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Abstract. This paper makes three main contributions to the theory of communication com-
plexity and stream computation. First, we present new bounds on the information complexity of
augmented-index. In contrast to analogous results for index by Jain, Radhakrishnan, and Sen
[J. ACM, 56 (2009), article 33], we have to overcome the significant technical challenge that proto-
cols for augmented-index may violate the “rectangle property” due to the inherent input sharing.
Second, we use these bounds to resolve an open problem of Magniez, Mathieu, and Nayak [Proceed-
ings of the 42nd Annual ACM Symposium on Theory of Computing, 2010, pp. 261–270] that asked
about the multipass complexity of recognizing Dyck languages. This results in a natural separa-
tion between the standard multipass model and the multipass model that permits reverse passes.
Third, we present the first passive memory checkers that verify the interaction transcripts of pri-
ority queues, stacks, and double-ended queues. We obtain tight upper and lower bounds for these
problems, thereby addressing an important subclass of the memory checking framework of Blum et
al. [Algorithmica, 12 (1994), pp. 225–244].
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1. Introduction. In a recent work, Magniez, Mathieu, and Nayak [21] consid-
ered the streaming complexity of language recognition. That is, given a string σ of
length n, what is the (randomized) space complexity of a recognizer for a language L
that is allowed only sequential access to σ? This question can be viewed as a gener-
alization of the classic notion of regularity of languages: one now considers automata
that are allowed (1) randomization, and (2) a variable number of states that may
depend on the input length. Their main result provided near-matching bounds for
single-pass recognizers for dyck(2), the language of properly nested parentheses of
two kinds. In this paper, we look at the broader question and present the first multi-
pass space lower bounds for several languages, including dyck(2), resolving an open
question of theirs. We also study the complexity of languages that arise in the context
of memory checking [5] and present tight upper and lower bounds for them. Our key
technical contributions rely on a new understanding of the information complexity of
the augmented index problem, which leads to these multipass lower bounds.

Background, augmented index, and a new lower bound. The index problem is one
of a handful of fundamental problems in communication complexity [20]: Alice has
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a string x ∈ {0, 1}n, and Bob has an index k ∈ [n] := {1, 2, . . . , n}; the players wish
to determine the kth bit of x, written as xk. It is easy to show that the problem is
“hard”—requiring Ω(n) communication—when messages go only from Alice to Bob,
and is “easy”—solvable using O(log n) communication—without this restriction. The
lower bound extends to randomized constant-error protocols [1]. This makes index

the canonical hard-for-one-way, easy-for-two-way communication problem. Is there
really anything new to say about such a fundamental problem?

As it turns out, there is, provided one asks the right questions. Since index is
an asymmetric problem, it makes sense to ask for the best possible tradeoff between
the number, a, of bits communicated by Alice and the number, b, communicated by
Bob. As shown by Miltersen et al. [22], we must have a ≥ n/2O(b), and a simple
two-round Bob → Alice → Bob protocol (with Bob announcing the output) shows
that a ≤ �n/2b� is achievable. A more nuanced question asks for the best tradeoff of
information revealed by each player to the other in a protocol for index, also called
the information costs of Alice and Bob (we shall soon formally define these). In
principle, this tradeoff could have been better, as it is possible for messages to reveal
less information than their length. This issue was considered (in a more general
quantum communication setting) by Jain, Radhakrishnan, and Sen [18], who called
this the “privacy tradeoff” for the problem, and showed that a ≥ n/2O(b) still holds,
where a and b now represent information costs.

Such an information cost tradeoff opens up interesting possibilities for applications
to lower bounds for more complex problems via the direct sum properties of this
measure [4, 9]. One such application is the aforementioned dyck(2) lower bound.
However, the tradeoff theorem of Jain, Radhakrishnan, and Sen [18] is not strong
enough to obtain the required direct sum result. One needs a tradeoff lower bound
in a variant of index where Alice and Bob have much more “help,” in two ways.
First, we relax index so that Bob additionally gets to see the length-(k − 1) prefix
of Alice’s input; the resulting variant has been called augmented-index [13, 19],
and the one-way communication lower bound easily extends to it [3]. Second, in our
variant of augmented-index, Bob also gets a check bit c ∈ {0, 1} and must verify that
xk = c. This second twist clearly does not matter when considering communication
complexity, but for us it makes a huge difference, because our applications require that
we measure information cost under an “easy” distribution, where xk always equals c.

With this background, we state our main theorem informally. A formal version
appears as Theorem 2.3, after the necessary definitions.

Theorem 1.1 (informal). In a randomized communication protocol that solves
the augmented-index problem with constant two-sided error, either Alice reveals
Ω(n) information about her input, or Bob reveals Ω(1) information about his, where
information is measured according to an “easy” input distribution.

The natural point of comparison is a similar theorem of Magniez, Mathieu, and
Nayak [21], which works only for restricted protocols: Alice must be deterministic
(thus, her information cost is just her usual communication cost), and the protocol
must be two-round with an Alice → Bob → Alice communication pattern. Under
these conditions, for errors below O(1/n2), they show that either Alice sends Ω(n)
bits, or else Bob reveals Ω(log n) information. Notice that this theorem is not quite a
special case of ours, because of the higher lower bound on Bob’s information cost. This
is inevitable: for a general communication pattern, one cannot obtain a tradeoff that
strong, because of the aforementioned a ≤ �n/2b� upper bound. At the time of the first
announcement of our results [6], we had conjectured that the optimum tradeoff lower
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bound would be of the form a ≥ n/2
˜O(b), where the Õ-notation might hide factors

polylogarithmic in b. In fact, a recent result of Chakrabarti and Kondapally [8] gives
the tight information cost tradeoff a ≥ n/2O(b).

Ramifications: Streaming language recognition. In the streaming model, we have
one-way access to input and working memory sublinear in the input size N . Histori-
cally, the problems considered in it have focused on estimating statistics. Recognizing
structural properties of strings is just as natural a problem in this model, and yet
such language recognition problems have only recently been considered. It transpires
that augmented-index has a key role to play in proving bounds here.

A first application is direct: following [21], a two-step argument shows Ω(
√
N)

lower bounds for the multipass streaming complexity of Dyck languages. We first plug
Theorem 1.1 into a direct sum theorem, which lower bounds the communication cost
of a problem we call multi-ai (for “multiple copies of augmented-index”). We then
reduce multi-ai to, e.g., dyck(2). The direct sum theorem is a natural extension to
multiple passes of a similar single-pass theorem (see [21], where the authors called the
relevant problems ascension and mountain). Thus, on the lower bound side, our
chief contribution is Theorem 1.1, and its most important consequence is the multi-
pass nature of the resulting lower bounds. In particular, this demonstrates a curious
phenomenon: an explicit, natural data stream problem that is fairly easy given two
passes in opposite directions (Magniez, Mathieu, and Nayak [21] give an O(log2N)-
space algorithm), whereas it is exponentially harder if only multiple unidirectional
passes are allowed.

A second application is to memory checking, whose study was initiated by Blum
et al. [5] and continued by numerous groups including Ajtai [2], Chu, Kannan, and
McGregor [11], Dwork et al. [14], and Naor and Rothblum [23]. The problem, as
considered in this paper, is to observe a sequence of N updates and queries to (an
implementation of) a data structure and to report whether or not the implementa-
tion operated correctly on the instance observed. A concrete example is to observe
a transcript of operations on a priority queue: we see a sequence of insertions in-
termixed with items claimed to be the results of extractions, and the problem is
to decide whether this is correct. Much of the previous work allowed the checker
to be invasive by modifying the inserted items and/or introducing additional read
operations. However, when the checker is more realistically restricted to being com-
pletely passive, and can only observe, the problem becomes that of understanding
the (streaming) complexity of recognizing valid transcripts. For instance, we define
pq to be the language of valid transcripts of priority queue operations that start and
end with an empty queue. One can similarly define languages stack and deque

(for double-ended queues). The invasive protocols of [5] typically modified the input
items by attaching a “timestamp” to each inserted item, and this suggests variant
languages pq-ts, stack-ts, and deque-ts, where each extraction is augmented by
the timestamp of its corresponding insertion. Though we briefly discuss these variant
languages towards the end of this paper, we consider the languages without auxiliary
information to be more natural from a theoretical point of view and more applicable
from a practical point of view.

We present new algorithms for these basic memory checking languages: we show
that pq, stack, and deque can each be recognized in Õ(

√
N) space and one pass.

On the lower bound side, Theorem 1.1 and multi-ai again come into play, giving
Ω(
√
N) bounds for each of these problems, even allowing multiple passes over the

transcript. We observe that our upper bound for pq strengthens the Õ(
√
N) bound
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of Chu, Kannan, and McGregor [11] for pq-ts. This strengthening is significant, for
timestamps can radically simplify problems: we note that stack-ts can be recognized
in just O(logN) space, in marked contrast to stack.

Highlights. Since we view Theorem 1.1 as our most important technical contri-
bution, we first give a careful exposition of its proof in section 2. The main technical
hurdle in this proof is dealing with the fact that Alice and Bob share some of the input,
which breaks the useful “rectangle property.” (This is reminiscent of number-on-the-
forehead communication [10], where input sharing makes strong lower bounds rather
hard to prove.) The highlight of our proof is the fat transcript lemma (Lemma 2.6),
with its careful interplay between a suitably weakened rectangle property (Lemma 2.5)
and the information cost measure.

After a brief discussion (section 3) of the direct sum theorem and its implications
for multi-ai, we address language recognition in section 4. The highlight of this sec-
tion is our algorithm for recognizing the language pq. The ingenuity of the algorithm
is that, rather than determining whether the interaction sequence is valid directly,
the algorithm conceptually reorders inserts and extracts (in addition to some actual
“local” reordering) in such a way that the new sequence is valid if and only if the orig-
inal sequence is valid. This reordering procedure is designed such that small-space
fingerprinting methods can be used to capture the state of the priority queue in a way
they could not necessarily have been used for the original sequence.

Related work. Independently of our work, and concurrent with the first announce-
ment of our results [6], Jain and Nayak [16] presented an alternate proof of the main
lower bound result in this paper. The lower bounds in these first announcements were
each slightly worse (in incomparable ways) than what we show here. However, after
subsequent refinements [7, 17], the bounds now agree.

2. Augmented index and an information cost tradeoff. Let ai = ain

(short for augmented-index) denote the communication problem where Alice re-
ceives a string x ∈ {0, 1}n, and Bob receives an index k ∈ [n], the length-(k−1) prefix
of x, which we denote by x1: k−1, and a check bit c ∈ {0, 1}, and the goal is to output
ai(x, k, c) := xk ⊕ c, i.e., to output 1 iff xk 
= c.

We now formalize the notion of information cost. For this, we consider the most
general model of randomization in communication protocols: the parties may share
a public coin, and separately, each party may have its own private coin. Let P be
such a randomized protocol for ai, let ξ be a distribution on {0, 1}n × [n] × {0, 1}
(effectively, a distribution on legal inputs to P ), and let (X,K,C) ∼ ξ. Let R denote
the public random string used by P , and let T denote the transcript of messages sent
by Alice and Bob (including the final output bit) in response to this random input
(X,K,C): note that, in general, T depends on X,K,C,R and the (unnamed) private
random strings of the players. We define the information cost of P under ξ to be a
pair of real numbers (icostAξ (P ), icost

B
ξ (P )) defined as follows:

(1) icostAξ (P ) := I(T : X | X1:K−1,K,C,R) ; icostBξ (P ) := I(T : K,C | X,R) .

Here, I(Y1 : Y2 | Y3) is standard notation for conditional mutual information.
Notice that these quantities reflect the amount of information that Alice reveals to
Bob (and vice versa), through the transcript, about the portion of the input he does
not see. In the above definition, the conditioning on R is crucial, for otherwise it is
simple to make these costs equal zero (e.g., by XOR-ing every message with R). It
follows from the basics of information theory that, regardless of the choice of ξ, these
costs are bounded from above by the number of bits communicated by Alice and Bob,
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respectively, in P . Thus, a tradeoff lower bound on information cost is a stronger
statement than a similar tradeoff on numbers of bits communicated. We now turn to
the choice of input distribution.

Definition 2.1. We let μ denote the uniform distribution on {0, 1}n×[n]×{0, 1}.
For (X,K,C) ∼ μ, we let μ0 := μ | (XK = C). Note that Eμ[ai(X,K,C)] =

1
2 ,

whereas Eμ0 [ai(X,K,C)] = 0. Thus, intuitively, μ is a hard distribution for ai,
whereas μ0 is an easy distribution.

We are now ready to state our main theorem. But first, we give a technical lemma
that is useful in formalizing some averaging arguments in its proof.

Lemma 2.2. Consider functions f1, . . . , fL : D → R
+, and numbers b1, . . . , bL ∈

R
+, where L > 0 is an integer and D is a finite domain. Let Z be a random variable

taking values in D. Then

∀ i ∈ [L] E[fi(Z)] ≤ bi =⇒ ∃ z ∈ D ∀ i ∈ [L] fi(z) ≤ Lbi .

Proof. Choose z to minimize g(z) :=
∑

i: bi>0 fi(z)/bi, and observe that E[g(Z)] ≤
L, so that g(z) ≤ L. Now pick any i ∈ [L]. If bi = 0, then clearly fi(z) = 0. Else,
fi(z)/bi ≤ g(z) ≤ L.

Theorem 2.3 (main theorem; formal version of Theorem 1.1). There exists a
constant ε such that if P is a randomized protocol for ain with error at most ε under
μ, then either icostAμ0

(P ) = Ω(n) or icostBμ0
(P ) = Ω(1). In particular, the same

dichotomy holds if P has worst-case two-sided error at most ε.
Proof. We split this proof into two parts. First, assuming the contrary, we zoom

in on a specific setting of the public random string of P and a single transcript that
has certain “fatness” properties that play a role analogous to the “large rectangles”
seen in elementary communication complexity. This part of the proof is reminiscent
of arguments in Pǎtraşcu’s proof of the lopsided set disjointness lower bound [24].
Next, and more interestingly, we use these fatness properties to derive a contradiction
in Lemma 2.6. Throughout the proof and the rest of this section, we tacitly assume
that n is large enough.

Assume, to the contrary, that for every choice of constants ε, δ1, and δ2, there
exists an ε-error protocol P ∗ for ai with icostAμ0

(P ∗) ≤ δ1n and icostBμ0
(P ∗) ≤ δ2.

To write these conditions formally, let T ∗ denote the transcript of P ∗ (which uses a
public random string R) on input (X,K,C) ∼ μ; we will condition on XK = C when
necessary to effectively change the input distribution to μ0. We adopt the convention
that a transcript, t, also specifies its final output bit, out(t). We then have

Pr[out(T ∗) 
= ai(X,K,C)] ≤ ε ,

I(T ∗ : X | X1:K−1,K,C,R,XK = C) ≤ δ1n ,

I(T ∗ : K,C | X,R,XK = C) ≤ δ2 .

These three inequalities can be interpreted as bounding the expectations of three
nonnegative functions of the random string R. Any particular setting of R reduces
P ∗ to a private-coin protocol. Thus, applying Lemma 2.2 to these three inequalities,
we see that there exists a private-coin protocol P for ai such that if T denotes the
transcript of P on input (X,K,C) ∼ μ, then

Pr[out(T ) 
= ai(X,K,C)] ≤ 3ε ,(2)

I(T : X | X1:K−1,K,C,XK = C) ≤ 3δ1n ,(3)

I(T : K,C | X,XK = C) ≤ 3δ2 .(4)
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A straightforward calculation shows that H(X | X1:K−1,K,C,XK = C) = (n −
1)/2 and that H(K,C | X,XK = C) = logn. Thus, by the characterization of mutual
information in terms of entropy, we can rewrite (3) and (4) as

(n− 1)/2−H(X | T,X1:K−1,K,C,XK = C) ≤ 3δ1n ,(5)

logn−H(K,C | T,X,XK = C) ≤ 3δ2 .(6)

Definition 2.4. Let ν denote the distribution of T , and let ν0 := ν | (XK = C).
For a specific transcript t, let ρt denote the distribution μ | (T = t).

We can interpret (5) and (6) as bounding the expectations of appropriate functions
of a random transcript distributed according to ν0. Inequality (2), though, is not of
this form, since there is no conditioning on (XK = C); instead, it says

(7) ET∼ν

[
Pr(X′,K′,C′)∼ρT

[out(T ) 
= ai(X ′,K ′, C′)]
]
≤ 3ε .

Since we have Pr[XK = C] = 1
2 , every transcript t satisfies ν0(t) ≤ 2ν(t). Thus,

switching the distribution in the outer expectation from ν to ν0 can at most double
the left-hand side. In other words, we have

(8) ET0∼ν0

[
Pr(X′,K′,C′)∼ρT0

[out(T0) 
= ai(X ′,K ′, C′)]
]
≤ 6ε .

Finally, we can say that transcripts drawn from ν0 typically output “0”, because

(9) PrT0∼ν0 [out(T0) 
= 0] = Pr[out(T ) 
= ai(X,K,C) | XK = C] ≤ 6ε ,

where the final step uses (2). By another averaging argument, applying Lemma 2.2 to
the four inequalities (5), (6), (8), and (9), we conclude that there exists a transcript
t such that

(n− 1)/2−H(X | X1:K−1,K,C,XK = C, T = t) ≤ 12δ1n ,

logn−H(K,C | X,XK = C, T = t) ≤ 12δ2 ,

Pr(X′,K′,C′)∼ρt
[out(t) 
= ai(X ′,K ′, C′)] ≤ 24ε ,

out(t) = 0 .

However, by the fat transcript lemma (Lemma 2.6), it follows that no transcript can
simultaneously satisfy the above four conditions. This completes the proof.

At this point, we need to understand what is special about the distributions ρt
(from Definition 2.4), given that they arise from transcripts of private-coin commu-
nication protocols. The key fact we need here is the so-called rectangle property of
deterministic communication protocols [20, Chapter 1]. More specifically, we need its
extension to private-coin randomized protocols, as used, e.g., by Bar-Yossef et al. [4,
Lemma 6.7].

However, there is a complication here due to the fact that Alice and Bob share
some information. Had Bob not received any part of Alice’s input, ρt would have
been a product of a distribution on values of x and another distribution on values of
(k, c). But because Bob does, in fact, start out knowing x1: k−1, we can only draw the
weaker conclusion given in the following lemma.

Lemma 2.5. Let X = {0, 1}n and Y = {(w, k, c) ∈ {0, 1}∗ × [n] × {0, 1} : |w| =
k − 1}. Let P be a private-coin protocol in which Alice receives a string x ∈ X
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while Bob receives (w, k, c) ∈ Y, with the promise that w = x1: k−1. Then, for every
transcript t of P , there exist functions pA,t : X → R

+ and pB,t : Y → R
+ such that

∀ (x, k, c) ∈ {0, 1}n × [n]× {0, 1} : ρt(x, k, c) = pA,t(x) · pB,t(x1:k−1, k, c) .

Proof. Let T be the set of all possible transcripts of P , and let T be a random
transcript of P on input (X,K,C) ∼ μ. By the rectangle property for private-
coin protocols (Lemma 6.7 of [4]), there exist mappings qA : T × X → R

+ and
qB : T × Y → R

+ such that

Pr[T = t | (X,K,C) = (x, k, c)] = qA(t;x) · qB(t;x1:k−1, k, c) .

Recall that μ is just a uniform distribution. In particular, it decomposes as μ(x, k, c) =
μA(x)μB(k, c). Thus, by Bayes’s theorem,

ρt(x, k, c) =
μ(x, k, c) · Pr[T = t | (X,K,C) = (x, k, c)]

Pr[T = t]

=
μA(x)·μB(k, c)·qA(t;x)·qB(t;x1:k−1, k, c)

Pr[T = t]
.

Now set

pA,t(x) := μA(x) · qA(t;x)/Pr[T = t] ,

pB,t(w, k, c) := μB(k, c) · qB(t;w, k, c) .

We now state the promised lemma that, as shown above, finishes the proof of
Theorem 2.3. We alert the reader that, from here on, the distribution of (X,K,C)
is no longer uniform; instead, we condition the uniform distribution on a specific
transcript.

Lemma 2.6 (fat transcript lemma). There exist positive real constants ε1, δ3,
and δ4 such that, for every transcript t of a private-coin communication protocol for
ai, with out(t) = 0, we have the following. Let (X,K,C) ∼ ρt. Then the following
conditions do not hold simultaneously:

H(X | X1:K−1,K,C,XK = C) ≥ (1/2− δ3)n ,(10)

H(K,C | X,XK = C) ≥ logn− δ4 ,(11)

E[ai(X,K,C)] ≤ ε1 .(12)

Proof. Suppose, to the contrary, that (10), (11), and (12) do hold for every choice
of ε1, δ3, and δ4. Since C is determined by X and K whenever the condition XK = C
holds, the left-hand side of (11) equals H(K | X,XK = C). We now expand (12). In
what follows, we use notation of the form “u0v” to denote the concatenation of the
string u, the length-1 string “0”, and the string v.

E[ai(X,K,C)] =

n∑
k=1

∑
x∈{0,1}n

∑
c∈{0,1}

ρt(x, k, c) · ai(x, k, c)

=
n∑

k=1

∑
u∈{0,1}k−1

∑
b∈{0,1}

∑
v∈{0,1}n−k

∑
c∈{0,1}

ρt(ubv, k, c) · ai(ubv, k, c) .(13)

Let pA = pA,t and pB = pB,t be the functions given by Lemma 2.5. Let ρ̂t
denote the distribution ρt | (XK = C) and λ denote the distribution of (X,K)
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conditioned on (XK = C); i.e., let λ(x, k) = ρ̂t(x, k, 0) + ρ̂t(x, k, 1). Equivalently,
λ(x, k) = ρ̂t(x, k, xk), because the other term is zero. Observe that for every triple
(x, k, c), we have

ρt(x, k, c) ≥ Pr[XK = C] · ρ̂t(x, k, c) ≥ (1− ε1)ρ̂t(x, k, c) ,
where the last step uses (12). Now, noting that ai(ubv, k, c) = 1 iff b 
= c, we can
manipulate (13) as follows, using the above inequality at step (14):

E[ai(X,K,C)] =

n∑
k=1

∑
u∈{0,1}k−1

∑
v∈{0,1}n−k

(
ρt(u0v, k, 1) + ρt(u1v, k, 0)

)

=

n∑
k=1

∑
u∈{0,1}k−1

∑
v∈{0,1}n−k

(
pA(u0v) · pB(u, k, 1)

+ pA(u1v) · pB(u, k, 0)
)

=

n∑
k=1

∑
u∈{0,1}k−1

(
pB(u, k, 1)

∑
v∈{0,1}n−k

pA(u0v)

+ pB(u, k, 0)
∑

v∈{0,1}n−k

pA(u1v)

)

≥
n∑

k=1

∑
u∈{0,1}k−1

(
pB(u, k, 0) + pB(u, k, 1)

)

· min

⎧⎨⎩ ∑
v∈{0,1}n−k

pA(u0v),
∑

v∈{0,1}n−k

pA(u1v)

⎫⎬⎭
≥ (1− ε1)

n∑
k=1

∑
u∈{0,1}k−1

min

⎧⎨⎩ ∑
v∈{0,1}n−k

(
ρ̂t(u0v, k, 0) + ρ̂t(u0v, k, 1)

)
,

∑
v∈{0,1}n−k

(
ρ̂t(u1v, k, 0) + ρ̂t(u1v, k, 1)

)⎫⎬⎭(14)

= (1− ε1)
n∑

k=1

∑
u∈{0,1}k−1

min

⎧⎨⎩ ∑
v∈{0,1}n−k

λ(u0v, k),
∑

v∈{0,1}n−k

λ(u1v, k)

⎫⎬⎭ .(15)

Let α : {0, 1}n → [0, 1] and β : [n] → [0, 1] be the marginals of λ, i.e., α(x) :=∑n
k=1 λ(x, k) and β(k) :=

∑
x∈{0,1}n λ(x, k). We now make two crucial observations

about these distributions, which follow from Pinsker’s inequality, stated below.
Fact 1 (Pinsker’s inequality; see, e.g., [12, Lemma 12.6.1]). Let μ1, μ2 be two

probability distributions. Then ‖μ1 − μ2‖1 ≤
√
(2 ln 2) ·DKL(μ1 ‖ μ2), where DKL

denotes the Kullback–Leibler divergence.
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Claim 1. We have ‖λ − α ⊗ β‖1 =
∑

x∈{0,1}n

∑n
k=1 |λ(x, k) − α(x)β(k)| ≤√

(2 ln 2) · δ4.
Proof. Using the characterization of mutual information in terms of Kullback–

Leibler divergence, we get

DKL(λ ‖ α⊗ β) = I(K : X | XK = C)

= H(K | XK = C)−H(K | X ,XK = C) ≤ δ4 ,

where the last step uses (11) and the basic fact that H(K | XK = C) ≤ log n. The
claim now follows from Pinsker’s inequality.

Claim 2. We have
∑n

k=1 |β(k)− 1/n| ≤
√
(2 ln 2) · δ4.

Proof. Relax (11) to H(K | XK = C) ≥ logn − δ4. Let γ denote the uniform
distribution on [n]. Then we have DKL(β ‖ γ) =

∑
k∈[n] β(k) log(nβ(k)) = logn −

H(K | XK = C) ≤ δ4. Now apply Pinsker’s inequality.

Let δ5 :=
√
(2 ln 2) · δ4. Using Claim 1 to estimate the expression (15), keeping

in mind that any particular λ(x, k) term appears at most once in the summation, we
get

E[ai(X,K,C)]

1− ε1
≥

n∑
k=1

β(k)
∑

u∈{0,1}k−1

min

⎧⎨⎩ ∑
v∈{0,1}n−k

α(u0v),
∑

v∈{0,1}n−k

α(u1v)

⎫⎬⎭− δ5 .(16)

For each k ∈ [n], define the probability distribution α̂k on {0, 1}k−1 by

α̂k(u) :=
∑

w∈{0,1}n−k+1

α(uw) = Pr[X1: k−1 = u | XK = C] .

Let Hb : [0, 1] → [0, 1] denote the binary entropy function, i.e., Hb(z) := −z log z −
(1 − z) log(1 − z). Let H−1

b : [0, 1] → [0, 12 ] denote the (well-defined) inverse of this
function. Observe that if Z is a binary random variable, then min{Pr[Z = 0],Pr[Z =
1]} = H−1

b (H(Z)). Using all this, we obtain

min

⎧⎨⎩ ∑
v∈{0,1}n−k

α(u0v),
∑

v∈{0,1}n−k

α(u1v)

⎫⎬⎭
= α̂k(u) ·min

{
α̂k+1(u0)

α̂k(u)
,
α̂k+1(u1)

α̂k(u)

}
= α̂k(u) · H−1

b

(
H(Xk | X1: k−1 = u ,XK = C)

)
.(17)



70 CHAKRABARTI, CORMODE, KONDAPALLY, AND MCGREGOR

Plugging this back into (16), we obtain

E[ai(X,K,C)]

1− ε1
+ δ5

≥
n∑

k=1

β(k)
∑

u∈{0,1}k−1

α̂k(u) ·H−1
b

(
H(Xk | X1: k−1 = u ,XK = C)

)

≥
n∑

k=1

1

n

∑
u∈{0,1}k−1

α̂k(u) ·H−1
b

(
H(Xk | X1: k−1 = u ,XK = C)

)
− δ5(18)

≥ H−1
b

⎛⎝ n∑
k=1

1

n

∑
u∈{0,1}k−1

α̂k(u) ·H(Xk | X1: k−1 = u ,XK = C)

⎞⎠− δ5(19)

= H−1
b

(
n∑

k=1

1

n
·H(Xk | X1: k−1 , XK = C)

)
− δ5

= H−1
b

(
H(X | XK = C)

n

)
− δ5 ,(20)

where (18) uses Claim 2, (19) follows from Jensen’s inequality, using the convexity of
H−1

b , and (20) uses the chain rule for entropy. By relaxing (10), we have H(X | XK =
C) ≥ (1/2 − δ3)n. Using this and (12), and the fact that H−1

b is increasing, we now
obtain

ε1
1− ε1

+ δ5 ≥ H−1
b (1/2− δ3)− δ5 .

Recall that δ5 =
√
(2 ln 2) · δ4. By choosing ε1, δ3, and δ4 small enough, we can

make the left-hand side of the above inequality approach zero and the right-hand side
approach H−1

b (1/2) > 0, and we finally have our contradiction.

3. A direct sum argument. Let multi-aim,n denote the following communi-
cation problem, involving 2m players A1, B1, . . . , Am, Bm. Each Ai receives a string
xi ∈ {0, 1}n, and each Bi receives an integer ki ∈ [n], a bit ci ∈ {0, 1}, and the
length-(ki − 1) prefix xi1: ki−1 of xi. The players wish to compute the predicate∨m

i=1 ain(x
i, ki, ci). The players may use private random strings and a common public

random string, and use p rounds, where each round consists of a player sending an
s-bit message privately to the next player in the following sequence:

A1 → B1 → A2 → B2 → · · · → Am → Bm → Am → Am−1 → · · · → A1 .

At the end of these p rounds, A1 must announce the answer, which is required to be
correct with probability at least (1 − ε) on each possible input. Call such a protocol
a [p, s, ε]-protocol. Our main goal in this section is to combine the main theorem
(Theorem 2.3) with a direct sum argument that relates the information complexities
of multi-ai and ai, thereby proving the following lower bound.

Theorem 3.1. All [p, s, 13 ]-protocols for multi-aim,n satisfy ps = Ω(min{m,n}).
This theorem is easily seen to be near-optimal via the following two protocols. In

the first protocol, each Ai communicates �n/p� bits of xi to the next player, Bi. By
the pth round, every Bi will have determined ain(x

i, ki, ci). In the second protocol,
the values of (ki, ci) for �m/p� values of i are forwarded to the corresponding Ai
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players who can then determine ain(x
i, ki, ci). By the pth round, every ain(x

i, ki, ci)
is determined. By picking the better of these two protocols for the particular setting
of m and n we ensure that s = O(min{n/p,m logn/p}).

Notice that the augmented index problem studied in section 2 satisfies ain =
multi-ai1,n. Intuitively, a protocol for multi-aim,n must solve m independent ai

instances and thus must use about m times the communication that a single instance
requires. To prove Theorem 3.1, we formalize this intuition as a direct sum theo-
rem, which we can prove using a suitable refinement of the information complexity
paradigm [9]. To state this direct sum theorem, we need a suitable notion of informa-
tion cost for protocols solving multi-ai. Let Q be a [p, s, ε]-protocol for multi-aim,n.
Let ξ be a distribution on inputs to Q, and let Mm denote the sequence of messages
sent by player Bm when Q is run on a random input 〈(X i,Ki, Ci)〉mi=1 ∼ ξ, using a
public random string R. We strategically define the information cost of Q under ξ to
be

(21) icostξ(Q) := I(Mm : K1, C1, . . . ,Km, Cm | X1, . . . , Xm, R) .

It is worth noting that when m = 1, i.e., when we are considering a protocol for
ai, this definition specializes to that of icostBξ (Q) in (1). This may not be obvious,
because (1) considers the information in a transcript, whereas (21), specialized to
m = 1, considers only the information in Bob’s messages. However, the following
lemma, which is interesting in its own right, proves that the two notions are equivalent.

Lemma 3.2. Let P be a communication protocol involving two players, Alice and
Bob, who share a public random string R in addition to their private random strings.
Let T denote the transcript of P when Alice receives input X and Bob receives Y
from an arbitrary input distribution. Let A and B denote the portions of T that are
communicated by Alice and Bob, respectively. Then

I(T : X | Y,R) = I(A : X | Y,R) and I(T : Y | X,R) = I(B : Y | X,R) .

Proof. By the chain rule for mutual information, we have

I(T : X | Y,R) = I(AB : X | Y,R) = I(A : X | Y,R) + I(B : X | A, Y,R) .

Since Bob’s messages are just some function of A, Y,R, and his private coins, for any
fixed setting of A, Y,R, we have that B and X are independent. Thus, I(B : X |
A, Y,R) = 0. Similarly, we can show that I(T : Y | X,R) = I(B : Y | X,R).

The following theorem formalizes the direct sum argument we use. We note
that it is a straightforward generalization, to multiple rounds, of a similar theorem
of Magniez, Mathieu, and Nayak [21], which applied only to restricted families of
one-round protocols. For completeness, we give a full proof.

Theorem 3.3 (direct sum theorem for ai). Suppose there exists a [p, s, ε]-protocol
Q for multi-aim,n. Then there exists an ε-error randomized protocol P for ai in which
Alice sends at most ps bits in total such that

m · icostBμ0
(P ) ≤ icostμ⊗m

0
(Q) ,

where μ0 is as in Definition 2.1 and μ⊗m
0 denotes the m-fold product of μ0 with itself.

Proof. Using Q, we can derive a family, {Pj}j∈[m], of protocols for ai, using
the following simulation. Suppose Alice and Bob receive inputs x and (k, c, x1:k−1),
respectively.



72 CHAKRABARTI, CORMODE, KONDAPALLY, AND MCGREGOR

1. Alice sets Aj ’s input to x and Bob sets Bj ’s input to (k, c, x1:k−1).
2. The players generate X1, X2, . . . , Xj−1, Xj+1, . . . , Xm,K1, . . . ,Kj−1 inde-

pendently and uniformly at random using public coins. They choose C1, . . . ,
Cj−1 so that X i

Ki = Ci for all i ∈ [j − 1]. This sets the input to players
A1, B1, . . . , Aj−1, Bj−1 and ensures that (X i,Ki, Ci) ∼ μ0 for all i < j.

3. Bob generates Kj+1,Kj+2, . . . ,Km independently and uniformly at random
using private coins. He chooses Cj+1, . . . , Cm so that X i

Ki = Ci for each
i ∈ {j + 1, . . . ,m}. This sets the input to players Aj+1, Bj+1, . . . , Am, Bm

and ensures that (X i,Ki, Ci) ∼ μ0 for all i > j.
4. The players now jointly simulate Q on the random input Z thus generated.

In each round the following steps take place:
(a) Alice simulates players A1, B1, . . . , Aj and sends Bob the message that

Aj would have sent to Bj .
(b) Bob simulates Bj , Aj+1, . . . , Bm and then sends Alice the message that

Bm would have sent to Am.
(c) Alice then continues the simulation of Am, . . . , A1 and moves on to the

beginning of the next round (if required), without having to communi-
cate anything.

5. At the end of the simulation, Alice outputs the answer that player A1 would
have output in Q.

Clearly, Alice communicates at most ps bits in Pj . The definition of μ0 ensures
that ai(X i,Ki, Ci) = 0 for all i 
= j, and therefore multi-ai(Z) = ai(X,K,C); thus
Pj is correct whenever Q is correct on the randomly generated input. This bounds
the worst-case error of Pj by ε. To bound the information cost of Pj , notice that
when the input to Pj is distributed according to μ0, it simulates Q on an input
that is distributed according to μ⊗m

0 . Let (Xj,Kj , Cj) denote a random input to Pj

distributed according to μ0, and let T and B denote the resulting random transcript
of Pj and Bob’s portion of this transcript, respectively. Defining Mm and R as
in (21), we see that B ≡Mm and that the public random string used by Pj is exactly
R′ = (R,X1, X2, . . . , Xj−1, Xj+1, . . . , Xm,K1, . . . ,Kj−1). Thus,

icostBμ0
(Pj) = I(T : Kj , Cj | Xj, R′)

= I(B : Kj , Cj | Xj, R′)

= I(Mm : Kj, Cj | K1, . . . ,Kj−1, X1, . . . , Xm, R) ,

where the second equality follows from Lemma 3.2. By the chain rule for mutual
information, we have

icostμ⊗m
0

(Q) = I(Mm : K1, C1, . . . ,Km, Cm | X1, . . . , Xm, R)

=

m∑
j=1

I(Mm : Kj, Cj | K1, C1, . . . ,Kj−1, Cj−1, X1, . . . , Xm, R)

=
m∑
j=1

I(Mm : Kj, Cj | K1, . . . ,Kj−1, X1, . . . , Xm, R)(22)

=
m∑
j=1

icostBμ0
(Pj) ,

where (22) holds because Xj and Kj completely determine Cj , according to the
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distribution μ0. Picking j to minimize icostBμ0
(Pj) now gives us m · icostBμ0

(Pj) ≤
icostμ⊗m

0
(Q).

We can now prove our multiround communication lower bound on multi-ai as
follows.

Proof of Theorem 3.1. Let ε be small enough for Theorem 2.3 to apply. By a
standard error reduction argument, we may assume that we have a [p, s, ε]-protocol,
Q, for multi-aim,n. From basic information theory, it follows that icostμ⊗m

0
(Q) ≤ ps.

Now, by Theorem 3.3, there exists an ε-error protocol P for ai with icostBμ0
(P ) ≤ ps/m

and in which Alice communicates at most ps bits, so that icostAμ0
(P ) ≤ ps. By

Theorem 2.3, either ps/m = Ω(1) or ps = Ω(n); i.e., ps = Ω(min{m,n}).

4. Streaming language recognition and passive memory checking. In
this section we present our results for recognizing certain languages in the data stream
model. Of particular interest is dyck(2), the language consisting of the strings of well-
balanced parentheses in two types of parentheses. Formally, when we represent “(”,
“)”, “[”, and “]” as a, ā, b, and b̄, respectively,

Definition 4.1. dyck(2) is the language generated by the context-free grammar
S → aSā | bSb̄ | SS | ε.

An important class of memory checking problems, which we call passive checking,
can also be viewed as language recognition problems in the data stream model. For
example, we define pq to be the language corresponding to transcripts of operations,
or “interaction sequences,” of a priority queue that begins and ends with an empty
queue. (Without this restriction, the resulting language would require Ω(N) space
to recognize, for simple reasons, [11, Theorem 4].) Formally, we have the following
definition.

Definition 4.2. An interaction sequence σ = σ1σ2 . . . σN is a string over the
alphabet ΣU = {ins(u), ext(u) : u ∈ [U ]} for some positive integer U . Let pq = pq(U)
be the language defined over ΣU where ins(u) is interpreted as an insertion of u into
a priority queue and ext(u) as an extraction of u from the priority queue. The state
of the queue at any step j can be represented by a multiset Mj so that

M0 = ∅ ; Mj =Mj−1 \ {min(Mj−1)} if σj = ext(v) ;(23)

Mj =Mj−1 ∪ {u} if σj = ins(u) .

Then σ ∈ pq for |σ| = N iff MN = ∅ and for all j ∈ [N ] (σj = ext(u) ⇒ u =
min(Mj−1)).

For example,

〈ins(5), ins(3), ext(3), ins(7), ext(5), ext(7)〉 ∈ pq ,

whereas 〈ins(5), ext(3), ins(3), ins(7), ext(7), ext(5)〉 
∈ pq.

4.1. Lower bounds for DYCK and PQ. We start by showing that a recognizer
for pq can also recognize dyck(2) via an online transformation. We say that a
reduction from language L to L′ is s-space streaming if it can be computed online
using total space s. It takes an input string S and produces an output string S′ such
that S′ ∈ L′ ⇐⇒ S ∈ L. Given that the main purpose of this reduction is to show
a lower bound, we will assume that the length of the dyck(2) sequence, N , is known
in advance. In the context of upper bounds (see section 4.2) we will not make this
assumption.
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Lemma 4.3. There exists an O(logN)-space stream reduction from dyck(2) to
pq(4N).

Proof. Consider a length-N string p over parentheses {a, ā, b, b̄}, and define

height(p) := | {j : pj ∈ {a, b}} | − | {j : pj ∈ {ā, b̄}} |

and height(ε) = 0. Intuitively, height measures the current height of the stack when
processing the prefix of a well-formed string of parentheses. Define the transformation
ψ by ψ(p) = φ(p1:1)φ(p1:2) . . . φ(p1:N ), where

φ(p1: i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ins(2N − 2 height(p1: i−1)) if pi = a ,

ext(2N − 2 height(p1: i)) if pi = ā ,

ins(2N − 2 height(p1: i−1)− 1) if pi = b ,

ext(2N − 2 height(p1: i)− 1) if pi = b̄ .

For example, we have

ψ( 〈a, a, ā, b, b̄, ā〉 ) = 〈ins(12), ins(10), ext(10), ins(9), ext(9), ext(12)〉 .

The above transformation can be done in O(logN) space, since it is sufficient
to maintain the height of the last two elements. Furthermore, ψ(p) is defined over
the alphabet Σ4N , since for any arbitrary string p of N parentheses, we have −N <
height(p1:N−1) < N .

We now argue that p ∈ dyck(2) iff ψ(p) ∈ pq. For notational convenience, we first
define ψ(p|p′) = φ(p′p1:1)φ(p′p1:2) . . . φ(p′p1:|p|) and note that ψ(p′p) = ψ(p′)ψ(p|p′).

We first argue that p ∈ dyck(2) ⇒ ψ(p) ∈ pq by induction on the length of
p. We may decompose p = p1cc̄p2, where c ∈ {a, b} and h = height(p1) is maximal
over all such decompositions. Without loss of generality assume c = b. Note that
p1p2 ∈ dyck(2) and hence, by induction, ψ(p1p2) = ψ(p1)ψ(p2|p1) ∈ pq. But observe
that

ψ(p) = ψ(p1)ψ(bb̄|p1)ψ(p2|p1bb̄) = ψ(p1)ψ(bb̄|p1)ψ(p2|p1) ,

which is in pq because ψ(p1)ψ(p2|p1) ∈ pq and ψ(bb̄|p1) = ins(2N − 2h− 1) ext(2N −
2h− 1), where 2N − 2h− 1 ≤ {u : ins(u) ∈ ψ(p1)}. Since h is maximal, 2N − 2h− 1
is indeed the smallest value when it is extracted.

Next, we argue that p /∈ dyck(2) ⇒ ψ(p) /∈ pq. Since p /∈ dyck(2), a standard
characterization of the language implies that one of the following cases holds.

Case 1. height(p1:N ) 
= 0. In this case, there are different numbers of extracts and
inserts in ψ(p), and hence ψ(p) /∈ pq, since each open parenthesis maps onto
an insert and each close parenthesis maps onto an extract.

Case 2. height(p1: i) < 0 for some i ∈ [N ]. In this case, there are more extracts
than inserts in a prefix of ψ(p), and hence ψ(p) /∈ pq.

Case 3. There exists a smallest j such that, for some i < j, the following conditions
hold:
1. height(p1: i−1) = height(p1: j) =: h.
2. p1: j−1 is a prefix for a string in dyck(2), and hence ψ(p1: j−1) is a prefix

for a string in pq.
3. (pi, pj) = (a, b̄) or (pi, pj) = (b, ā).
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Since ψ(p1: j−1) is a prefix for a string in pq, we can consider the state,Mj−1,
of the priority queue after the interaction sequence ψ(p1: j−1) as defined in
Definition 4.2. Note thatMj−1 contains at most one element from {2N−2k−
1, 2N− 2k} for each k (else j was not the minimal choice). If (pi, pj) = (b, ā),
then 2N − 2h − 1 ∈ Mj−1. But φ(p1: j) = ext(2N − 2h), and we therefore
deduce that ψ(p) /∈ pq. If (pi, pj) = (a, b̄), then 2N − 2h ∈ Mj−1 and hence
2N − 2h − 1 /∈ Mj−1. Since φ(p1: j) = ext(2N − 2h − 1), we deduce that
ψ(p) /∈ pq.

Our first result on the complexity of stream language recognition uses Theorem
3.1 to resolve the conjecture of Magniez, Mathieu, and Nayak [21] regarding the
multipass complexity of dyck(2) and pq.

Theorem 4.4 (multipass lower bounds for dyck and pq). Let L denote ei-
ther dyck(2) or pq(N). Suppose there exists a 1

3 -error, p-pass, s-space, randomized

streaming algorithm that recognizes L on length-N streams. Then ps = Ω(
√
N).

Proof. Using the reduction of Magniez, Mathieu, and Nayak [21], an ε-error p-
pass randomized streaming algorithm for dyck(2) that uses s bits of space on streams
of length Θ(mn) can be turned into a [p, s, ε]-protocol for multi-aim,n. One can
similarly reduce multi-aim,n to pq(N); this was implicitly claimed without proof
in [21]. Alternatively, Lemma 4.3 gives an explicit reduction from multi-aim,n to pq

via dyck(2). To complete the proof, we combine these reductions with Theorem 3.1,
setting m = n.

Unidirectional versus bidirectional passes. As noted earlier, dyck(2) can be rec-
ognized in O(log2N) space using two passes, one in each direction. On the other hand,
the above theorem implies that achieving polylog(n) space with only unidirectional

access to the input would require Ω̃(
√
N) passes. To the best of our knowledge, this is

the first explicit demonstration of such a strong separation between these two natural
data stream models. More recently, François and Magniez [15] have demonstrated
that it is also possible to recognize the language pq in O(log2N) space using two
passes, one in each direction. Given our lower bound in Theorem 4.4, this provides
another example of the separation.

4.2. Passive checking of priority queues. Given the connection between
pq and dyck(2) shown in Lemma 4.3, one might hope to adapt the algorithms of
[21] to this problem. However, there seems to be no such easy reduction in this
direction. For intuition, observe that dyck(2) has a much stricter requirement on the
permitted strings: if its second half consists of close-parentheses only, then its first
half is uniquely determined. On the other hand, in pq, one can find (N/2)! sequences
consisting of N/2 insertions followed by N/2 extractions that all agree on the second
half. This suggests that the two languages are quite different.

We therefore give a novel algorithm that leads to the following theorem, which is
the main upper bound result in this paper.

Theorem 4.5. We can recognize the language pq in one pass, using O(
√
N(logU+

logN)) bits of space: an input σ ∈ pq is accepted with certainty, and an input σ 
∈ pq

is rejected with probability ≥ 1− 1/N2.
Overview of the algorithm. We first present an O(Ur(logU + logN)) space algo-

rithm for the case when the input string can be decomposed as

σ = σE1σI1σE2σI2 . . . σErσIr ,

where σEi is a sequence of extracts and σIi is a sequence of inserts. We refer to σEiσIi

as the ith epoch of the string and note that, for sufficiently large r, any σ is of this
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Algorithm 1. pq-check

1: input σ = σE1σI1σE2σI2 . . . σErσIr , where σE1 = σIr = ∅
2: for k ∈ {1, . . . , r}, u ∈ {1, . . . , U}, do f [k] ← 0, X [k, u] ← 0, Y [k, u] ←

0, Z[k, u]← 0
3: for i ∈ {1, . . . , r} do
4: for ext(u) ∈ σEi do
5: �← min{k : f [k] ≤ u}
6: Y [�, u]← Y [�, u] + 1
7: Z[�, u]← max(Y [�, u], Z[�, u])
8: for 1 ≤ k < i do f [k]← max(u, f [k])
9: end for

10: for ins(u) ∈ σIi do
11: �← min{k : f [k] ≤ u}
12: if f [�] < u then X [�, u]← X [�, u] + 1
13: if f [�] = u then Y [�, u]← Y [�, u]− 1
14: end for
15: end for
16: if X 
= Z or X 
= Y then reject else accept

form. After presenting the full space algorithm, we show how to transform σ such
that r = O(

√
N) and, subsequently, how to reduce the space to Õ(

√
N). Finally, a

necessary condition for σ ∈ pq is that the extracts in each σEi are in ascending order
and that σE1 = σIr = ∅. Since both conditions are easily verified, we assume that
they are satisfied.

We present the algorithm pq-check as Algorithm 1. We first describe its prop-
erties informally, before proceeding to a more formal analysis.

1. For each epoch k, pq-check maintains a value f [k] that is the maximum value
that has been extracted after the kth epoch. In particular, at the very start of the
ith epoch, f [i− 1] = 0.

2. Each insert/extract of u is assigned to the earliest epoch “consistent” with the
current f values maintained by pq-check, i.e., � = min{k : f [k] ≤ u}. Each
ext(u) ∈ σEi is assigned to an epoch between 1 and i− 1 (this follows because the
extracts in σEi are in increasing order and f [i− 1] equals 0 when the first extract
in σEi is processed), while each ins(u) ∈ σIi is assigned to an epoch between 1 and
i. Importantly, for σ ∈ pq, each ext(u) will be assigned to the same epoch as the
most recent ins(u).

3. The algorithm maintains arrays X,Y , and Z to track information about occur-
rences of item u assigned to epoch k (we later use hashing techniques to reduce
the size of this information). Informally, X tracks the number of insertions of u
assigned to epoch k before the first extraction of u that is assigned to epoch k,
while Y tracks the number of extractions of u assigned to epoch k minus the num-
ber of insertions of u assigned to epoch k from the first extraction of u assigned
to epoch k onwards. A necessary condition is that these two counts should agree.
However, this counting alone fails to detect extractions of u that appear before the
corresponding insertions. Therefore, Z is used to identify the maximum “balance”
of u during epoch k. This should also match X if the sequence is correct, and we
later show that these are sufficient conditions to check membership in pq.

Define ft(k) = max{u : σi = ext(u), |σE1 . . . σIk | + 1 ≤ i ≤ t}. For u ∈ [U ] and
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t ∈ [N ], define b(t, u) = min{k : ft(k) ≤ u}. Given an interaction sequence σ and
u ∈ [U ], define

cnt(σ, u) := |{t : σt = ins(u)}| − |{t : σt = ext(u)}| .

Lemma 4.6. After processing the tth element, Algorithm 1 has computed f [k] =
ft(k), i.e., the maximum value extracted after the end of the kth epoch. For all k,
f [k] is nondecreasing as t increases.

Proof. Observe that Algorithm 1 updates f [k] only in line 8, for k < i, where the
current epoch is the ith epoch. The equivalence of f [k] and ft(k) follows immediately
by an inductive argument over t. f [k] = ft(k) is seen to be nondecreasing by inspection
of the definition of ft(k).

Lemma 4.7. Let Xt(k, u), Yt(k, u), and Zt(k, u) denote the values of X [k, u],
Y [k, u], and Z[k, u] after processing the tth element. Assume that the first t elements
of the interaction sequence are a prefix of some interaction sequence in pq, i.e., for all
j ∈ [t], (σj = ext(v) =⇒ v = min(Mj−1)), where {Mj}Nj=0 is the family of multisets
defined in (23). Then, for any u ∈ [U ] and k = b(t, u), we have

cnt(σ1: t, u) = Xt(k, u)− Yt(k, u) ,

and for k < b(t, u), Xt(k, u) = Yt(k, u).
Proof. Let u ∈ [U ] be an arbitrary element. We proceed by induction on t. The

lemma is true for t = 0, where X0(k, u) = Y0(k, u) = 0 for all k, u. For the inductive
step with k = b(t− 1, u), there are four cases to consider:

1. Case σt = ins(u). In this case b(t− 1, u) = b(t, u) = k. Therefore,

cnt(σ1: t, u) = cnt(σ1: t−1, u) + 1 = 1 +Xt−1(k, u)− Yt−1(k, u)

= Xt(k, u)− Yt(k, u) .

The last step follows whether or not ft(b(t − 1, u)) = u (lines 12 and 13 in
Algorithm 1).

2. Case σt = ext(u). In this case b(t− 1, u) = b(t, u) = k. Therefore,

cnt(σ1: t, u) = cnt(σ1: t−1, u)− 1 = Xt−1(k, u)− (Yt−1(k, u) + 1)

= Xt(k, u)− Yt(k, u) .

3. Case σt = ins(v) for v 
= u or σt = ext(v) for v < u. In this case b(t− 1, u) =
b(t, u) = k. Therefore,

cnt(σ1: t, u) = cnt(σ1: t−1, u) = Xt−1(k, u)− Yt−1(k, u) = Xt(k, u)− Yt(k, u) .

4. Case σt = ext(v) for u < v. In this case we know that cnt(σ1: t−1, u) = 0. As-
sume it was not: then either there is a minimal prefix of σ for some j such that
cnt(σ1: j , u) < 0, which implies that σj = ext(u) but u 
= min(Mj−1); or else
cnt(σ1: t−1, u) > 0, which implies that v 
= min(Mt−1), since min(Mt−1) ≤
u < v. Either way, we contradict our assumption on σ. Therefore,

cnt(σ1: t, u) = cnt(σ1: t−1, u) = Xt−1(b(t− 1, u), u)− Yt−1(b(t− 1, u), u)

= Xt(b(t− 1, u), u)− Yt(b(t− 1, u), u) .

If b(t− 1, u) = b(t, u), we are done, but it is possible that b(t− 1, u) 
= b(t, u).
This is because following this extraction, for all 1 ≤ � < i, we set f [�] to
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max(f [�], v) > u, which forces b(t, u) = i, where i is the current epoch. But
then Xt(b(t, u), u) = Yt(b(t, u), u) = 0, since no inserts or extracts of u can
yet have been associated with epoch i. Hence, even if b(t − 1, u) 
= b(t, u),
cnt(σ1: t, u) = Xt(k, u)− Yt(k, u) for k = b(t, u).

In all cases, for k < b(t− 1, u), we observe that Algorithm 1 does not modify X [k, u]
or Y [k, u] and these are already equal by the induction hypothesis. If k = b(t−1, u) <
b(t, u), then, as reasoned in case 4 above, we haveXt(k, u) = Yt(k, u) as required.

Theorem 4.8. If σ /∈ pq, Algorithm 1 rejects; else it accepts.

Proof. If σ /∈ pq, consider the minimum t such that σt = ext(u) and u 
=
min(Mt−1). Let k = b(t − 1, u). There are two possibilities. First, suppose u /∈
Mt−1. Then, by Lemma 4.7, before processing σt, Xt−1(k, u)− Yt−1(k, u) = 0. After
processing σt, we have Yt(k, u) = Yt−1(k, u) + 1. Hence,

Zt(k, u) ≥ Yt(k, u) > Xt(k, u) .

Since Zs(k, u) is nondecreasing in s and Xs(k, u) = Xt(k, u) for s > t after f(k)
becomes equal to u, at the end of the algorithm ZN (k, u) 
= XN(k, u). Hence the
algorithm rejects σ. Otherwise, suppose u ∈ Mt−1 but min(Mt−1) = v 
= u. Then
cnt(σ1: t−1, v) > 0. Let k = b(t−1, v), and by Lemma 4.7, Xt−1(k, v)−Yt−1(k, v) > 0.
Once ext(u) is processed, f [k] is increased to u, and hence Xs(k, v) > Ys(k, v) for all
s > t, and the algorithm rejects.

If σ ∈ pq, then by Lemma 4.7, at t = N , Xt(k, u) − Yt(k, u) = 0 for all u, k.
Consequently, Zt(k, u) ≥ Yt(k, u) = Xt(k, u) for all k, u. Since cnt(σt, u) ≥ 0 for any
σ ∈ pq, Yt(k, u) ≤ Xt(k, u) for all t. Hence Zt(k, u) ≤ Xt(k, u), and so XN = YN =
ZN , and the algorithm accepts.

Local consistency. We now consider a substring σ′ of σ and show that if it does
not violate some local conditions, then without loss of generality it can be assumed
to be in a specific form.

Definition 4.9. We say σ′ is locally consistent if both of the following hold:

1. For all i < k, u < v : (σ′
i = ins(u)) ∧ (σ′

k = ext(v))⇒ (cnt(σ′
i+1: k−1, u) < 0).

2. For all i < k, u > v : (σ′
i = ext(u)) ∧ (σ′

k = ext(v))⇒ (cnt(σ′
i+1: k−1, v) > 0).

For example, the substring 〈ins(5), ext(2), ins(3), ins(9), ext(3), ins(4), ext(4)〉 is
locally consistent, whereas the substring 〈ins(5), ins(3), ins(9), ext(3), ext(2), ins(4),
ext(4), ins(9)〉 is not. Observe that if σ′ is not locally consistent, then σ /∈ pq, since
the identified substring includes an extraction of an item which cannot be the smallest
in the priority queue.

Lemma 4.10. Given σ = σprefσ′σsuff, if σ′ is locally consistent, then there exists a
mapping γ(σ′) = σaσbσcσd such that σprefσ′σsuff ∈ pq iff σprefγ(σ′)σsuff ∈ pq. Here,
σa and σc are both sequences of extracts in increasing order; and σb and σd are both
sequences of inserts. The algorithm sub-check tests whether σ′ is locally consistent
and, if so, computes γ(σ′) in time O(|σ′| log |σ′|).

Proof. We initially define the mapping γ procedurally based on local rearrange-
ments of the locally consistent σ′ which maintain local consistency. First consider all
adjacent character pairs of the form ins(u), ext(v). Since the string is locally consis-
tent, u ≥ v. Whenever u > v, we interchange these characters to obtain ext(v), ins(u),
without affecting local consistency or membership in pq. Hence, we may assume that
for every two adjacent characters ins(u), ext(v), we have u = v; i.e., the pair represents
an insertion followed immediately by an extraction of the same item. This generates
a string α(σ′) that satisfies σprefα(σ′)σsuff ∈ pq iff σprefσ′σsuff ∈ pq.
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We next define two rearrangement rules on substrings of length three in α(σ′). If
applied to a string that was not locally consistent, they could “fix” errors and lead to
strings which are in pq; however, since they are applied to locally consistent strings,
the rearrangement preserves membership in pq:

1. ins(u) ext(u) ext(v)→ ext(v) ins(u) ext(u).
2. ins(v) ins(u) ext(u)→ ins(u) ext(u) ins(v).

By repeatedly applying these rearrangement rules to α(σ′) until no further rear-
rangement is possible we obtain β(σ′). Define the potential function Φ over interaction
sequences as Φ(σ) =

∑
σi=ext(u) i. Observe that each rearrangement reduces Φ by 1,

so the process terminates. Let β(σ′) denote the final permutation, and note that
σprefβ(σ′)σsuff ∈ pq iff σprefσ′σsuff ∈ pq. Then, for some t1, t2, t3, the permutation
β(σ′) has the form

〈ext(v1), . . . , ext(vt1), ins(w1), ext(w1), ins(w2),

ext(w2), . . . , ins(wt2 ), ext(wt2), ins(u1), . . . , ins(ut3)〉 ,

where v1 ≤ v2 ≤ · · · ≤ vt1 . For w = max{w1, . . . , wt2}, define γ(σ′) = σaσbσcσd,
where

σa = 〈ext(v1), . . . , ext(vt1)〉 ,
σb = 〈ins(w)〉 ,
σc = 〈ext(w)〉 ,
σd = 〈ins(u1), . . . , ins(ut3)〉 .

For example, σ′ = 〈ins(5), ext(2), ins(3), ins(9), ext(3), ins(4), ext(4)〉 becomes

γ(σ′) = 〈ext(2), ins(4), ext(4), ins(5), ins(9)〉 .

Observe that σprefγ(σ′)σsuff ∈ pq iff σprefβ(σ′)σsuff ∈ pq and σprefσ′σsuff ∈ pq iff
σprefγ(σ′)σsuff ∈ pq.

We next show that it is possible to test local consistency and compute γ(σ′)
directly in O(|σ′| log |σ′|) time. Consider sub-check in Algorithm 2.

We begin by arguing that Algorithm 2 correctly determines whether σ′ is locally
consistent. First observe that I records the multiset of items which have been inserted
in σ′ and not yet extracted. A violation of condition 1 in Definition 4.9 is detected in
line 7, where the existence of m ∈ I with m < v indicates that an insufficient number
of ext(m) have occurred before the ext(v) being considered.

A violation of condition 2 is detected in line 10: this is when the current character
is ext(v) but there was an ext(u) for u > v earlier but no subsequent ins(v) that could
be matched with the current ext(v). This is monitored via two variables, f and w.
w is the maximum value extracted that is matched to an insertion happening within
σ′. f is the most recent value extracted that is not matched within σ′. Observe that
because of the test in line 10, f is nondecreasing. Consequently, max(f, w) is the
largest value extracted so far. If there is some u > v such that ext(u) occurs in σ′

before ext(v), then max(f, w) ≥ u > v. Hence, it suffices to track only the greatest
extracted item in σ′. We can be sure that there is no ins(v) matching the ext(v), since
m = min(Mi) > v: if v were matched, it would be present in I and found as m.

The algorithm computes γ correctly: I is the multiset of items that are inserted
but not extracted in σ, and E is the multiset of items that are extracted without a
matching insert in σ′. As noted above, w tracks the greatest item which is inserted
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Algorithm 2. sub-check

1: input σ′

2: f ← 0; w ← 0; E ← ∅; I ← {∞}
3: for i ∈ [|σ′|] do
4: if σ′

i = ins(u) then I ← I ∪ {u}
5: if σ′

i = ext(v) then
6: m← min(I)
7: if (v > m) then reject
8: if (v = m) then I ← I \ {v}; w ← max(w, v)
9: if (v < m) then

10: if v < max(f, w) then reject
11: f ← v; E ← E ∪ {v}
12: end if
13: end if
14: end for
15: output 〈ext(v1), . . . , ext(v|E|), ins(w), ext(w), ins(u1), . . . , ins(u|I|)〉, where vi and

ui are the ith smallest values of E and I, respectively

and subsequently extracted in σ′, so the output has the necessary form. Implementing
I and E as priority queues means that each character is processed in O(log |σ′|) time,
giving total O(|σ′| log |σ′|) time and O(|σ′|) space.

Consequently, by breaking σ into sequential substrings of length l =
√
N and

reordering each substring using the sub-check algorithm (unless we determine the
substring is not locally consistent) we may ensure that the interaction sequence has
the form σ = σE1σI1σE2σI2 . . . σErσIr , where r = O(

√
N). Alternatively, if only an

approximate value of N is known in advance, we break σ into sequential substrings of
lengths 1, 2, 3, 4, . . . . This still ensures that the interaction sequence has the form σ =
σE1σI1σE2σI2 . . . σErσIr for r = O(

√
N) and that the sub-check is run on strings of

length O(
√
N). This follows because

∑
i∈[

√
2N+1] i =

√
2N(
√
2N + 1)/2 > N . Note

that we will still need a polynomial upper bound on N to ensure the correctness of
the hashing used in the following theorem.

Proof of Theorem 4.5. The final algorithm runs pq-check and sub-check in
parallel. Rather than maintain the arrays X,Y , and Z explicitly in pq-check, it
suffices to keep a linear hash (which serves as a homomorphic fingerprint) of each
array. These fingerprints can be compared, and if they match in line 16, then, with
high probability, the arrays agree. In line 7 we need to perform a max operation
between two values. This can be done by maintaining Y [k, ft(k)] and Z[k, ft(k)]
explicitly for each k. At any time, there are at most r such values that are needed:
observe that when ft+1(k) > ft(k), Y [k, ft(k)] and Z[k, ft(k)] are never subsequently
altered. The new values for Y [k, ft+1(k)] and Z[k, ft+1(k)] are initialized to 0. Hence,
the space of the algorithm is O(r) words to store the Y [k, f [k]], Z[k, f [k]], and f [k]
values and a constant number of fingerprints to represent X,Y , and Z.

The space required by sub-check is O(
√
N logU) bits, and by the above argu-

ment, pq-check can be implemented in O(
√
N(logN + logU)) bits.

4.3. Passive checking of stacks, queues, and deques.

Stack. Let stack denote the language over interaction sequences that corresponds
to stack operations. Now ins(u) corresponds to an insertion of u to a stack, and ext(u)
is an extraction of u from the stack. Then σ ∈ stack iff σ corresponds to a valid



AUGMENTED INDEX AND STREAMING LANGUAGE RECOGNITION 81

transcript of operations on a stack which starts and ends empty. That is, the state of
the stack at any step j can be represented by a string Sj so that S0 = ∅, Sj = uSj−1

if σj = ins(u) and Sj = Sj−1
2:|Sj−1| if σj = ext(u). Then σ ∈ stack for |σ| = N iff

SN = ∅ and ∀j ∈ [N ], (σj = ext(u) =⇒ u = Sj−1
1 ) .

For example,

〈ins(5), ins(3), ext(3), ins(7), ext(7), ext(5)〉 ∈ stack ,

whereas 〈ins(5), ins(3), ext(3), ins(7), ext(5), ext(7)〉 
∈ stack.
Theorem 4.11. Every 1

3 -error, p-pass, s-space randomized streaming algorithm

to recognize stack on length N streams must satisfy ps = Ω(
√
N). It is possible to

recognize stack in one pass with O(
√
N logN) bits of space with high probability.

Proof. First, we observe that for U = 2, dyck(U) = stack if we associate ins(u)
with u and ext(u) with ū. Therefore, the lower bound follows immediately. For the
upper bound, the one-pass algorithm from [21] to recognize dyck(2) can be used to
recognize stack over arbitrary U by appealing to the reduction from dyck(U) to
dyck(2).

We note that the algorithm of [21] for recognizing dyck(2) can be used directly
to recognize dyck(U) rather than requiring us to go via the reduction from dyck(U)
to dyck(2). In outline, the algorithm of [21] when applied to dyck(U) works as
follows. The input string is broken into blocks of length

√
N . Within each block,

any adjacent pair of the form 〈ins(u), ext(u)〉 can be matched and removed. When
no further removals of pairs are possible, the block now has the form of a prefix of
extracts followed by a suffix of inserts. The algorithm keeps a stack of hashes of (item,
height) pairs, along with the number of items summarized in each hash. Each item
extract in the block, along with the current height, is removed from the hash on the
top of the stack, until the hash supposedly represents no items. If the hash is not
identically zero, the algorithm rejects. Otherwise, the procedure proceeds to the next
hash on the stack, until the prefix of extracts is exhausted. Then the inserted items
are hashed with their current height to build a single new hash value which is pushed
onto the top of the stack.

Queue. Let queue denote the language over interaction sequences that corre-
spond to queues. That is, the state of the queue at any step j can be represented
by a string Qj so that Q0 = ∅, Qj = Qj−1u if σj = ins(u), and Qj = Qj−1

2:|Qj−1| if
σj = ext(u). Then σ ∈ queue for |σ| = N iff

QN = ∅ and ∀j ∈ [N ], (σj = ext(u) =⇒ u = Qj−1
1 ) .

As observed in [5], it is possible to recognize queue with a single pass and
O(logN) space: we use a single fingerprint to check that the value of the ith in-
sert equals the value of the ith extract for all i ∈ [N ].

Deque. Let deque denote the language over interaction sequences that corre-
sponds to double-ended queues. That is, there are now two types of insert and extract
operations, one operation for the head and one for the tail. Clearly, since a deque can
simulate a stack via operations on the tail only, recognizing deque is at least as hard
as recognizing stack. For the upper bound, it is possible to adapt the algorithm of
[21]. Again, each block of

√
N operations is partitioned into a prefix of extractions

(to head and tail) and insertions (to head and tail). Now we maintain a deque of hash
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values of item, height pairs. Each extract to the head is applied to the hash at the
head of the deque of hashes, and each extract to the tail is applied to the hash at the
tail of the deque. The same check is applied: any hash which should now summarize
no items must be identically zero (otherwise, the algorithm rejects). Inserts to the
head are parceled up into a hash which is placed at the head of the deque, and inserts
to the tail are placed in a hash at the tail of the deque. Then we accept σ if after
processing σ the algorithm reaches an empty deque and has not rejected at any point.
This gives the following theorem.

Theorem 4.12. Every 1
3 -error, p-pass, s-space randomized streaming algorithm

to recognize deque on length N streams must satisfy ps = Ω(
√
N). It is possible to

recognize deque in one pass with O(
√
N logN) bits of space with high probability.

4.4. Variations with timestamps. As noted in the introduction, the results of
Blum et al. [5] can be viewed as recognizing languages where each ext(u) is augmented
with the timestamp of its matching ins(u) and is denoted by ext(u, t). These languages
are defined as before, but with the additional constraints that each t ∈ [N ] appears
at most once across all extracts and

∀j ∈ [N ], (σj = ext(v, t) =⇒ σt = ins(v)) .

This defines the variant languages queue-ts, stack-ts, deque-ts, and pq-

ts. The observations of Blum et al. [5] imply that verifying strings in stack-ts

and queue-ts (and ensuring that all the timestamps are also consistent) requires
only O(logN) space. The same argument also gives an O(logN) bound for deques.
For pq-ts, the problem seems harder: Chu, Kannan, and McGregor [11] gave an

Õ(
√
N) streaming algorithm which relied heavily on the presence of timestamps (and

hence does not recognize pq without timestamps). We leave as an open question the
problem of fully resolving the complexity of recognizing priority queue sequences with
timestamps, since the reduction via augmented indexing no longer holds in this case.
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