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Abstract. Consider a stream of n-tuples that empirically define the joint distri-
bution of n discrete random variables X1, . . . , Xn. Previous work of Indyk and
McGregor [6] and Braverman et al. [1, 2] addresses the problem of determining
whether these variables are n-wise independent by measuring the `p distance be-
tween the joint distribution and the product distribution of the marginals. An open
problem in this line of work is to answer more general questions about the depen-
dencies between the variables. One powerful way to express such dependencies
is via Bayesian networks where nodes correspond to variables and directed edges
encode dependencies. We consider the problem of testing such dependencies in
the streaming setting. Our main results are:

1. A tight upper and lower bound of Θ̃(nkd) on the space required to test
whether the data is consistent with a given Bayesian network where k is
the size of the range of each Xi and d is the max in-degree of the network.

2. A tight upper and lower bound of Θ̃(kd) on the space required to compute
any 2-approximation of the log-likelihood of the network.

3. Finally, we show space/accuracy trade-offs for the problem of independence
testing using `1 and `2 distances.

1 Introduction

The problem of testing n-wise independence in data streams has attracted recent atten-
tion in streaming algorithms literature [1,2,6]. In that problem, the stream consists of a
length m sequence of n-tuples that empirically defines a joint distribution of n random
variables X1, X2, . . . , Xn where each Xi has range [k] := {1, 2, . . . k}. Specifically,
the stream defines the joint probability mass function (pmf):

P(x1, . . . , xn) = P(X1 = x1, X2 = x2, . . . , Xn = xn) :=
f(x1, x2, . . . , xn)

m
, (1)

where f(x1, x2, . . . , xn) is the number of tuples equal to (x1, x2, . . . , xn). The marginal
probability of a subset of variables {Xj}j∈S is defined as:

P(Xj = xj ∀j ∈ S) :=
∑

x`∈[k] for all 6̀∈S

P(X1 = x1, X2 = x2, . . . , Xn = xn) .

The goal of the previous work was to determine whether this distribution is close to be-
ing a product distribution or equivalently, whether the corresponding random variables



are close to being independent by estimating:( ∑
x1,...,xn∈[k]

∣∣P(X1 = x1, . . . , Xn = xn)− P(X1 = x1) . . .P(Xn = xn)
∣∣p)1/p

:=

∥∥∥∥P(X1, . . . , Xn)− P(X1) . . .P(Xn)

∥∥∥∥
p

:= Ep(∅).

However, it is natural to ask more general questions about the dependencies between
the variables, e.g., can we identify an Xi such that the other random variables are in-
dependent conditioned on Xi or whether there is an ordering Xσ(1), Xσ(2), Xσ(3), . . .
such that Xσ(i) is independent of Xσ(1), Xσ(2), . . . , Xσ(i−2) conditioned on Xσ(i−1).

The standard way to represent such dependencies is via Bayesian networks. A
Bayesian network is an acyclic graph G with a node Xi corresponding to each vari-
able Xi along with a set of directed edges E that encode a factorization of the joint
distribution. Specifically, if Pa(Xi) = {Xj : (Xj → Xi) ∈ E} are the parents of Xi

in G then the Bayesian network represents the assertion that for all x1, x2, . . . , xn, the
joint distribution can be factorized as follows:

P(X1 = x1, X2 = x2, . . . , Xn = xn) =

n∏
i=1

P(Xi = xi|Xj = xj ∀ Xj ∈ Pa(Xi)) .

For example, E = ∅ corresponds to the assertion that the Xi are fully independent
whereas the graph on nodes {X1, X2, X3} with directed edges X1 → X2, X1 → X3

corresponds to the assertion that X2 and X3 are independent conditioned on X1.
Bayesian networks have been extensively studied and applied in artificial intelli-

gence, machine learning, data mining, and other areas. In these applications the focus is
typically on Bayesian networks where d is small, since we wish to be able to compactly
represent the joint distribution through local conditional probability distributions.

In this paper we consider the problem of evaluating how well the observed data fits
a Bayesian network. The data stream of tuples in [k]n and a Bayesian networkG defines
an empirical distribution PG with the pmf:

PG(x1, . . . , xn) :=
n∏
i=1

P(Xi = xi|Xj = xj ∀ Xj ∈ Pa(Xi)), (2)

where

P(Xi = xi|Xj = xj for all j ∈ Pa(Xi)) =
P(Xi = xi)

P(Xj = xj , ∀Xj ∈ Pa(Xi))
. (3)

is just the fraction of tuples whose ith coordinate is xi amongst the set of tuples whose
jth coordinate is xj for all Xj ∈ Pa(Xi). We then define the error of G to be the `p
norm, for p ∈ {1, 2}, of the difference between the joint distribution and the factoriza-
tion PG:

Ep(G) :=
( ∑
x1,...,xn∈[k]

|P(x1, . . . , xn)− PG(x1, . . . , xn)|p
) 1

p := ‖P − PG‖p.



Clearly, if the factorization implied by G is valid then Ep(G) = 0. More generally,
if Ep(G) is small then we consider the factorization to be close to valid. The use of `p
distance to measure “closeness” was considered previously in the Bayesian network lit-
erature [7,11]. However, the space required to compute these measures was considered
a major drawback because it was assumed that it would be necessary to explicitly store
the full joint distribution whose space complexity is O(kn). Our results show that this
is not the case. Note that when G is the empty graph, Ep(∅) is the quantity measured
in [1, 2, 6].

In many applications, data comes in a streaming fashion. When it comes to very
large data volume, it is important to maintain a data structure that uses small memory
and estimates different statistics about the data accurately at the same time. As the space
requirement to measure the accuracy of Bayesian networks is as large as O(kn) and as
the size of our data set m increases, our problem of evaluating Bayesian networks via
data streams with small memory is of considerable importance.

1.1 Our Results
Here, and henceforth we use k, n, d and m to denote the range of the variables, the
number of the variables, the maximum in-degree of the network and the length of the
stream respectively.

1. Testing and Estimating `p Accuracy. For any Bayesian network G, we present a
single-pass algorithm using Θ̃(nkd) space1 for the problem of testing whether the
data is consistent withG, i.e., Ep(G) = 0. We prove a matching lower bound show-
ing that the dependence on n, k, and d is optimal. We also present a Õ(ε−2nkd+1)-
space algorithm for estimating Ep(G) up to a (1 + ε) factor. The lower bound is
based on the Local Markov Property, a result from Bayesian Networks literature,
and a reduction from communication complexity.

2. Estimating Log-Likelihood. Next, we present a single-pass Õ(nkd)-space algorithm
that estimates the log-likelihood of a given network. We also prove a lower bound
of Ω(kd) for any factor 2 approximation of this quantity. As an application, we can
find the branching tree network that approximately maximizes the log-likelihood
of the observed streaming data in space Õ(n2k) with O(n2) post-processing time.
Our algorithm is based on the Chow-Liu tree [4] construction.

3. Trade-offs for Independence Testing. We revisit the problem of independence test-
ing in Section 5 and present space/accuracy trade-offs for estimating Ep(∅). Specif-
ically, for p = 1, we can achieve an (n − 1)/t-approximation for any constant
1 ≤ t < n/2 using O(poly n) space compared to the (1 ± ε)-approximation al-
gorithm in [2] with space that is doubly-exponential in n. For p = 2, we present
an O(poly n)-space algorithm with additive error compared to the O(3n)-space
algorithm in [1] with multiplicative error.

1.2 Notation
A ⊥ B | C denotes the assertion that random variables A,B are independent condi-
tioned on C, i.e., P(A = a,B = b|C = c) = P(A = a|C = c)P(B = b|C = c) for all

1 Õ omits all poly-logarithmic factors of m,n, and k.



a, b, c in the range of A,B,C. Pa(Xi) denotes the set of variables that are parents of
Xi and ND(Xi) denotes the set of variables that are non-descendants of Xi, other than
Pa(Xi). If X1, . . . , Xn ∈ [k] then we use (X1, . . . , Xn) denote a tuple of n variables
in [k]n or equivalently a single variable in the range [kn].

2 Algorithms for Estimating Ep(G)

In this section, we present approximation algorithms for estimating Ep(G) for an arbi-
trary Bayesian network G and a more efficient algorithm just to test if Ep(G) = 0.

2.1 (1 + ε)-Approximation using Õ(nkd+1) Space

We first note that the factorized distribution PG can be computed and stored exactly in
O(nkd+1 logm) bits since, by Eq. (1) and Eq. (3), it suffices to compute∑

a∈[k]n : aj=xj ∀j s.t Xj∈{Xi}∪Pa(Xi)
f(a)∑

a∈[k]n : aj=xj ∀j s.t Xj∈Pa(Xi)
f(a)

.

for each i ∈ [n] and each of at most kd+1 combinations of values for Xi and Pa(Xi).
Given this observation, it is straightforward to approximate Ep(G) given any data stream
“sketch” algorithm that returns a (1+ ε) estimate for the `p norm of a vector v. Kane et
al. [10] presented such as algorithm that uses space that is logarithmic in the dimension
of the vector.

Specifically, we apply the algorithm on a vector v defined as follows. Consider v to
be indexed as [k]× [k]× . . .× [k]. On the arrival of tuple (x1, . . . , xn), we increment the
coordinate corresponding to (x1, . . . , xn) by 1/m. At the end of the stream, v encodes
the empirical joint distribution. For each (x1, . . . , xn), we now decrement the corre-
sponding coordinate by PG(x1, . . . , xn). At this point, vx1,...,xn

= P(x1, . . . , xn) −
PG(x1, . . . , xn) and hence the `p norm of v is Ep(G). Hence, returning the estimate
from the algorithm yields a 1 + ε approximation to Ep(G) as required.

Note that this simple approach also improves over existing work [2] on the case
of measuring `p(G) when G has no edges (i.e., measuring how far the data is from
independent) unless n is very small compared to k. The space used in previous work is
doubly-exponential in n but logarithmic in k whereas our approach uses Õ(nk) space
and hence, our approach is more space-efficient unless k > 2n

n

/n.

Theorem 1. There exists a single-pass algorithm that computes (1 ± ε) Ep(G) with
probability at least 1− δ using Õ(ε−2kd+1n log δ−1) space.

2.2 2n-Approximation using Õ(poly(n)kd) Space

We now give an alternative algorithm with a weaker approximation guarantee but re-
quires a smaller space in terms of k and d.

Theorem 2. There exists a single-pass Õ(poly(n) ·kd)-space algorithm that computes
an O(n)-approximation of E1(G) with probability at least 1− δ.



We first briefly describe the algorithm. Without loss of generality, assume Xn, Xn−1,
. . . , X1 form a topological order in G. Such an order must always exist since G is
acyclic. Let X(i, n) denote (Xi, . . . , Xn).

1. For each i ∈ [n− 1], compute a (1 + ε)-factor approximation of

vi :=

∣∣∣∣P(X(i, n))− P(Xi|Pa(Xi))P(X(i+ 1, n))

∣∣∣∣.
We shall explain how to get the approximation shortly.

2. Return the sum of the estimators above.

Proof. We start by showing that E1(G) ≤
∑n−1
i=1 vi ≤ 2n E1(G). The first inequality

is derived as follows.

E1(G) ≤
∣∣∣∣P(X)− P(X1|Pa(X1))P(X(2, n))

∣∣∣∣
+

∣∣∣∣P(X1|Pa(X1))P(X(2, n))− P(X1|Pa(X1))P(X2|Pa(X2))P(X(3, n))

∣∣∣∣
+ . . .+

∣∣∣∣ n−2∏
i=1

(
P(Xi|Pa(Xi)

)
P(Xn−1, Xn)−

n∏
i=1

P(Xi|Pa(Xi))

∣∣∣∣ (4)

=

n−1∑
i=1

∣∣∣∣P(X(i, n))− P(Xi|Pa(Xi))P(X(i+ 1, n))

∣∣∣∣ = n−1∑
i=1

vi.

The first inequality follows from the triangle-inequality. For each ith term in Equa-
tion (4), we can factor out {P(Xj |Pa(Xj))}j∈[i−1] which sums (over Xj) to 1 as the
inner factors do not involve Xj .

Next, we show that vi ≤ 2 E1(G). By the triangle-equality we have:

vi ≤
∣∣∣∣P(X(i, n))−

∏
j≥i

P(Xj |Pa(Xj))

∣∣∣∣
+

∣∣∣∣∏
j≥i

P(Xj |Pa(Xj))− P(Xi|Pa(Xi))P(X(i+ 1, n)

∣∣∣∣.
To bound each term on the right, we first introduce the following notation:

gk(x) = P(Xk = xk|Xj = xj for all Xj ∈ Pa(Xk))

Then,∣∣∣∣∣∣P(X(i, n))−
∏
j≥i

P(Xj |Pa(Xj))

∣∣∣∣∣∣
=

∑
b∈[k]n−i+1

∣∣∣∣ ∑
a∈[k]i−1

P(X(1, i− 1) = a,X(i, n) = b)−
( ∑

a∈[k]i−1

∏
1≤q<i

gq(ab)

)
·
∏
j≥i

gj(ab)

)∣∣∣∣
≤

∑
a∈[k]i−1

b∈[k]n−i+1

∣∣∣∣P(X = ab)−
∏

1≤q<i

gq(ab) ·
∏
j≥i

gj(ab)

∣∣∣∣ = E1(G).



The second term is equal to |
∏
j≥i+1 P(Xj |Pa(Xj))−P(X(i+1, n)|which is of simi-

lar form as the first term and can be upper bounded by E1(G) similarly. We approximate
each vi as follows. For each c ∈ [kd], we have:

vi(c) = P(Pa(Xi) = c)

∣∣∣∣P(X(i, n)|Pa(Xi) = c)

− P(Xi|Pa(Xi) = c)P(X(i+ 1, n)|Pa(Xi) = c)

∣∣∣∣.
We can compute P(Pa(Xi) = c) exactly and approximate vi(c) using Theorem 9.
Because vi =

∑
c∈[kd] vi(c), to get an estimate for vi, we simply take the sum of the

estimates for each vi(c). Since we need to do this for all i ∈ [n], c ∈ [kd], the space
usage is Õ(poly(n) · kd).

2.3 Decision problem

We now show that testing Ep(G) = 0 can indeed be done in space that is tight with the
lower bound in terms of n, k, d.

Definition 1. A Bayesian networkGwith verticesX1, .., Xn satisfies the Local Markov
Property if Xi ⊥ ND(Xi) | Pa(Xi) for all i ∈ [n].

We rely on the following theorem. Its proof can be found in many Bayesian networks
literature such as [8].

Theorem 3. (Local Markov Property) Any given Bayesian networkG satisfies Ep(G) =
0 iff it satisfies the Local Markov Property.

The idea is to check the Local Markov Property for each variable in the network.
However, to match the lower bound, we also need to resolve a subtle issue regarding
storing the random vectors.

Theorem 4. There exists an Õ(kdn)-space single-pass algorithm that tests Ep(G) = 0
with probability at least 1− δ.

Proof. For each Xi, because |ND(Xi)| ≤ n, ND(Xi) can be viewed as a single vari-
able that takes at most kn different values. We need to check if:

η(i) :=

∥∥∥∥P(Xi,ND(Xi)|Pa(Xi))− P(Xi|Pa(Xi))P(ND(Xi)|Pa(Xi))

∥∥∥∥
2

= 0.

Call this testing algorithmAi. We define η(i, c) to be the distance above with Pa(Xi) =
c. We have η(i) =

∑
c∈[k]|Pa(Xi)| η(i, c). For any fixed c, we can test η(i, c) = 0 by

running the algorithm from Theorem 9.
For some S ⊆ {X1, . . . , Xn} and x ∈ [k]n, let xS denote the tuple of {xj : Xj ∈

S}. The algorithm in Theorem 9 incrementally maintains the following sketches:

t1 =
∑

a∈[k],b∈[k]|ND(Xi)|,x:xi=a,xND(Xi)
=b,xPa(Xi)

=c

f(x)γaλb

t2 =
∑

a∈[k],x:xi=a,xPa(Xi)
=c

f(x)γa and t3 =
∑

b∈[k]|ND(Xi)|,x:xND(Xi)
=b,xPa(Xi)

=c

f(x)λb



where λ, γ ∈ {−1, 1}kn are 4-wise independent vectors. The space required to store
these vectors is O(log kn) = O(n log k). It can be shown that [1, 6]:

E[( t1
m
− t2t3
m2

)2] = η(i, c)2 and Var[( t1
m
− t2t3
m2

)2] ≤ 9η(i, c)4.

Hence, to have a factor 10 approximation of the distance that tests if η(i, c) = 0 with
probability at least 1−δ/(kdn), we need to useO(log kd+log δ−1+log n) independent
λ, γ’s in parallel and take the median of the estimators. We need to do this for all
c ∈ [k]|Pa(Xi)|. Run Ai for all i ∈ [n]. The key observation is that all Ai’s may use the
same set of these 4-wise independent vectors. So the total space to run A1, . . . ,An is:

O(nkd(log kd + log δ−1 + logn) logm︸ ︷︷ ︸
space to store the sketches

+ kd(log kd + log δ−1 + logn)n log k︸ ︷︷ ︸
space to store the random vectors

) = Õ(nkd) .

By the union bound, we can tell if there is an Xi that does not satisfy the local Markov
property with probability at least 1− δ in the space that is optimal up to a polylogarith-
mic factor.

3 Lower bounds for estimating Ep(G)

Next, we show that the decision algorithm and the approximation algorithm above
are optimal and near-optimal respectively. It has been shown that independence test-
ing via `p distance can be done in O(polylog k) space. The open question we are
trying to answer is whether it is still possible to test more general dependencies in
O(polylog k) space. Unfortunately, the answer is, in general, no. We first prove that
for testing whether two variables are perfectly independent given the third variable, any
constant-pass streaming algorithm requires Ω(k) space.

The proofs of our lower bounds use the standard technique of reducing from a com-
munication complexity problem. In particular, we consider the disjointness problem
where Alice and Bob each have a string x ∈ {1, 2}k and y ∈ {1, 2}k respectively and
want evaluate DISJ(x, y) where

DISJ(x, y) =

{
0 if there exists i such that xi = yi = 1

1 otherwise

A classic result [9] shows that any (randomized) protocol with constant number of
rounds for this problem requires Ω(k) bits to be communicated. The following remark
is useful in our reduction.

Lemma 1. Given a stream of two binary samples in the format (A,B) as (a, 2), (2, b).
Then, A,B are independent iff a, b are not both equal 1.

Proof. If a = b = 1, then P(A = 1, B = 2) = 0.5 6= P(A = 1)P(B = 2) =
0.5× 0.5 = 0.25. Otherwise, one can easily check that P(A,B) = P(A)P(B).

Proposition 1. There exists a network G such that any constant-pass algorithm that
decides if Ep(G) = 0 with probability at least 2/3 requires Ω(kd) space.



Proof. Consider the Bayesian network G with vertices X1, . . . , Xd, Y, Z where each
Xi is a parent of X1, X2, . . . , Xi−1, Y, and Z. Let X = (X1, . . . , Xd). Then,

Ep(G) =

∥∥∥∥P(Y,Z|X)P(X)− P(Y |X)P(Z|X)
( d∏
i=1

P(Xi|Xi+1, . . . , Xd

)∥∥∥∥
p

=

∥∥∥∥P(Y,Z|X)P(X)− P(Y |X)P(Z|X)P(X)

∥∥∥∥
p

. (5)

We make the reduction from DISJ where Alice and Bob, with bit strings a and b of
length kd, generate the stream SA and SB of (Y, Z,X)-tuples respectively:

SA = {(a1, 2,x) : x ∈ [k]d} , SB = {(2, b1,x) : x ∈ [k]d} .

By Equation (5), we have that Ep(G) = 0 iff Y ⊥ Z|{X = c} for all c ∈ [k]d. By
Lemma 1, this is satisfied iff DISJ(a, b) = 1. Therefore, any constant-pass algorithm
that decides if Ep(G) = 0 requires Ω(kd) space.

We now construct a more sophisticated reduction to incorporate n in the lower bound.

Theorem 5. There exists a Bayesian network G such that any constant-pass algorithm
that determines if Ep(G) = 0 with probability at least 2/3 requires Ω(nkd) space.

Proof. Without loss of generality, assume n is a power of 2. Let x ∈ {1, 2}nk, y ∈
{1, 2}nk be an instance of DISJ where it be convenient to index x and y by [n] × [k].
The Bayesian network we consider is balanced binary tree with leaves A1, B1, A2,
B2, . . . , An, Bn and internal nodes Rji where R1

i in the parent of Ai and Bi and Rji is
the parent of Rj−12i−1 and Rj−12i for j > 1. The root node is Rlogn+1

1 . See Figure 1. The
variablesRji will take 3k different values and it will be convenient to index these values
as [3]× [k]. The leaf variables take either the value 1 or 2.

R3
1

R2
1 R2

2

R1
1 R1

2 R1
3 R1

4

A1 B1 A2 B2 A3 B3 A4 B4

Fig. 1. Construction for n = 4

Alice generates a stream that defines samples from the joint distribution based on x.
Each sample generated satisfies the following criteria and all distinct samples that obey
this criteria are generated:



1. Rlogn+1
1 ∈ {(1, z), (2, z) : z ∈ [k]}.

2. If Rji = (1, z) for j > 1:
– The left child Rj−12i−1 ∈ {(1, z), (2, z)} and the right child Rj−12i = (3, z).

3. If Rji = (2, z) for j > 1:
– The left child Rj−12i−1 = (3, z) and the right child Rj−12i ∈ {(1, z), (2, z)}.

4. If Rji = (3, z) for j > 1:
– Both the values for the children Rj−12i−1 and Rj−12i are (3, z).

5. If R1
i ∈ {(1, z), (2, z)}:

– The values for the children are Ai = xi,z , Bi = 2

6. If R1
i = (3, z):

– The values for the children are Ai = 2, Bi = 2

Bob then generates a series samples in a similar manner except that Rule 5 becomes: If
R1
i ∈ {(1, z), (2, z)}, then Ai = 2, Bi = yi,z .

Note that each sample defined by either Alice or Bob specifies a path from the root
to a pair Ai, Bi as following: Starting from the root, if the current node’s value is equal
to (1, z), then go to its left child; on the other hand, if its value is equal to (2, z), then
go to the right child. Once we commit to a direction, every descendant on the other
direction is set to (3, z) for the R nodes and 2 for the A and B nodes.

First assume that DISJ(x, y) = 0. Then xi,z = yi,z = 1 for some z ∈ [k], i ∈ [n].
By Lemma 1 we infer that Ai and Bi are not independent conditioned on either R1

i =
(1, z) or R1

i = (2, z) and hence, Ep(G) 6= 0.
Conversely, assume that DISJ(x, y) = 1. The Local Markov Property says that if

every vertex is independent of its non-descendants given its parents then Ep(G) = 0.

– First we show that it is true for any Rji variable. Conditioned on the parent of Rji
taking the value (3, z), Rji is constant and hence independent of non-descendants.
Conditioned on the parent of Rji taking the value (1, z) or (2, z), the values of the
non-descendants of Rji are fixed and hence independent of Rji .

– Next, we show that it is true for any Ai variable. The argument for Bi is identical.
Conditioned on R1

i = (3, z), then Ai is constant and hence independent of all
non-descendants. If R1

i = (1, z) or R1
i = (2, z), the values of all non-descendants,

except possiblyBi, are fixed. But by Lemma 1,Bi is independent ofAi conditioned
on R1

i since DISJ(x, y) = 1.

Hence, DISJ(x, y) = 1 iff Ep(G) = 0 and therefore testing if Ep(G) = 0 requires
Ω(nk) space.

To extend the lower bound to Ω(nkd) consider an instance of DISJ of length nkd.
Let the variables in G be children of all d− 1 new variables D1, . . . , Dd−1 where there
is a directed edge between Di → Dj for i > j. Call the new network G′. Similar to
the proof of Proposition 1, to solve DISJ on the wth pair of bit strings of length nk
where w ∈ [kd−1], Alice and Bob generate samples with variables in G as described
above and set (D1, . . . , Dd−1) = w. Hence, any streaming algorithm that decides if
Ep(G′) = 0 requires Ω(nkd) space.



4 Log-Likelihood and Approximate Chow-Liu Trees

While it is natural to test the networks using `1 or `2 distance, it is more convenient to
use the log-likelihood to learn the structure of certain types of Bayesian networks. Let
x(j) be the jth sample in the stream. The log-likelihood of G given the data stream is:

L(D,G) =
1

m

m∑
i=1

logPG(x
(i)) = −

n∑
j=1

H(Xj |Pa(Xj))

By using the entropy estimation algorithm of Chakrabarti et al. [3] to estimate the con-
ditional entropies H(Xj |Pa(Xj)) for each of the O(kd) possible values of Pa(Xj),
we can approximate L(D,G) up to a factor 1 + ε.

Theorem 6. There is a single-pass algorithm that returns a (1 + ε) approximation of
L(D,G) for a given Bayesian network G w.h.p using Õ(ε−2nkd) space.

We prove that the above algorithm is tight in terms of k and d.

Theorem 7. There exists a Bayesian network G with such that any single-pass stream-
ing algorithm that outputs a 2-approximation of L(D,G) requires Ω(kd) space.

Proof. Let t = 10dkd log k. Consider the network with nodes {Xi}i∈[t] that are all
children of {Yi}i∈[d]. Let Y = (Y1, . . . , Yd). Then,

L(D,G) = −
t∑

i=1

H(Xi|Y)−
d∑

i=1

H(Yi).

Using ideas from [6], we make the following reduction. Given an instance of DISJ with
bit strings a, b of length kd where we may assume |{i : ai = 1}| = |{i : bi = 1}| =
kd/4. If Alice and Bob generate samples from the joint distribution (X1, . . . , Xt,Y):

SA = {(1, . . . , 1, i) : ai = 1}, SB = {(2, . . . , 2, i) : bi = 1} .

where i ∈ [kd] specifies the values for Y. If DISJ(a, b) = 1 then H(Xi|Y) = 0
and furthermore

∑t
i=1H(Xi|Y) = 0. If DISJ(a, b) = 1 then H(Xi|Y) ≥ 4/kd and

hence,
∑t
i=1H(Xi|Y) ≥ 40d log k. Because

∑d
i=1H(Yi) ≤ d log k, a 2-approximation

of L(D,G) distinguishes
∑t
i=1H(Xi|Y) = 0 from

∑t
i=1H(Xi|Y) ≥ 40d log k.

The famous Chow-Liu tree [4], TCL, is the tree with d = 1 that maximizes the log-
likelihood. Chow-Liu tree is particularly important as it is the only known closed form
structural learning algorithm that is polynomial time. We show that there is a single-pass
algorithm that approximates TCL.

Theorem 8. There is a single-pass algorithm that outputs a rooted tree T such that
L(D,T ) ≥ (1 − ε)L(D,TCL) with probability at least 1 − δ in Õ(n2kε−2 log(δ−1))
space. The post processing time is O(n2).



5 Space-Accuracy trade-offs in Independence Testing

From previous work on independence testing [1, 2, 6], we may assume:

Theorem 9. There exist single-pass algorithms that computes a (1±ε)-approximation
of Ep(∅) with probability at least 1− δ and uses

1. O((ε−1 log(mkδ−1))O(n)n) space for p = 1
2. O(3nε−2(log k + logm) log δ−1) space for p = 2.

By simply appealing to Theorem 2, we have an interesting trade-off between the space
usage and the approximation accuracy when testing n-wise independence using `1
distance. Specifically, we can have an O(n)-approximation of E1(∅) but using only
O(poly(n) polylog(k)) space compared to the space of doubly-exponential in n in The-
orem 9.

Proposition 2. There is a single-pass algorithm that outputs a O(n)-approximation of
E1(∅) using O(poly(n, ε−1) · polylog(m, k, δ−1)) space.

We can even achieve a stronger approximation guarantee:

Theorem 10. For any constant 1 ≤ t < n/2, there is a single-pass algorithm that
outputs a (1± ε)(n− 1)/t-approximation for E1(∅) using Õ(poly(n, ε−1)) space.

We can approximate E2(∅) as stated in Theorem 9 up to a factor (1 ± ε) using O(3n)
space. However, if we allow the error to be additive, we only need O(n) space.

Theorem 11. There exists an O(n3ε−2 log(mk) log δ−1)-space single-pass algorithm
that outputs E2(∅)± ε with probability at least 1− δ.

Proof. The main idea is to rewrite E2(∅) as follows:

E2(∅) =
∑

x∈[k]n
P(X = x)2 +

n∏
i=1

∑
xi∈[k]

P(Xi = xi)
2 − 2

∑
x∈[k]n

P(X = x)

n∏
i=1

P(Xi = xi).

It is possible to estimate the values of
∑
xi∈[k] P(Xi = xi)

2 for all i ∈ [n] and∑
x∈[k]n P(X = x)2 up to a multiplicative factor of (1 + ε/n) in O(n3ε−2 log(km +

δ−1)) space using an existing algorithm for estimating the second frequency moment
[10]. This implies a (1 + ε) multiplicative approximation for the first two terms. How-
ever, since

∑
x∈[k]n P(X = x)2 ≤ 1 and

∏n
i=1

∑
xi∈[k] P(Xi = xi)

2 ≤ 1 this implies
an additive 2ε approximation to the first two terms.

It remains to show we can approximate
∑

x∈[k]n P(X = x)
∏n
i=1 P(Xi = xi) in

small space. To argue this let

H = {(x1, . . . , xn) ∈ [k]n : P(X1 = x1, . . . , Xn = xn) ≥ ε)} .

We will show that it is possible to construct a set H ′ such that H ⊆ H ′ and for all
(x1, . . . , xn) ∈ H ′, we may estimate P(Xi = xi) and P(X1 = x1, . . . , Xn = xn) up
to a factor (1 + ε).

To do this we use the Count-Min sketch [5] which has the following properties:



Claim. There exists a O(ε−2 log δ−1(logm + log t))-space streaming algorithm that,
when run on any stream of length m defining a frequency vector y of length t, returns a
set of indices and estimates C = {(i, ỹi) : yi ≤ ỹi ≤ (1 + ε)yi} such that (i, ỹi) ∈ C
for all yi ≥ ε|y|. We call S = {i : (i, ỹi) ∈ C} the ε-cover of y.

In our case y will be a pmf vector, i.e., the frequency vector normalized by dividing
each coordinate by m and hence |y| = 1. Thus we can find an ε-cover S of the joint
pmf and an ε-cover Si of the marginal pmf of each variable Xi. Let

H ′ = {(x1, . . . , xn) ∈ S : xi ∈ Si for all i ∈ [n]} .

Note that if P(X1 = x1, . . . , Xn = xn) ≥ ε then P(X1 = x1) ≥ ε, . . . ,P(Xn =
xn) ≥ ε. Therefore, the ε-covers constructed using the Count-Min sketch give a multi-
plicative estimate

∑
x∈H′ P(X = x)

∏n
i=1 P(Xi = xi). Furthermore,

∑
x 6∈H′

P(X = x)

n∏
i=1

P(Xi = xi) ≤
∑

x:P(X=x)<ε

P(X = x)P(X1 = xn)

≤ ε
∑

x1∈[k]

P(X1 = x1) = ε.

and therefore the total additive error in our estimate of E2(∅) is O(ε).
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