
Trace Reconstruction Revisited

Andrew McGregor1?, Eric Price2, and Sofya Vorotnikova1

1 University of Massachusetts Amherst
{mcgregor,svorotni}@cs.umass.edu

2 IBM Almaden Research Center
ecprice@mit.edu

Abstract. The trace reconstruction problem is to reconstruct a string
x of length n given m random subsequences where each subsequence is
generated by deleting each character of x independently with probability p.
Two natural questions are a) how large must m be as a function of n and
p such that reconstruction is possible with high probability and b) how
can this reconstruction be performed efficiently. Existing work considers
the case when x is chosen uniformly at random and when x is arbitrary.
In this paper, we relate the complexity of both cases; improve bounds
by Holenstein et al. (SODA 2008) on the sufficient value of m in both
cases; and present a significantly simpler analysis for some of the results
proved by Viswanathan and Swaminathan (SODA 2008), Kannan and
McGregor (ISIT 2005), and Batu et al. (SODA 2004). In particular, our
work implies the first sub-polynomial upper bound (when the alphabet is
polylogn) and super-logarithmic lower bound on the number of traces
required when x is random and p is constant.

1 Introduction

The basic trace reconstruction problem is to infer a string x of length n from m
random subsequences y1, . . . , ym where each subsequence is generated by deleting
each character of x independently with probability p. The random subsequences
are referred to as traces. Two natural questions are a) how many traces (as
a function of n and p) are required such that reconstruction is possible with
high probability and b) how can this reconstruction be performed efficiently.
Note that both questions are trivial if the entries of x were being substituted,
rather than deleted. In that case, if p < 1/2 is constant and m = O(log n) then
xi = mode(y1i , . . . , y

m
i) with high probability. However, when there are deletions,

there is no longer any clear way to align the subsequence and thereby decompose
the problem into inferring each entry of x independently.

The original motivation for the problem was from computational biology
where an active area of research is to reconstruct ancestral DNA sequences given
the DNA sequences of the descendants. The above abstraction is a simplification
of this problem in which we essentially restrict the possible mutations and assume
the descendants are independent. The abstraction serves to both demonstrate

? Supported by NSF CAREER Award CCF-0953754.

why the original problem is hard and exposures our lack of good algorithmic
techniques for even basic inference problems. For example, for p = 1/3, it is
not at all obvious whether the minimal sufficient value m has a polylogarithmic,
polynomial, or exponential dependence on n.

Previous Work. The problem was introduced by Batu et al. [1] where they
considered both an “average” case when x is chosen uniformly at random (in this
case the probability of successful reconstruction is over both the choice of x and
the deletions) and the case when x is chosen arbitrarily. In the average case, it
was shown that m = O(log n) is sufficient if p = O(1/ log n). This result was then
extended to also handle insertions and substitutions by Kannan and McGregor [4]
and Viswanathan and Swaminathan [8]. For small constant deletion probability,
Holenstein et al. [3] showed that poly(n) traces was sufficient. While this last
result represented a major step forward, it leaves open the question whether
a polynomial number of traces is actually necessary or whether a logarithmic
number would suffice, as in the case when there was only substitutions. For
reconstructing an arbitrary x, Batu et al. [1] showed that O(npolylog n) traces
suffices if p = O(1/

√
n) and Holenstein et al. [3] showed that exp(

√
n · polylog n)

traces suffices if p is any constant.
A separate line of work considers the related problem of determining the

value k such that the k-deck of any x uniquely determines x. The k-deck of x
is the number of times each string of length k appears as a subsequence of x.
Given a sufficient number of traces of length greater than k, we can compute
the k-deck and thereby determine x if k is large enough. Scott [7] proved that

k = O(
√
n log n) and Dudik and Schulman [2] showed that k = exp(Ω(log1/2 n)).

We will make use of the first of these results in the last section.

Our Results. Our main results in the average case are that a) a sub-polynomial
number of traces is sufficient if we consider a slightly larger alphabet and b)
a super-logarithmic number of traces is necessary. In particular, if x is chosen
uniformly from [σ]n where σ = Θ(log n) and p is a small constant then

m = exp(
√

log n · poly(log log n))

traces are sufficient which contrasts with the bound m = exp(O(log n)) that was
shown by Holenstein et al. for the binary case. We prove this result by establishing
an almost tight relationship between the complexity in the average case to the
complexity in the worst case. To do this, we first present a significantly simpler
proof of the results of Batu et al. [1] and Viswanathan and Swaminathan [8]. It
is then possible to extend the alternative approach to be robust to deletions that
occur with constant probability.

In the case of arbitrary strings (binary or otherwise), we show that m =
exp(
√
n · polylog n) traces are sufficient for all p ≤ 1 − c/

√
n/ log n for some

constant c > 0. This result improves upon the other result by Holenstein et al.
The previous result showed that the same number of traces were sufficient when
the traces are random subsequences of length Θ(n). The new result shows that
reconstruction is still possible even if the traces are only of length Θ(

√
n log n).

2 Preliminaries and Terminology

Given a string x1x2 . . . xn ∈ [σ]n, a trace generated with deletion probability p
is a random subsequence of x, y = xi1xi2xi3 . . . where i1 < i2 < i3 < . . . and
each i ∈ [n] is present in the set {i1, i2, . . .} independently with probability 1− p.
It will sometimes be helpful to refer to the trace y as being received when x
is transmitted. We are interested in whether it is possible to infer x with high
probability from multiple independently traces y1, y2, . . . , ym.

We define f(n, p, σ) to be the smallest value of m such that for any string
x ∈ [σ]n, m traces are sufficient to reconstruct x with high probability3. Define
g(n, p, σ) to be the smallest value of m such that for a random string x ∈R [σ]n, m
traces are sufficient to reconstruct x with high probability where the probability
is taken over both the randomness of x and the generation of the traces. For
example, existing results show that for small constant c > 0:

g(n, p, 2) =

{
O(log n) if p ≤ c/ log n

poly n if p ≤ c
.

We present a simple proof of the first part of this result and then prove that
g(n, p, σ) is sub-polynomial for small constant values of p if σ = Ω(log n). To
prove this result we show that for sufficiently large σ, f(log n, p, σ) ≈ g(n, p, σ).
Lastly, we prove f(n, p, 2) = exp(

√
npolylog n) for all p ≤ 1 − O(1/

√
n/ log n)

whereas it was previously only known for constant p.
Note that any reconstruction algorithm for binary strings can be extended to

a larger alphabet of size σ while increasing the number of traces by a factor of
O(log σ). The following simple lemma includes the necessary details.

Lemma 1. f(n, p, σ) = O(log σ)f(n, p, 2). If m traces suffice to reconstruct a
random string in {0, 1}n with probability 1 − δ, then m traces also suffice to
reconstruct a random string in [σ]n with probability 1−O(δ log σ).

Proof. Suppose there exists an algorithm for arbitrary binary sequence recon-
struction that uses m traces and has failure probability at most δ. By repeating
the algorithm O(log σ) times and taking the modal answer we may reduce the
failure probability to δ/

(
σ
2

)
at the expense of increasing the number of traces by

a factor O(log σ). We will use the resulting algorithm to reconstruct a sequence
x from a larger alphabet as follows. For each pair i, j ∈ [σ], if we delete all occur-
rences of other characters in the traces then we can reconstruct the subsequence
xi,j of x consisting of i’s and j’s. By the union bound we can do this for all pairs
with probability of failure at most δ. For the resulting subsequences it is possible
to construct x, e.g., we can learn the position of the kth j in x by summing over
i the number of occurrences of i’s before the kth j in xi,j .

The same approach works to prove the bound for random strings except that
since the failure probability in this case is taken over both the randomness of the
initial string and the traces, we can’t first boost the probability of success. ut
3 That is, probability at least 1− 1/poly(n)

Notation. We denote the Hamming distance between two strings u, v by ∆(u, v) =
|{i : ui 6= vi}|. We write e ∈R S to denote that the element e is chosen uniformly
at random from the set S. A t-substring of x is a string consisting of t consecutive
characters of x. Given a substring w of a trace, we define the pre-image of w, to
be the range of indices of x under consideration when w was generated, e.g.,

w = xijxij+1 . . . xik and I(w) = {ij , ij + 1, ij + 2, . . . , ik} .

We say substrings u, v of two different traces overlap if I(u) ∩ I(v) 6= ∅. Lastly,
we use the notation x[a,b] to denote the substring xaxa+1 . . . , xb. Let Bn,p denote
the binomial distribution with n trials and probability p.

3 Average Case Reconstruction

In this section we assume that the original string x is chosen uniformly at random
from the set [σ]n. We first present a simpler approach to reconstruction when the
deletion probability is O(1/ log n). Previous approaches were generally based on
determining the characters of x from left to right, e.g., trying to maintain pointers
to corresponding characters in the different traces and using the majority to
determine the next character of x. While the resulting algorithms were relatively
straight-forward, the analysis was rather involved.

In contrast, our approach is based on finding all sufficiently-long substrings
of x independently and the analysis for our approach is significantly shorter and
intuitive. While this simplicity is appealing in its own right, it also allows us
to generalize the algorithm in the following section and prove a new result in
the case of constant deletion probability. We start with a simple lemma about
random binary strings.

Lemma 2. With high probability, every pair of t-substrings of a random sequence
x ∈ {0, 1}n differ in at least t/3 positions if t > 94 lnn.

Proof. Consider two arbitrary substrings u = xi . . . xi+t−2 and v = xj . . . xj+t−2.
Let z ∈ {0, 1}t be defined by zk = xi+k−1 ⊕ xj+k−1. Note that ∆(u, v) =

∑
k zk

and that bits of zi are fully independent. Hence, E [
∑
k zk] = t/2 and by an

application of the Chernoff bound, Pr [
∑
k zk ≤ t/3] ≤ exp(−t/24). Therefore,

if t > 94 lnn, then Pr [∆(u, v) ≤ t/3] ≤ 1/n4. Applying the union bound over
all
(
n
2

)
choices for substrings u and v establishes that the Hamming distance

between all pairs is at least t/3 with probability at least 1− 1/n2. ut

3.1 Warmup: Inverse Logarithmic Deletion Probability

In this section we present a simple proof of the results by Batu et al. [1] when
p = O(1/ log n). For the rest of the section we let the deletion probability be
p ≤ c1/log n, number of traces be m = c2 log n for constants c1, c2 > 0.

Basic Idea and Algorithm. The idea behind the approach is simple and intu-
itive. For t = c3 log n where c3 is some sufficiently large constant, the following
statements hold with high probability:

1. The set of all t-substrings of a random string x, uniquely defines x.
2. w is a t-substring of x iff w is a t-substring of at least 3/4 of the traces.

Therefore, it is sufficient to check each t-substring of each trace to see whether
it appears in at least 3/4 of all the traces. The next lemma establishes the first
statement.

Lemma 3. The set of t-substrings of x ∈R [σ]n uniquely define x whp.

Proof. If all (t− 1)-substrings of x are unique, then for a t-substring w starting
at index i in x, there is a unique t-substrings starting at i+ 1. By repeating this
process, we can recover the original string x. The fact that all (t− 1)-substrings
are unique with high probability follows from Lemma 2. ut

The next two lemmas establish the if-and-only-if of the second bullet point.

Lemma 4. Every 4t-substring of x passes the test with high probability. In
particular, none of the characters of any 4t-substring are deleted in at least 3m/4
of the traces.

Proof. Let w be a 4t-substring of x. Let F be the number of traces where
w appears. The probability that w appears in a particular trace is at least
(1 − p)4t > 1 − 4pt > 7/8 if pt = c1c3 < 1/32. Hence, E [F] > 7m/8 and
Pr [F ≤ 3m/4] < e−m/168 by an application of the Chernoff bound. If m >
2 · 168 lnn, this probability is at most 1/n2. ut

Lemma 5. Any t-string that passes the test is a t-substring of x whp.

Proof. We start with two simple claims that each hold with high probability:

1. For any t-substrings w and v of different traces, if w = v then w and v have
overlapping pre-images. This follows because the probability that two non-
overlapping t-substrings are equal is 1/2t by considering the randomness of x.
There are less than (mn)2 pairs of t-substrings and hence the claim doesn’t
hold with probability at most (mn)2/2t ≤ 1/n2 if t > 4 log n+ 2 log(c2 log n).

2. The pre-image of any t-substring w of a trace has length at most 2t. The
follows because the probability that more than half of the characters in
a 2t-substring of x are deleted is at most exp(−t/12) by an application
of the Chernoff bound. Since there are at most mn2 such sequences, the
claim doesn’t hold with probability at most mn2 exp(−t/12) ≤ 1/n2 if
t > 48 lnn+ 48 ln(c2 log n).

Suppose w equals the substrings w1, w2, . . . , wh in the other traces for h ≥
3m/4−1. It follows from the above claims that the pre-images of w,w1, w2, . . . , wh

are contained in a contiguous region of x of size 4t. However, by Lemma 4 we know
the corresponding substring of x was transmitted with deletions in at most m/4
of the traces. Therefore, at least h−m/4 > 1 of the substrings w1, w2, . . . , wh

correspond exactly to a t-strings of x. Hence w equals a substrings of x. ut

Insertions, Deletions, and Substitutions. Viswanathan and Swaminathan
[8] extended the above result to handle the case where, in addition to deletions,
each character is substituted by a random character with probability α and
random characters are inserted with probability q. Specifically, each character xi
is transformed independently as follows:

g(xi) =

Sxi with probability 1− p− α(1− p)
Sc with probability α(1− p)
S with probability p

where c ∈R [σ], S ∈R [σ]k and k is a random variable distributed as a Geometric
random variable with parameter 1− q. In particular,

Pr [g(xi) = xi] ≥ (1− p− α(1− p))(1− q) ,

which is 1− α− o(1) if p, q = o(1). In this section we present a simple proof of
Viswanathan and Swaminathan’s result that O(log n) traces are sufficient for
reconstruction if p, q < c/ log n and α < c for some sufficiently small constant c.

Basic Idea and Algorithm. We extend the substring test as follows: w is a t-
substring of x iff for some t-substring w′ of a trace, there exists t-substrings
w1, . . . w3m/4 in different traces such that ∆(w′, wi) ≤ 3αt for all i ∈ [3m/4] and

w = average(w1, . . . , w3m/4)

where average is taking the mode of each of the t character positions.

Lemma 6. Every t-substring of x passes the test with high probability.

Proof. Let w be an arbitrary t-substring of x and let w′ = g(w) be the result-
ing substring in some specific trace. In what follows we assume the constant
c governing the deletion and insertion probabilities is sufficiently small. The
probability no insertions or deletions occurred during the transmission of w is
(1− q− p+ pq)t ≥ 6/7 and by an application of the Chernoff bound, the number
of substitutions is at most 3αt/2. Hence, by a further application of the Chernoff
bound there are at least 5m/6 traces that contain a t-substring whose Hamming
distance is at most 3αt/2 from w. The Hamming distance between these traces is
at most 3αt by the triangle inequality. Lastly if these t-substrings are averaged
character-wise then the resulting string equals w because with high probability
each character of w is flipped in at most 1/3 of the transmissions. ut

Lemma 7. Every t-string that passes the test is a t-substring of x whp.

Proof. Suppose a trace contains a t-substring w′ such that for some h ≥ 3m/4,
there exists w1, . . . wh in different traces such that ∆(w′, wi) ≤ 3αt < t/3 for
sufficiently small α. We infer that each wi overlaps with w′ since otherwise
wi and w′ are random strings and will differ in at least t/3 places with high
probability. Hence, each wi comes from substring x′ of x of length 4t. When x′

was transmitted, it was transmitted without any insertions or deletions in at
least of 9/10 of the traces with high probability. Hence, all but at most m/10 of
the wi resulted from transmission with no insertions or deletions. But appealing
to Lemma 2 we deduce that these wi actually correspond to the same t-substring
of x; otherwise there would be a pair of different t-substrings of x that were
sufficiently similar that after bits were flipped with only probability α then
the strings would be closer than 6αt apart. Hence, when averaging w1, . . . wh
character-wise at most a 2α+ (m/10)/h ≤ 2α+ 2/15 < 1/2 fraction of characters
will not be correct. Hence, the majority will be correct. ut

3.2 Constant Deletion Probability

In this section we again restrict our attention to the deletion case but now
consider p to be a small constant. In the previous two results, the crucial step
was being able to identify t-substrings in different traces that were overlapping.
Initially, it was sufficient to look for identical t-substrings but then we had to
relax this to finding pairs of substrings that were close in Hamming distance. The
main idea in this section is the observation that it is possible to find overlapping
t-substrings by computing the length of the longest common subsequence between
the substrings.

Lemma 8. If t = c log n for some large constant c > 0, the following claims
hold with high probability:

– For any two traces y and y′ and any t-substring w in y, there exists a
t-substring w′ in y′ such that lcs(w,w′) ≥ 0.99t.

– For any non-overlapping t-substrings w and v in different traces lcs(w, v) <
0.99t.

Proof. For the first part of the lemma, note that the expected number of deletions
during the transmission of a t-substring of x is pt and by an application of the
Chernoff bound we may assume it is never larger than 2pt with high probability
if t is sufficiently large multiple of log n. Therefore, there are at least (1− 2p)t
characters of some t-substring u of x in w. But any t-substring of y′ whose
pre-image covers u, will also have (1 − 2p)t characters of u. Let w′ be such a
string. Then, lcs(w,w′) ≥ (1− 4p)t ≥ 0.99t for sufficiently small constant p.

To prove the second part of the lemma suppose w, v are non-overlapping
t-substrings. Because x is random and w, v are non-overlapping, w, v are inde-
pendent random strings. Therefore,

Pr [lcs(w, v) ≥ 0.99t] <

(
t

0.99t

)2

1/20.99t < 22tH(0.99)−0.99t < 2−0.8t

where H(p) = −p log p − (1 − p) log(1 − p). The first inequality follows by
considering the

(
t

0.99t

)
subsequences of each segment that might be equal. ut

It is likely that the constants in the above lemma can be improved. However,
one of the main ingredients in the proof is determining the length of the longest
common subsequence of two random strings. Determining even the expected
length is a long standing open question (see, e.g., [5] and references therein).

Reduction to Short Sequence Reconstruction. To prove the constant
deletion result, the strategy is to reduce the problem of reconstructing a random
x ∈R [σ]n to reconstructing O(n) arbitrary strings each of length O(log n). To
do this, we will have to assume that x is chosen randomly from a larger alphabet
σ = Θ(log n). It will then follow that

g(n, p, σ) ≤ f(O(log n), p, σ) = exp(
√

log npoly(log log n)) ,

by appealing to the bounds on the function f established in the next section. To
establish this reduction we need the notion of a useful character.

Definition 1. We say a character xi from x is a useful character if:

1. The character was not deleted when generating the first trace.

2. xi 6= xj for all |i− j| ≤ 8t, i.e., xi is locally unique.

The goal is to identify the occurrence of useful characters in the traces and
then determine with high probability which characters correspond to the same xi.
The next lemma establishes that the number of non-useful characters between
two consecutive useful characters is O(log n). Since each useful character will
occur in all but about a p fraction of the traces, there are roughly a (1 − p)2
fraction of traces that have any pair of consecutive useful characters. We then
use the substrings of the traces between these useful characters to reconstruct
the substring of x between the useful characters. We can then solve the sequence
reconstruction problem on these substrings.

Note that because there are O(n) substrings and each has length O(log n)
we now need a reconstruction algorithm that works for all strings (rather than
working for random strings with high probability). Note that the algorithm for
reconstruction of arbitrary strings presented in Section 4 can be assumed to
have exponentially small failure probability without any significant change in the
number of traces required (i.e., repeating the algorithm poly(n) times to boost
success probability is not a significant increase when the number of traces is
already super-polynomial). This is important since we need the failure probability
on length O(log n) instances to be 1/ poly(n) since there are O(n/ log n) such
instances.

Lemma 9. With high probability, there exists a useful character in every r-
substring of x if r = 8t = 8c log n.

Proof. Consider an arbitrary r-substring x[i,i+r−1]. With high probability there
exists more than 2r/3 distinct characters in this substring if the alphabet is
sufficiently large. Of these, at most r/2 can occur twice or more. Hence, there are
at least r/6 characters that occur exactly once. Of these, (1− p)r/6 > r/7 occur
in the first trace in expectation and hence the probability that none of them
appear in the first trace is at most pr/7 < 1/n2 for sufficiently small constant p.

ut

Algorithm. The algorithm for finding corresponding characters is as follows:

– For each character a in the first trace, consider the t-substring w1 of the first
trace centered at this character (or as close as possible in the case when is a
is near the start of end of the trace).

– Find Overlapping Substrings: Identify t-substrings of the other traces w2, . . . , wm
such that each satisfies lcs(w1, wi) ≥ 0.99t.

– Check Local Uniqueness: For each wi consider the 8t-substring w′i of the same
trace centered at wi. If a occurs twice in any w′i abort.

– Match: Otherwise, conclude that any occurrence of a in wi corresponds to
the same character of x.

The correctness of the algorithm follows from Lemma 8. Specifically, the lemma
implies that with high probability the pre-images of every wi are contained in a
contiguous set of at most 4t indices. However, this contiguous set is a subset of
the pre-image of each w′i. Hence, if a occurs twice within the contiguous set the
algorithm will abort. Otherwise, all occurrences of a in the wi must correspond
to the same index.

Relationship between f and g. We conclude this section by showing that
the above relationship between f and g is almost tight.

Lemma 10. For any p, f(1
2 logσ n, p, σ) ≤ g(n, p, σ).

Proof. By definition, there exists a reconstruction algorithm A that recovers a
random n character string with high probability using g(n, p, 2) traces.

Given a set of traces of an unknown string x, it is easy to simulate an equal
number of traces of the concatenated string a|x|b for arbitrary strings a and b.
Given successful recovery of a|x|b, we can of course extract x.

Let B = 1
2 logσ n. To recover x ∈ [σ]B from a set of traces, we first uniformly

at random choose integers c, d ∈ {0, 1, . . . , n/B − 1} subject to c+ d = n/B − 1.
We then choose a ∈ [σ]cB and b ∈ [σ]dB uniformly at random. We simulate the
traces of a|x|b, run A on the results, and extract x.

This succeeds whenever A successfully recovers a|x|b. Let µ be the uniformly
random distribution on [σ]n and µ′ be the distribution of a|x|b. Because A
succeeds with high probability on µ, it suffices to show that the total variation
distance between µ and µ′ is polynomially small.

By thinking of the n character string as n/B blocks of length B, another way
to draw from µ would be to (1) let k be drawn from Bn/B,1/σB , the binomial

random variable with n/B trials of probability 1/σB; (2) set k random blocks
to have value x; (3) set every other block independently to have a uniform
value other than x. One can draw from µ′ in the same way, but setting k =
1 + Bn/B−1,1/σB in the first step. Therefore the total variation distance between
µ and µ′ is at most the distance between Bn/B,1/σB and 1 + Bn/B−1,1/σB . This

is O(1/
√
n/(BσB)) < O(n−1/3), which is polynomially small. ut

3.3 Lower Bound

In this section we prove the first super-logarithmic lower bound on the value of
g(n, p, 2) for constant p. To do this we introduce two specific binary strings of
length 2r where r = O(log n):

1. w ∈ {0, 1}2r is the all zero string expect for a single 1 at position r
2. w′ ∈ {0, 1}2r is the all zero string expect for a single 1 at position r + 1

The proof relies on the fact that distinguishing w and w′ with probability greater
than 1− δ requires Ω(r log(1/δ)) traces (this will be implied by Corollary 1) and
each of w and w′ occur nΩ(1) times in a random binary string of length n. The
intuition is then that δ needs to be inversely polynomial in n otherwise one of
the occurrences of w will be confused with an occurrence of w′ (or vice versa).
The following theorem formalizes this argument.

Theorem 1. g(n, p, 2) = Ω(log2 n) for constant p > 0.

Proof. Set the length of w and w′ to be B = c log n for some small constant c,
i.e., r = (c log n)/2. By Corollary 1, if m < c2 log2 n for sufficiently small constant
c2, then the total variation distance between (m traces of w) and (m traces of w′)
is less than 1− 1/

√
n. Thus we can draw a set of m traces of a uniformly random

choice between w or w′ by choosing something independent of that choice with
probability 1/

√
n.

We partition our vector of length n into n/B blocks of length B. For a random
bit vector and sufficiently small c < 1/2 we have with high probability that more
than

√
n blocks will equal one of w and w′. Therefore the algorithm must succeed

with high probability on a random bit vector conditioned on having more than√
n blocks of value w or w′.

Now, the trace of a bit vector is just the concatenation of the trace of the
component blocks. We could sample a set of m traces by first deciding which
blocks are one of w or w′, then choosing for each such block whether it is w
or w′, then taking the m traces. The resulting set of m traces is independent
of block’s choice between w and w′ with probability 1/

√
n; hence with at least

1 − (1 − 1/
√
n)
√
n > 1/2 probability, the set of m traces will be independent

of the choice of at least one of the
√
n blocks of value w or w′. If this is true,

the algorithm can give the correct output with probability at most 1/2; hence
the algorithm can give the correct output with probability at most 3/4 overall.
Therefore we need m = Ω(log2 n) for correct recovery with high probability. ut

What remains is to prove Corollary 1. We make use of the Hellinger distance, a
convenient measure of distance between distributions. For two discrete distribution
P = (p1, p2, p3, . . .) and Q = (q1, q2, q3, . . .), the squared Hellinger distance
between P and Q is defined as H2(P,Q) = 1

2

∑
i(
√
pi −

√
qi)

2 .
Hellinger distance has two nice properties: first, squared Hellinger distance is

subadditive over product measures, so the squared Hellinger distance between
(m samples of P) and (m samples of Q) is at most mH2(P,Q); and second, if
H(P,Q) = o(1) then the total variation distance between P and Q is o(1). Hence
if H(P,Q) ≤ ε, then it requires Ω(1/ε) samples to distinguish P and Q.

Lemma 11. For any deletion probability p = Ω(1), the squared Hellinger dis-
tance between the distribution of a trace of w and the distribution of a trace of
w′ is O(1/r).

Proof. The distribution of a trace of w is

Tr(w) ∼

0 . . . 0︸ ︷︷ ︸
B2r−1,1−p

with probability p

0 . . . 0︸ ︷︷ ︸
Br−1,1−p

1 0 . . . 0︸ ︷︷ ︸
Br,1−p

with probability 1− p

while the distribution of a trace of w′ is the same, except swapping Br−1,p and
Br,p. Hence the squared Hellinger distance between the two traces is

H2(Tr(w),Tr(w′)) = (1− p)H2 ((Br−1,1−p,Br,1−p), (Br,1−p,Br−1,1−p))
≤ 2(1− p)H2(Br−1,1−p,Br,1−p) ≤ O(1/r) .

ut

Corollary 1. Consider any r > 1, δ < 1, and deletion probability p = Ω(1). For
some small constant c > 0, the total variation distance between m = c2r log(1/δ)
traces of w and m traces of w′ is at most 1− δ.

Proof. Let y1, . . . , ym be traces of w and z1, . . . , zm be traces of w′ for m =
c2r log(1/δ) and a sufficiently small constant c. We will show that the total
variation distance between (y1, . . . , ym) and (z1, . . . , zm) is less than 1− δ.

We partition [m] into k groups of size cr, for k = c log(1/δ). Within each
group, by subadditivity of squared Hellinger distance and appealing to Lemma
11, we have that

H2((y1, . . . , ycr), (z1, . . . , zcr)) ≤ crH2(Tr(w),Tr(w′)) = O(c) < 1/10

for sufficiently small c. Then the total variation distance between (y1, . . . , ycr)
and (z1, . . . , zcr) is bounded by 2H((y1, . . . , ycr), (z1, . . . , zcr)) ≤ 2/3.

Hence we may sample (y1, . . . , ycr) and (z1, . . . , zcr) in such a way that the
two distributions are identical with probability at least 1/3. If we do this for
all k groups, we have that (y1, . . . , ym) ∼ (z1, . . . , zm) with probability at least
1/3k > 2δ for sufficiently small constant c. ut

4 Arbitrary String Reconstruction

In this last section, we consider the problem of reconstructing an arbitrary
binary4 string x ∈ {0, 1}n from random subsequences of length Θ(

√
n log n) or

equivalently when the deletion probability of each bit is 1− c
√

log n/n for some
constant c. We prove the following result.

4 Recall that Lemma 1 shows that this result can be extended to the non-binary case.

Theorem 2. f(n, p, 2) ≤ e
√
n polylogn if p ≤ 1−c

√
logn
n for some constant c > 0.

Our result uses the following combinatorial result by Scott [7]. For i ∈
{1, 2, 3, . . .}, let ni be the number of length i subsequences of x that end with
a 1, i.e., ni =

∑n
j=1 xj

(
j−1
i−1
)
. Scott showed that if k ≥ (1 + o(1))

√
n log n,

then there exists a unique binary solution to the equation PxT = nT where
n = (n1, n2, . . . , nk) and P is the k × n matrix with Pij =

(
j−1
i−1
)
. The next

theorem follows immediately.

Theorem 3 (Scott [7]). {ni}i∈[k] uniquely define x if k ≥ (1 + o(1))
√
n log n.

Therefore it is sufficient to determine each ni. To do this is we pick a random
subsequence of length i from each of the m traces and let mi be the number of
them that end with a 1. We then estimate ni by ñi = mi

m

(
n
i

)
. The next lemma

shows that if m is sufficiently large then ni = ñi with high probability.

Lemma 12. If m ≥ 2n2i log(2n) then Pr [ni 6= ñi] ≤ 1/n2.

Proof. First note that E [mi/m] = ni/
(
n
i

)
and that mi is the sum of independent

boolean trials. By applying the Chernoff bound,

Pr [|ñi − ni| ≥ 1] = Pr

[∣∣∣∣∣mi −
mni(
n
i

) ∣∣∣∣∣ ≥ m(
n
i

)] ≤ 2 exp

(
− m

3ni
(
n
i

)) < 2 exp

(
−m
n2i

)
.

Hence, m > 2n2i log 2n ensures this probability is less than 1/n2. ut

Therefore, by an application of the union bound 2n2(1+o(1))
√
n logn traces are

sufficient to compute all the necessary ni with high probability.

References

1. T. Batu, S. Kannan, S. Khanna, and A. McGregor. Reconstructing strings from
random traces. In ACM-SIAM Symposium on Discrete Algorithms, pages 910–918,
2004.

2. M. Dud́ık and L. J. Schulman. Reconstruction from subsequences. J. Comb. Theory,
Ser. A, 103(2):337–348, 2003.

3. T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder. Trace reconstruction
with constant deletion probability and related results. In ACM-SIAM Symposium
on Discrete Algorithms, pages 389–398, 2008.

4. S. Kannan and A. McGregor. More on reconstructing strings from random traces:
Insertions and deletions. In IEEE International Symposium on Information Theory,
pages 297–301, 2005.

5. J. Lember and H. Matzinger. Standard deviation of the longest common subsequence.
The Annals of Probability, 37(3):1192–1235, 05 2009.

6. D. Pollard. Asymptopia. http://www.stat.yale.edu/ pollard/, 2000.
7. A. D. Scott. Reconstructing sequences. Discrete Mathematics, 175(1-3):231–238,

1997.
8. K. Viswanathan and R. Swaminathan. Improved string reconstruction over insertion-

deletion channels. In ACM-SIAM Symposium on Discrete Algorithms, pages 399–408,
2008.

