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Abstract. In this invited talk, we will survey some of the recent work on design-
ing algorithms for analyzing massive graphs. Such graphs may not fit in main
memory, may be distributed across numerous machines, and may change over
time. This has motivated a rich body of work on analyzing graphs in the data
stream model and the development of general algorithmic techniques, such as
graph sketching, that can help minimize the space and communication costs re-
quired to process these massive graphs.

1 Motivation and Definitions

If you pick up your favorite algorithms textbooks and turn to a random page, there is
a reasonable chance that you will find an algorithm for solving a graph problem. This
is perhaps unsurprising given that graphs are a natural abstraction whenever you have
information about a set of basic entities and the relationships between these entities,
e.g., people and their friendships, web-pages and hyperlinks; neurons and synapses; or
IP addresses and network flows. However, many of the classical algorithms for analyz-
ing graphs implicitly assume that the graphs are static and fit in the main memory of a
single machine. Unfortunately, in a growing number of applications this is not the case
and attention has turned to algorithms that can process streams of graph data and/or
graph data that is distributed across numerous machines. In these scenarios, standard
graph techniques and primitives such as constructing BFS or DFS trees, dynamic pro-
gramming, and linear programming are no longer applicable and new techniques, such
as graph sketching, are required.

In the accompanying talk, we will survey some of the recent work on these new
approaches to analyzing massive graphs. In this document, we first present some of the
relevant definitions and then collect together references for some of the main results
that will be discussed.

Basic Definitions. The simplest version of the data stream model for processing graphs
is the insert-only model. In this model, the input stream consists of a sequence of un-
ordered pairs e = {u, v} where u, v ∈ [n]. Such a stream,

S = 〈e1, e2, . . . , em〉
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naturally defines an undirected graphG = (V,E) where V = [n] andE = {e1, . . . , em}.
The goal is to design an algorithm that solves the required graph problem on the graph
G while only accessing the input sequentially and using memory that is sublinear in m.

A natural extension of the model is the insert-delete model in which edges can be
both inserted and deleted. In this case, the input is a sequence

S = 〈a1, a2, . . .〉 where ai = (ei, ∆i)

where ei encodes an undirected edge as before and ∆i ∈ {−1, 1}. The multiplicity of
an edge e is defined as fe =

∑
i:ei=e∆i and we typically restrict our attention to the

case where fe ∈ {0, 1} for all edges e. Both the insert-only and insert-delete model can
be extended to handle weighted graphs where the occurrence of each edge e in the input
is replaced by the pair (e, we) where we indicates the weight of the edge.

An important algorithmic technique in the insert-delete model in particular, is that
of graph sketching. A sketch is a random linear projection of a vector corresponding to
the input data. In the context of graphs, this vector would be

f ∈ {0, 1}(
n
2)

where entries correspond to the current fe values and the sketch would be M f ∈ Rd

where d � n2 is the dimension of the sketch and M is a random matrix chosen ac-
cording to an appropriate distribution, i.e., one from which the relevant properties of f
can be inferred given M f . Such a sketch can then be used as the basis for a data stream
algorithm since M f can be computed incrementally: when (e,∆) arrives in the stream
we can update M f as follows:

M f ←M f +∆ ·Me

where Me is the eth column of M . Hence, it suffices to store the current sketch and
any random bits needed to compute the matrix M . The main challenge is therefore to
design low-dimensional sketches as this results in small-space algorithms. Sketches are
also useful for the purpose of reducing communication in various distributed models
since if each machine communicates a sketch of their local input, then a sketch of the
entire data set can be recovered simply by adding together the individual sketches.

2 Some Results and References

In this section, we briefly summarize some of the main results in the area. This is not
intended to be an exhaustive survey and we focus on the most representative or most
recent results on each problem. Further details of some of these algorithms can also be
found in the survey [30] although many of the results postdate that survey.

Connectivity and Sparsification. One of the most basic graph problems is determining
whether a graph is connected. This and many related problems can be solved relatively
easily in the insert-only model using O(npolylog n) space, e.g., to test connectivity
when there are no edge deletions, it suffices to keep track of the connected components



of the graph. Furthermore, it can be shown that Ω(n log n) space is necessary to solve
this problem [37]. A more surprising result is thatO(n polylog n) space also suffices in
the insert-delete model [3]; this was one of the first applications of the graph sketching
technique. Furthermore, the basic algorithm can be extended to testing k-edge connec-
tivity [4] and approximate testing of k-node connectivity [20] using O(knpolylog n)
space. Lastly, in O(ε−2n polylog n) space it is possible to construct combinatorial and
spectral sparsifiers of the input graph [20, 28]; these allow the size of all cuts to be ap-
proximated up to a 1 + ε factor along with various properties related to the Laplacian
of the graph.

Matching. Most of the work on approximating maximum matchings has focused on the
insert-only model. The trivial greedy approach yields a 2-approximation usingO(n log n)
space in the unweighted case and after a long sequence of papers, a (2+ε)-approximation
algorithm using O(ε−1n log n) space in the weighted case is now known [19, 35]. The
best known lower bound is that no algorithm can beat a factor e/(e− 1) ≈ 1.58 while
using only O(n polylog n) space [25] and closing the gap remains an open problem.
Better approximation guarantees or lower space requirements are possible if the algo-
rithm may take a small number of additional passes over the data stream [2, 17, 23, 29]
or if the edges of the graph are assumed to arrive in a random order [26, 29]. Another
line of work considers low arboricity graphs, e.g., the size of the maximum match-
ing in a planar graph can be approximated up to a (5 + ε) factor using O(ε−2 log n)
space [15, 32].

In the insert-delete model, it is known that Θ(n2/α3 ·polylog n) space is necessary
and sufficient to find a matching that is at least 1/α times the size of the maximum
matching [8, 13]. This can be reduced to O(n2/α4 · polylog n) space if we are only
interested in estimating the size of the maximum matching [7]. Furthermore, if the size
of the maximum matching is bounded by k, then Θ(k2 polylog n) space is necessary
and sufficient to find a matching of maximum size [11, 13].

And more. . . Other graph problems considered in the data stream model include finding
the densest subgraph [10,18,31]; correlation clustering [1]; counting triangles [9,24,33],
estimating the size of the maximum cut [27], finding large independent sets and cliques
[14, 21], and performing random walks [36]. Some of the above problems have also
been considered in the sliding window model, a variant of the insert-only model in
which the relevant graph is defined by only the most recent edges [16]. Another notable
body of related work considers problems that can be described in terms of hypergraphs,
i.e., every edge in the stream includes an arbitrary number of nodes rather than just two.
Such problems include minimum set cover [5,6,12,22], maximum coverage [5,34], and
minimum hitting set [13].
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