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Today’s one-pass analytics applications tend to be data-intensive in nature and require the ability to process
high volumes of data efficiently. MapReduce is a popular programming model for processing large datasets
using a cluster of machines. However, the traditional MapReduce model is not well-suited for one-pass ana-
lytics, since it is geared towards batch processing and requires the dataset to be fully loaded into the cluster
before running analytical queries. This article examines, from a systems standpoint, what architectural de-
sign changes are necessary to bring the benefits of the MapReduce model to incremental one-pass analytics.
Our empirical and theoretical analyses of Hadoop-based MapReduce systems show that the widely used sort-
merge implementation for partitioning and parallel processing poses a fundamental barrier to incremental
one-pass analytics, despite various optimizations. To address these limitations, we propose a new data anal-
ysis platform that employs hash techniques to enable fast in-memory processing, and a new frequent key
based technique to extend such processing to workloads that require a large key-state space. Evaluation of
our Hadoop-based prototype using real-world workloads shows that our new platform significantly improves
the progress of map tasks, allows the reduce progress to keep up with the map progress, with up to 3 orders of
magnitude reduction of internal data spills, and enables results to be returned continuously during the job.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Parallel processing, one-pass analytics, incremental computation

ACM Reference Format:
Li, B., Mazur, E., Diao, Y., McGregor, A., and Shenoy, P. 2012. SCALLA: A platform for scalable one-pass
analytics using MapReduce. ACM Trans. Database Syst. 37, 4, Article 27 (December 2012), 43 pages.
DOI = 10.1145/2389241.2389246 http://doi.acm.org/10.1145/2389241.2389246

1. INTRODUCTION

Today, real-time analytics on large, continuously updated datasets has become essen-
tial to meet many enterprise business needs. Like traditional warehouse applications,
real-time analytics using incremental one-pass processing tends to be data-intensive
in nature and requires the ability to collect and analyze enormous datasets efficiently.
At the same time, MapReduce has emerged as a popular model for parallel process-
ing of large datasets using a commodity cluster of machines. The key benefits of this
model are that it harnesses compute and I/O parallelism on commodity hardware and
can easily scale as the datasets grow in size. However, the MapReduce model is not
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well suited for incremental one-pass analytics since it is primarily designed for batch
processing of queries on large datasets. Furthermore, MapReduce implementations re-
quire the entire dataset to be loaded into the cluster before running analytical queries,
thereby incurring long latencies and making them unsuitable for producing incremen-
tal results.

In this article, we take a step towards bringing the many benefits of the MapReduce
model to incremental one-pass analytics. In the new model, the MapReduce system
reads input data only once, performs incremental processing as more data is read, and
utilizes system resources efficiently to achieve high performance and scalability. Our
goal is to design a platform to support such scalable, incremental one-pass analytics.
This platform can be used to support interactive data analysis, which may involve
online aggregation with early approximate answers, and, in the future, stream query
processing, which provides near real-time insights as new data arrives.

We argue that, in order to support incremental one-pass analytics, a MapReduce
system should avoid any blocking operations and also computational and I/O bottle-
necks that prevent data from “smoothly” flowing through map and reduce phases on
the processing pipeline. We further argue that, from a performance standpoint, the
system needs to perform fast in-memory processing of a MapReduce query program for
all, or most, of the data. In the event that some subset of data has to be staged to disks,
the I/O cost of such disk operations must be minimized.

Our recent benchmarking study evaluated existing MapReduce platforms, includ-
ing Hadoop and MapReduce Online (which performs pipelining of intermediate data
[Condie et al. 2010]). Our results revealed that the main mechanism for parallel pro-
cessing used in these systems, based on a sort-merge technique, is subject to significant
CPU and I/O bottlenecks as well as blocking: In particular, we found that the sort step
is CPU-intensive, whereas the merge step is potentially blocking and can incur signifi-
cant I/O costs due to intermediate data. Furthermore, MapReduce Online’s pipelining
functionality only redistributes workloads between the map and reduce tasks, and is
not effective for reducing blocking or I/O overhead.

Building on these benchmarking results, in this article we perform an in-depth anal-
ysis of Hadoop, using a theoretically sound analytical model to explain the empirical
results. Given the complexity of the Hadoop software and its myriad of configura-
tion parameters, we seek to understand whether these performance limitations are
inherent to Hadoop or whether tuning of key system parameters can overcome those
drawbacks from the standpoint of incremental one-pass analytics. Our key results are
two-fold: We show that our analytical model can be used to choose appropriate values
of Hadoop parameters, thereby reducing I/O and startup costs. However, both theoret-
ical and empirical analyses show that the sort-merge implementation, used to support
partitioned parallel processing, poses a fundamental barrier to incremental one-pass
analytics. Despite a range of optimizations, I/O and CPU bottlenecks as well as block-
ing persist, and the reduce progress falls significantly behind the map progress, hence
violating the requirements of efficient incremental processing.

We next propose a new data analysis platform, based on MapReduce, that is geared
for incremental one-pass analytics. Based on the insights from our experimental
and analytical evaluation of current platforms, we design two key mechanisms into
MapReduce:

Our first mechanism replaces the sort-merge implementation in MapReduce with a
purely hash-based framework, which is designed to address the computational and I/O
bottlenecks as well as the blocking behavior of sort-merge. We devise two hash tech-
niques to suit different reduce functions, depending on whether the reduce function
permits incremental processing or not. Besides eliminating the sorting cost from the
map tasks, these hash techniques can provide fast in-memory processing of the reduce
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function when the memory reaches a sufficient size as determined by the workload and
algorithm.

Our second mechanism further brings the benefits of fast in-memory processing
to workloads that require a large key-state space that far exceeds available memory.
We propose both deterministic and randomized techniques to dynamically recognize
popular keys and then update their states using a full in-memory processing path,
both saving I/Os and enabling early answers for these keys. Less popular keys trigger
I/Os to stage data to disk but have limited impact on the overall efficiency.

We have built a prototype of our incremental one-pass analytics platform on Hadoop
0.20.1. Using a range of workloads in click stream analysis and web document analysis,
we obtain the following main results: (1) Our hash techniques significantly improve
the progress of the map tasks, due to the elimination of sorting, and given sufficient
memory, enable fast in-memory processing of the reduce function. (2) For challeng-
ing workloads that require a large key-state space, our dynamic hashing mechanism
significantly reduces I/Os and enables the reduce progress to keep up with the map
progress, thereby realizing incremental processing. For instance, for sessionization
over a click stream, the reducers output user sessions as data is read and finish as
soon as all mappers finish reading the data in 34.5 minutes, triggering only 0.1GB in-
ternal data spill to disk in the job. In contrast, the original Hadoop system returns all
the results towards the end of the 81 minute job, writing 370GB internal data spill to
disk. (3) Further trade-offs exist between our hash-based techniques under different
workload types, data localities, and memory sizes, with dynamic hashing working the
best under constrained memory and most workloads.

2. BACKGROUND

To provide a technical context for the discussion in this article, we begin with back-
ground on MapReduce systems and summarize the key results of our recent bench-
marking study.

2.1. The MapReduce Model

At the API level, the MapReduce programming model simply includes two functions:
The map function transforms input data into 〈key, value〉 pairs, and the reduce function
is applied to each list of values that correspond to the same key. This programming
model abstracts away complex distributed systems issues, thereby providing users
with rapid utilization of computing resources.

To achieve parallelism, the MapReduce system essentially implements “group data
by key, then apply the reduce function to each group.” This computation model,
referred to as MapReduce group-by, permits parallelism because both the extraction
of 〈key, value〉 pairs and the application of the reduce function to each group can be
performed in parallel on many nodes. The system code of MapReduce implements this
computation model (and other functionality such as scheduling, load balancing, and
fault tolerance).

The MapReduce program of an analytical query includes both the map and reduce
functions compiled from the query (e.g., using a MapReduce-based query compiler
[Olston et al. 2008]) and the MapReduce system’s code for parallelism.

2.2. Common MapReduce Implementations

Hadoop. We first consider Hadoop, the most popular open-source implementation
of MapReduce. Hadoop uses block-level scheduling and a sort-merge technique
[White 2009] to implement the group-by functionality for parallel processing (Google’s
MapReduce system is reported to use a similar implementation [Dean and Ghemawat
2004], but further details are lacking due to the use of proprietary code).
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Fig. 1. Architecture of the Hadoop implementation of MapReduce.

The Hadoop Distributed File System (HDFS) handles the reading of job input data
and writing of job output data. The unit of data storage in HDFS is a 64MB block by
default and can be set to other values during configuration. These blocks serve as the
task granularity for MapReduce jobs.

Given a query job, several map tasks (mappers) and reduce tasks (reducers) are
started to run concurrently on each node. As Figure 1 shows, each mapper reads a
chunk of input data, applies the map function to extract 〈key, value〉 pairs, then assigns
these data items to partitions that correspond to different reducers, and finally sorts
the data items in each partition by the key. Hadoop currently performs a sort on the
compound 〈partition, key〉 to achieve both partitioning and sorting in each partition.
Given the relatively small block size, a properly tuned buffer will allow such sorting to
complete in memory. Then the sorted map output is written to disk for fault tolerance.
A mapper completes after the write finishes.

Map output is then shuffled to the reducers. To do so, reducers periodically ask
a centralized service for completed mappers, and once notified, request data directly
from the completed mappers. In most cases, this data transfer happens soon after a
mapper completes and so this data is available in the mapper’s memory.

Over time, a reducer collects pieces of sorted output from many completed mappers.
Unlike before, this data cannot be assumed to fit in memory for large workloads. As
the reducer’s buffer fills up, these sorted pieces of data are merged and written to a file
on disk. A background thread merges these on-disk files progressively whenever the
number of such files exceeds a threshold (in a so-called multipass merge phase). When
a reducer has collected all of the map output, it will proceed to complete the multipass
merge so that the number of on-disk files becomes less than the threshold. Then it will
perform a final merge to produce all 〈key, value〉 pairs in sorted order of the key. As the
final merge proceeds, the reducer applies the reduce function to each group of values
that share the same key, and writes the reduce output back to HDFS.

Additionally, if the reduce function is commutative and associative, as shown in
Figure 1, a combine function is applied after the map function to perform partial ag-
gregation. It can be further applied in each reducer when its input data buffer fills up.

MapReduce Online. We next consider an advanced system, MapReduce Online,
that implements a Hadoop Online Prototype (HOP) with pipelining of data [Condie
et al. 2010]. This prototype has two unique features: First, as each mapper produces
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Table I. Workloads in Click Analysis and Hadoop Running Time

Metric Sessionization Page frequency Clicks per user

Input 256GB 508GB 256GB
Map output 269GB 1.8GB 2.6 GB
Reduce spill 370GB 0.2GB 1.4 GB
Reduce output 256GB 0.02GB 0.6GB
Running time 4860 sec 2400 sec 1440 sec

output, it can push data eagerly to the reducers, with the granularity of transmission
controlled by a parameter. Second, an adaptive mechanism is used to balance the
work between the mappers and reducers. A potential benefit of HOP is that with
pipelining, reducers receive map output earlier and can begin multipass merge earlier,
thereby reducing the time required for the multipass merge after all mappers finish.

2.3. Summary of Benchmarking Results

The requirements for scalable streaming analytics—incremental processing and fast
in-memory processing whenever possible—require the MapReduce program of a query
to be nonblocking and have low CPU and I/O overheads. In our recent benchmarking
study [Mazur et al. 2011], we examined whether current MapReduce systems meet
these requirements. We considered applications such as click stream analysis and web
document analysis in our benchmark. In the interest of space, we mainly report results
on click stream analysis in this section.

Given a click stream, an important task is sessionization that reorders page clicks
into individual user sessions. In its MapReduce program, the map function extracts
the user id from each click and groups the clicks by user id. The reduce function
arranges the clicks of each user by timestamp, streams out the clicks of the current
session, and closes the session if the user has had no activity in the past 5 minutes.
A large amount of intermediate data occurs in this task due to the reorganization of
all the clicks by user id. Other click analysis tasks include counting the number of
visits to each url and counting the number of clicks that each user has made. For these
problems, using a combine function can significantly reduce intermediate data sizes.
Our study used the click log from the World Cup 1998 Web site1 and replicated it to
larger sizes as needed.

Our test cluster contains ten compute nodes and one head node. It runs CentOS
5.4, Sun Java 1.6u16, and Hadoop 0.20.1. Each compute node has 4 2.83GHz Intel
Xeon cores, 8GB RAM, a 250GB Western Digital RE3 HDD, and a 64GB Intel X25-E
SSD. The Hadoop configuration used the default settings and 4 reducers per node
unless stated otherwise. The JVM heap size was 1GB, and map and reduce buffers
were about 140MB and 500MB, respectively. All I/O operations used the disk as the
default storage device.

Table I shows the running time of the workloads as well as the sizes of input, output,
and intermediate data in click stream analysis. Figure 2(a) shows the task timeline for
the sessionization workload, that is, the number of tasks for the four main operations:
map (including sorting), shuffle, merge (the multipass part), and reduce (including the
final merge to produce a single sorted run). In this task, time is roughly evenly split
between the map and reduce phases. A key observation is that the CPU utilization, as
shown in Figure 2(b), is low in an extended period (from time 1,800 to 2,400) after all
mappers have finished. The CPU iowait in Figure 2(c) shows that this is largely due to

1World Cup 1998: http://ita.ee.lbl.gov/html/contrib/WorldCup.html.
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Fig. 2. Experimental results using the sessionization workload.

disk I/O requests in multipass merge, as further verified by the number of bytes read
from disk in that period. Multipass merge is not only I/O intensive but also blocking—
the reduce function cannot be applied until all the data has been merged into a sorted
run. To reduce disk contention, we used additional hardware so that the disk handled
only the input and output with HDFS, and all the intermediate data was passed to a
fast SSD. As Figure 2(d) shows, such change can reduce overall running time but does
not eliminate the I/O bottleneck or blocking incurred in the multipass merge.

Another main observation regards the CPU cost. We observe from Figure 2(b) that
CPUs are busy in the map phase. However, the map function in the sessionization
workload is CPU light: it simply extracts the user id from each click record and emits
a key-value pair where the value contains the rest of the record. The rest of the cost in
the map phase is attributed to sorting of the map output.

In simpler workloads, such as counting the number of clicks per user, there is an
effective combine function to reduce the size of intermediate data. As intermediate
data is reduced, the merge phase shrinks as there is less data to merge, and then the
reduce phase also shrinks as most data is processed in memory only. However, the
overhead of sorting becomes more dominant in the overall cost.

In summary, our benchmarking study made several key observations of the sort-
merge implementation of MapReduce group-by:

— The sorting step of sort-merge incurs high CPU cost, hence not suitable for fast
in-memory processing.

— Multipass merge in sort-merge is blocking and can incur high I/O cost given substan-
tial intermediate data, hence a poor fit for incremental processing or fast in-memory
processing.
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Table II. Symbols Used in Hadoop Analysis

Symbol Description
(1) System Settings

R Number of reduce tasks per node
C Map input chunk size
F Merge factor that controls how often on-disk files are merged

(2) Workload Description
D Input data size

Km Ratio of output size to input size for the map function
Kr Ratio of output size to input size for the reduce function

(3) Hardware Resources
N Number of nodes in the cluster

Bm Output buffer size per map task
Br Shuffle buffer size per reduce task

(4) Symbols Used in the Analysis
U Bytes read and written per node, U = U1 + . . . + U5 where

Ui is the number of bytes of the following types
1: map input; 2: map internal spills; 3: map output;
4: reduce internal spills; 5: reduce output

S Number of sequential I/O requests per node
T Time measurement for startup and I/O cost
h Height of the tree structure for multi-pass merge

— Using extra storage devices (including fast solid state drives) and alternative stor-
age architectures does not eliminate blocking or the I/O bottleneck.

3. OPTIMIZING HADOOP

Building on our previous benchmarking results, we perform an in-depth analysis of
Hadoop in this section. Our goal is to understand whether the performance issues
identified by our benchmarking study are inherent to Hadoop or whether they can be
overcome by appropriate tuning of key system parameters.

3.1. An Analytical Model for Hadoop

The Hadoop system has a large number of parameters. While our previous experi-
ments used the default setting, we examine these parameters more carefully in this
study. After a nearly year-long effort to experiment with Hadoop, we identified several
parameters that impact performance from the standpoint of incremental one-pass an-
alytics, which are listed in Part (1) of Table II. Our analysis will focus on the effects of
these parameters on I/O and startup costs. We do not aim to model the actual running
time because it depends on numerous factors such as the actual server configuration,
how map and reduces tasks are interleaved, how CPU and I/O operations are inter-
leaved, and even how simultaneous I/O requests are served. Once we optimize these
parameters based on our model, we will evaluate performance empirically using the
actual running time and the progress with respect to incremental processing.

Our analysis makes several assumptions for simplicity: The MapReduce job under
consideration does not use a combine function. Each reducer processes an equal num-
ber of 〈key, value〉 pairs. Finally, when a reducer pulls a mapper for data, the mapper
has just finished so its output can be read directly from its local memory. The last
assumption frees us from the onerous task of modeling the caching behavior at each
node in a highly complex system.
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3.1.1. Modeling I/O Cost in Bytes. We analyze the I/O cost of the existing sort-merge
implementation of Hadoop. We first consider the I/O cost in terms of the number of
bytes read and written. Our main result is summarized in the following proposition.

PROPOSITION 3.1. Given the workload description (D, Km, Kr) and the hardware
description (N, Bm, Br), as defined in Table II, the I/O cost in terms of bytes read and
written in a Hadoop job is:

U =
D
N

· (1 + Km + KmKr) +
2D
CN

· λF

(
CKm

Bm
, Bm

)
· 1[C·Km>Bm]

+ 2R · λF

(
DKm

NRBr
, Br

)
, (1)

where 1[·] is an indicator function, and λF(·) is defined to be:

λF(n, b ) =
(

1
2F(F − 1)

n2 +
3
2

n − F 2

2(F − 1)

)
· b . (2)

PROOF. Our analysis includes five I/O-types listed in Table II. Each map task reads
a data chunk of size C as input, and writes C · Km bytes as output. Given the workload
D, we have D/C map tasks in total and D/(C · N) map tasks per node. So, the input
cost, U1, and output cost, U3, of all map tasks on a node are:

U1 =
D
N

and U3 =
D · Km

N
.

The size of the reduce output on each node is U5 = D·Km·Kr
N .

Map and reduce internal spills result from the multipass merge operation, which
can take place in a map task if the map output exceeds the memory size and hence
needs to use external sorting, or in a reduce task if the reduce input data does not fit
in memory.

We make a general analysis of multipass merge first. Suppose that our task is to
merge n sorted runs, each of size b . As these initial sorted runs are generated, they
are written to spill files on disk as f1, f2, . . . Whenever the number of files on disk
reaches 2F − 1, a background thread merges the smallest F files into a new file on
disk. We label the new merged files as m1, m2, . . . Figure 3 illustrates this process,
where an unshaded box denotes an initial spill file and a shaded box denotes a merged
file. For example, after the first 2F − 1 initial runs generated, f1, . . . , fF are merged
together and the resulting files on disk are m1, fF+1, . . . , f2F−1 in order of decreasing
size. Similarly, after the first F2 + F − 1 initial runs are generated, the files on disk
are m1, . . . , mF, fF2+1, . . . , fF2+F−1. Among them, m1, fF2+1, . . . , fF2+F−1 will be merged
together and the resulting files on disk will be mF+1, m2, . . . , mF in order of decreasing
size. After all initial runs are merged, a final merge combines all the remaining files
(there are at most 2F − 1 of them).

For the analysis, let αi denote the size of a merged file on level i (2 ≤ i ≤ h) and let
α1 = b . Then αi = αi−1 + (F − 1)b . Solving this recursively gives αi = (i− 1)Fb − (i− 2)b .
Hence, the total size of all the files in the first h levels is:

F(αh +
h−1∑
i=1

(αi + (F − 1)b )) = b F
(

hF +
(F − 1)(h − 2)(h + 1)

2

)
.
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Fig. 3. Analysis of the tree of files created in multipass merge.

If we count all the spill files (unshaded boxes) in the tree, we have n = (F + (F − 1)(h −
2))F. Then we substitute h with n and F using the previous formula and get

λF(n, b ) =
(

1
2F(F − 1)

n2 +
3
2

n − F2

2(F − 1)

)
· b .

Then, the total I/O cost is 2λF(n, b ) as each file is written once and read once. The
remaining issue is to derive the exact numbers for n and b in the multipass merge in
a map or reduce task.

In a map task, if its output fits in the map buffer, then the merge operation is not
needed. Otherwise, we use the available memory to produce sorted runs of size Bm

each and later merge them back. So, b = Bm and n = C·Km
Bm

. As each node handles
D/(C · N) map tasks, we have the I/O cost for map internal spills on this node as:

U2 =

{
2D
C·N · λF

(
C·Km

Bm
, Bm

)
if C · Km > Bm;

0 otherwise.

In a reduce task, as we do not have a combine function, the input for reduce usually
cannot fit in memory. The size of input to each reduce task is D·Km

N·R . So, b = Br and
n = D·Km

N·R·Br
. As each node handles R reduce tasks, we have the reduce internal spill cost:

U4 = 2R · λF

(
D · Km

N · R · Br
, Br

)

Summing up U1, . . . ,U5, we then have Equation (1) in the proposition.

3.1.2. Modeling the Number of I/O Requests. In our analysis we also model the number
of I/O requests in a Hadoop job, which allows us to estimate the disk seek time when
these I/O requests are performed as random I/O operations. Again we summarize our
result in the following proposition.

PROPOSITION 3.2. Given the workload description (D, Km, Kr) and the hardware
description (N, Bm, Br), as defined in Table II, the number of I/O requests in a Hadoop
job is:

S =
D

CN

(
α + 1 + 1[CKm>Bm] ·

(
λF(α, 1)

(√
F + 1

)2
+ α − 1

))

+ R
(

βKr

(√
F + 1

)
− β

√
F + λF(β, 1)

(√
F + 1

)2
)

, (3)
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where α = CKm
Bm

, β = DKm
NRBr

, λF(·) is defined in Equation (2), and 1[·] is an indicator
function.

PROOF. We again consider the five types of I/O listed in Table II. For each map task,
a chunk of input data is sequentially read until the map output buffer fills up or the
chunk is completely finished. So, the number of I/O requests for the map input C·Km

Bm
.

All map tasks on a node will trigger the number of I/O requests, S1, as:

S1 =
(

D
CN

)
·
(

CKm

Bm

)
.

If the map output fits in memory, there is no internal spill and the map output is
written to disk using one sequential I/O. Considering all map tasks on a node, we have

S2 + S3 =
D

CN
if CKm ≤ Bm .

If the map output exceeds the memory size, it is sorted using external sorting which
involves multipass merge.

Since both map and reduce tasks may involve multipass merge, we first do a general
analysis of the I/O requests incurred in this process. How many I/O requests to make
depends not only on the data size but also on the memory allocation scheme, which can
vary with the implementation and system resources available. Hence, we will consider
the optimal scheme regarding the I/O requests.

Suppose that a merge step is to merge F files, each of size f , into a new file with
memory size B. For simplicity, we assume the buffer size for each input file is the the
same, denoted by Bin. Then the buffer size for the output file is B− F · Bin. The number
of read and write requests is

s =
F · f
Bin

+
F · f

B − F · Bin
.

By taking the derivative with respect to Bin we can minimize s, which is:

sopt =
F · f

B

(√
F + 1

)2
when Bopt

in =
B

F +
√

F
.

Revisit the tree of files in multipass merge in Figure 3. Each merge step, numbered
j in the following formula, corresponds to the creation of a merged file (shaded box)
in the tree. When we sum up the I/O requests of all these steps, we can apply our
previous result on the total size of all the files:

∑
j

sopt
j =

∑
j F · f j

B

(√
F + 1

)2
=

λF(n, b )
B

(√
F + 1

)2
,

where n is the number of initial spill files containing sorted runs and b is the size of
each sorted run. But this analysis does not include the I/O requests of writing the
n initial sorted runs from memory to disk, so we add n requests and have the total
number:

smerge = n +
λF(n, b )

B

(√
F + 1

)2
. (4)
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The value of n and b in map and reduce tasks have been analyzed previously. In
a map task, if CKm > Bm, then multipass merge takes place. For the given formula,
B = Bm, b = Bm and n = CKm

Bm
. Considering all D

CN map tasks on a node, we have:

S2 + S3 =
D

CN

(
CKm

Bm
+ λF

(
CKm

Bm
, 1

) (√
F + 1

)2
)

if CKm > Bm.

For a reduce task, we have B = Br, b = Br and n = DKm
NRBr

. We can get the I/O requests
by plugging these values in Equation (4). However, this result includes the disk re-
quests for writing output in the final merge step, which does not actually exist because
the output of the final merge is directly fed to the reduce function. The overestimation
is the number of requests for writing data of size DKm

NR with an output buffer of size

Br − F · Bopt
in = Br√

F+1
. So, the overestimated number of requests is DKm(

√
F+1)

NRBr
. Given R

reduce tasks per node, we have:

S4 = R
(

λF

(
DKm

NRBr
, 1

) (√
F + 1

)2
− DKm

NRBr
·
√

F
)

.

Finally, the output size of a reducer task is DKmKr
NR , written to disk with an output

buffer of size Br√
F+1

. So, we can estimate the I/O requests for all reduce tasks on a node,
S5, with

S5 = R
(

DKm

NRBr
· Kr

(√
F + 1

))
.

The sum of S1, . . . , S5 gives the result in the proposition.

We note that for common workloads, the I/O cost is dominated by the cost of reading
and writing all the bytes, not the seek time. We provide detailed empirical evidence in
Section 3.2.

3.1.3. Modeling the Startup Cost. We further consider the cost of starting map and
reduce tasks as it has been reported to be a nontrivial cost [Pavlo et al. 2009]. Since
the number of map tasks is usually much larger than that of reduce tasks, we mainly
consider the startup cost for map tasks. If cm is the cost in second of creating a map
task, the total map startup cost per node is cstart · D

CN .

3.1.4. Combining All in Time Measurement. Let U be the number of bytes read and writ-
ten in a Hadoop job, and let S be the number of I/O requests made. Let cbyte denote the
sequential I/O time per byte and cseek denote the disk seek time for each I/O request.
We define the time measurement T that combines the cost of reading and writing all
the bytes, the seek cost of all I/O requests, and the map startup cost as follows:

T = cbyte · U + cseek · S+ cstart · D
CN

. (5)

This formula is our complete analytical model that captures the effects of all of the
involved parameters.

3.2. Optimizing Hadoop Based on Our Analytical Model

Our analytical model enables us to predict system behaviors as Hadoop parameters
vary. Then, given a workload and system configuration, we can choose values of these
parameters that minimize the time cost in our model, thereby optimizing Hadoop
performance.
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Fig. 4. Validating our model against actual measurements in a Hadoop cluster.

3.2.1. Optimizations. To show the effectiveness of our model, we compare the predicted
system behavior based on our model and the actual running time measured in our
Hadoop cluster. We used the sessionization task and configured the workload, our clus-
ter, and Hadoop as follows: (1) Workload: D = 97GB, Km = Kr = 1;2 (2) Hardware: N
= 10, Bm = 140MB, Br = 260MB; (3) Hadoop: R = 4 or 8, and varied values of C and
F. We also fed these parameter values to our analytical model. In addition, we set the
constants in our model by assuming sequential disk access speed to be 80MB/s, disk
seek time to be 4ms, and the map task startup cost to be 100ms.

Our first goal is to validate our model. In our experiment, we varied the map input
chunk size, C, and the the merge factor, F. Under 100 different combinations of (C, F),
we measured the running time in a real Hadoop system, and calculated the time cost
predicted by our model. The result is shown as a 3-D plot in Figure 4(a).3 Note that
our goal is not to compare the absolute values of these two time measurements: In fact,
they are not directly comparable, as the former is simply a linear combination of the
startup cost and I/O costs based on our model, whereas the latter is the actual running
time affected by many system factors, as stated before. Instead, we expect our model
to predict the changes of the time measurement when parameters are tuned, so as to
identify the optimal parameter setting. Figure 4(a) shows that indeed the performance
predicted by our model and the actual running time exhibit very similar trends as the

2We used a smaller dataset in this set of experiments compared to the benchmark because changing Hadoop
configurations often required reloading data into HDFS, which was very time-consuming.
3For both the real running time and modeled time cost, the respective 100 data points were interpolated
into a finer-grained mesh.
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parameters C and F are varied. We also compared the I/O costs predicated by our
model and those actually observed. Not only do we see matching trends, the predicted
numbers are also close to the actual numbers. As shown in Figure 4(c), the differences
between the predicted numbers and the actual numbers are mostly within 5%. Here
the errors are mainly due to the fact that our analysis assumes the multipass merge
tree to be full but this is not always true in practice.

Our next goal is to show how to optimize the parameters based on our model. To
reveal more details from the 3-D plots, we show the results of a smaller range of
(C, F) in Figure 4(b) and Figure 4(d) where the solid lines are for the actual measure-
ments from the Hadoop cluster and the dashed lines are for predication using our
model.

(1) Optimizing the Chunk Size. When the chunk size C is very small, the MapRe-
duce job uses many map tasks and the map startup cost dominates in the total time
cost. As C increases, the map startup cost reduces. However, once the map output
exceeds its buffer size, multipass merge is incurred with increased I/O cost, as shown
in Figure 4(d). As a result, the time cost jumps up at this point, and then remains
nearly constant since the reduction of startup cost is not significant. When C exceeds
a large size (whose exact value depends on the merge factor, for instance, size 256
when F = 4 shown in Figure 4(d)), the number of passes of on-disk merge goes up,
thus incurring more I/Os. The overall best performance in running time is observed
at the maximum value of C that allows the map output to fit in the buffer. Given a
particular workload, we can easily estimate Km, the ratio of output size to input size,
for the map function and estimate the map output buffer size Bm to be about 2

3 of
the total map memory size (given the use of other metadata). Then we can choose the
maximum C such that C · Km ≤ Bm.

(2) Optimizing the Merge Factor. We then investigate the merge factor, F, that con-
trols how frequently on-disk files are merged in the multipass merge phase. Figure 4(b)
shows three curves for three F values. The time cost decreases with larger values of F
(from 4 to 16), mainly due to fewer I/O bytes incurred in the multipass merge as shown
in Figure 4(d). When F goes up to the number of initial sorted runs (around 16), the
time cost does not decrease further because all the runs are merged in a single pass.
For several other workloads tested, one-pass merge was also observed to provide the
best performance.

Our model can also reveal potential benefits of small F values. When F is small, the
number of files to merge in each step is small, so the reads of the input files and the
writes of the output file are mostly sequential I/O. As such, a smaller F value incurs
more I/O bytes, but fewer disk seeks. According to our model, the benefits of small F
values can be shown only when the system is given limited memory but a very large
dataset, for instance, several terabytes per node, which is beyond the current storage
capacity of our cluster.

(3) Effect of the Number of Reducers. The third relevant parameter is the number
of reducers per node, R. The original MapReduce proposal [Dean and Ghemawat 2004]
has recommended R to be the number of cores per node times a small constant (e.g.,
1 or 2). As this parameter does not change the workload but only distributes it over
a variable number of reduce workers, our model shows little difference as R varies.
Empirically, we varied R from 4 to 8 (given 4 cores on each node) while configuring
C and F using the most appropriate values as reported before. Interestingly, the run
with R = 4 took 4,187 seconds, whereas the run with R = 8 took 4,723 seconds. The
reasons are two-fold. First, by tuning the merge factor, F, we have minimized the
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work in multipass merge. Second, given 4 cores on each node, we have only 4 reduce
task slots per node. Then for R = 8, the reducers are started in two waves. In the
first wave, 4 reducers are started. As some of these reducers finish, a reducer in the
second wave can be started. As a consequence, the reducers in the first wave can read
map output soon after their map tasks finish, hence directly from the local memory.
In contrast, the reducers in the second wave are started long after the mappers have
finished. So they have to fetch map output from disks, hence incurring high I/O costs
in shuffling. Our conclusion is that optimizing the merge factor, F, can reduce the
actual I/O cost in multipass merge, and is a more effective method than enlarging the
number of reducers beyond the number of reduce task slots available at each node.

In summary, these results demonstrate two key benefits of our model: (1) Our model
predicts the trends in I/O cost and time cost close to the observations in real cluster
computing. (2) Given a particular workload and hardware configuration, one can run
our model to find the optimal values of the chunk size C and merge factor F, and choose
an appropriate value of R based on the given recommendation.

3.2.2. Analysis of Optimized Hadoop. We finally reran the 240GB sessionization work-
load described in our benchmark (see Section 2). We optimized Hadoop using 64MB
data chunks, one-pass merge, and 4 reducers per node as suggested by the given re-
sults. The total running time was reduced from 4,860 seconds to 4,187 seconds, a 14%
reduction of the total running time.

Given our goal of one-pass analytics, a key requirement is to perform incremental
processing and deliver a query answer as soon as all relevant data has arrived. In this
regard, we propose metrics for the map and reduce progress, as defined here.

Definition 3.3 (Incremental Map and Reduce Progress). The map progress is de-
fined to be the percentage of map tasks that have completed. The reduce progress
is defined to be: 1

3 · % of shuffle tasks completed + 1
3 · % of combine function or reduce

function completed + 1
3 · % of reduce output produced.

Note that our definition differs from the default Hadoop progress metric where the
reduce progress includes the work on multipass merge. In contrast, we discount
multipass merge because it is irrelevant to a user query, and emphasize the actual
work on the reduce function or combine function and the output of answers.

Figure 5(a) shows the progress of optimized Hadoop in bold lines (and the progress
of stock Hadoop in thin lines as a reference). The map progress increases steadily
and reaches 100% around 2,000 seconds. The reduce progress increases to 33% in
these 2,000 seconds, mainly because the shuffle progress could keep up with the map
progress. Then the reduce progress slows down, due to the overhead of merging, and
lags far behind the map progress. The optimal reduce progress, as marked by a dashed
line in this plot, keeps up with the map progress, thereby realizing fast incremental
processing. As can be seen, there is a big gap between the optimal reduce progress and
what the optimized Hadoop can currently achieve.

Figures 5(b), 5(c), and 5(d) further show the CPU utilization, CPU iowait, and the
number of bytes read using optimized Hadoop. We make two main observations: (1)
The CPU utilization exhibits a smaller dip in the middle of a job compared to stock
Hadoop in Figure 2(b). However, the CPU cycles consumed by the mappers, shown as
the area under the curves before 2,000 seconds, are about the same as those using stock
Hadoop. Hence, the CPU overhead due to sorting, as mentioned in our benchmark, still
exists. (2) The CPU iowait plot still shows a spike in the middle of job and remains
high in the rest of the job. This is due to the blocking of CPU by the I/O operations in
the remaining single-pass merge.

ACM Transactions on Database Systems, Vol. 37, No. 4, Article 27, Publication date: December 2012.



SCALLA: A Platform for Scalable One-Pass Analytics Using MapReduce 27:15

Fig. 5. Performance of optimized Hadoop based on our model.

3.3. Pipelining in Hadoop

Another attempt to optimize Hadoop for one-pass analytics would be to pipeline
data from mappers to reducers so that reducers can start the work earlier. This idea
has been implemented in MapReduce Online [Condie et al. 2010], as described in
Section 2.2. In our benchmark, we made the following observations about pipelining
data from mappers to reducers in the Hadoop framework:

(1) Benefits of pipelining. We first summarize the benefits of pipelining that were
observed in our benchmark. First, pipelining data from mappers to reducers can result
in small performance benefits. For instance, for sessionization, Figure 6(a) shows 5%
improvement in total running time over the version of stock Hadoop, 0.19.2, on which
MapReduce Online’s code is based. However, the overall performance gain of MapRe-
duce Online over Hadoop is small (e.g., 5%), less that the gain of our model-based
optimization (e.g., 14%). Second, pipelining also makes the performance less sensitive
to the HDFS chunk size. As Figure 6(b) shows, when the chunk size is increased from
64MB to 256MB, the performance of MapReduce Online, denoted by the bold lines,
stays about the same as that of 64MB, whereas the performance of stock Hadoop, de-
noted by the thin lines, degrades. This is because a larger block size places additional
strain on the map output buffer and therefore increases the chance of having to spill
the map output to disk in order to perform sorting. Pipelining, however, is able to miti-
gate this effect by eagerly sending data at a finer granularity to the reducers with the
intention to use merging later to bring all the data in sorted order.

(2) Limitations of pipelining. However, we observe that adding pipelining to an
overall blocking implementation based on sort-merge is not an effective mechanism
for incremental processing. Most importantly, the reduce progress lags far behind the
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Fig. 6. Performance of MapReduce Online with pipelining of data.

map progress, as shown in Figures 6(a) and 6(b). To explain this behavior, we observe
from Figure 6(c) that the CPU utilization still has low values in the middle of the job
and is on the average 50% or below over the entire job. While CPU can be idle due
to I/O wait or network wait (given the different communication model used), the CPU
iowait in Figure 6(d) again shows a spike in the middle of the job and overall high
values during the job. Hence, the problems with blocking and intensive I/O due to
multipass merge still exist.

(3) Effect of adding reducers. We further investigate whether using more reducers
can help close the gap between the map progress and reduce progress. It is impor-
tant to note that pipelining does not reduce the total amount of work in sort-merge
but rather rebalances the work between the mappers and reducers. More specifically,
eager transmission of data from mappers to reducers reduces the sorting work in the
mappers but increases the merge work in the reducers. To handle more merge work,
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increasing the number of reducers helps improve the overall running time, as shown
in Figure 6(e) where the number of reducers is increased from 4 per node to 8 per
node. However, the reduction of the running time comes at the cost of significantly
increased resource consumption and the gap between the map progress and the reduce
progress is not reduced much. Moreover, further increasing the number of reducers,
for instance, to 12 per node, starts to perform worse due to the drawbacks of using
multiple waves of reducers mentioned in Section 3.2.1.

(4) Effect of using snapshots. Finally, MapReduce Online has an extension to peri-
odically output snapshots (e.g., when reducers have received 25%, 50%, 75%, ..., of the
data). However, this is done by repeating the merge operation for each snapshot, not
by incremental in-memory processing. As a result, the simple snapshot-based mecha-
nism can incur high I/O overheads and significantly increased running time, as shown
in Figure 6(f).

Summary. We close the discussion in this section with the following summary.

— Our analytical model can be used to choose appropriate values of Hadoop parame-
ters, thereby improving performance.

— Optimized Hadoop, however, still has a significant barrier to fast incremental pro-
cessing: (1) The remaining one-pass merge can still incur blocking and a substantial
I/O cost. (2) For this reason, the reduce progress falls far behind the map progress.
(3) The map tasks still have the high CPU cost of sorting.

— Pipelining from mappers to reducers does not resolve the blocking or I/O over-
head in Hadoop, hence not an effective mechanism for providing fast incremental
processing.

4. A NEW HASH-BASED PLATFORM

Based on the insights from our experimental and analytical evaluation of current
MapReduce systems, we next propose a new data analysis platform that aims to trans-
form MapReduce computation into incremental one-pass processing. To build the new
platform, our first mechanism is to devise a hash-based alternative to the widely used
sort-merge implementation for partitioned parallel processing, with the goal to mini-
mize computational and I/O bottlenecks as well as blocking. The hash implementation
can be particularly useful when analytical tasks do not require the output of the re-
duce function to be sorted across different keys.4 More specifically, we design two hash
techniques for two different types of reduce functions, respectively, which we describe
in Section 4.1 and Section 4.2, respectively. These techniques enable fast in-memory
processing when there is sufficient memory for a given workload. In addition, our
second mechanism brings the benefits of such fast in-memory processing further to
workloads that require a large key-state space far exceeding available memory. Our
techniques dynamically identify popular keys and update their states using a full in-
memory processing path. These dynamic techniques are described in Section 4.3. In
Section 4.4, we discuss the optimization of key Hadoop system parameters in our hash-
based framework.

4Our implementation offers a knob for a MapReduce job to be configured with either the hash implemen-
tation or the sort-merge implementation. When our platform is used to build a query processor on top of
MapReduce, if both sort-merge and hashing algorithms are available for implementing an operator like join,
our system will enable the query processor to quickly implement the hash algorithm of choice by utilizing
the internal hashing functionality of our MapReduce platform.
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Fig. 7. MR-hash: hashing in mappers and two phase hash processing in reducers.

4.1. A Basic Hash Technique (MR-Hash)

Recall from Section 2 that to support parallel processing, the MapReduce computation
model implements “group data by key, then apply the reduce function to each group.”
The main idea underlying our hash framework is to implement the MapReduce group-
by functionality using a series of independent hash functions h1, h2, h3, . . ., across the
mappers and reducers.

As depicted in Figure 7, the hash function h1 partitions the map output into
subsets corresponding to the scheduled reducers. Hash functions h2, h3, . . ., are
used to implement group-by at each reducer. We adopt the hybrid-hash algo-
rithm [Shapiro 1986] from parallel databases as follows: h2 partitions the input data
to a reducer to n buckets, where the first bucket, say, D1, is held completely in memory
and other buckets are streamed out to disks as their write buffers fill up. This way, we
can perform group-by on D1 using the hash function h3 and apply the reduce function
to each group in memory. Other buckets are processed subsequently, one at a time,
by reading the data from the disk. If a bucket Di fits in memory, we use in-memory
processing for the group-by and the reduce function. Otherwise, we recursively parti-
tion Di using hash function h4, and so on. In our implementation, we use standard
universal hashing to construct a series of independent hash functions.

Following the analysis of the hybrid hash join [Shapiro 1986], simple calculation
shows that if h2 can evenly distribute the data into buckets, recursive partitioning
is not needed if the memory size is greater than 2

√|D|, where |D| is the number of
pages of data sent to the reducer, and the I/O cost is 2(|D| − |D1|) pages of data read
and written. The number of buckets, h, can be derived from the standard analysis by
solving a quadratic equation.

This technique, called MR-hash, exactly matches the current MapReduce model
that collects all the values of the same key into a list and feeds the entire list to the
reduce function. This baseline technique in our work is similar to the hash technique
used in parallel databases [DeWitt et al. 1990], but implemented in the MapReduce
context. Compared to stock Hadoop, MR-hash offers several benefits: First, on the
mapper side, it avoids the CPU cost of sorting as in the sort-merge implementation.
Second, this hash implementation offers a step towards incremental processing: It al-
lows answers for the first bucket, S0, to be returned from memory after all the data
arrives, and answers for other buckets to be returned one bucket at a time. In con-
trast, sort-merge cannot return any answer until all the data is sorted. However, such
incremental processing is very coarse-grained, as a bucket can contain a large chunk
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Fig. 8. (Dynamic) Incremental Hash: monitoring keys and updating states.

of data. Moreover, in many cases the total I/O is not significantly better than the I/O
of sort-merge [Ramakrishnan and Gehrke 2003].

4.2. An Incremental Hash Technique (INC-Hash)

Our second hash technique is designed for reduce functions that permit incremen-
tal processing, including simple aggregates like sum and count, and more complex
problems that have been studied in the area of sublinear-space stream algorithms
[Muthukrishnan 2006]. For such reduce functions, we propose a more efficient hash
algorithm, called incremental hash (INC-hash).

Algorithm. The algorithm is illustrated in Figure 8 (the reader can ignore the dark-
ened boxes for now, as they are used only in the third technique). In Phase 1, as a re-
ducer receives map output, called tuples for simplicity, we build a hash table H (using
hash function h2) that maps from a key to the state of computation for all the tuples of
that key that have been seen so far. When a new tuple arrives, if its key already exists
in H, we update the key’s state using the new tuple. If its key does not exist in H, we
add a new key-state pair to H if there is still memory. Otherwise, we hash the tuple
(using h3) to a bucket, place the tuple in the write buffer, and flush the write buffer
when it becomes full (similar to Hybrid Cache [Hellerstein and Naughton 1996] in this
step). At the end of Phase 1, the reducer has seen all the tuples and returned final an-
swers for all the keys in H. Then in Phase 2, it reads disk-resident buckets back one at
a time, repeating the procedure to process each bucket. If the key-state pairs produced
from a specific bucket fit in memory, no further I/O will be incurred. Otherwise, the
algorithm will again process some keys in memory and write the tuples of other keys
to disk-resident buckets, that is, applying recursive hashing.

INC-hash offers two major advantages over MR-hash: (1) Reduced data volume and
I/O: For those keys held in memory, their tuples are continuously collapsed into states
in memory, hence avoiding I/O’s for those tuples altogether. I/O’s can be completely
avoided in INC-hash if the memory is large enough to hold all key-state pairs, in con-
trast to all the data in MR-hash. (2) Earlier results: For those keys held in memory,
query answers can be returned before all the data is seen. In particular, earlier results
are possible for filter queries (e.g., when the count of a URL exceeds a threshold), join
queries (whose results can be pipelined out), and window queries (whose results can
be output whenever a window closes).

Partial Aggregation. An opportunity for further optimization is that some reduce
functions that permit incremental processing are also amenable to partial aggregation,
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which splits incremental processing to a series of steps on the processing pipeline with
successively reduced data volume. Classical examples are the aggregates sum, count,
and avg. To support partial aggregation in the MapReduce context, we define three
primitive functions:

— The initialize function, init(), reduces a sequence of data items of the same key to a
state;

— The combine function, cb (), reduces a sequence of states of the same key to a new
state;

— The finalize function, fn(), produces a final answer from a state.

The initialize function is applied immediately when the map function finishes process-
ing. This changes the data in subsequent processing from the original key-value pairs
to key-state pairs. The combine function can be applied to any intermediate step that
collects a set of states for the same key, for instance, in updating a key-state pair in
the hash table with a new data item (which is also a key-state pair) or in packing mul-
tiple data items in the write buffer of a bucket. Finally, the original reduce function is
implemented by cb () followed by fn().

Partial aggregation provides several obvious benefits: The initialize function re-
duces the amount of data output from the mappers, thereby reducing the communi-
cation cost in shuffling and the CPU and I/O costs of subsequent processing at the
reducers. In addition, the reducers can apply cb () in all suitable places to collapse
data aggressively into compact states, hence reducing the I/O cost.

In implementation, the INC-hash algorithm is applied to “group data by key” in
both init() and cb (). The operation within each group, in both init() and cb (), is very
similar to the user-specified reduce function, as in the original proposal of combiner
functions [Dean and Ghemawat 2004].

Memory and I/O Analysis. We next analyze the INC-hash algorithm for its memory
requirements and I/O cost. Let D be the size of data input to the algorithm (e.g., data
sent to a reducer), U be the size of the key-state space produced from the data, and B
be the memory size, all in terms of the number of pages covered. Let h be the number
of buckets created in the INC-hash algorithm. In Phase 1, we need 1 page for the input
data and h pages for write buffers of the disk-resident buckets. So, the size of the hash
table is B − h − 1 ≥ 0. Assume that the key-state pairs not covered by the hash table,
whose size is U−(B−h−1), are evenly distributed across h buckets. To make sure that
the key-state pairs produced from each bucket fit in memory in Phase 2, the following
equality has to hold: U − (B − h− 1) ≤ h · (B − 1). Rewriting both constraints, we have:

U − 1
B − 2

− 1 ≤ h ≤ B − 1. (6)

This analysis of memory requirements has several implications:

— When the memory size B reaches U+1, all the data is processed in memory, that is,
h = 0.

— When B is in the range [
√

U + 1,U], given a particular value of B, the number of
buckets h can be chosen between the lower bound (U − 1)/(B − 2) − 1 and the upper
bound B − 1, as marked by the shaded area in Figure 9.

— Also for the given range of B, under the assumption of uniform distribution of keys
in the data, no recursive partitioning is needed in INC-hash: those tuples that be-
long to the in-memory hash table are simply collapsed into the states, and other
tuples are written out and read back exactly once. In this case, the fraction of the
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Fig. 9. Determining the number of buckets h given memory size B and key-state space size U.

data that is not collapsed into the in-memory hash table is (U − (B − h − 1))/U. So
the I/O cost of INC-hash is:

2 ·
(

1 − B − h − 1
U

)
· D. (7)

— To minimize I/O according to this formula, we want to set the number of buckets h
to be its lower bound (U − 1)/(B − 2) − 1.

We note that for common workloads, the memory size is expected to exceed
√

U. All
modern computers with several GB’s of memory can meet this requirement for any
practical value of U.

Sensitivity to Parameters. This analysis reveals that the optimal I/O performance
of INC-hash requires setting the right number of buckets, h, which depends on the
size of the key-state space, U. This issue is less a concern in traditional databases
because the DBMS can collect detailed statistics from stored data and size estimation
for relational operators has been well studied. For our problem of scalable, incremental
analytics, the lack of knowledge of the key space often arises when data is streamed
over the wire or from upstream complex operators (coded in user-defined functions) in
the processing pipeline. Consider the performance loss when we do not know the key
space size. According to Equation (6), without knowing U we do not know the lower
bound of h and hence the only safe value to choose would be the upper bound B − 1.
Given this worst choice of h, we pay the following extra I/O according to Equation (7):(

(B − 1)2

U
− 1

)
· D

B − 2
.

For example, when U = 20GB and B = 10GB, the extra I/O paid amounts to the data
size D, which can be quite large.

To mitigate such performance loss, we would like to acquire an accurate estimate
of the key-state space size U. Since many workloads use fixed-sized states, estimating
U is equivalent to estimating the number of distinct keys in the dataset. In today’s
analytics workloads, the key space can be very large, for instance, tens of billions of
URLs on the Web. So estimating the number of keys can itself consume a lot of memory.
Hence, we propose to perform approximate estimation of the key space size using fast,
memory-efficient “mini-analysis”: state-of-the-art sketch techniques [Kane et al. 2010]
can provide 1 + ε approximation for the number of distinct keys in space about O(ε−2)
with low CPU overheads. Hence, given memory of modest size, these techniques can
return fairly accurate approximations. Such “mini-analysis” can be applied in two
ways: If the data is to be first loaded into the processing backend and later analyzed
repeatedly, mini-analysis can be piggybacked in data loading with little extra overhead.
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For streaming workloads, such mini-analysis can be run periodically at data sources
and the resulting statistics can be transferred to the MapReduce processing backend
to better configure our hash algorithms. A detailed mechanism for communication
between data sources and the processing backend is beyond the scope of this article
and will be addressed in our future work.

4.3. A Dynamic Incremental Hash Technique (DINC-Hash)

Our last technique is an extension of the incremental hash approach where we dynam-
ically determine which keys should be processed in memory and which keys will be
written to disk for subsequent processing. The basic idea behind the new technique
is to recognize hot keys that appear frequently in the dataset and hold their states
in memory, hence providing incremental in-memory processing for these keys. The
benefits of doing so are twofold. First, prioritizing these keys leads to greater I/O effi-
ciency since in-memory processing of data items of hot keys can greatly decrease the
volume of data that needs to be first written to disks and then read back to complete
the processing. Second, it is often the case that the answers for the hot keys are more
important to the user than the colder keys. Then this technique offers the user the
ability to terminate the processing before data is read back from disk if the coverage
of data is sufficiently large for those keys in memory.

We will assume that we do not have enough memory to hold all states of distinct
keys. Our mechanism for recognizing and processing hot keys builds upon ideas in
a widely used data stream algorithm called the FREQUENT algorithm [Berinde et al.
2009; Misra and Gries 1982] that can be used to estimate the frequency of different
values in a data stream. While we are not interested in the frequencies of the keys
per se, we will use estimates of the frequency of each key to date to determine which
keys should be processed in memory. However, note that other “sketch-based” algo-
rithms for estimating frequencies, such as Count-Sketch [Charikar et al. 2004], Count-
Min [Cormode and Muthukrishnan 2005] and CR-Precis [Ganguly and Majumder
2007], will be unsuitable for our purposes because they do not explicitly encode a set of
hot keys. Rather, additional processing is required to determine frequency estimates
and then use them to determine approximate hot keys, which is too costly for us to
consider.

Dynamic Incremental (DINC) Hash. We propose to perform dynamic incremental
hash using a caching mechanism governed by the FREQUENT algorithm, that is, to
determine which tuples should be processed in memory and which should be written
to disk. We use the following notation in our discussion of the algorithm: Let K be
the total number of distinct keys. Let M be the total number of key-data item pairs
in input, called tuples for simplicity. Suppose that the memory contains B pages, and
each page can hold np key-state pairs with their associated auxiliary information. Let
up be an update function that collapses an data item v into a state u to make a new
state, up(u, v).

Figure 8 illustrates the DINC-hash algorithm. While receiving tuples, each reducer
divides the B pages in memory into two parts: h pages are used as write buffers, one
for each of h files that will reside on disk, and B − h pages for “hot” key-state pairs.
Hence, the number of keys that can be processed in-memory is s = (B − h)np.5

The sketch of our algorithm is shown in Algorithm 1. The algorithm maintains s
counters c[1], . . . , c[s], s associated keys k[1], . . . , k[s] referred to as “the keys currently
being monitored,” and the state s[i] of a partial computation for each key k[i]. Initially,

5If we use p > 1 pages for each of the h write buffers (to reduce random-writes), then s = np · (B − hp). We
omit p in the following to simplify the discussion.
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all the counters are set to 0, and all the keys are marked as empty (Line 1). When
a new tuple (k, v) arrives, if this key is currently being monitored, the corresponding
counter is incremented and the state is updated using the update function (Line 4). If
k is not being monitored and c[ j] = 0 for some j, then the key-state pair (k[ j], s[ j]) is
evicted and k starts to be monitored by c[ j] (Line 7–8). If k is not monitored and all
c > 0, then the tuple needs to be written to disk and all c[i] are decremented by one
(Line 10–11). Whenever the algorithm decides to evict a key-state pair in-memory or
write out a tuple, it always first assigns the item to a hash bucket and then writes it
out through the write buffer of the bucket, as in INC-hash.

Once the tuples have all arrived, most of the computation for the hot keys may have
already been performed. At this point we have the option to terminate if the partial
computation for hot keys is “good enough” in a sense we will make explicit shortly. If
not, we proceed with performing all the remaining computation: we first write out each
key-state pair currently in memory to disk to the appropriate bucket file. We then read
each bucket file into memory and complete the processing for each key in the bucket
file.

To compare the different hash techniques, first note that the improvement of INC-
hash over the baseline MR-hash is only significant when the total number of keys
K is small. Otherwise, the keys processed incrementally in main memory will only
account for a small fraction of the tuples, hence limited performance benefits. DINC-
hash mitigates this problem in the case when, although K may be large, some keys
are considerably more frequent then other keys. By ensuring that it is these keys that
are usually monitored in memory, we ensure that a large fraction of the tuples are
processed before the remaining data is read back from disk.

Algorithm 1 Sketch of the DINC-hash algorithm
1: c[i] ← 0, k[i] ← ⊥ for all i ∈ {1, 2, · · · , s}
2: for each tuple (k, v) from input do
3: if k is being monitored then
4: Suppose k is monitored by c[ j], do c[ j] ← c[ j] + 1, and s[ j] ← update(s[ j], v)
5: else
6: if ∃ j such that c[ j] = 0 then
7: Evict key-state pair (k[ j], s[ j]) to disk
8: c[ j] ← 1, k[ j] ← k, and s[ j] ← v

9: else
10: Write tuple (k, v) to disk
11: c[i] ← c[i] − 1 for all i ∈ {1, 2, · · · , s}
12: end if
13: end if
14: end for

We note that besides the FREQUENT algorithm, our DINC-hash technique can also
be built on a closely related variant called the Space-Saving algorithm [Metwally et al.
2005]. Like the FREQUENT algorithm, Space-Saving monitors frequent items in mem-
ory and for each monitored item, maintains a counter as an estimate of the item’s fre-
quency. When the two algorithms are used as the caching mechanism in DINC-hash,
they perform the same in the following two cases:

Case I. If a monitored key is received, both algorithms increment the associated
counter by 1.
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Case II. If an unmonitored key is received and there is at least one counter of value 0
under the FREQUENT algorithm, both algorithms evict a monitored key-state pair
with the smallest counter (which must be 0 in the FREQUENT algorithm), monitor
the new key-state pair with that counter, and increment the counter by 1.

The two algorithms differ only in the following case:

Case III. The arriving key is not monitored and all the counters of the monitored
keys are greater than 0 in the FREQUENT algorithm. In this case, Space-Saving
evicts a key-state pair with the smallest counter to make room for the new key-
state pair as in Case II, whereas the FREQUENT algorithm does not take in the
new key-state pair but simply decrements all counters by 1.

In most real-world workloads, the distribution of the frequencies of keys is naturally
skewed. Consequently, in the FREQUENT algorithm when there is no key with counter
0, it is likely that a large number of infrequent keys have counter 1 as they appear only
once in a long period of time. When Case III occurs, the counters of these infrequent
keys are reduced to 0, which prevents Case III from happening again in the near
future. As a result, Case III occurs infrequently under real-world workloads, and the
two algorithms perform the same most of the time. We will show that the difference
in performance of the two algorithms is less than 1% in the evaluation section. Due
to this reason, we focus our discussion in the rest of the section on the widely used
FREQUENT algorithm.

4.3.1. Analysis of the DINC Algorithm. We next provide a detailed analysis of the DINC
algorithm.

I/O Analysis. Suppose that there are fi tuples with key ki. Then we have the total
number of tuples M =

∑
i fi. Without loss of generality assume f1 ≥ f2 ≥ . . . ≥ fK .

Since the memory can hold s keys, the best we can hope for is to process
∑

1≤i≤s fi

arriving tuples in memory, that is, to collapse them into in-memory states as they are
sent to the reducer. This is achieved if we know the “hot” keys, that is, the top-s, in
advance. Existing analysis for the FREQUENT algorithm can be applied to our setting
to show that using this strategy, at least M′ tuples can be collapsed into states, where

M′ =
∑

1≤i≤s

max
(

0, fi − M
s + 1

)
.

If the data is highly skewed, our theoretical analysis can be improved by appealing
to a result of Berinde et al. [2009]. Specifically if the data is distributed with Zipfian
parameter α our strategy guarantees that at least

M′ =
∑

1≤i≤s

max
(

0, fi − M
max(s + 1, (s/2)α)

)

tuples have been collapsed into states. Since every tuple that is not collapsed into an
existing state in memory triggers a write-out, the number of tuples written to disk is
M − s − M′ + s, where the first s in the formula corresponds to the fact that the first s
keys do not trigger a write-out, and the second s comes from the write out of the hot
key-state pairs in main memory. Hence, the upper bound of the number of tuples that
trigger I/O is M − M′.

This result compares favorably with the offline optimal if there are some very pop-
ular keys, but does not give any guarantee for nonskewed data if there are no keys
whose relative frequency is more than 1/(s + 1). For example, suppose that the r = εs

ACM Transactions on Database Systems, Vol. 37, No. 4, Article 27, Publication date: December 2012.



SCALLA: A Platform for Scalable One-Pass Analytics Using MapReduce 27:25

most popular keys have total frequency
∑r

i=1 fi ≥ (1 − ε)M, that is, a (1 − ε) fraction of
the tuples have one of r keys. Then we can conclude that

M′ =
∑

1≤i≤s

max
(

0, fi − M
s + 1

)
≥

∑
1≤i≤r

fi − M
s + 1

≥ (1 − 2ε)M,

that is, all but a 2ε fraction of the tuples are collapsed into states.
Note that even if we assume the data is skewed, in INC-hash there is no guarantee

on the number of tuples processed in-memory before the hash files are read back from
disk. This is because the keys chosen for in-memory processing are just the first keys
observed.

Sensitivity to Parameters. We further investigate whether the parameters used
in the DINC-hash algorithm can affect its performance. By analyzing the memory
requirements as for the INC-hash algorithm, we can obtain the following constraints:

U
B − 1

≤ h ≤ B − 1, for B ∈
[√

U + 1,U
]
,

where U is the total size of key-state pairs, B is the memory size, and h is the number
of buckets created when evicting key-state pairs from memory to disk and writing
tuples of unmonitored keys to disk. Intuitively, we again want to minimize h so that
we minimize the memory consumed by the write buffers of the buckets. This way, we
maximize the number of keys held in memory, s, and hence the lower bound of the
number of tuples collapsed in memory, M′. The sketch-based mini-analysis proposed
in the previous section can again be used here to estimate U and help set h to be its
lower bound U/(B − 1).

However, it is worth noting that setting the number of buckets h to be its optimal
value may not guarantee the optimal performance of DINC-hash. This is because
DINC-hash is a dynamic caching-based scheme whose performance depends not only
on the parameters used in the hash algorithm but also on the temporal locality of the
keys in the input data. We detail the impact of the second factor when discussing the
potential flooding behavior in the following.

Approximate Answers and Coverage Estimation. One of the features of DINC-hash
is that a large fraction of the update operations for a very frequent key will already
have been performed once all the tuples have arrived. To estimate the number of
update operations performed for a given key we use the t values: these count the
number of tuples that have been collapsed for key k since most recent time k started
being monitored. Define the coverage of key ki to be

coverage(ki) =
{

t[ j]/ fi if k[ j] = ki for some j
0 otherwise

.

Hence, once the tuples have arrived, the state corresponding to ki in main-memory
represents the computation performed on a coverage(ki) fraction of all the tuples with
this key. Unfortunately we do not know the coverage of a monitored key exactly, but
we know that t[i] ≤ fi ≤ t[i] + M/(s + 1) from the analysis of FREQUENT and therefore
we have the following under-estimate

γi :=
t[ j]

t[ j] + M/(s + 1)
≤ t[ j]

fi
= coverage(ki) ≤ 1,
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which is very accurate when t[ j] or f j is sufficiently larger that M/(s + 1). Hence, for
a user-determined threshold φ, if γi ≥ φ we can opt to return the state of the partial
computation rather than to complete the computation.

Potential Pathological Behaviors. Using the FREQUENT algorithm as described be-
fore leads to a deterministic policy for updating the keys being monitored. Unfortu-
nately, by analogy to online page-replacement policies [Sleator and Tarjan 1985], it is
known that any deterministic policy is susceptible to flooding and that the competitive
ratio (i.e., the worst-case ratio between the number of I/O operations required by the
algorithm and the optimal number) is at least a factor s, the number of keys held in
memory. We note that this analysis also applies to other page-replacement policies
such as LRU because they are also deterministic. For a simple example, consider the
behavior of the FREQUENT algorithm on a sequence that consists of repeating the fol-
lowing sequence of M keys:

〈k1, k2, . . . , ks, ks+1, ks+2, . . . , k2s+1〉 . (8)

The FREQUENT algorithm will require (M − s) I/O operations corresponding to all but
the first s terms requiring a tuple to be written to disk. In contrast, the optimal solution
would be to monitor only k1, . . . , ks and this would require M · s+1

2s+1 I/O operations.

4.3.2. Heuristic Improvement and the Marker Algorithm. In our implementation of FRE-
QUENT we added a simple random heuristic that helps avoid the pathological cases
described earlier. When evicting a currently monitored key (and its associated state),
our heuristic is to randomly select from those keys whose counters are zero, rather
than simply picking the first such key each time. For example, when processing

〈k1, k2, . . . , ks, ks+1, ks+2, k1, k1, k1, . . .〉, (9)

the heuristic means that k1 is unlikely to be replaced by ks+2 (as would happen with-
out the heuristic) due to randomization and hence we are able to combine all the k1’s
in the sequence in memory. Note that the heuristic does not jeopardize the given
performance guarantees. This behavior is inspired in part by the Marker algorithm
[Fiat et al. 1991; McGeoch and Sleator 1991], a paging algorithm that is known
to have good I/O performance (under a worst-case analysis) as a paging algorithm,
but no analysis has been conducted to determine their abilities to recognize frequent
keys.

The algorithm is sketched in Algorithm 2. The basic algorithm is relatively simple
and can be described in terms of the difference to the FREQUENT algorithm with our
heuristic: we do not increment the counters c[i] beyond 1. More specifically, the algo-
rithm maintains s bits (binary counters) c[1], . . . , c[s], s associated keys k[1], . . . , k[s]
currently being monitored, and the state s[i] for each key k[i]. Initially, all the bits are
set to 0, and all the keys are marked as empty (Line 1). When a new tuple (k, v) arrives,
if this key is currently being monitored, the corresponding bit is set to 1 and the state
is updated using the update function (Line 4). If k is not being monitored and there
exists at least one bit c = 0, the algorithm randomly picks a j such that c[ j] = 0, evicts
the key-state pair (k[ j], s[ j]), and let c[ j] monitor k (Line 7–9). If k is not monitored
and all c = 1, then the tuple needs to be written to disk and all c[i] are set to 0 (Line
11–12).
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Algorithm 2 Sketch of the Marker algorithm
1: c[i] ← 0, k[i] ← ⊥ for all i ∈ {1, 2, · · · , s}
2: for each tuple (k, v) from input do
3: if k is being monitored then
4: Suppose k is monitored by c[ j], do c[ j] ← 1, and s[ j] ← update(s[ j], v)
5: else
6: if {i : c[i] = 0} �= ∅ then
7: j ← randomly pick from {i : c[i] = 0}
8: Evict key-state pair (k[ j], s[ j]) to disk
9: c[ j] ← 1, k[ j] ← k, and s[ j] ← v

10: else
11: Write tuple (k, v) to disk
12: c[i] ← 0 for all i ∈ {1, 2, · · · , s}
13: end if
14: end if
15: end for

Marker versus Frequent Policies for DINC. The randomization of the Marker algo-
rithm plays a key role in minimizing pathological behavior. Specifically it is known
that competitive ratio of the enchanted Marker algorithm [McGeoch and Sleator 1991]
has the competitive ratio O(log s) and that this is optimal. Note that this should not be
understood to mean that the Marker algorithm is immune to flooding. For example the
Marker algorithm will perform equally badly on the example in Equation 8. However,
the fact that the counters saturate at 1 in the Marker algorithm (in contrast to the
unbounded counters in the FREQUENT algorithm) has a significant effect on the ability
of the algorithm to identify frequent keys. In particular, if an otherwise popular key
becomes temporarily infrequent, the Marker algorithm will quickly stop monitoring
this key. Hence, there is no guarantee that the frequent elements are identified, and
therefore a policy based on the Marker algorithm would not support coverage estima-
tion and early approximate answers as detailed previously. On the other hand, the
FREQUENT algorithm is more sensitive to keys have been historically popular. This is
because a popular key ki that is being monitored will have a high counter value c[i]
and therefore it will require the processing of at least c[i] more tuples before ki is in
danger of being evicted. The extent to which it is advisable to use the historical fre-
quency of an item to guide the monitoring of future keys is dependent on the dataset.
We will explore the issue further empirically in Section 6.3 but the summary is that
because the Marker algorithm adapts more quickly to changes in the key distribution,
it can end up generating more or less I/O depending on whether or not (respectively)
the changes in the distribution are temporary.

4.4. Optimizing Other System Parameters

We finally discuss the optimization of key parameters of MapReduce systems such as
the Hadoop system. We have described the optimization of Hadoop parameters under
the sort-merge implementation in Section 3. Those key parameters, such as the chunk
size C and the number of reducers R, are important to our hash-based implementation
as well. In particular, when the chunk size is small, we incur high startup cost due to
a large number of map tasks. An excessively large chunk size is not favorable, either.
One reason is that when a combine function is used in the mappers, the hash algorithm
used in the reducers is also applied in the mappers. When the chunk size is large, the
output size of a map task may exceed the map buffer size and hence the hash algorithm
applied to the map output incurs internal I/O spills, adding significant overheads. The
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Fig. 10. Architecture of our new one-pass analytics platform.

second reason is that a large chunk size delays the delivery of data to the reducers,
which is undesirable for incremental processing. Considering both reasons, we use the
insights from Section 3 and set the chunk size C to the largest value that keeps the
output of a map task fit in the map buffer. Regarding the number of reduce tasks R,
we set it such that there is only one wave of reduce tasks, that is, R equals the number
of reduce task slots. Using multiple waves of reduce tasks incurs more I/Os because
only the first wave of reduce tasks can fetch map output directly from local memory,
while the reduce tasks in other waves are likely to read data from disks.

5. PROTOTYPE IMPLEMENTATION

We have built a prototype of our incremental one-pass analytics platform on Hadoop.
Our prototype is based on Hadoop version 0.20.1 and modifies the internals of Hadoop
by replacing key components with our Hash-based and fast in-memory processing
implementations. Figure 10 depicts the architecture of our prototype; the shaded com-
ponents and the enlarged subcomponents show the various portions of Hadoop inter-
nals that we have built. Broadly these modifications can be grouped into two main
components.

Hash-based Map Output. Vanilla Hadoop consists of a Map Output Buffer com-
ponent that manages the map output buffer, collects map output data, partitions the
data for reducers, sorts the data by partition id and key (external sort if the data
exceeds memory), and feeds the sorted data to the combine function if there is one
or writes sorted runs to local disks otherwise. Since our design eliminates the sort
phase, we replace this component with a new Hash-based Map Output component.
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Whenever a combine function is used, our Hash-based Map Output component builds
an in-memory hash table for key-value pairs output by hashing on the corresponding
keys. After the input has been processed, the values of the same key are fed to the
combine function, one key at a time. In the scenario where no combine function is
used, the map output must be grouped by partition id and there is no need to group
by keys. In this case, our Hash-based Map Output component records the number of
key-value pairs for each partition while processing the input data chunk, and moves
records with the same key to a particular segment in the buffer, while scanning the
buffer once.

HashThread Component. Vanilla Hadoop comprises an InMemFSMerge thread
that performs in-memory and on-disk merges and writes data to disk whenever the
shuffle buffer is full. Our prototype replaces this component with a HashThread im-
plementation, and provides a user-configurable option to choose between MR-hash,
INC-hash, and DINC-hash implementations within HashThread.

In order to avoid the performance overhead of creating a large number of Java ob-
jects, our prototype implements its own memory management by placing key data
structures into byte arrays. Our current prototype includes several byte array-based
memory managers to provide core functionality such as hash table, key-value or key-
state buffer, bitmap, or counter-based activity indicator table, etc., to support our three
hash-based approaches.

We also implement a bucket file manager that is optimized for hard disks and SSDs
and provide a library of common combine and reduce functions as a convenience to
the programmer. Our prototype also provides a set of independent hash functions,
such as in recursive hybrid hash, in case such multiple hash functions are needed for
analytics tasks. Also, if the frequency of hash keys is available a priori, our prototype
can customize the hash function to balance the amount of data across buckets.

Finally, we implement several “utility” components such as a system log manager, a
progress reporter for incremental computation, and CPU and I/O profilers to monitor
system status.

Pipelining. In our current system, the granularity of data shuffling is determined
by the chunk size (with a default value of 64MB), which is fairly small compared with
typical sizes of input data (e.g., a terabyte) and hence suitable for incremental process-
ing. In the future, if data needs to be shuffled at a higher frequency, our hash-based
framework for incremental processing can be extended with the pipelining approach
used in MapReduce Online [Condie et al. 2010]. The right granularity of shuffling will
be determined based on the application latency requirement, the extra network over-
head of fine-grained data transmission, and the existence of the combine function or
not. With some of these issues addressed in MapReduce Online, we will treat them
thoroughly in the hash framework in our future work.

Integration within the Hadoop Family. Our system can be integrated with other
software in the Hadoop family with no or minimal effort. Any storage system in the
Hadoop family, such as HBase, can serve as input to your data analytics system. This is
because our internal modification to Hadoop does not require any change of input. Any
query processing or data analytics system that is built over Hadoop, such as Hive, can
directly benefit from our hash-based system because all our changes are encapsulated
in the MapReduce processing layer. The only slight modification required in the query
processing layer is transforming the reduce function for Hadoop to init(), cb () and fn()
functions tailored for incremental computation. The effort of the transformation is
typically minimal for analytics tasks.
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6. PERFORMANCE EVALUATION

We present an experimental evaluation of our analytics platform and compare it to
optimized Hadoop 0.20.1, called 1-pass SM, as described in Section 3. We evaluate all
three hash techniques, MR-hash, INC-hash and DINC-hash, described in Section 4 in
terms of running time, the size of reduce spill data, and the progress made in map and
reduce.

In our evaluation, we use three real-world datasets: 236GB of the WorldCup click
stream, 52GB of the Twitter dataset, and 156GB of the GOV2 dataset.6 We use work-
loads over the WorldCup dataset: (1) sessionization, where we split the click stream
of each user into sessions; (2) user click counting, where we count the number of
clicks made by each user; (3) frequent user identification, where we find users who
click at least 50 times. We also use a fourth workload over both the Twitter and the
GOV2 datasets, trigram counting, where we report word trigrams that appear more
than 1000 times. Our evaluation environment is a 10-node cluster as described in Sec-
tion 2.3. Each compute node is set to hold a task tracker, a data node, four map slots,
and four reduce slots. In each experiment, 4 reduce tasks run on each compute node.

6.1. Small Key-State Space: MR-Hash versus INC-Hash

We first evaluate MR-hash and INC-hash under the workloads with small key-state
space, where the distinct key-state pairs fit in memory or slightly exceed the memory
size. We consider sessionization, user click counting, and frequent user identification.

Sessionization. To support incremental computation of sessionization in reduce,
we configure INC-hash to use a fixed-size buffer that holds a user’s clicks. A fixed
size buffer is used since the order of the map output collected by a reducer is not
guaranteed, and yet online sessionization relies on the temporal order of the input
sequence. When the disorder of reduce input in the system is bounded, a sufficiently
large buffer can guarantee the input order to the online sessionization algorithm. In
the first experiment, we set the buffer size, that is, the state size, to 0.5KB.

Figure 11(a) shows the comparison of 1-pass SM, MR-hash, and INC-hash in terms
of map and reduce progress. Before the map tasks finish, the reduce progress of 1-pass
SM and MR-hash is blocked by 33%. MR-hash blocks since incremental computation
is not supported. In 1-pass SM, the sort-merge mechanism blocks the reduce function
until map tasks finish; a combine function cannot be used here since all the records
must be kept for output. In contrast, INC-hash’s reduce progress keeps up with the
map progress up to around 1,300s, because it performs incremental in-memory pro-
cessing and generates pipelined output until the reduce memory is filled with states.
After 1,300s, some data is spilled to disk, so the reduce progress slows down. After map
tasks finish, it takes 1-pass SM and MR-hash longer to complete due to the large size
of reduce spills (around 250GB as shown in Table III). In contrast, INC-hash finishes
earlier due to smaller reduce spills (51GB).

Thus by supporting incremental processing, INC-hash can provide earlier output,
and generates less spill data, which further reduces the running time after the map
tasks finish.

User click counting and Frequent user identification. In contrast to sessionization,
user-click counting can employ a combine function and the states completely fit in
memory at the reducers.

Figure 11(b) shows the results for user click counting. 1-pass SM applies the com-
bine function in each reducer whenever its buffer fills up, so its progress is more of

6http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm
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Fig. 11. Progress report using hash implementations.

a step function. Since MR-hash does not support the combine function, its overall
progress only reaches 33% when the map tasks finish. In contrast, INC-hash makes
steady progress through 66% due to its full incremental computation. Note that since
this query does not allow any early output, no technique can progress beyond 66%
until all map tasks finish.

This workload generates less shuffled data, reduce spill data, and output data when
compared to sessionization (see Table III). Hence the workload is not as disk- and
network-I/O- intensive. Consequently both hash-based techniques have shorter run-
ning times, when compared to 1-pass SM, due to the reduction in CPU overhead gained
by eliminating the sort phase.

We further evaluate MR-hash and INC-hash with frequent user identification. This
query is based on user click counting, but allows a user to be output whenever the
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Table III. Comparing Optimized Hadoop (using sort-merge), MR-Hash, and
INC-Hash

Sessionization 1-Pass SM MR-hash INC-hash
Running time (s) 4135 3618 2258
Map CPU time per node (s) 1012 659 571
Reduce CPU time per node (s) 518 566 565
Map output / Shuffle (GB) 245 245 245
Reduce spill (GB) 250 256 51

User click counting 1-Pass SM MR-hash INC-hash
Running time (s) 1430 1100 1113
Map CPU time per node (s) 853 444 443
Reduce CPU time per node (s) 39 41 35
Map output / Shuffle (GB) 2.5 2.5 2.5
Reduce spill (GB) 1.1 0 0

Frequent user identification 1-Pass SM MR-hash INC-hash
Running time (s) 1435 1153 1135
Map CPU time per node (s) 855 442 441
Reduce CPU time per node (s) 38 38 34
Map output / Shuffle (GB) 2.5 2.5 2.5
Reduce spill (GB) 1.1 0 0

Table IV. Comparing Sessionization to INC-Hash with 0.5KB State,
INC-Hash with 2KB State, and DINC-Hash with 2KB State

INC (0.5KB) INC (2KB) DINC (2KB)
Running time (s) 2258 3271 2067
Reduce spill (GB) 51 203 0.1

counter of the user reaches 50. Figure 11(c) shows 1-pass SM and MR-hash perform
similarly as in user click counting, as the reduce function cannot be applied until
map tasks finish. The reduce progress of INC-hash completely keeps up with the map
progress due to the ability to output early.

In summary, given sufficient memory, INC-hash performs fully in-memory incre-
mental processing, due to which, its reduce progress can potentially keep up with the
map progress for queries that allow early output. Hash techniques can run faster if
I/O and network are not bottlenecks due to the elimination of sorting.

6.2. Large Key-State Space: INC-Hash versus DINC-Hash

We next evaluate INC-hash and DINC-hash for incremental processing for workloads
with a large key-state space, which can trigger substantial I/O. Our evaluation uses
two workloads as follows.

Sessionization with varying state sizes. Figure 11(d) shows the map and reduce
progress of INC-hash under three state sizes: 0.5KB, 1KB, and 2KB. A larger state
size means that the reduce memory can hold fewer states and that the reduce progress
diverges earlier from the map progress. Also, larger states cause more data to be
spilled to disk, as shown in Table IV. So after map tasks finish, the time for processing
data from disk is longer.

To enable DINC-hash for sessionization, a streaming workload, we use the state of
a monitored key to hold the clicks of a user in her recent sessions. We evict a state
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from memory if: (1) all the clicks in the state belong to an expired session; (2) the
counter of the state is zero. Rather than spilling the evicted state to disk, the clicks in
it can be directly output. As shown in Table IV, DINC-hash only spills 0.1 GB data in
reduce with 2KB state size, in contrast to 203 GB for the same workload in INC-hash.
As shown in Figure 11(e), the reduce progress of DINC-hash closely follows the map
progress, and spends little time processing the on-disk data after mappers finish.

We further quote numbers about stock Hadoop for this workload (see Table I). Using
DINC-hash, the reducers output continuously and finish as soon as all mappers finish
reading the data in 34.5 minutes, with 0.1GB internal spill. In contrast, the original
Hadoop system returns all the results towards the end of the 81 minute job, causing
370GB internal data spill to disk, 3 orders of magnitude more than DINC-hash.

Trigram Counting. Figure 11(f) shows the map and reduce progress plot for INC-
hash and DINC-hash with the Gov2 dataset. The reduce progress in both keeps grow-
ing below, but close to the map progress, with DINC-hash finishing a bit faster. In this
workload, the reduce memory can only hold 1/30 of the states, but less than half of
the input data is spilled to disk in both approaches. This implies that both hash tech-
niques hold a large portion of hot keys in memory. DINC-hash does not outperform
INC-hash like with sessionization because the trigrams are distributed more evenly
than the user ids, so most hot trigrams appear before the reduce memory fills up. INC-
hash naturally holds them in memory. The reduce progress in DINC-hash falls slightly
behind that of INC-hash because if the state of a key is evicted, and the key later gets
into memory again, the counter in its state starts from zero again, making it harder
for a key to reach the threshold of 1,000. Both hash techniques finish the job in the
range of 4,100–4,400 seconds. In contrast, 1-pass SM takes 9,023 seconds. So both
hash techniques outperform Hadoop.

In summary, for workloads that require a large key-state space, our frequent-key
mechanism significantly reduces I/Os and enables the reduce progress to keep up with
the map progress, thereby realizing incremental processing.

6.3. Dynamic Hashing with Alternative Caching Algorithms

We have compared INC-hash with dynamic hashing based on the deterministic FRE-
QUENT algorithm. Now we further extend the evaluation to dynamic hashing tech-
nique based on the randomized Marker algorithm, as described in Section 4.3. We
refer the two dynamic hashing techniques as DINC-Frequent, and DINC-Marker, re-
spectively. We compare the sizes of reduce intermediate files across these schemes. We
consider three workloads: trigram counting on the Twitter dataset, trigram counting
on the Gov2 dataset, and sessionization on the WorldCup dataset with 2KB state.

Different Workloads. To enable an in-depth analysis of these hashing techniques,
we characterize our workloads as in one of the following two types:

— Nonstreaming. When a key-state pair is evicted from memory, it is written to a
reduce intermediate file for further processing. Trigram counting belongs to this
type of workload. If a trigram is evicted, its state, which is a counter, is written to
disk and later summed with other counters for the same trigram.

— Streaming. For streaming workloads, the decision to monitor a new key in mem-
ory is based both on the existence of a state containing complete data for reduce
processing, for example, when a window closes, and on how the paging algorithm
used in each hashing technique finds such a state in memory to evict: (1) For DINC-
Frequent, the states with zero counters are scanned to find a qualified state with
complete data for reduce processing. (2) For DINC-Marker, the states with zero
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Table V. Comparing INC-Hash, DINC-Frequent and DINC-Marker in Terms of
Reduce Spill (GB)

Workload INC-hash DINC-Frequent DINC-Marker
Trigram counting (Twitter) 318 288 316
Trigram counting (Gov2) 221 176 188
Sessionization (2KB) 203 0.1 0

markers are scanned in a random order to find a qualified state. (3) INC-hash does
not allow any state to be replaced. If such a key-state pair exists for eviction, it is
output directly but not written to a file on disk. Sessionization belongs to this type
of workload. For each user, its state is a window containing the user’s recent clicks.
The window closes when the user’s click session is considered complete. If a user’s
state needs to be replaced, it is directly output at the time of eviction.

As shown in Table V, for the nonstreaming workloads, that is, trigram counting us-
ing Twitter and Gov2 datasets, DINC-Frequent has the smallest intermediate file size
because it maintains more history information and is thus more effective to identify
hot key than the others. For sessionization, the streaming workload, the two dynamic
hashing techniques perform remarkably better than INC-hash. INC-hash incurs sig-
nificant intermediate I/O because it does not allow a state to be replaced, and thus all
the input tuples with keys not in memory are written to files. Both dynamic hashing
techniques have negligible intermediate I/O. Their I/O numbers are slightly different
due to the way we use them to find a qualified state to evict. It does not show intrinsic
difference of the two techniques.

Effects of Locality and Memory Size. We further evaluate our hashing techniques
under different data locality properties and different memory sizes using trigram
counting on the Twitter dataset. To explore different localities, we construct two
datasets: (1) In the original dataset, tweets in various languages are mixed together.
(2) The manipulated dataset is generated from the original dataset. We group the
tweets that belong to 8 language families into 8 subsets. The set of trigrams from
one subset hardly overlaps that from another subset. The subsets are arranged se-
quentially in the input to each algorithm, and thus show strong locality. This type of
locality is similar to the evolving trends of hot topics in real world social networks. In
our evaluation we also explore the effect of the memory size by using two settings: Con-
strained memory with 100MB per reducer, which can hold 2% of all key-states across
all reducers; Larger memory with 600MB per reducer, which can hold 11%–15% of all
key-states, depending on the metadata size in different techniques.

Besides DINC-Frequent and DINC-Marker, we also take this opportunity to report
the performance of dynamic hashing using another deterministic algorithm, the Space-
Saving algorithm (referred to as DINC-SS), as we vary the data locality and memory
size. For fair comparison, each technique allocates the given memory for both key-state
pairs and metadata. Metadata includes the data structures that organize key-states
as a hash-table in order to efficiently search any state by its key, and additional data
structures for realizing a replacement policy efficiently. All the techniques share the
same metadata for the hash table. The sizes of additional metadata for cache man-
agement vary. INC-hash has no additional metadata since it does not support state
replacement. DINC-Frequent maintains a set of counters with distinct values, and
the two-way mapping between a key-state and its corresponding counter. The im-
plementation of DINC-SS does not include the data structures in the Space-Saving
algorithm that do not affect the replacement policy. As a result, DINC-SS has the
same data structures for metadata as DINC-Frequent. DINC-Marker maintains the
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Table VI. Comparing INC-Hash, DINC-Frequent, DINC-SS and DINC-Marker with the Trigram Counting
Workload over the Twitter Dataset in Terms of Reduce Spill (GB)

Language Memory per reducer(MB) INC-hash DINC-Frequent (DINC-SS) DINC-Marker
Mixed 100 318 288 (288) 316

Separate 100 502 266 (265) 272
Mixed 600 217 241 (241) 244

Separate 600 455 251 (251) 212

two-way mapping between a key-state and two static markers: 0 and 1. So, the com-
parison of metadata sizes of the three techniques is: INC-hash < DINC-Marker <
DINC-Frequent = DINC-SS.

The comparison of intermediate file sizes is shown in Table VI. In all the combi-
nations of data locality types and memory sizes, DINC-Frequent and DINC-SS differ
less than 1% in terms of intermediate I/Os. The reason is the intrinsic similarity
of the two algorithms as explained in Section 4.3. With constrained memory size,
DINC-Frequent/SS outperforms the others on both the original dataset and the ma-
nipulated dataset. This is because DINC-Frequent/SS recognizes hot keys more effi-
ciently based on the history memorized by the counters, and thus makes better use
of limited memory. It is also noticeable that the advantage of DINC-Frequent/SS over
DINC-Marker is less with the manipulated dataset. This shows the trade-off between
DINC-Frequent/SS and DINC-Marker. On one hand, DINC-Frequent/SS is still better
at identifying hot keys than DINC-Marker. On the other hand, as stated in Section 4.3,
when a subsequent subset of data is read from the manipulated dataset, the states
from the previous subset are protected by counters in memory. Since the keys from
the new subset are different from the old subset, some tuples from the new subset are
written to disk due to this reason until the counters of old states become zero. To the
contrary, DINC-Marker protects states with markers, which are Boolean counters. So,
DINC-Marker is more I/O efficient in the process of clearing states from an old subset
for a new subset. We will show this trade-off again with the larger memory setting.

In the larger memory setting using the original dataset, INC-hash performs the best.
INC-hash covers the hot keys very well for two reasons. First, there is no strong local-
ity in the dataset. That is, the distinct keys are quite evenly distributed in the dataset.
Second, the memory is sufficiently large such that most hot keys are likely to show up
in the first s keys. In this case, since INC-hash can hold more keys than the others
due to the smallest metadata size as explained before. Hence, it has the least inter-
mediate I/O. In the larger memory setting using the manipulated dataset, INC-hash
becomes much worse and DINC-Marker performs the best. INC-hash incurs more I/O
because the first s keys do not cover hot keys well due to data locality. DINC-Marker
outperforms DINC-Frequent/SS, demonstrating their trade-off again. But with larger
memory, the advantage of DINC-Frequent/SS on identifying hot keys is not as signifi-
cant as before. Thus, DINC-Marker outperforms DINC-Frequent/SS.

In this set of experiments, we show that for streaming workloads, all dynamic hash-
ing techniques have significantly less intermediate I/O than INC-hash. For nonstream-
ing workloads with constrained memory, DINC-Frequent (or similarly, DINC-SS) out-
performs the others because it recognizes hot keys more efficiently and thus makes
better use of limited memory. For nonstreaming workloads with larger memory, when
keys are evenly distributed in the data INC-hash outperforms the others due to the
early appearance of hot keys and the small metadata used, whereas in the presence of
strong locality in the key distribution, dynamic hashing works better than INC-hash
and in particular DINC-Marker performs the best for the type of locality of evolving
trends.
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6.4. Validation Using Amazon EC2

We further validate our evaluation results using much larger datasets in the Amazon
Elastic Compute Cloud (EC2). Our EC2 cluster consists of 20 standard on-demand
extra large instances (4 virtual cores and 15GB memory per instance) launched with
64-bit Amazon Linux AMI 2012.03 (based on Linux 3.2). One of the instances serves
as a head node running the name node and the job tracker. The other 19 instances
serve as slave nodes, where each node carries a data node and a task tracker. Each
slave node is attached with three Elastic Block Store (EBS) volumes: an 8GB volume
for the operating system, a 200GB volume for HDFS, and another 200GB volume for
intermediate files. Each slave node is configured with 3 map task slots and 4 reduce
task slots.7 Due to the constraints of the physical memory size and the EC2 setting,
the maximum buffer size that we can set for a map task or a reduce task is slightly
more than 700MB of memory.8 Therefore, we set the buffer size for a map or reduce
task to be 700MB by default, unless we intentionally reduce the buffer size to evaluate
our techniques in the case of constrained memory.

Click Stream Analysis. We first validate the results of click stream analysis on
EC2. We use 1TB of the WorldCup click stream, the size of which is increased by
a factor of 4 in order to keep the data-to-memory ratio close to that in our previous
experiments.

The first set of experiments compare INC-hash with 1-pass SM and MR-hash in the
case that memory is sufficiently large for holding most (but not all) key-state pairs.
The progress plots of three workloads, namely sessionization, user click counting, and
frequent user identification, are shown in Figures 12(a), 12(b), and 12(c), respectively.
These results agree with the observations in Section 6.1: (1) When the memory is
sufficiently large, INC-hash is able to perform incremental processing fully in memory,
which allows the reduce progress to get closer to the map progress when early output
can be generated for the query; this is shown in Figure 12(a) for sessionization before
the map progress reaches 50% and in Figure 12(c) for frequent user identification over
the entire job. (2) The INC-hash technique runs faster than 1-pass SM and MR-hash
due to the elimination of sorting and less I/O, which can be seen in all of the three
experiments.

We next compare the performance of INC-hash (Figure 12(d)) and that of DINC-
hash (Figure 12(e)) using the sessionization workload that involves a large key-state
space far exceeding available memory. These results validate our observations in Sec-
tion 6.2: When the memory cannot hold all key-state pairs, DINC-hash dramatically
reduces I/O to realize incremental processing, and enables the reduce progress to keep
up with the map progress.

The results on EC2 also show some different characteristics. We list the perfor-
mance measurements of these experiments in Table VII and Table VIII. (1) Higher
CPU cost: All the experiments have higher per-node CPU cost than our previous ex-
periments, as shown in Table VII. This is because each node on EC2 processes more
data whereas the virtual cores on each node have less processing power than the real
cores used in our previous experiments. (2) More I/O for the hash-based techniques:

7Due to the limited performance of a virtual core in EC2 (in contrast to a real core in our previous cluster),
the data shuffling progress cannot keep up with the map progress under the setting of 4 map task slots and
4 reduce task slots per node, which was used in our previous experiments. To solve the problem, we set 3
map task slots and 4 reduce task slots per node in EC2.
8The details of our memory allocation scheme are the following: On a slave node, we are able to allocate
1.4GB JVM heap space for each of the 7 map and reduce task slots, while reserve the remaining memory
for the data node, task tracker and the other services in the operating system. And we are able to allocate
about half of the JVM heap space, 700MB per task, as the buffer.
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Fig. 12. Progress report using hash implementations on EC2.

Comparing the reduce spill numbers in Table VIII and the corresponding numbers in
Table IV, we can see that the I/O cost of reduce spill on EC2 increases by a factor rang-
ing between 4.8 and 10.7, more than the factor 4 by which the data increases. This is
because the total buffer size on EC2 is less than 4 times the buffer size in our previ-
ous experiments, as we explained earlier, which aggregates the memory pressure and
causes more I/Os. (3) Longer running time: As shown in Table VII and Table VIII, the
running times of all the experiments are longer than our pervious experiments. Both
the increase in CPU cost and the increase in I/O contribute to the longer running times.
We finally note that we also encountered unexpected CPU measurements largely due
to the interference from other jobs, such as the reduce CPU time of MR-hash for ses-
sionization in Table VII, which illustrates the difficulty of doing CPU studies in shared
environments like EC2.
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Table VII. Comparing Optimized Hadoop (using sort-merge), MR-Hash, and
INC-Hash on EC2

Sessionization 1-Pass SM MR-hash INC-hash
Running time (s) 6605 6694 4895
Map CPU time per node (s) 1872 1121 1112
Reduce CPU time per node (s) 1353 3080 1648
Map output / Shuffle (GB) 1087 1087 1087
Reduce spill (GB) 1048 1126 547

User click counting 1-Pass SM MR-hash INC-hash
Running time (s) 2965 1641 1674
Map CPU time per node (s) 1949 960 960
Reduce CPU time per node (s) 107 91 84
Map output / Shuffle (GB) 8.5 8.5 8.5
Reduce spill (GB) 4.8 0 0

Frequent user identification 1-Pass SM MR-hash INC-hash
Running time (s) 2951 1626 1616
Map CPU time per node (s) 1953 961 958
Reduce CPU time per node (s) 93 82 84
Map output / Shuffle (GB) 8.5 8.5 8.5
Reduce spill (GB) 4.8 0 0

Table VIII. Comparing Sessionization to INC-Hash with 0.5KB State,
INC-Hash with 2KB State, and DINC-Hash with 2KB State on EC2

INC (0.5KB) INC (2KB) DINC (2KB)
Running time (s) 4895 6252 3523
Reduce spill (GB) 547 978 0.9

Table IX. Comparing INC-Hash, DINC-Frequent, and DINC-Marker with the Trigram Counting
Workload over the Twitter Dataset on EC2 in Terms of Reduce Spill (GB)

Language Memory per reducer(MB) INC-hash DINC-Frequent DINC-Marker
Mixed 100 825 754 820

Separate 100 1189 597 612
Mixed 700 557 581 572

Separate 700 1074 542 428

Trigram Counting. We next validate the results of trigram counting using the
Twitter dataset. The goal is to evaluate different hash-based techniques under dif-
ferent data locality properties and reduce buffer sizes. Since the maximum total size
of reduce buffers on EC2 is approximately 2.25 times that in our previous experiments,
in order to validate results using the same data-to-buffer ratio, we also increase the in-
put data by a factor of 2.25, to 117GB. Similar to our previous experiments, we use two
datasets: the Original dataset, where tweets in various languages are mixed together;
and the Manipulated dataset, where the tweets are grouped into multiple language
families and fed into each algorithm sequentially. We also vary the reduce buffer size
using two settings: Constrained memory with 100MB per reducer, and Larger mem-
ory with 700MB per reducer. The comparison of intermediate file sizes is shown in
Table IX. In the constrained memory setting, DINC-Frequent performs the best on
both datasets. In the larger memory setting using the original dataset, INC-hash out-
performs the other two. In the larger memory setting using the manipulated dataset,
DINC-Marker performs the best. The results agree with our previous experiments, as
summarized in Section 6.3.
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Summary. The results in this section are summarized as follows.

— Our incremental hash technique provides much better performance than optimized
Hadoop using sort-merge and the baseline MR-hash: INC-hash significantly im-
proves the progress of the map tasks, due to the elimination of sorting, and given
sufficient memory, enables fast in-memory processing of the reduce function.

— For a large key-state space, dynamic hashing based on frequency analysis can sig-
nificantly reduce intermediate I/O and enable the reduce progress to keep up with
the map progress for incremental processing.

— For streaming workloads, our dynamic hashing techniques can provide up to 3 or-
ders of magnitude reduction of intermediate I/O compared to other techniques.

— For nonstreaming workloads, there are trade-offs between hashing techniques de-
pending on the data locality and memory size. Dynamic hashing using the frequency
analysis tends to work well under constrained memory. When there is sufficiently
large memory, other hashing techniques may perform better for various data locality
properties.

— Most of these results are also validated using much larger datasets and a larger
cluster in Amazon EC2, with only minor differences due to the use of virtual cores
and the hard constraint on the buffer size in the cloud setting.

7. RELATED WORK

Query Processing using MapReduce. This sort of query processing [Chaiken et al.
2008; Jiang et al. 2010; Olston et al. 2008; Pavlo et al. 2009; Thusoo et al. 2009; Yu
et al. 2009] has been a research topic of significant interest lately. To the best of our
knowledge, none of these systems support incremental one-pass analytics as defined
in our work. The closest work to ours is MapReduce Online [Condie et al. 2010] which
we discussed in detail in Sections 2 and 3. Dryad [Yu et al. 2009] uses in-memory
hashing to implement MapReduce group-by but falls back on the sort-merge imple-
mentation when the data size exceeds memory. Merge Reduce Merge [Yang et al. 2007]
implements hash join using a technique similar to our baseline MR-hash, but lacks fur-
ther implementation details. SCOPE [Chaiken et al. 2008] is a SQL-like declarative
language designed for parallel processing with support of three key user-defined func-
tions: process (similar to map), reduce (similar to reduce) and combine (similar to a join
operator). SCOPE provides the same functionality as Merge Reduce Merge and does
not propose new hash techniques beyond the state of the art. Several other projects
are in parallel to our work: Babu [2010] focuses on optimizing Hadoop parameters,
and ParaTimer [Morton et al. 2010] aims to provide an indicator of remaining time of
MapReduce jobs. Neither of them improves MapReduce for incremental computation.
Finally, many of these systems support concurrent MapReduce jobs to increase system
resource utilization. However, the resources consumed by each task will not reduce,
and concurrency does not help achieve one-pass incremental processing.

Computation Models for MapReduce. Karloff et al. [2010] suggest a theoretical
abstraction of MapReduce. The abstraction employs a model that is both general
and sufficiently simple such that it encourages algorithm research to design and an-
alyze more sophisticated MapReduce algorithms. However, this model is based on
simple assumptions that are not suitable for system research like our study. First,
no distinction is made between disk and main memory. Second, the model is only
applicable to the case that each machine has memory O(n1−ε) where n is the size of
entire input and ε is a small constant. Third, the model assumes that all map tasks
have to complete before the beginning of the reduce phase, which makes the model
invalid for incremental computation.
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Advanced Algorithms for Finding Frequent Items. The FREQUENT algorithm
[Berinde et al. 2009; Misra and Gries 1982], also known as the Misra-and-Gries al-
gorithm, is a deterministic algorithm to identify ε-approximate frequent items in a
entire data stream with 1/ε counters. Each counter corresponds to an item monitored
in memory, and gives an underestimate about the frequency of the item. The algo-
rithm makes no assumption on the distribution of the item frequencies, and can be
implemented such that each update caused by a data item takes O(1) time. The Space-
Saving algorithm [Metwally et al. 2005] employs a mechanism similar to that in the
FREQUENT algorithm . Each counter in Space-Saving gives an overestimate about the
frequency of the corresponding monitored item. In addition, an upper bound for the
error of each counter from the true frequency is maintained. Thus, Space-Saving is
also able to give an underestimate of the frequency for each monitored item. However,
when Space-Saving is used as a paging algorithm, the paging behavior relies only on
the counters, but not affected by the error bounds.We explained the similar perfor-
mance for paging between the algorithms in Section 4.3 and exhibited it empirically
in Section 6.3. The algorithm proposed in Lee and Ting [2006] aims to find frequent
elements in sliding windows, which combines the FREQUENT algorithm with another
existing algorithm. Nevertheless, the update time scales with the number of moni-
tored keys, and hence renders poor performance without window operators. This work
is related to our future work of extending our one-pass analytics platform to support
stream processing.

Parallel Databases. Parallel databases [DeWitt and Gray 1992; DeWitt et al. 1986]
require special hardware and lacked sufficient solutions to fault tolerance, hence hav-
ing limited scalability. Their implementations use hashing intensively. In contrast,
our work leverages the massive parallelism of MapReduce and extends it to incremen-
tal one-pass analytics. We use MR-hash, a technique similar to hybrid hash used in
parallel databases [DeWitt et al. 1986], as a baseline. Our more advanced hash tech-
niques emphasize incremental processing and in-memory processing for hot keys in
order to support parallel stream processing.

Distributed Stream Processing. has considered a distributed federation of partici-
pating nodes in different administrative domains [Abadi et al. 2005] and the routing
of tuples between nodes [Tian and DeWitt 2003], without using MapReduce. Our work
differs from these techniques as it considers the new MapReduce model for massive
partitioned parallelism and extends it to incremental one-pass processing, which can
be later used to support stream processing.

Parallel Stream Processing. The systems community has developed parallel
stream systems like System S [Zou et al. 2010] and S4 [Neumeyer et al. 2010]. These
systems adopt a workflow-based programming model and leave many systems issues
such as memory management and I/O operations to user code. In contrast, MapRe-
duce systems abstract away these issues in a simple user programming model and
automatically handle the memory and I/O related issues in the system.

Our work presented in this article significantly extends our previous work [Li
et al. 2011]: (i) We provide a more detailed analysis of MapReduce online [Condie
et al. 2010] with pipelining of data. Through an extensive set of experiments we
provide new understanding of the effects of the HDFS chunk size, the number of
reducers, and the snapshot mechanism when adding pipelining to existing MapReduce
implementations. (ii) To better validate our analytical model of existing MapReduce
systems, we strengthen our evaluation with new results on the I/O cost in addition
to the time cost. (iii) We significantly extend our discussion of incremental hashing,
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INC-hash, by separating the concepts of incremental processing and partial aggre-
gation, adding a new analysis of memory requirements and I/O cost, and proposing
to treat its sensitivity to unknown parameters using sketch-based analysis. (iv) We
also include a major extension of dynamic incremental hashing, DINC-hash, with new
guarantees for skewed data, discussion of its sensitivity to unknown parameters and
potential pathological behaviors (e.g., flooding), and a new randomized caching algo-
rithm to overcome the flooding problem. (v) We perform over a dozen new experiments
to compare various hashing algorithms and caching policies under different workloads,
data localities, and memory sizes. The detailed results are reported in Section 6.

8. CONCLUSIONS

In this article, we examined the architectural design changes that are necessary to
bring the benefits of the MapReduce model to incremental one-pass analytics. Our
empirical and theoretical analyses showed that the widely used sort-merge implemen-
tation for MapReduce partitioned parallelism poses a fundamental barrier to incre-
mental one-pass analytics, despite optimizations. We proposed a new data analysis
platform that employs a purely hash-based framework, with various techniques to
enable incremental processing and fast in-memory processing for frequent keys. Eval-
uation of our Hadoop-based prototype showed that it can significantly improve the
progress of map tasks, allows the reduce progress to keep up with the map progress
with up to 3 orders of magnitude reduction of internal data spills, and enables results
to be returned early.

In future work, we will build use cases and evaluate our system in more application
domains, such as web document analysis, web log analysis [PigMix 2008], complex
graph analysis and genomic analysis [Roy et al. 2012]. We will also extend our hash-
based data analytics platform in several ways. First, we will explore further improve-
ment of our dynamic incremental hashing techniques, including seeking performance
gains by generalizing the Marker algorithm, where the counter of each monitored item
can go up to a parameterized value instead of 1, and seeking hybrid approaches that
adapt between the FREQUENT algorithm and the marker algorithm for best perfor-
mance. Second, we will explore a dynamic mechanism for controlling the number of
hash buckets in our hash algorithms, which provides good performance without re-
quiring precise knowledge of the key-state space of input data. Third, we will extend
our work to online query processing that provides early approximate answers with
statistical guarantees. Fourth, we will further extend to stream processing by adding
the support of pipelining and window operations. Our incremental data processing
platform developed in this work provides fundamental systems support for these two
analytics systems.
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