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Abstract. We present the first algorithms for processing graphs in the sliding-
window model. The sliding window model, introduced by Datar et al. (SICOMP
2002), has become a popular model for processing infinite data streams in small
space when older data items (i.e., those that predate a sliding window contain-
ing the most recent data items) are considered “stale” and should implicitly be
ignored. While processing massive graph streams is an active area of research, it
was hitherto unknown whether it was possible to analyze graphs in the sliding-
window model. We present an extensive set of positive results including algo-
rithms for constructing basic graph synopses like combinatorial sparsifiers and
spanners as well as approximating classic graph properties such as the size of a
graph matching or minimum spanning tree.

1 Introduction

Massive graphs arise in any application where there is data about both basic entities
and the relationships between these entities, e.g., web-pages and hyperlinks; papers and
citations; IP addresses and network flows; phone numbers and phone calls; Tweeters
and their followers. Graphs have become the de facto standard for representing many
types of highly-structured data. Furthermore, many interesting graphs are dynamic, e.g.,
hyperlinks are added and removed, citations hopefully accrue over time, and the volume
of network traffic between two IP addresses may vary depending on the time of day.

Consequently there is a growing body of work on designing algorithms for analyz-
ing dynamic graphs. This includes both traditional data structures where the goal is to
enable fast updates and queries [16, 22–24, 29] and data stream algorithms where the
primary goal is to design randomized data structures of sublinear size that can answer
queries with high probability [2, 3, 17, 18, 25, 27, 30]. The paper focuses on the latter:
specifically, processing graphs using sublinear space in the sliding-window model. Al-
though our focus isn’t on update time, many of our algorithms can be made fast by
using standard data structures.

Dynamic Graph Streams. Almost all of the existing work on processing graph streams
considers what is sometimes referred to as the partially-dynamic case where the stream
consists of a sequence of edges 〈e1, e2, e3, . . .〉 and the graph being monitored consists
of the set of edges that have arrived so far. In other words, the graph is formed by a se-
quence of edge insertions. Over the last decade, it has been shown that many interesting
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problems can be solved using O(npolylog n) space, where n is the number of nodes
in the graph. This is referred to as the semi-streaming space restriction [18]. It is only
in the last year that semi-streaming algorithms for the fully-dynamic case, where edges
can be inserted and deleted, have been discovered [2, 3]. A useful example illustrating
why the fully-dynamic case is significantly more challenging is testing whether a graph
is connected. If there are only insertions, it suffices to track which nodes are in which
connected component since these components only merge over time. In the dynamic
case, connected components may also subdivide if bridge edges are deleted.

Sliding-Window Model. The sliding-window model, introduced by Datar et al. [14],
has become a popular model for processing infinite data streams in small space when
the goal is to compute properties of data that has arrived in the last window of time.
Specifically, given an infinite stream of data 〈a1, a2, . . . 〉 and a function f , at time
t we need to return an estimate of f(at−L+1, at−L+2, . . . , at). We refer to 〈at−L+1,
at−L+2, . . . , at〉 as the active window where L is length of this window. The length
of the window could correspond to hours, days, or years depending on the application.
The motivation is that by ignoring data prior to the active window, we focus on the
“freshest” data and can therefore detect anomalies and trends more quickly. Existing
work has considered estimating various numerical statistics and geometric problems in
this model [5–8,11,12,19], as well developing useful techniques such as the exponential
histogram [14] and smooth histogram data structures [11, 12].

1.1 Our Contributions

The paper initiates the study of processing graphs in the sliding-window model where
the goal is to monitor the graph described by the last L entries of a stream of inserted
edges. Note the following differences between this model and fully-dynamic model. In
the sliding-window model the edge deletions are implicit, in the sense that when an edge
leaves the active window it is effectively deleted but we may not know the identity of
the deleted edge unless we store the entire window. In the case of fully-dynamic graph
streams, the identity of the deleted edge is explicit but the edge could correspond to any
of the edges already inserted but not deleted.

We present semi-streaming algorithms in the sliding-window model for various
classic graph problems including testing connectivity, constructing minimum spanning
trees, and approximating the size of graph matchings. We also present algorithms for
constructing graph synopses including sparsifiers and spanners. We say a subgraph H
of G is a (2t− 1)-spanner if:

∀u, v ∈ V : dG(u, v) ≤ dH(u, v) ≤ (2t− 1)dG(u, v)

where dG(u, v) and dH(u, v) denote the distance between nodes u and v in G and H
respectively. We say a weighted subgraph H of G is a (1 + ε) sparsifier if

∀U ⊂ V : (1− ε)λG(U) ≤ λH(u, v) ≤ (1 + ε)λG(U)

where λG(U) and λH(U) denote the weight of the cut (U, V \ U) in G and H respec-
tively. A summary of our results can be seen in Table 1 along with the state-of-the-art
results for these problems in the insert-only and insert/delete models.
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Insert-Only Insert-Delete Sliding Window (this paper)
Connectivity Deterministic [18] Randomized [2] Deterministic
Bipartiteness Deterministic [18] Randomized [2] Deterministic

(1 + ε)-Sparsifier Deterministic [1] Randomized [3, 21] Randomized
(2t− 1)-Spanners O(n1+1/t) space [9, 15] None O(L1/2n(1+1/t)/2) space

Min. Spanning Tree Exact [18] (1 + ε)-approx. [2] (1 + ε)-approx.
Unweighted Matching 2-approx. [18] None (3 + ε)-approx.

Weighted Matching 4.911-approx. [17] None 9.027-approx.

Table 1: Single-Pass, Semi-Streaming Results: All the above algorithms use
O(npolylog n) space with the exception of the spanner constructions.

2 Connectivity and Graph Sparsification

We first consider the problem of testing whether the graph is k-edge connected for a
given k ∈ {1, 2, 3 . . .}. Note that k = 1 corresponds to testing connectivity. To do this,
it is sufficient to maintain a set of edges F ⊆ {e1, e2, . . . , et} along with the time-of-
arrival toa(e) for each e ∈ F where F satisfies the following property:

– Recent Edges Property. For every cut (U, V \ U), the stored edges F contain the
most recent min(k, λ(U)) edges across the cut where λ(U) denotes the total num-
ber of edges from {e1, e2, . . . , et} that cross the cut.

Then, we can easily tell whether the graph on the active edges, 〈et−L+1, et−L+2,
. . . , et〉, is k-connected by checking whether F would be k-connected once we remove
all edges e ∈ F where toa(e) ≤ t − L. This follows because if there are k or more
edges among the last L edges across a cut, F will include the k most recent of them.

Algorithm. The following simple algorithm maintains a set F with the above prop-
erty. The algorithm maintains k disjoint sets of edges F1, F2, . . . , Fk where each Fi is
acyclic. Initially, F1 = F2 = . . . = Fk = ∅ and on seeing edge e in the stream, we
update the sets as follows:

1. Define the sequence f0, f1, f2, f3, . . . where f0 = {e} and for each i ≥ 1, fi
consists of the oldest edge in a cycle in Fi ∪ fi−1 if such a cycle exists and fi = ∅
otherwise. Since each Fi is acyclic, there will be at most one cycle in each Fi∪fi−1.

2. For i ∈ {1, 2, . . . , k},
Fi ← (Fi ∪ fi−1) \ fi

In other words, we add the new edge e to F1. If it completes a cycle, we remove the
oldest edge on this cycle and add that edge to F2. If we now have a cycle in F2, we
remove the oldest edge on this cycle and add that edge to F3. And so on. By using an
existing data structure for constructing online minimum spanning trees [28], the above
algorithm can be implemented with O(k log n) update time.

Lemma 1. F = F1 ∪ F2 ∪ . . . ∪ Fk satisfies the Recent Edges Property.
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Proof. Fix some i ∈ [k] and a cut (U, V \ U). Observe that the youngest edge y ∈ Fi
crossing a cut (U, V \U) is never removed from Fi since its removal would require it to
be the oldest edge in some cycle C. This cannot be the case since there must be an even
number of edges in C that cross the cut and so there is another edge x ∈ C crossing the
cut. This edge must have been older than y since y was the youngest.

It follows that F1 always contains the youngest edge crossing any cut, and by in-
duction on i, the ith youngest edge crossing any cut is contained in

⋃i
j=1 Fj . This is

true because this edge was initially added to F1 ⊆
⋃i
j=1 Fj , and cannot leave

⋃i
j=1 Fj .

That is, for the ith youngest edge to leave Fi, there would have to be a younger crossing
edge in Fi, but, inductively, any such edge is contained in

⋃i−1
j=1 Fj . ut

Theorem 1. There exists a sliding-window algorithm for monitoring k-connectivity us-
ing O(kn log n) space.

2.1 Applications: Bipartiteness and Graph Sparsification

Bipartiteness. To monitor whether a graph is bipartite, we run the connectivity tester
on the input graph and also simulate the connectivity tester on the cycle double cover
of the input graph. The cycle double cover D(G) of a graph G = (V,E) is formed
by replacing each node v ∈ V by two copies v1 and v2 and each edge (u, v) ∈ E
by the edges (u1, v2) and (u2, v1). Note that this transformation can be performed in
a streaming fashion. Furthermore, D(G) has exactly twice the number of connected
components as G iff G is bipartite [2].

Theorem 2. There exists a sliding-window algorithm for monitoring bipartiteness us-
ing O(n log n) space.

Graph Sparsification. Using the k-connectivity tester as a black-box we can also con-
struct a (1 + ε)-sparsifier following the approach of Ahn et al. [3]. The approach is
based upon a result by Fung et al. [20] that states that sampling each edge e with prob-
ability pe ≥ min

{
253λ−1e ε−2 log2 n, 1

}
, where λe is the size of the minimum cut that

includes e, and weighting the sampled edges by 1/pe results in a (1+ ε) sparsifier with
high probability. To emulate this sampling without knowing λe values, we subsample
the graph stream to generate sub-streams that define O(log n) graphs G0, G1, G2, . . .
where each edge is in Gi with probability 2−i. For each i, we store the set of edges
F (Gi) generated by the k-connectivity algorithm. If k = Θ(ε−2 log2 n), then note that
e is in some F (Gi) with probability at least min{Ω(λ−1e ε−2 log2 n), 1} as required.
See Ahn et al. [3] for further details.

Theorem 3. There exists a sliding-window algorithm for maintaining a (1+ ε) sparsi-
fier using O(ε−2n polylog n) space.

3 Matchings

We next consider the problem of finding large matchings in the sliding-window model.
We first consider the unweighted case, maximum cardinality matching, and then gener-
alize to the weighted case.
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3.1 Maximum Cardinality Matching

Our approach for estimating the size of the maximum cardinality matching combines
ideas from the powerful “smooth histograms” technique of Braverman and Ostrovsky
[11, 12] with the fact that graph matchings are submodular and satisfy a “smooth-like”
condition.

Smooth Histograms. The smooth histogram technique gives a general framework for
maintaining an estimate of a function f on a sliding window provided that f satisfies a
certain set of conditions. Among these conditions are:

1. Smoothness: For any α ∈ (0, 1) there exists β ∈ (0, α] such that

f(B) ≥ (1− β)f(AB) implies f(BC) ≥ (1− α)f(ABC) (1)

where A, B, and C are disjoint segments of the stream and AB,BC,ABC denote
concatenations of these segments.

2. Approximability: There exists a sublinear space stream algorithm that returns an
estimate f̃(A) for f evaluated on a (non-sliding-window) stream A, such that

(1− β/4)f(A) ≤ f̃(A) ≤ (1 + β/4)f(A)

The basic idea behind smooth histograms is to approximate f on various suffixes
B1, B2, . . . , Bk of the stream where B1 ⊇ W ) B2 ) · · · ) Bk and W is the active
window. We refer to the Bi as “buckets.” Roughly speaking, if we can ensure that
f(Bi+1) ≈ (1− ε)f(Bi) for each i then f(B2) is a good approximation for f(W ) and
we will only need to consider a logarithmic number of suffixes. We will later present the
relevant parts of the technique in more detail in the context of approximate matching.

Matchings are Almost Smooth. Let m(A) denote the size of the maximum matching on
a set of edges A. Unfortunately, the function m does not satisfy the above smoothness
condition and cannot be approximated to sufficient accuracy. It does however satisfy a
“smooth-like” condition:

Lemma 2. For disjoint segments of the stream A, B, and C and for any β > 0:

m(B) ≥ (1− β)m(AB) implies m(BC) ≥ 1

2
(1− β)m(ABC) (2)

Proof. 2m(BC) ≥ m(B)+m(BC) ≥ (1−β)m(AB)+m(BC) ≥ (1−β)m(ABC).
The last step follows since m(AB) +m(BC) ≥ m(A) +m(BC) ≥ m(ABC). ut

The best known semi-streaming algorithm for approximating m on a stream A is a
2-approximation and a lower bound 1.582 has recently been proved [25]. Specifically,
let m̂(A) be the size of the greedy matching on A. Then it is easy to show that

m(A) ≥ m̂(A) ≥ m(A)/2 (3)
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Unfortunately, it is not possible to maintain a greedy matching over a sliding win-
dow.1 However, by adjusting the analysis of [12], properties (2) and (3) suffice to show
that smooth histograms can obtain an (8+ ε)-approximation of the maximum matching
in the sliding-window model. However, by proving a modified smoothness condition
that takes advantage of relationships between m and m̂, and specifically the fact that m̂
is maximal rather than just a 2-approximation, we will show that a smooth histograms-
based approach can obtain a (3 + ε)-approximation.

Lemma 3. Consider any disjoint segmentsA,B,C of a stream of edges and β ∈ (0, 1).

m̂(B) ≥ (1− β)m̂(AB) implies m(ABC) ≤
(
3 +

2β

1− β

)
m̂(BC) .

Note that it the size of the maximum matching onABC that is being compared with the
size of the greedy matching on BC. Also to see that the above lemma is tight for any
β ∈ (0, 1) consider the following graph on O(n) nodes:

u z z

û v̂

(1− β)n copies

u

û

u

βn copies

and let A be the stream of the û edges (which are placed in greedy matching) followed
the u edges; B are the v̂ edges, and C are the z edges. Then m̂(AB) = n, m̂(B) =
(1− β)n = m̂(BC), and m(ABC) = (3− β)n.

Proof (Lemma 3). Let M(X) and M̂(X) be the set of edges in an optimal matching
on X and a maximal matching on X . We say that an edge in a matching covers the two
nodes which are its endpoints.

We first note that every edge in M(ABC) covers at least one node which is cov-
ered by M̂(AB) ∪ M̂(BC); otherwise, the edge could have been added to M̂(AB) or
M̂(BC) or both. SinceM(ABC) is a matching, no two of its edges can cover the same
node. Thus m(ABC) is at most the number of nodes covered by M̂(AB) ∪ M̂(BC).

The number of nodes covered by M̂(AB)∪ M̂(BC) is clearly at most 2m̂(AB) +
2m̂(BC). But this over-counts edges in M̂(B). Every edge in M̂(B) is clearly in

1 Maintaining the matching that would be generated by a greedy algorithm on the active window
requires Ω(min(n2, L)) space since it would always contain the oldest edge in the window
and advancing the window allows us to recover all the edges. Similarly, it is not possible to
construct the matching that would be returned by a greedy algorithm on reading the active
window in reverse. This can be seen to require Ω(n2) space even in the unbounded-stream
model via reduction from INDEX. Alice considers the possible edges on an n-clique, and in-
cludes an edge iff the corresponding bit of her input is a 1. Bob then adds edges forming
a perfect matching on all nodes except the endpoints of an edge of interest. The backwards
greedy matching on the resulting graph consists of all of Bob’s edges, plus one additional edge
iff Alice’s corresponding bit was a 1.
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M̂(BC); also, every edge in M̂(B) shares at least one node with an edge in M̂(AB)
since the construction was greedy. Thus we find

m(ABC) ≤ 2m̂(BC) + 2m̂(AB)− m̂(B)

≤ 2m̂(BC) +
2

1− β
m̂(B)− m̂(B)

= 2m̂(BC) +
1 + β

1− β
m̂(B)

≤
(
3 +

2β

1− β

)
m̂(BC) .

where the second inequality follows from the assumption m̂(B) ≥ (1−β)m̂(AB). ut

Theorem 4. There exists a sliding-window algorithm for maintaining a (3+ε) approx-
imation of the maximum cardinality matching using O(ε−1n log2 n) space.

Proof. We now use the smooth histograms technique to estimate the maximum match-
ing size. The algorithm maintains maximal matchings over various buckets B1, . . . , Bk
where each bucket comprises of the edges in some suffix of the stream. Let W be the
set of updates within the window. The buckets will always satisfy B1 ⊇ W ) B2 )
· · · ) Bk, and thus m(B1) ≥ m(W ) ≥ m(B2).

Within each bucket B, we will keep a greedy matching whose size we denote by
m̂(B). To achieve small space usage, whenever two nonadjacent buckets have greedy
matchings of similar size, we will delete any buckets between them. Lemma 3 tells
us that if the greedy matchings of two buckets have ever been close, then the smaller
bucket’s greedy matching is a good approximation of the size of the maximum matching
on the larger bucket.

When a new edge e arrives, we update the buckets B1, . . . , Bk and greedy match-
ings m̂(B1), . . . , m̂(Bk) as follows where β = ε/4:

1. Create a new empty bucket Bk+1.
2. Add e to the greedy matching within each bucket if possible.
3. For i = 1 . . . k − 2:

(a) Find the largest j > i such that m̂(Bj) ≥ (1− β)m̂(Bi)
(b) Delete Bt for any i < t < j and renumber the buckets.

4. If B2 contains the entire active window, delete B1 and renumber the buckets.

Space Usage: Step 3 deletes “unnecessary” buckets and therefore ensures that for all
i ≤ k − 2 then m̂(Bi+2) < (1 − β)m̂(Bi). Since the maximum matching has size
at most n, this ensures that the number of buckets is O(ε−1 log n). Hence, the total
number of bits used to maintain all k greedy matchings is O(ε−1n log2 n).

Approximation Factor: We prove the invariant that for any i < k, either m̂(Bi+1) ≥
m(Bi)/(3 + ε) or |Bi| = |Bi+1| + 1 (i.e., Bi+1 includes all but the first edge of
Bi) or both. If |Bi| 6= |Bi+1| + 1, then we must have deleted some bucket B which

7



Bi ( B ( Bi+1. For this to have happened it must have been the case that m̂(Bi+1) ≥
(1− β)m̂(Bi) at the time. But then Lemma 3 implies that we currently satisfy:

m(Bi) ≤
(
3 +

2β

1− β

)
m̂(Bi+1) ≤ (3 + ε)m̂(Bi+1) .

Therefore, either W = B1 and m̂(B1) is a 2-approximation for m(W ), or we have

m(B1) ≥ m(W ) ≥ m(B2) ≥ m̂(B2) ≥
m(B1)

3 + ε

and thus m̂(B2) is a (3 + ε)-approximation of m(W ). ut

3.2 Weighted Matching

We next consider the weighted case where every edge e in the stream is accompanied
by a numerical value corresponding to its weight. We combine our algorithm for max-
imum cardinality matching with the approach of Epstein et al. [17] to give a 9.027
approximation. In this approach, we partition the set of edges into classes of geometri-
cally increasing weights and construct a large cardinality matching in each weight class.
We assume that the edge weights are polynomially bounded in n and hence there are
O(log n) weight classes.

Geometrically Increasing Edge Weights. Initially, we assume that for some constants
γ > 1, φ > 0, every edge has weight γiφ for some i ∈ {0, 1, 2, . . .}. Let Ei denote the
set of edges with weight γiφ. Our algorithm will proceed as follows:

1. For each i, use an instantiation of the maximum cardinality algorithm from the
previous section to maintain a matching Ai ⊆ Ei among the active edges.

2. LetR be the matching formed by greedily adding all possible edges fromA = ∪iAi
in decreasing order of weight.

The next lemma bounds the total weight of edges in A in terms of the total weight
of edges in R.

Lemma 4. w(R)/w(A) ≥ (γ − 1)/(γ + 1).

Note that the lemma is tight: consider the graph with a single edge of weight γk, itself
adjacent to two edges of each smaller weight γk−1, γk−2, . . .. If A = E, we have
w(R) = γk = (1− 2/(γ + 1))w(A).

Proof (Lemma 4). Consider the process of greedily constructing R. Call an edge e ∈ A
“chosen” when it is added to R, and “discarded” if some covering edge is added to R.
Edges which have not yet been chosen or discarded are said to be “in play”. Note that
once edges are discarded they cannot be added to R, and that the greedy construction
continues until no edges remain in play.

We bound the weight of edges discarded when an edge is chosen. For an edge to
be chosen, it must be the heaviest edge in play. None of its in-play neighbors can be
in the same weight class, because within each weight class we have a matching. Thus,
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when an edge is chosen, the edges discarded are all in smaller weight classes; there are
at most two edges discarded in each of these classes. If the edge e ∈ Ai is chosen, it
has weight γiφ. For each j < i there are at most two edges discarded with weight γjφ.
Let T (e) be the set of edges discarded when e ∈ Ai is chosen including e itself. Then,

w(e)

w(T (e))
=

γiφ

γiφ+ 2
∑i−1
j=0 γ

jφ
=

γi

γi + 2γi−1
∑i−1
j=0 γ

−j
≥ 1

1 + 2
γ−1

=
γ − 1

γ + 1

Since this holds for each chosen edge and all the edges appear in some T (e), we con-
clude

w(R) =
∑
e∈R

w(e) ≥ γ − 1

γ + 1

∑
e∈A

w(e) =
γ − 1

γ + 1
w(A)

as required. ut

Let OPT be the maximum-weight matching on E. w(OPT) is clearly at most the
sum of the optimum-weight matchings on each Ei. Thus we have

Corollary 1. If eachAi is an (3+ε) approximation for the maximum cardinality match-
ing on Ei then

w(OPT) ≤ (3 + ε)
γ + 1

γ − 1
w(R) (4)

Arbitrary Edge Weights. We now reduce the case of arbitrary edge weights to the ge-
ometric case. Let OPT be the maximum-weight matching on G = (V,E,w) and let
OPT′ be the maximum weight matching on G′ = (V,E,w′φ) where w′φ(e) = γiφ for
some γ > 1, φ > 0 and i satisfies γi+1φ > w(e) ≥ γiφ. This ensures that

w(OPT) < γw′φ(OPT) ≤ γw′φ(OPT′) .

However, Epstein et al. show that there exists φ ∈ {γ0/q, γ1/q, γ2/q, . . . , γ1−1/q}
where q = O(logγ(1 + ε)) such that

w(OPT) ≤ (1 + ε)γ ln γ

γ − 1
w′φ(OPT) ≤ (1 + ε)γ ln γ

γ − 1
w′φ(OPT′) .

And so, if we run the above algorithm with respect to w′φ in parallel for each choice of
φ, we ensure that for some φ,

w(OPT) ≤ (1 + ε)γ ln γ

γ − 1
w′φ(OPT) ≤ (3 + ε) · (1 + ε)γ ln γ

γ − 1
· γ + 1

γ − 1
w(R) ,

by appealing to the analysis for geometrically increasing weights (Corollary 1). This is
minimized at γ ≈ 5.704 to give an approximation ratio of less than 9.027 when we set
ε to be some sufficiently small constant.

Theorem 5. There exists a sliding-window algorithm for maintaining a 9.027 approx-
imation for the maximum weighted matching using O(n log3 n) space.
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4 Minimum Spanning Tree

We next consider the problem of maintaining a minimum spanning forest in the sliding-
window model. We show that it is possible to maintain a spanning forest that is at most
a factor (1 + ε) from optimal but that maintaining the exact minimum spanning tree
requires Ω(max(n2, L)) space where L is the length of the sliding window.

The approximation algorithm is based on an idea of Chazelle et al. [13] where the
problem is reduced to finding maximal acyclic subgraphs, i.e., spanning forests, among
edges with similar weights. If each edge weight is rounded to the nearest power of
(1+ε), it can be shown that the minimum spanning tree in the union of these subgraphs
is a (1 + ε) approximation of the minimum spanning tree of the original graph. The
acyclic subgraphs can be found in the sliding-window model using the connectivity
algorithm we presented earlier. The proof of the next theorem is almost identical to
those in [2, Lemma 3.4].

Theorem 6. There exists a sliding-window algorithm for maintaining a (1+ε) approx-
imation for the minimum spanning tree using O(ε−1n log2 n) bits of space.

In the unbounded stream model, it was possible to compute the exact minimum
spanning tree via a simple algorithm: 1) add the latest edge to an acyclic subgraph that
is being maintained, 2) if this results in a cycle, remove the heaviest weight edge in the
cycle. However, the next theorem shows that maintaining an exact minimum spanning
tree in the sliding-window model is not possible in sublinear space.

Theorem 7. Maintaining an exact minimum spanning forest in the sliding-window
model requires Ω(min(L, n2)) space.

Proof. Let p = min(L, n2/4). The proof is by a reduction from the communication
complexity of the two-party communication problem INDEX(p) where Alice holds a
binary string a = a1a2 . . . ap and Bob has an index k ∈ [p]. If Alice sends a single
message to Bob that enables Bob to output ak with probability at least 2/3, then Alice’s
message must contain at Ω(p) bits [26].

Alice encodes her bits on the edges of a complete bipartite graph, writing in or-
der the edges (u1, v1), (u1, v2), (u1, v3), . . . , (u1, v√p), (u2, v1), . . . , (u2, v√p), . . . ,
(u√p, v√p) where the ith edge weight 2i + ai. Note that all these edges are in the cur-
rent active window. Suppose she runs a sliding-window algorithm for exact MST on
this graph and sends the memory state to Bob. Bob continues running the algorithm on
an arbitrary set of L−p+k−1 edges each of weight 2p+2. At this point any minimum
spanning forest in the active window must contain the edge of weight 2k+ak since it is
the lowest-cost edge in the graph. Bob can thus learn ak and hence the algorithm must
have used Ω(p) bits of memory. Note that if Bob can only determine what the MST
edges are, but not their weights, he can add an alternative path of weight 2k + 1/2 to
the node in question. ut

5 Graph Spanners

In the unbounded stream model, the following greedy algorithm constructs a 2t − 1
stretch spanner with O(n1+1/t) edges [4, 18]. We process the stream of edges in order;
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when seeing each edge (u, v), we add it to the spanner if there is not already a path
from u to v of length 2t− 1 or less. Any path in the original graph then increases by a
factor of at most 2t−1, so the resulting graph is a (2t−1)-spanner. The resulting graph
has girth at least 2t+ 1, so it has at most O(n1+1/t) edges [10].

For graphs G1, G2 on the same set of nodes, let G1 ∪G2 denote the graph with the
union of edges from G1 and G2. We will need the following simple lemma.

Lemma 5. Let G1 and G2 be graphs on the same set of nodes, and let H1 and H2 be
α-spanners of G1 and G2 respectively. Then H1 ∪H2 is an α-spanner of G1 ∪G2.

Proof. Let G = G1 ∪G2 and H = H1 ∪H2. For arbitrary nodes u, v, consider a path
of length dG(u, v). Each edge in this path is in G1 or G2 (or both). There is thus a path
between the edge’s endpoints in the corresponding H1 or H2 which is of length at most
α. Thus, there is a path of length at most αdG(u, v) in H = H1 ∪H2.

Theorem 8. There exists a sliding-window algorithm for maintaining a (2t− 1) span-
ner using O(

√
Ln1+1/t) space.

Proof. We batch the stream into blocksE1,E2,E3, . . . , where each consists of s edges.
We buffer the edges in each block until it has been read completely, marking each edge
with its arrival time. We then run the greedy spanner construction on each block in
reverse order, obtaining a spanner Si. By Lemma 5, the union of the spanners Si and
the edges in the current block, restricted to the active edges, is a spanner of the edges
in the active window. This algorithm requires space s to track the edges in the current
block. Each spanner Si hasO(n1+1/t) edges, and at mostL/s past blocks are within the
window. The total number of edges stored by the algorithm is thus s+(L/s)O(n1+1/t).
Setting s =

√
Ln1+1/t gives O(

√
Ln1+1/t) edges. ut

6 Conclusions

We initiate the study of graph problems in the well-studied sliding-window model. We
present algorithms for a wide range of problems including testing connectivity and con-
structing combinatorial sparsifiers; constructing minimum spanning trees; approximat-
ing weighted and unweighted matchings; and estimating graph distances via the con-
struction of spanners. Open problems include reducing the space required to construct
graph spanners and improving the approximation ratio when estimating matching size.

References

1. K. J. Ahn and S. Guha. Graph sparsification in the semi-streaming model. In ICALP (2),
pages 328–338, 2009.

2. K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear measurements.
In SODA, pages 459–467, 2012.

3. K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: sparsification, spanners, and sub-
graphs. In PODS, pages 5–14, 2012.
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