probability $1 / t$
- Analysis:
- What's the probability that $s=x_{i}$ at some time $t \geq i$?

$$
\mathbb{P}\left[s=x_{i}\right]=\frac{1}{i} \times\left(1-\frac{1}{i+1}\right) \times \ldots \times\left(1-\frac{1}{t}\right)=\frac{1}{t}
$$

Reservoir Sampling

- Problem: Find uniform sample s from a stream of unknown length
- Algorithm:
- Initially $s=x_{1}$
- On seeing the t-th element, $s \leftarrow x_{t}$ with probability $1 / t$
- Analysis:
- What's the probability that $s=x_{i}$ at some time $t \geq i$?

$$
\mathbb{P}\left[s=x_{i}\right]=\frac{1}{i} \times\left(1-\frac{1}{i+1}\right) \times \ldots \times\left(1-\frac{1}{t}\right)=\frac{1}{t}
$$

- To get k samples we use $O(k \log n)$ bits of space.

Priority Sampling for Sliding Windows

- Problem: Maintain a uniform sample from the last w items

Priority Sampling for Sliding Windows

- Problem: Maintain a uniform sample from the last w items
- Algorithm:

1. For each x_{i} we pick a random value $v_{i} \in(0,1)$

Priority Sampling for Sliding Windows

- Problem: Maintain a uniform sample from the last w items
- Algorithm:

1. For each x_{i} we pick a random value $v_{i} \in(0,1)$
2. In a window $\left\langle x_{j-w+1}, \ldots, x_{j}\right\rangle$ return value x_{i} with smallest v_{i}

Priority Sampling for Sliding Windows

- Problem: Maintain a uniform sample from the last w items
- Algorithm:

1. For each x_{i} we pick a random value $v_{i} \in(0,1)$
2. In a window $\left\langle x_{j-w+1}, \ldots, x_{j}\right\rangle$ return value x_{i} with smallest v_{i}
3. To do this, maintain set of all elements in sliding window whose v value is minimal among subsequent values

Priority Sampling for Sliding Windows

- Problem: Maintain a uniform sample from the last w items
- Algorithm:

1. For each x_{i} we pick a random value $v_{i} \in(0,1)$
2. In a window $\left\langle x_{j-w+1}, \ldots, x_{j}\right\rangle$ return value x_{i} with smallest v_{i}
3. To do this, maintain set of all elements in sliding window whose v value is minimal among subsequent values

- Analysis:

Priority Sampling for Sliding Windows

- Problem: Maintain a uniform sample from the last w items
- Algorithm:

1. For each x_{i} we pick a random value $v_{i} \in(0,1)$
2. In a window $\left\langle x_{j-w+1}, \ldots, x_{j}\right\rangle$ return value x_{i} with smallest v_{i}
3. To do this, maintain set of all elements in sliding window whose v value is minimal among subsequent values

- Analysis:
- The probability that j-th oldest element is in S is $1 / j$ so the expected number of items in S is

$$
1 / w+1 /(w-1)+\ldots+1 / 1=O(\log w)
$$

Priority Sampling for Sliding Windows

- Problem: Maintain a uniform sample from the last w items
- Algorithm:

1. For each x_{i} we pick a random value $v_{i} \in(0,1)$
2. In a window $\left\langle x_{j-w+1}, \ldots, x_{j}\right\rangle$ return value x_{i} with smallest v_{i}
3. To do this, maintain set of all elements in sliding window whose v value is minimal among subsequent values

- Analysis:
- The probability that j-th oldest element is in S is $1 / j$ so the expected number of items in S is

$$
1 / w+1 /(w-1)+\ldots+1 / 1=O(\log w)
$$

- Hence, algorithm only uses $O(\log w \log n)$ bits of memory.

Other Types of Sampling

- Universe sampling: For a random $i \in_{R}[n]$, compute

$$
f_{i}=\left|\left\{j: x_{j}=i\right\}\right|
$$

Other Types of Sampling

- Universe sampling: For a random $i \in_{R}[n]$, compute

$$
f_{i}=\left|\left\{j: x_{j}=i\right\}\right|
$$

- Minwise hashing: Sample $i \in_{R}\left\{i\right.$: there exists j such that $\left.x_{j}=i\right\}$

Other Types of Sampling

- Universe sampling: For a random $i \in_{R}[n]$, compute

$$
f_{i}=\left|\left\{j: x_{j}=i\right\}\right|
$$

- Minwise hashing: Sample $i \in_{R}\left\{i\right.$: there exists j such that $\left.x_{j}=i\right\}$
- AMS sampling: Sample x_{j} for $j \in_{R}[m]$ and compute

$$
r=\left|\left\{j^{\prime} \geq j: x_{j^{\prime}}=x_{j}\right\}\right|
$$

Other Types of Sampling

- Universe sampling: For a random $i \in_{R}[n]$, compute

$$
f_{i}=\left|\left\{j: x_{j}=i\right\}\right|
$$

- Minwise hashing: Sample $i \in_{R}\left\{i\right.$: there exists j such that $\left.x_{j}=i\right\}$
- AMS sampling: Sample x_{j} for $j \in_{R}[m]$ and compute

$$
r=\left|\left\{j^{\prime} \geq j: x_{j^{\prime}}=x_{j}\right\}\right|
$$

Handy when estimating quantities like $\sum_{i} g\left(f_{i}\right)$ because

$$
\mathbb{E}[m(g(r)-g(r-1))]=\sum_{i} g\left(f_{i}\right)
$$

Outline

Basic Definitions

Sampling

Sketching

Counting Distinct Items

Summary of Some Other Results

Sketching

- Sketching is another general technique for processing streams

Sketching

- Sketching is another general technique for processing streams
- Basic idea: Apply a linear projection "on the fly" that takes high-dimensional data to a smaller dimensional space. Post-process lower dimensional image to estimate the quantities of interest.

Estimating the difference between two streams

- Input: Stream from two sources $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \in([n] \cup[n])^{m}$

Estimating the difference between two streams

- Input: Stream from two sources $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \in([n] \cup[n])^{m}$
- Goal: Estimate difference between distribution of red values and blue values, e.g.,

$$
\sum_{i \in[n]}\left|f_{i}-g_{i}\right|
$$

where $f_{i}=\left|\left\{k: x_{k}=i\right\}\right|$ and $g_{i}=\left|\left\{k: x_{k}=i\right\}\right|$

p-Stable Distributions and Algorithm

- Defn: A p-stable distribution μ has the following property: for $X, Y, Z \sim \mu$ and $a, b \in \mathbb{R}: \quad a X+b Y \sim\left(|a|^{p}+|b|^{p}\right)^{1 / p} Z$
e.g., Gaussian is 2 -stable and Cauchy distribution is 1 -stable

p-Stable Distributions and Algorithm

- Defn: A p-stable distribution μ has the following property:

$$
\text { for } X, Y, Z \sim \mu \text { and } a, b \in \mathbb{R}: \quad a X+b Y \sim\left(|a|^{p}+|b|^{p}\right)^{1 / p} Z
$$

e.g., Gaussian is 2 -stable and Cauchy distribution is 1 -stable

- Algorithm:
- Generate random matrix $A \in \mathbb{R}^{k \times n}$ where $A_{i j} \sim$ Cauchy, $k=O\left(\epsilon^{-2}\right)$.

p-Stable Distributions and Algorithm

- Defn: A p-stable distribution μ has the following property:

$$
\text { for } X, Y, Z \sim \mu \text { and } a, b \in \mathbb{R}: \quad a X+b Y \sim\left(|a|^{p}+|b|^{p}\right)^{1 / p} Z
$$

e.g., Gaussian is 2 -stable and Cauchy distribution is 1 -stable

- Algorithm:
- Generate random matrix $A \in \mathbb{R}^{k \times n}$ where $A_{i j} \sim$ Cauchy, $k=O\left(\epsilon^{-2}\right)$.
- Compute sketches $A f$ and $A g$ incrementally

p-Stable Distributions and Algorithm

- Defn: A p-stable distribution μ has the following property:

$$
\text { for } X, Y, Z \sim \mu \text { and } a, b \in \mathbb{R}: \quad a X+b Y \sim\left(|a|^{p}+|b|^{p}\right)^{1 / p} Z
$$

e.g., Gaussian is 2 -stable and Cauchy distribution is 1 -stable

- Algorithm:
- Generate random matrix $A \in \mathbb{R}^{k \times n}$ where $A_{i j} \sim$ Cauchy, $k=O\left(\epsilon^{-2}\right)$.
- Compute sketches $A f$ and $A g$ incrementally
- Return median $\left(\left|t_{1}\right|, \ldots,\left|t_{k}\right|\right)$ where $t=A f-A g$

p-Stable Distributions and Algorithm

- Defn: A p-stable distribution μ has the following property:

$$
\text { for } X, Y, Z \sim \mu \text { and } a, b \in \mathbb{R}: \quad a X+b Y \sim\left(|a|^{p}+|b|^{p}\right)^{1 / p} Z
$$

e.g., Gaussian is 2 -stable and Cauchy distribution is 1 -stable

- Algorithm:
- Generate random matrix $A \in \mathbb{R}^{k \times n}$ where $A_{i j} \sim$ Cauchy, $k=O\left(\epsilon^{-2}\right)$.
- Compute sketches $A f$ and $A g$ incrementally
- Return median $\left(\left|t_{1}\right|, \ldots,\left|t_{k}\right|\right)$ where $t=A f-A g$
- Analysis:
- By the 1-stability property for $Z_{i} \sim$ Cauchy

$$
\left|t_{i}\right|=\left|\sum_{j} A_{i, j}\left(f_{j}-g_{j}\right)\right| \sim\left|Z_{i}\right| \sum_{j}\left|f_{j}-g_{j}\right|
$$

p-Stable Distributions and Algorithm

- Defn: A p-stable distribution μ has the following property:

$$
\text { for } X, Y, Z \sim \mu \text { and } a, b \in \mathbb{R}: \quad a X+b Y \sim\left(|a|^{p}+|b|^{p}\right)^{1 / p} Z
$$

e.g., Gaussian is 2 -stable and Cauchy distribution is 1 -stable

- Algorithm:
- Generate random matrix $A \in \mathbb{R}^{k \times n}$ where $A_{i j} \sim$ Cauchy, $k=O\left(\epsilon^{-2}\right)$.
- Compute sketches $A f$ and $A g$ incrementally
- Return median $\left(\left|t_{1}\right|, \ldots,\left|t_{k}\right|\right)$ where $t=A f-A g$
- Analysis:
- By the 1-stability property for $Z_{i} \sim$ Cauchy

$$
\left|t_{i}\right|=\left|\sum_{j} A_{i, j}\left(f_{j}-g_{j}\right)\right| \sim\left|Z_{i}\right| \sum_{j}\left|f_{j}-g_{j}\right|
$$

- For $k=O\left(\epsilon^{-2}\right)$, since median $\left(\left|Z_{i}\right|\right)=1$, with high probability,

$$
(1-\epsilon) \sum_{j}\left|f_{j}-g_{j}\right| \leq \operatorname{median}\left(\left|t_{1}\right|, \ldots,\left|t_{k}\right|\right) \leq(1+\epsilon) \sum_{j}\left|f_{j}-g_{j}\right|
$$

A Useful Multi-Purpose Sketch: Count-Min Sketch

A Useful Multi-Purpose Sketch: Count-Min Sketch

- Heavy Hitters: Find all i such that $f_{i} \geq \phi m$

A Useful Multi-Purpose Sketch: Count-Min Sketch

- Heavy Hitters: Find all i such that $f_{i} \geq \phi m$
- Range Sums: Estimate $\sum_{i \leq k \leq j} f_{k}$ when i, j aren't known in advance

A Useful Multi-Purpose Sketch: Count-Min Sketch

- Heavy Hitters: Find all i such that $f_{i} \geq \phi m$
- Range Sums: Estimate $\sum_{i \leq k \leq j} f_{k}$ when i, j aren't known in advance
- Find k-Quantiles: Find values q_{0}, \ldots, q_{k} such that

$$
q_{0}=0, \quad q_{k}=n, \quad \text { and } \quad \sum_{i \leq q_{j}-1} f_{i}<\frac{j m}{k} \leq \sum_{i \leq q_{j}} f_{i}
$$

A Useful Multi-Purpose Sketch: Count-Min Sketch

- Heavy Hitters: Find all i such that $f_{i} \geq \phi m$
- Range Sums: Estimate $\sum_{i \leq k \leq j} f_{k}$ when i, j aren't known in advance
- Find k-Quantiles: Find values q_{0}, \ldots, q_{k} such that

$$
q_{0}=0, \quad q_{k}=n, \quad \text { and } \quad \sum_{i \leq q_{j}-1} f_{i}<\frac{j m}{k} \leq \sum_{i \leq q_{j}} f_{i}
$$

- Algorithm: Count-Min Sketch
- Maintain an array of counters $c_{i, j}$ for $i \in[d]$ and $j \in[w]$

A Useful Multi-Purpose Sketch: Count-Min Sketch

- Heavy Hitters: Find all i such that $f_{i} \geq \phi m$
- Range Sums: Estimate $\sum_{i \leq k \leq j} f_{k}$ when i, j aren't known in advance
- Find k-Quantiles: Find values q_{0}, \ldots, q_{k} such that

$$
q_{0}=0, \quad q_{k}=n, \quad \text { and } \quad \sum_{i \leq q_{j}-1} f_{i}<\frac{j m}{k} \leq \sum_{i \leq q_{j}} f_{i}
$$

- Algorithm: Count-Min Sketch
- Maintain an array of counters $c_{i, j}$ for $i \in[d]$ and $j \in[w]$
- Construct d random hash functions $h_{1}, h_{2}, \ldots h_{d}:[n] \rightarrow[w]$

A Useful Multi-Purpose Sketch: Count-Min Sketch

- Heavy Hitters: Find all i such that $f_{i} \geq \phi m$
- Range Sums: Estimate $\sum_{i \leq k \leq j} f_{k}$ when i, j aren't known in advance
- Find k-Quantiles: Find values q_{0}, \ldots, q_{k} such that

$$
q_{0}=0, \quad q_{k}=n, \quad \text { and } \quad \sum_{i \leq q_{j}-1} f_{i}<\frac{j m}{k} \leq \sum_{i \leq q_{j}} f_{i}
$$

- Algorithm: Count-Min Sketch
- Maintain an array of counters $c_{i, j}$ for $i \in[d]$ and $j \in[w]$
- Construct d random hash functions $h_{1}, h_{2}, \ldots h_{d}:[n] \rightarrow[w]$
- Update counters: On seeing value v, increment $c_{i, h_{i}(v)}$ for $i \in[d]$

A Useful Multi-Purpose Sketch: Count-Min Sketch

- Heavy Hitters: Find all i such that $f_{i} \geq \phi m$
- Range Sums: Estimate $\sum_{i \leq k \leq j} f_{k}$ when i, j aren't known in advance
- Find k-Quantiles: Find values q_{0}, \ldots, q_{k} such that

$$
q_{0}=0, \quad q_{k}=n, \quad \text { and } \quad \sum_{i \leq q_{j}-1} f_{i}<\frac{j m}{k} \leq \sum_{i \leq q_{j}} f_{i}
$$

- Algorithm: Count-Min Sketch
- Maintain an array of counters $c_{i, j}$ for $i \in[d]$ and $j \in[w]$
- Construct d random hash functions $h_{1}, h_{2}, \ldots h_{d}:[n] \rightarrow[w]$
- Update counters: On seeing value v, increment $c_{i, h_{i}(v)}$ for $i \in[d]$
- To get an estimate of f_{k}, return

$$
\tilde{f}_{k}=\min _{i} c_{i, h_{i}(k)}
$$

A Useful Multi-Purpose Sketch: Count-Min Sketch

- Heavy Hitters: Find all i such that $f_{i} \geq \phi m$
- Range Sums: Estimate $\sum_{i \leq k \leq j} f_{k}$ when i, j aren't known in advance
- Find k-Quantiles: Find values q_{0}, \ldots, q_{k} such that

$$
q_{0}=0, \quad q_{k}=n, \quad \text { and } \quad \sum_{i \leq q_{j}-1} f_{i}<\frac{j m}{k} \leq \sum_{i \leq q_{j}} f_{i}
$$

- Algorithm: Count-Min Sketch
- Maintain an array of counters $c_{i, j}$ for $i \in[d]$ and $j \in[w]$
- Construct d random hash functions $h_{1}, h_{2}, \ldots h_{d}:[n] \rightarrow[w]$
- Update counters: On seeing value v, increment $c_{i, h_{i}(v)}$ for $i \in[d]$
- To get an estimate of f_{k}, return

$$
\tilde{f}_{k}=\min _{i} c_{i, h_{i}(k)}
$$

- Analysis: For $d=O(\log 1 / \delta)$ and $w=O\left(1 / \epsilon^{2}\right)$

$$
\mathbb{P}\left[f_{k}-\epsilon m \leq \tilde{f}_{k} \leq f_{k}\right] \geq 1-\delta
$$

Outline

Basic Definitions

Sampling

Sketching

Counting Distinct Items

Summary of Some Other Results

Counting Distinct Elements

- Input: Stream $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \in[n]^{m}$
- Goal: Estimate the number of distinct values in the stream up to a multiplicative factor $(1+\epsilon)$ with high probability.

Algorithm

- Algorithm:

1. Apply random hash function $h:[n] \rightarrow[0,1]$ to each element

Algorithm

- Algorithm:

1. Apply random hash function $h:[n] \rightarrow[0,1]$ to each element
2. Compute ϕ, the t-th smallest value of the hash seen where $t=21 / \epsilon^{2}$

Algorithm

- Algorithm:

1. Apply random hash function $h:[n] \rightarrow[0,1]$ to each element
2. Compute ϕ, the t-th smallest value of the hash seen where $t=21 / \epsilon^{2}$
3. Return $\tilde{r}=t / \phi$ as estimate for r, the number of distinct items.

Algorithm

- Algorithm:

1. Apply random hash function $h:[n] \rightarrow[0,1]$ to each element
2. Compute ϕ, the t-th smallest value of the hash seen where $t=21 / \epsilon^{2}$
3. Return $\tilde{r}=t / \phi$ as estimate for r, the number of distinct items.

- Analysis:

1. Algorithm uses $O\left(\epsilon^{-2} \log n\right)$ bits of space.

Algorithm

- Algorithm:

1. Apply random hash function $h:[n] \rightarrow[0,1]$ to each element
2. Compute ϕ, the t-th smallest value of the hash seen where $t=21 / \epsilon^{2}$
3. Return $\tilde{r}=t / \phi$ as estimate for r, the number of distinct items.

- Analysis:

1. Algorithm uses $O\left(\epsilon^{-2} \log n\right)$ bits of space.
2. We'll show estimate has good accuracy with reasonable probability

$$
\mathbb{P}[|\tilde{r}-r| \leq \epsilon r] \leq 9 / 10
$$

Accuracy Analysis

1. Suppose the distinct items are a_{1}, \ldots, a_{r}

Accuracy Analysis

1. Suppose the distinct items are a_{1}, \ldots, a_{r}
2. Over Estimation:

$$
\mathbb{P}[\tilde{r} \geq(1+\epsilon) r]=\mathbb{P}[t / \phi \geq(1+\epsilon) r]=\mathbb{P}\left[\phi \leq \frac{t}{r(1+\epsilon)}\right]
$$

Accuracy Analysis

1. Suppose the distinct items are a_{1}, \ldots, a_{r}
2. Over Estimation:

$$
\mathbb{P}[\tilde{r} \geq(1+\epsilon) r]=\mathbb{P}[t / \phi \geq(1+\epsilon) r]=\mathbb{P}\left[\phi \leq \frac{t}{r(1+\epsilon)}\right]
$$

3. Let $X_{i}=1\left[h\left(a_{i}\right) \leq \frac{t}{r(1+\epsilon)}\right]$ and $X=\sum X_{i}$

$$
\mathbb{P}\left[\phi \leq \frac{t}{r(1+\epsilon)}\right]=\mathbb{P}[X>t]=\mathbb{P}[X>(1+\epsilon) \mathbb{E}[X]]
$$

Accuracy Analysis

1. Suppose the distinct items are a_{1}, \ldots, a_{r}
2. Over Estimation:

$$
\mathbb{P}[\tilde{r} \geq(1+\epsilon) r]=\mathbb{P}[t / \phi \geq(1+\epsilon) r]=\mathbb{P}\left[\phi \leq \frac{t}{r(1+\epsilon)}\right]
$$

3. Let $X_{i}=1\left[h\left(a_{i}\right) \leq \frac{t}{r(1+\epsilon)}\right]$ and $X=\sum X_{i}$

$$
\mathbb{P}\left[\phi \leq \frac{t}{r(1+\epsilon)}\right]=\mathbb{P}[X>t]=\mathbb{P}[X>(1+\epsilon) \mathbb{E}[X]]
$$

4. By a Chebyshev analysis,

$$
\mathbb{P}[X>(1+\epsilon) \mathbb{E}[X]] \leq \frac{1}{\epsilon^{2} \mathbb{E}[X]} \leq 1 / 20
$$

Accuracy Analysis

1. Suppose the distinct items are a_{1}, \ldots, a_{r}
2. Over Estimation:

$$
\mathbb{P}[\tilde{r} \geq(1+\epsilon) r]=\mathbb{P}[t / \phi \geq(1+\epsilon) r]=\mathbb{P}\left[\phi \leq \frac{t}{r(1+\epsilon)}\right]
$$

3. Let $X_{i}=1\left[h\left(a_{i}\right) \leq \frac{t}{r(1+\epsilon)}\right]$ and $X=\sum X_{i}$

$$
\mathbb{P}\left[\phi \leq \frac{t}{r(1+\epsilon)}\right]=\mathbb{P}[X>t]=\mathbb{P}[X>(1+\epsilon) \mathbb{E}[X]]
$$

4. By a Chebyshev analysis,

$$
\mathbb{P}[X>(1+\epsilon) \mathbb{E}[X]] \leq \frac{1}{\epsilon^{2} \mathbb{E}[X]} \leq 1 / 20
$$

5. Under Estimation: A similar analysis shows $\mathbb{P}[\tilde{r} \leq(1-\epsilon) r] \leq 1 / 20$

Outline

Basic Definitions

Sampling

Sketching

Counting Distinct Items

Summary of Some Other Results

Some Other Results

Correlations:

- Input: $\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)\right\rangle$
- Goal: Estimate strength of correlation between x and y via the distance between joint distribution and product of the marginals.
- Result: $(1+\epsilon)$ approx in $\tilde{O}\left(\epsilon^{-O(1)}\right)$ space.

Some Other Results

Correlations:

- Input: $\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)\right\rangle$
- Goal: Estimate strength of correlation between x and y via the distance between joint distribution and product of the marginals.
- Result: $(1+\epsilon)$ approx in $\tilde{O}\left(\epsilon^{-O(1)}\right)$ space.

Linear Regression:

- Input: Stream defines a matrix $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{d \times 1}$
- Goal: Find x such that $\|A x-b\|_{2}$ is minimized.
- Result: $(1+\epsilon)$ estimation in $\tilde{O}\left(d^{2} \epsilon^{-1}\right)$ space.

Some More Other Results

Histograms:

- Input: $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \in[n]^{m}$
- Goal: Determine B bucket histogram $H:[m] \rightarrow \mathbb{R}$ minimizing

$$
\sum_{i \in[m]}\left(x_{i}-H(i)\right)^{2}
$$

- Result: $(1+\epsilon)$ estimation in $\tilde{O}\left(B^{2} \epsilon^{-1}\right)$ space

Some More Other Results

Histograms:

- Input: $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \in[n]^{m}$
- Goal: Determine B bucket histogram $H:[m] \rightarrow \mathbb{R}$ minimizing

$$
\sum_{i \in[m]}\left(x_{i}-H(i)\right)^{2}
$$

- Result: $(1+\epsilon)$ estimation in $\tilde{O}\left(B^{2} \epsilon^{-1}\right)$ space

Transpositions and Increasing Subsequences:

- Input: $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \in[n]^{m}$
- Goal: Estimate number of transpositions $\left|\left\{i<j: x_{i}>x_{j}\right\}\right|$
- Goal: Estimate length of longest increasing subsequence
- Results: $(1+\epsilon)$ approx in $\tilde{O}\left(\epsilon^{-1}\right)$ and $\tilde{O}\left(\epsilon^{-1} \sqrt{n}\right)$ space respectively

Thanks!

- Blog: http://polylogblog.wordpress.com
- Lectures: Piotr Indyk, MIT
http://stellar.mit.edu/S/course/6/fa07/6.895/
- Books:
"Data Streams: Algorithms and Applications"
S. Muthukrishnan (2005)
"Algorithms and Complexity of Stream Processing" A. McGregor, S. Muthukrishnan (forthcoming)

