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ABSTRACT
In many stream monitoring situations, the data arrival rateis so high
that it is not even possible to observe each element of the stream.
The most common solution is to sample a small fraction of the data
stream and use the sample to infer properties and estimate aggre-
gates of the original stream. However, the quantities that need to
be computed on the sampled stream are often different from the
original quantities of interest and their estimation requires new al-
gorithms. We present upper and lower bounds (often matching) for
estimating frequency moments, support size, entropy, and heavy
hitters of the original stream from the data observed in the sampled
stream.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms & Problem Complexity]

General Terms
Algorithms, Theory

Keywords
data streams, frequency moments, sub-sampling

1. INTRODUCTION
In many stream monitoring situations, the data arrival rateis so

high that it is possible to observe each element in the stream. The
most common solution is to sample a small fraction of the data
stream and use the sample to infer properties of the originalstream.
For example, in an IP router, aggregated statistics of the packet
stream are maintained through a protocol such as Netflow [6].In
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high-end routers, the load due to statistics maintenance can be so
high that a variant of Netflow calledsampled Netflowhas been de-
veloped. In randomly sampled netflow, the monitor gets to view
only a random sample of the packet stream, and must maintain
statistics on the original stream, using this view.

In such scenarios of extreme data deluge, we are faced with two
constraints on data processing. First, the entire data set is not seen
by the monitor; only a random sample is seen. Second, even the
random sample of the input is too large to be stored in main mem-
ory (or in secondary memory), and must be processed in a single
pass through the data, as in the usual data stream model.

While there has been a large body of work that has dealt with data
processing using a random sample (see for example, [2, 3]), and
extensive work on the one-pass data stream model (see for example,
[1, 15, 17]), there has been little work so far on data processing in
the presence of both constraints, where only a random sampleof
the data set must be processed in a streaming fashion. We notethat
the estimation of frequency moments over a sampled stream isone
of the open problems from [16], posed as Question 13, “Effects of
Subsampling”.

1.1 Problem Setting
We assume the setting ofBernoulli sampling, described as fol-

lows. Consider an input streamP = 〈a1, a2, . . . , an〉 whereai ∈
{1, 2, . . . ,m}. For a parameterp, 0 < p ≤ 1, a sub-stream ofP ,
denotedL is constructed as follows. For1 ≤ i ≤ n, ai is included
in L with probability p. The stream processor is only allowed to
seeL, and cannot seeP . The goal is to estimate properties of
P through processing streamL. In the following discussion,L is
called thesampled stream, andP is called theoriginal stream.

1.2 Our Results
We present algorithms and lower bounds for estimating key ag-

gregates of a data stream by processing a randomly sampled sub-
stream. We consider the basic frequency related aggregates, includ-
ing the number of distinct elements, thekth frequency moments
(Fk for k ≥ 1), the empirical entropy of the frequency distribution,
and the heavy hitters.

1. Frequency Moments: For the frequency momentsFk, k ≥
2, we present(1+ε, δ)-approximation algorithms with space
complexity1 Õ(p−1m1−2/k). We show a matching lower

1WhereÕ notation suppresses factors polynomial in1/ε and1/δ
and factors logarithmic inm andn.



bound ofΩ(p−1m1−2/k), showing that the above algorithm
is space optimal. This result yields an interesting tradeoff
between the sampling probability and the space used by the
algorithm. The smaller the sampling probability (up to a cer-
tain minimum probability), the greater is the streaming space
complexity ofFk. The algorithms and lower bounds forFk

are presented in Section 3.

2. Distinct Elements: For the number of distinct elements,F0,
we show that the current best offline methods for estimating
F0 from a random sample can be implemented in a stream-
ing fashion using very small space. While it is known that
random sampling can significantly reduce the accuracy of an
estimate forF0 [5], we show that the need to process this
stream using small space does not. The upper and lower
bounds are presented in Section 4.

3. Entropy: For estimating entropy we first show that no mul-
tiplicative approximation is possible in general even whenp
is constant. However, we show that estimating the empirical
entropy on the sampled stream yields a constant factor ap-
proximation to the entropy of the original stream given that
the entropy is larger than some vanishingly small function of
p andn. These results are presented in Section 5.

4. Heavy Hitters: We show tight bounds for identifying a set of
O(1/α) elements whose frequency exceedsαF

1/k
k for k ∈

{1, 2}. In the case ofk = 1, we show that existing heavy
hitter algorithms can be used if the stream is sufficiently long
compared withp. In the case ofk = 2, we show how to adapt
ideas used in Section 3 to prove matchingΘ̃(1/p) upper and
lower bounds. These results are presented in Section 6.

Another way of interpreting our results is in terms of time-space
tradeoffs for data stream problems. Almost every streamingal-
gorithm has a time complexity of at leastn, since the algorithm
reads and processes each stream update. We show that for esti-
matingFk (and other problems) it is unnecessary to process each
update; instead, it suffices for the algorithm to read each item in-
dependently with probabilityp, and maintain a data structure of
sizeÕ(p−1 · m1−2/k). Interestingly, the time to update the data
structure per sampled stream item is still onlyÕ(1). The time to
output an estimate at the end of observation isÕ(p−1 · m1−2/k),
i.e., roughly linear in the size of the data structure. As an exam-
ple of the type of tradeoffs that are achievable, for estimating F2

if n = Θ(m) we can setp = Θ̃(1/
√
n) and obtain an algorithm

usingÕ(
√
n) time andÕ(

√
n) space.

1.3 Related Work
Duffield et al. [9] study issues in Internet traffic measurement

using a sampled packet stream, and consider the estimation of the
sizes of IP flows and the number of IP flows in a packet stream
through observing the sampled stream. In a follow up work [10],
they provide methods for estimating the distribution of thesizes of
the input flows by observing samples of the original stream; this can
be viewed as constructing an approximate histogram. This work is
focused on Internet traffic estimation. The techniques usedhere are
maximum likelihood estimation, as well as protocol level detail at
the IP and TCP level. While this work deals with inference from a
random sample in detail, it does not consider the streaming aspect
of the computation, as we do here. Further, the aggregates that we
consider (frequency moments, entropy) are not considered there.

Rusu and Dobra [18] consider the estimation of the second fre-
quency moment of a stream, equivalently, the size of the self-join,

through processing the sampled stream. Our work differs from
theirs in the following ways. First, their algorithm for thesecond
frequency moment does not yield an(1 + ǫ, δ) approximation of
the second frequency moment, while ours does. Next, we consider
higher frequency momentsFk, for k > 2, as well as the entropy,
while they do not. Finally, our technique for estimatingF2 is dif-
ferent from theirs; ours relies on counting the number of collisions
in the sampled stream, while theirs relies on estimating thesecond
frequency moment of the sampled stream; this way we are able to
get the theoretically optimal dependence of space on the sampling
probability p. Rusu and Dobra have not explicitly mentioned the
space bound of their algorithm; when we derived an(1 + ǫ, δ) es-
timator forF2 based on their algorithm, we found that the estima-
tor took Õ(1/p2) space. We improve the dependency on the sam-
pling probability and obtain an algorithm that only requiresÕ(1/p)
space.

Bhattacharya et al. [4] consider stream processing in the model
where the stream processor can adaptively “skip” past stream ele-
ments, and look at only a fraction of the input stream, thus speed-
ing up stream computation. In their model, the stream processor
has the power to decide which elements to see and which to skip
past, hence it is “adaptive”; in our model, the stream processor does
not have such power, and must deal with the randomly sampled
stream that is presented to it. Our model reflects the setup incur-
rent network monitoring equipment, such as Randomly Sampled
Netflow [6]. They present a constant factor approximation for F2,
while we present(1 + ǫ, δ) approximations for all frequency mo-
mentsFk, k ≥ 2.

There is work onprobabilistic data streams[7, 14], where the
data stream itself consists of “probabilistic” data, and each ele-
ment of the stream is a probability distribution over a set ofpos-
sible events. In contrast with our model, in this model the stream
processor gets to see the entire input.

2. NOTATION AND PRELIMINARIES
Throughout this paper, we will denote the original length-n stream

by P = 〈a1, a2, . . . , an〉 and will assume that each elementai ∈
{1, 2, . . . ,m}. We denote the sampling probability withp. The
sampled streamL is constructed by including eachai, 1 ≤ i ≤ n,
with probabilityp. It is assumed that the sampling probabilityp is
fixed in advance and is known to the algorithm.

Throughout letfi be the frequency of itemi in the original stream
P . Let gi be the frequency in the sub-sampled stream and note
that gi ∼ Bin(fi, p). Thus the streamP can be thought of as a
frequency vectorf = (f1, f2, . . . , fm). SimilarlyL can be repre-
sented by frequency vectorg = (g1, g2, . . . , gm).

When considering a functionF on a stream (e.g., a frequency
moment or the entropy) we will denoteF (P ) andF (L) to indi-
cate that value of the function on the original and sampled stream
respectively. When the context is clear, we will also abuse notation
and useF to indicateF (P ).

We will primarily be interested in (randomized) multiplicative
approximations.

DEFINITION 2.1. For α > 1 andδ ∈ [0, 1], we sayX̃ is an an

(α, δ)-estimator forX if Pr
[

α−1 ≤ X/X̃ ≤ α
]

≥ 1− δ.

3. FREQUENCY MOMENTS
We first present our algorithm for estimating thekth frequency

momentFk, and then in Section 3.3, we present lower bounds on
space for estimatingFk. We assumek is constant throughout. The
guarantee provided by our algorithm is as follows.



THEOREM 3.1. There is a one pass streaming algorithm which
observesL and outputs a(1 + ǫ, δ)-estimator toFk(P ) using
Õ(p−1m1−2/k) space, assumingp = Ω̃(min(m,n)−1/k).

For p = Õ(min(m,n)−1/k) there is not enough information to
obtain an(1 + ε, δ) approximation toFk(P ) with any amount of
space, see Theorem 4.33 of [2].

DEFINITION 3.1. The number ofℓ-wise collisions inP isCℓ(P ) =
∑m

i=1

(

fi
ℓ

)

. SimilarlyCℓ(L) =
∑m

i=1

(

gi
ℓ

)

.

Our algorithm is based on the following connection between the
ℓth frequency moment of a stream and theℓ-wise collisions in the
stream.

Fℓ(P ) = ℓ! · Cℓ(P ) +

ℓ−1
∑

i=1

βℓ
iFi(P ) (1)

where

βℓ
i = (−1)ℓ−i+1

∑

1≤j1≤...≤jℓ−i≤ℓ−1

j1 · j2 · · · jℓ−i

The following lemma relates the expectation ofCℓ(L) toCℓ(P )
and bounds the variance.

LEMMA 3.1.

E [Cℓ(L)] = pℓCℓ(P )

V [Cℓ(L)] = O(p2ℓ−1F
2−1/ℓ
ℓ ) .

PROOF. Let C denoteCℓ(L). Since eachℓ-way collision inP
appears inL with probabilitypℓ, we haveE [C] = pℓCℓ(P ). For
eachi ∈ [m], letCi be the number ofℓ-wise collisions inL among
items that equali. ThenC =

∑

i∈[m] Ci. By independence of the
Ci,

V [C] =
∑

i∈[m]

V [Ci] .

Fix ani ∈ [m]. LetSi be the set of indices in the original stream
equal toi. For eachJ ⊆ Si with |J | = k, let XJ be an indicator
random variable if each of the stream elements inJ appears in the
sampled stream. ThenCi =

∑

J XJ . Hence,

V [Ci] =
∑

J,J′

E [XJXJ′ ]− E [XJ ]E [XJ′ ]

=
∑

J,J′

p|J∪J′| − p2ℓ

=

ℓ
∑

j=1

(

fi
j

)

·
(

fi − j

2ℓ− 2j

)

·
(

2ℓ − 2j

ℓ− j

)

· (p2ℓ−j − p2ℓ)

=

ℓ
∑

j=1

O(f2ℓ−j
i p2ℓ−j).

SinceF 1/(2ℓ−j)
2ℓ−j ≤ F

1/ℓ
ℓ for all j = 1, . . . , ℓ, we have

V [C] = O(1) ·
ℓ
∑

j=1

F2ℓ−j · p2ℓ−j = O(1) ·
ℓ
∑

j=1

F
2−j/ℓ
ℓ · p2ℓ−j .

If we can show that the first term of this sum dominates, the
desired variance bound follows. This is the case ifp · F 1/ℓ

ℓ ≥ 1,

Algorithm 1: Fk(P )

1 ComputeF1(L) exactly and set̃φ1 = F1(L)/p.
2 for ℓ = 2 to k do
3 Let C̃ℓ(L) be an estimate forCℓ(L), computed as

described in the text.
4 Compute

φ̃ℓ =
C̃ℓ(L)ℓ!

pℓ
+

ℓ−1
∑

i=1

βℓ
i φ̃i

5 end
6 Returnφ̃k.

since this is the ratio of two consecutive summands. Note that Fℓ

is minimized when there areF0 frequencies each of valueF1/F0.
In this case,

F
1/ℓ
ℓ = (F0 · (F1/F0)

ℓ)1/ℓ = F1/F
1−1/ℓ
0 .

Hence,p ≥ 1/F
1/ℓ
ℓ if p ≥ F

1−1/ℓ
0 /F1, which holds by assump-

tion.

We will first describe the intuition behind our algorithm. Toes-
timateFk(P ), by Eq. 1, it suffices to obtain estimates forF1(P ),
F2(P ), . . . , Fk−1(P ) andCk(P ). Our algorithm attempts to es-
timateFℓ(P ) for ℓ = 1, 2, . . . inductively. Since, by Chernoff
bounds,F1(P ) is very close toF1(L)/p, F1(P ) can be estimated
easily. Thus our problem reduces to estimatingCk(P ) by observ-
ing the sub-sampled streamL. Since the expected number of colli-
sions inL equalspkCk(P ), our algorithm will attempt to estimate
Ck(L), the number ofk-wise collisions in the sub-sampled stream.
However, it is not possible to find a good relative approximation of
Ck(L) in small space ifCk(L) is small. However, whenCk(L) is
small, it does not contribute significantly to the final answer and we
do not need a good relative error approximation! We only needthat
our estimator does not grossly over estimateCk(L). Our algorithm
to estimateCk(L) will have the following property: IfCk(L) is
large, then it outputs a good relative error approximation,and if
Ck(L) is small the it outputs a value that is at most3Ck(L).

3.1 The Algorithm
Define a sequence of random variablesφℓ:

φ1 =
F1(L)

p
, and φℓ =

Cℓ(L)ℓ!

pℓ
+

ℓ−1
∑

i=1

βℓ
iφi for ℓ > 1.

Algorithm 1 inductively computes an estimateφ̃i for eachφi. Note
that if Cℓ(L)/p

ℓ takes its expected value ofCℓ(P ) and we could
computeCℓ(L) exactly, then Eq. 1 implies that the algorithm would
returnFk(P ) exactly. While this is excessively optimistic we will
show thatCℓ(L)/p

ℓ is sufficiently close toCℓ(P ) with high prob-
ability and that we can construct an estimate forC̃ℓ(L) for Cℓ(L)
such that the final result returned is still a(1 + ǫ) approximation
for Fk(P ) with probability at least1− δ.

We compute our estimate of̃Cℓ(L) via an algorithm by Indyk
and Woodruff [13]. This algorithm attempts to obtain a1 + ǫℓ−1

approximation ofCℓ(L) for some value ofǫℓ−1 to be determined.
The estimator is as follows. Fori = 0, 1, 2, . . . define

Si = {j ∈ [m] : η(1 + ǫ′)i ≤ gj ≤ η(1 + ǫ′)i+1}
whereη is randomly chosen between 0 and 1 andǫ′ = ǫℓ−1/4.
The algorithm of Indyk and Woodruff [13] returns an estimates̃i



for |Si| and our estimate forCℓ(L) is defined as

C̃ℓ(L) :=
∑

i

s̃i

(

η(1 + ǫ′)i

k

)

The space used by the algorithm isÕ(p−1m1−2/ℓ). We defer the
details to Section 3.2.

We next define an eventE that corresponds to our collision es-
timates being sufficiently accurate and the sampled stream being
“well-behaved." The next lemma establishes thatPr [E ] ≥ 1 − δ.
We will defer the proof until Section 3.2.

LEMMA 3.2. Define the eventE = E1 ∩ E2 ∩ . . . ∩ Ek where

E1 : φ̃1 ∈ (1± ǫ1)F1(P )

Eℓ : |C̃ℓ(L)/p
ℓ − Cℓ(P )| ≤ ǫℓ−1Fℓ(P )/ℓ! for ℓ ≥ 2

whereǫk = ǫ, ǫℓ = (Aℓ + 1)ǫℓ−1, andAℓ =
∑ℓ

i=1 |βℓ
i |. Then

Pr [E ] ≥ 1− δ .

The next theorem establishes that, conditioned on the eventE ,
the algorithm returns a(1±ǫ) approximation ofFk(P ) as required.

LEMMA 3.3. Conditioned onE , we haveφ̃ℓ ∈ (1 ± ǫℓ)Fℓ(P )

for all ℓ ∈ [k] and specificallỹφk ∈ (1± ǫ)Fk(P ).

PROOF. The proof is by induction onℓ. By our assumptioñφ1

is an(1± ǫ1) approximation ofF1(P ). If i ≤ j, ǫi ≤ ǫj . Thus the
induction hypothesis ensures thatφ̃1, φ̃2, . . . , φ̃ℓ−1 are each(1 ±
ǫℓ−1) approximations forF1(P ), . . . , Fℓ−1(P ) respectively. Now
considerφ̃ℓ:

φ̃ℓ =
C̃ℓ(L)ℓ!

pℓ
+

ℓ−1
∑

i=1

βℓ
i φ̃i

∈ C̃ℓ(L)ℓ!

pℓ
+

ℓ−1
∑

i=1

βℓ
i (1± ǫℓ−1)Fi(P )

⊂ ℓ!Cℓ(P )± ǫℓ−1Fℓ(P ) +
ℓ−1
∑

i=1

βℓ
i (1± ǫℓ−1)Fi(P )

⊂ [ℓ!Cℓ(P ) +

ℓ−1
∑

i=1

βℓ
iFi(P )]± [ǫℓ−1Fℓ(P )

+

ℓ−1
∑

i=1

βℓ
i ǫℓ−1Fℓ(P )]

⊂ Fℓ(P )± (Al + 1)ǫℓ−1Fℓ(P )

⊂ (1± ǫℓ)Fℓ(P ) .

3.2 Proof of Lemma 3.2.
Our goal is to show thatPr [E1 ∩ E2 ∩ . . . ∩ Ek] ≥ 1− δ. To do

this it will suffice to show that for eachℓ ∈ [k], Pr [Eℓ] ≥ 1− δ/k
and appeal to the union bound. It is easy to see that, by Chernoff
bounds, the eventE1 happens with probability at least1− δ/k. To
analyzePr [Eℓ] for 2 ≤ ℓ ≤ k we consider the events:

E1
ℓ :

∣

∣

∣Cℓ(L)/p
ℓ − Cℓ(P )

∣

∣

∣ ≤ ǫℓ−1Fℓ(P )

2ℓ!

E2
ℓ :

∣

∣

∣
C̃ℓ(L)− Cℓ(L)

∣

∣

∣
≤ ǫℓ−1Fℓ(P )

2ℓ!
.

By the triangle inequality it is easy to see thatPr
[

E1
ℓ ∩ E2

ℓ

]

≤
Pr [Eℓ] and hence it suffices to show thatPr

[

E1
ℓ

]

≥ 1 − δ/(2k)

andPr
[

E2
ℓ

]

≥ 1 − δ/(2k). The first part follows easily from the
variance bound in Lemma 3.1.

LEMMA 3.4. Pr
[

E1
ℓ

]

≥ 1− δ
4k

.

PROOF. There are two cases depending on the size ofE [Cℓ(L)].

Case I: First assumeE [Cℓ(L)] ≤ δǫℓ−1p
ℓFℓ

8kℓ!
. Therefore, by Lemma

3.1, we also know that

Cℓ(P ) ≤ δǫℓ−1Fℓ

8kℓ!
. (2)

By Markov’s bound

Pr

[

Cℓ(L) ≤
ǫℓ−1p

ℓFℓ

2ℓ!

]

≥ 1− δ

4k
. (3)

Eq. 2 and Eq. 3 together imply that with probability at least1− δ
4k

∣

∣

∣Cℓ(L)/p
ℓ − Cℓ(P )

∣

∣

∣ ≤ max
(

Cℓ(L)/p
ℓ, Cℓ(P )

)

≤ ǫℓ−1Fℓ

2ℓ!

Case II: Next assumeE [Cℓ(L)] >
δǫℓ−1p

ℓFℓ

8kℓ!
. By Chebyshev’s

bound, and using Lemma 3.1, we get:

Pr

[

|Cℓ(L)− E [Cℓ(L)] | ≥
ǫℓ−1E [Cℓ(L)]

2

]

≤ 4V [Cℓ(L)]

ǫ2ℓ−1(E [Cℓ(L)])2
≤ Dk2(ℓ!)2

δ2ǫ4ℓ−1pF
1/ℓ
ℓ

≤ δ

4k

whereD is a sufficiently large constant. The last inequality follows
becauseF 1/ℓ

ℓ ≥ F1/F
1−1/ℓ
0 and our assumption onp.

SinceE [Cℓ(L)] = pℓCℓ(P ) andCℓ(P ) ≤ Fℓ(P )/ℓ!, we have
that

Pr

[

∣

∣

∣
Cℓ(L)/p

ℓ − Cℓ(P )
∣

∣

∣
≤ ǫℓ−1Fℓ(P )

2ℓ!

]

≥ 1− δ

4k

as required.

We will now show thatE2
ℓ happens with high probability by ana-

lyzing the algorithm that computes̃Cℓ(L). We need the following
result due to Indyk and Woodruff [13]. Recall thatǫ′ = ǫℓ−1/4.

THEOREM 3.2 (INDYK AND WOODRUFF[13]). LetG be the
set of indicesi for which

|Si|(1 + ǫ′)2i ≥ γF2(L)

poly(ǫ′−1 log n)
, (4)

then

Pr
[

∀i ∈ G, s̃i ∈ (1± ǫ′)|Si|
]

≥ 1− δ

8k
.

For everyi (whether it is inG or not) s̃i ≤ 3|Si|. Moreover, the
algorithm runs in spacẽO(1/γ).

We say that a setSi contributes if

|Si| ·
(

(1 + ǫ′)i

k

)

>
Cℓ(L)

B
.

whereB = poly(ǫ′−1 log n). We will first show that for every
Si that contributes, Eq. (4) holds with high probability withγ =
pm−1+2/ℓ.



LEMMA 3.5. Suppose thatCℓ(L) >
ǫℓ−1p

ℓFℓ(P )

4ℓ!
. If Si con-

tributes then

Pr

[

|Si|(1 + ǫ′)2i ≥ δpF2(L)

m1−2/ℓ poly(ǫ′−1 log n)

]

≥ 1− δ

8k
.

PROOF. Consider a setSi that contributes. Note that the prob-
ability that numberη < 1/ poly(δ−1ǫ′−1 log n) with is at most
1/ poly(δ−1ǫ′−1 log n). Without loss of generality we can take
this probability to be less thanδ/16k. By our assumption onCℓ(L),

|Si|(1 + ǫ′)ℓi ≥ ǫ′pℓFℓ(P )

Bℓ!

holds with probability at least1− δ/8k. Thus

|Si|(1 + ǫ′)2i ≥ ǫ′2/ℓp2F
2/ℓ
ℓ (P )

(Bℓ!)2/ℓ
≥ p2F2(P )

m1−2/ℓ poly(ǫ′−1 log n)

where the second inequality is an application of Hölder’s inequal-
ity.

Note that

E [F2(L)] = p2F2(P ) + p(1− p)F1(P ) ≤ 2pF2(P ) .

Thus, an application of the Markov bound,

Pr

[

F2(L) ≤ 32kpF2(P )

δ

]

≥ 1− δ

16k
.

Thus

|Si|(1 + ǫ′)2i ≥ δpF2(L)

m1−2/ℓ poly(ǫ′−1 log n)

with probability at least1− δ/8k.

Now we are ready to prove that the eventE2
ℓ holds with high

probability.

LEMMA 3.6. Pr
[

E2
ℓ

]

≥ 1− δ
2k

PROOF. There are two cases depending on the size ofCℓ(L).

Case I: AssumeCℓ(L) ≤ ǫℓ−1p
ℓFℓ(P )

4ℓ!
. By Theorem 3.2, it follows

thatC̃ℓ(L) ≤ 3Cℓ(L). Thus

∣

∣

∣
C̃ℓ(L) −Cℓ(L)

∣

∣

∣
≤ 2Cℓ(L) ≤

ǫℓ−1p
ℓFℓ(P )

2ℓ!

Case 2: AssumeCℓ(L) >
ǫℓ−1p

ℓFℓ

4ℓ!
. By Lemma 3.5, for everySi

that contributes,

Pr

[

|Si|(1 + ǫ′)2i ≥ δpF2(L)

m1−2/ℓ poly(ǫ′−1 log n)

]

≥ 1− δ

8k
.

Now by Theorem 3.2 for eachSi that contributes̃si ∈ (1± ǫ′)|Si|,
with probability at least1− δ

8k
. Therefore,

Pr
[∣

∣

∣
C̃ℓ(L)− Cℓ(L)

∣

∣

∣
≤ ǫ′Cℓ(L)

]

≥ 1− δ

4k
.

If E1
ℓ is true, then:

Cℓ(L) ∈ Cℓ(P )pℓ ± ǫℓ−1Fℓ(P )pℓ

2ℓ!
.

SinceE1
ℓ holds with probability at least1 − δ

4k
, the following in-

equalities hold with probability at least1− δ
2k

.

∣

∣

∣C̃ℓ(L) −Cℓ(L)
∣

∣

∣ ≤ ǫ′Cℓ(L) ≤ ǫ′Cℓ(P )pℓ +
ǫℓ−1ǫ

′Fℓ(P )pℓ

2ℓ!

≤ ǫ′Fℓ(P )pℓ

ℓ!
+

ǫℓ−1ǫ
′Fℓ(P )pℓ

2ℓ!

≤ Fℓ(P )pℓ

4ℓ!
(ǫℓ−1 + ǫℓ−1ǫℓ−1)

≤ Fℓ(P )pℓǫℓ−1

2ℓ!

3.3 Lower Bounds
In this section we prove thatΩ(n1−2/k/p) bits of space are

necessary for estimatingFk in the Bernoulli sampling model for
n = Θ(m). Henceforth we assumep < 1/2 since for any constant
p > 0, anΩ(n1−2/k) bound follows immediately from existing
bounds when there is no subsampling [11]. The bound will also
apply if the original streamP is not ordered adversarially but has
been permuted at random.

3.3.1 Intuition
The intuition behind the result is as follows. Existing datastream

research establishes thatΩ(nt−2) bits of space are required to dis-
tinguish between the cases a) alln elements in a stream are unique
and b) there exists a high frequency element with multiplicity t.
If t ≥ n1/k, then a good constant approximation ofFk distin-
guishes these cases. However, if every element of the streamis
only observed with probabilityp, then the length of the new stream
is roughlyn′ = np and any high frequency element now only has
frequency roughlyt′ = pt. Hence, distinguishing the two cases
now requiresΩ(n′t′−2) = Ω(nt−2/p) = Ω(n1−2/k/p) bits of
space.

3.3.2 Details
Consider the following distributionµ(n, p, t) over data streams:

• With probability 1/2: for each ofn items, include it in the
stream once with probabilityp, otherwise do not include it.
Output a random ordering.

• With probability 1/2: choose a random special itemi, in-
clude i in the streamt times, and for eachj ∈ [n] \ {i},
includej in the stream once with probabilityp, otherwise do
not include it. Output a random ordering.

Guha and Huang [11] show that any1/3-error,1-pass streaming
algorithm that determines whether there is a special item ina stream
stream distributed according toµ(n, 1/2, t), requiresΩ(n/t2) bits
of space. Furthermore, and importantly for our application, they
show this even if the streaming algorithm is given an arbitrarily
large read-only random tape. This follows from the fact thatthe
lower bound in Theorem 2 of their paper is for a multi-party com-
munication game with public coins. In the reduction from the
streaming algorithm to a communication game, the first player runs
the streaming algorithm on his input, who passes the state ofthe al-
gorithm to the second player, etc. Therefore, we can assume the
public-coin encodes an arbitrarily large read-only randomtape that
the streaming algorithm can access.

We need to generalize the lower bound of [11] to hold for streams
distributed according toµ(n, p, t). We assume, w.l.o.g., thatn·(2p)
andn are powers of2.



LEMMA 3.7. There is a constantδ0 > 0 for which any constant-
pass streaming algorithm which with probability at least1 − δ0
decides whether there is a special item in the stream, when the
stream is distributed according toµ(n, p, t), requiresΩ(np/t2)
bits of space.

PROOF. Suppose we had a constant-pass streaming algorithmA
for µ(n, p, t) which succeeds with sufficiently large constant prob-
ability 1 − δ0. We claim thatA also succeeds with probability at
least2/3 onµ(n · (2p), 1/2, t). The reduction is as follows.

Given a streamS from µ(n · (2p), 1/2, t), we use the algo-
rithm’s random tape to specify a uniformly random injectionh :
[n · (2p)] → [n]. This can be done usingO(log n) bits of space
(not counting that for the random tape), since given ani ∈ [n·(2p)],
specified withO(log n) bits, the streaming algorithm setsh(i) to
equal thei-th chunk oflog n bits in the random tape. The algorithm
replaces each itemi ∈ [n · (2p)] in S with the itemh(i), obtaining
a streamS′. Observe that there is a special item inS′ if and only if
there is a special item inS.

It is clear thatS′ is randomly ordered sinceS is randomly or-
dered, so we just need to compare the induced distribution onfre-
quency vectors ofS′ and of those from a stream drawn fromµ(n, p, t).
The latter corresponds ton i.i.d. Bernoulli(p) variables. For the
former, we choose a random subset of[n] of sizen · (2p), then in-
clude each element in our subset in the stream independentlywith
probability1/2.

We argue that the variation distance of these two distributions
on frequency vectors is sufficiently small. To make this argument,
it suffices to consider the number of non-zero frequencies inboth
distributions, since conditioned on this number any set is equally
likely in both distributions.

In one case the number of non-zero frequencies is distributed as
Bin(n, p), and in the other case it is distributed as Bin(2pn, 1/2).
We use the following well-known fact about binomial distributions.

FACT 3.1 (FOLKLORE). Consider aBin(m,q) distributionµ,
whereq ≥ (logm)/m. There are absolute constantsCU

m,q ≥
CL

m,q > 0 so that for anyi ∈ [qm−√
qm, qm+

√
qm],

CL
m,q√
qm

≤ µ(i) ≤ CU
m,q√
qm

.

Let µ1 be the Bin(n, p) distribution, andµ2 the Bin(2pn, 1/2)
distribution. Applying Fact 3.1, there are positive constantsDL ≤
DU so that for anyi ∈ [pn−√

pn, pn+
√
pn] andµ ∈ {µ1, µ2},

DL

√
pn

≤ µ(i) ≤ DU

√
pn

.

If ∆(µ1, µ2) denotes the variation distance, it follows that

∆(µ1, µ2) =
1

2
‖µ1 − µ2‖1 ≤ 1

2
· (2− 2DL) = 1−DL < 1.

Hence, ifA succeeds with sufficiently high success probability on
µ(n, p, t), then it succeeds with probability at least2/3 on µ(n ·
(2p), 1/2, t). By the lower bound of [11],A requiresΩ(np/t2)
bits of space.

In our Bernoulli sampling with probabilityp model, parameterized
by s, we have the following distribution:

• With probability1/2, the frequency vector is(1, 1, ..., 1).

• With probability1/2, the frequency vector is(s, 1, ..., 1).

In each case we randomly permute the multiset of items (in thefirst
case there aren, while in the second case there aren+ s), then the
stream is formed by walking through the permutation and including
each item independently with probabilityp.

The claim is that if we had a streaming algorithmA for distin-
guishing these two cases with sufficiently large probability 1− δ1,
then we could design a streaming algorithm for deciding whether
there is a special item in the stream when the stream is distributed
according toµ(n, p, t) for a valuet ∈ [ps −√

ps, ps+
√
ps]. In-

deed, by Fact 3.1 and averaging, there must be a valuet in this
range so thatA succeeds with probability at least2/3 conditioned
on the number of samples of the special item equalingt. The re-
sulting distribution is equal toµ(n, p, t), and so by Lemma 3.7,A
must useΩ(np/(p2s2)) = Ω(n/(ps2)) bits of space.

To get a lower bound forFk, we sets = n1/k to obtain a con-
stant factor gap in theFk-value of the streams. Hence, we have the
following theorem.

THEOREM 3.3. Any constant-pass streaming algorithm which
(1+ε, δ1)-approximatesFk, for sufficiently small constantsε, δ1 >

0, in the Bernoulli sampling model, requiresΩ(m1−2/k/p) bits of
space.

4. DISTINCT ELEMENTS
There are strong lower bounds for the accuracy of estimates for

the number of distinct values through random sampling. The fol-
lowing theorem is from Charikar et al. [5], which we have restated
slightly to fit our notation (the original theorem is about database
tables). LetF0 be the number of elements in a data setT of to-
tal sizen. Note thatT maybe a stored data set, and need not be
processed in a one-pass manner.

THEOREM 4.1 (CHARIKAR ET AL . [5]). Consider any (ran-
domized) estimator̂F0 for the number of distinct valuesF0 of T ,
that examines at mostr out of then elements inT . For anyγ >
e−r, there exists a choice of the inputT such that with probability
at leastγ, the multiplicative error is at least

√

(n− r)/(2r) ln γ−1.

The above theorem implies that if we observeo(n) elements of
P , then it is not possible to get even an estimate with a constant
multiplicative error. This lower bound for the non-streaming model
leads to the following lower bound for sampled streams.

THEOREM 4.2 (F0 LOWER BOUND). For sampling probabil-
ity p ∈ (0, 1/12], any algorithm that estimatesF0 by observingL,
there is an input stream such that the algorithm will have a multi-
plicative error ofΩ

(

1/
√
p
)

with probability at least(1−e−np)/2.

PROOF. Let E1 denote the event|L| ≤ 6np. Let β denote the
multiplicative error of any algorithm (perhaps non-streaming) that

estimatesF0(P ) by observingL. Let α =
√

ln 2
12p

. Let E2 denote

the eventβ ≥ α.
Note that|L| is a binomial random variable. The expected size

of the sampled stream isE [|L|] = np. By using a Chernoff bound:

Pr [E1] = 1− Pr [|L| > 6E [|L|]] ≥ 1− 2−6E[|L|] > 1− e−np

If E1 is true, then the number of elements in the sampled stream
is no more than6np. Substitutingr = 6np andγ = 1/2 in Theo-
rem 4.1, we get:

Pr [E2|E1] ≥ Pr

[

β >

√

(

n− 6np

12np

)

ln 2

∣

∣

∣

∣

∣

E1

]

≥ 1

2



Simplifying, and usingp ≤ 1/12, we get:

Pr [E2] ≥ Pr [E1 ∧ E2] = Pr [E1] · Pr [E2|E1] ≥ 1

2
(1− e−np)

We now describe a simple streaming algorithm for estimating
F0(P ) by observingL(P, p), which has an error ofO(1/

√
p) with

high probability.

Algorithm 2: F0(P )

1 LetX denote a(1/2, δ)-estimate ofF0(L), derived using any
streaming algorithm forF0 (such as [15]).

2 ReturnX/
√
p

LEMMA 4.1 (F0 UPPERBOUND). Algorithm 2 returns an es-
timateY for F0(P ) such that the multiplicative error ofY is no
more than4/

√
p with probability at least1− (δ + e−pF0(P )/8).

PROOF. LetD = F0(P ), andDL = F0(L). Let E1 denote the
event(DL ≥ pD/2), E2 denote(X ≥ DL/2), andE3 denote the
event(X ≤ 3DL/2). LetE = ∩3

i=1Ei.
Without loss of generality, let1, 2, . . . , D denote the items that

occurred in streamP . DefineXi = 1 if at least one copy of itemi
appeared inL, and0 otherwise. The differentXis are all indepen-
dent. ThusDL =

∑D
i=1 Xi is a the sum of independent Bernoulli

random variables and

E [DL] =
D
∑

i=1

Pr [Xi = 1] .

Since each copy of itemi is included inDL with probabilityp, we
havePr [Xi = 1] ≥ p. Thus,E [DL] ≥ pD. Applying a Chernoff
bound,

Pr
[

E1

]

= Pr

[

DL <
pD

2

]

≤ Pr

[

DL <
E [DL]

2

]

≤ e−E[DL]/8 ≤ e−pD/8

SupposeE is true. Then we have the following:

pD

4
≤ DL

2
≤ X ≤ 3DL

2
≤ 3D

2

and thereforeX has a multiplicative error of no more than4/
√
p.

We now bound the probability thatE is false.

Pr
[

E
]

≤
4
∑

i=1

Pr
[

Ei

]

≤ δ + e−pD/8

where we have used the union bound, Eq. (5), and the fact thatX
is a(1/2, δ)-estimator ofDL.

5. ENTROPY
In this section we consider approximating the entropy of a stream.

DEFINITION 5.1. Theentropyof a frequency vector

f = (f1, f2, . . . , fm)

is defined asH(f) =
∑m

i=1
fi
n
lg n

fi
wheren =

∑m
i=1 fi.

Unfortunately, in contrast toF0 andFk, it is not possible to mul-
tiplicatively approximateH(f) even ifp is constant.

LEMMA 5.1. No multiplicative error approximation is possible
with probability9/10 even withp > 1/2 . Furthermore,

1. There existsf such thatH(f) = Θ(log n/pn) butH(g) = 0
with probability at least9/10.

2. There existsf such that|H(f) − H(g)| ≥ | lg(2p)| with
probability at least9/10.

PROOF. First consider the following two scenarios for the con-
tents of the stream. In Scenario 1,f1 = n and in Scenario 2,
f1 = n − k andf2 = f3 = . . . = fk+1 = 1. In the first case the
entropyH(f) = 0 whereas in the second,

H(f) =
n− k

n
(lg e) ln

n

n− k
+

k

n
lg n

=
n− k

n
Θ(k/(n− k)) +

k

n
lgn

= (Θ(1) + lgn)
k

n
.

Distinguishing these streams requires that at least one value other
that 1 is present in the subsampled stream. This happens withprob-
ability (1− p)k > 1− pk and hence withk = p−1/10 this proba-
bility is less than9/10.

For the second part of the lemma consider the stream withf1 =
f2 = . . . = fm = 1 and henceH(f) = lgm. But H(g) =
lg |L| where|L| is the number of elements in the sampled stream.
By an application of the Chernoff bound|L| is at most2pm with
probability at least9/10 and the result follows.

Instead we will show that it is possible to approximateH(f) up
to a constant factor with an additional additive error term that tends
to zero ifp = ω(n−1/3). It will also be convenient to consider the
following quantity:

Hpn(g) =

m
∑

i=1

gi
pn

lg
pn

gi
.

The following propositions establishes thatHpn(g) is a very good
approximation toH(g).

PROPOSITION 5.1. With probability199/200,

|Hpn(g)−H(g)| = O(logm/
√
pn) .

PROOF. By an application of the Chernoff bound, with proba-
bility 199/200

|pn−
m
∑

i=1

gi| ≤ c
√
pn

for some constantc > 0. Hence, ifn′ =
∑m

i=1 gi andγ = n′/pn
it follows thatγ = 1±O(1/

√
pn). Then

Hpn(g) =
m
∑

i=1

gi
pn

lg
pn

gi

=
m
∑

i=1

γgi
n′

lg
n′

γgi

= H(g) +O(1/
√
pn) +O(H(g)/

√
pn) .

The next lemma establishes that the entropy ofg is within a con-
stant factor of the entropy off plus a small additive term.



LEMMA 5.2. With probability99/100, if p = ω(n−1/3),

1. Hpn(g) ≤ O(H(f)).

2. Hpn(g) ≥ H(f)/2−O
(

1

p1/2n1/6

)

PROOF. For the first part of the lemma, first note that

E [Hpn(g)] =
m
∑

i=1

E

[

gi
pn

lg
pn

gi

]

≤
m
∑

i=1

E [gi]

pn
lg

pn

E [gi]

=

m
∑

i=1

pfi
pn

lg
pn

pfi

= H(f)

where the inequality follows from Jensen’s inequality since the
functionx lg x−1 is concave. Hence, by Markov’s inequality

Pr [Hpn(g) ≤ 100H(f)] ≥ 99/100 .

To prove the second part of the lemma, define
f∗ = cp−1ǫ−2 log n for some sufficiently large constantc and
ǫ ∈ (0, 1). We then partition[m] into A = {i : fi < f∗} and
B = {i : fi ≥ f∗} and considerH(f) = HA(f) +HB(f) where

HA(f) =
∑

i∈A

fi
n

lg
n

fi
and HB(f) =

∑

i∈B

fi
n

lg
n

fi
.

By applications of the Chernoff and union bounds, with probability
at least299/300,

|gi − pfi| ≤
{

ǫpf∗ if i ∈ A

ǫpfi if i ∈ B
.

Hence,

HB
pn(g) =

∑

i∈B

gi
pn

lg
pn

gi

=
∑

i∈B

fi(1± ǫ)

n
lg

n

(1± ǫ)fi

= (1± ǫ)HB(f) +O(ǫ) .

ForHA
pn(g) we have two cases depending on whether

∑

i∈A fi
is smaller or larger thanθ := cp−1ǫ−2. If

∑

i∈A fi ≤ θ then

HA(f) =
∑

i∈A

fi
n

lg
n

fi
≤ θ lg n

n
.

On the other hand if
∑

i∈A fi ≥ θ then by an application of the
Chernoff bound,

|
∑

i∈A

gi − p
∑

i∈A

fi| ≤ ǫp
∑

i∈A

fi

and hence

HA
pn(g) =

∑

i∈A

gi
pn

lg
pn

gi

≥ lg
n

(1 + ǫ)f∗

∑

i∈A

gi
pn

≥ (1− ǫ) lg
n

(1 + ǫ)f∗

∑

i∈A

fi
n

≥
(

1− ǫ− lg(1 + ǫ)f∗

lgn

)

HA(f) .

Combining the above cases we deduce that

Hpn(g) ≥ (1− ǫ− lg(p−1ǫ−2 log n)

lgn
)H(f)−O(ǫ)− ǫ−2 lnn

pn
.

Settingǫ = p−1/2n−1/6 we get

Hpn(g) ≥ (1− p−1/2n−1/6 − lg(n1/3 log n)

lgn
)H(f)

−O(p−1/2n−1/6)−O

(

log n

n2/3

)

≥ H(f)/2−O(p−1/2n−1/6) .

Therefore, by using an existing entropy estimation algorithm
(e.g., [12]) to multiplicatively estimateH(g) we have a constant
factor approximation toH(f) if H(f) = ω(p−1/2n−1/6). The
next theorem follows directly from Proposition 5.1 and Lemma 5.2.

THEOREM 5.1. It is possible to approximateH(f) up to a con-
stant factor inO(polylog(m,n)) space ifH(f) = ω(p−1/2n−1/6).

6. HEAVY HITTERS
There are two common notions for finding heavy hitters in a

stream: theF1-heavy hitters, and theF2-heavy hitters.

DEFINITION 6.1. In theFk-heavy hitters problem,k ∈ {1, 2}
we are given a stream of updates to an underlying frequency vector
f and parametersα > ε, and δ. The algorithm is required to
output a setS ofO(1/α) items such that: (1) every itemi for which
fi ≥ α(Fk)

1/k is included inS, and (2) no itemi for whichfi <
(1 − ε)α(Fk)

1/k is included inS. The algorithm is additionally
required to output approximationsf ′

i with

∀i ∈ S, f ′
i ∈ [(1− ε)fi, (1 + ε)fi] .

The overall success probability should be at least1− δ.

The intuition behind the algorithm for heavy hitters is as fol-
lows. Suppose an itemi was anFk heavy hitter in the original
streamP , i.e. fi ≥ α(Fk)

1/k. Then, by a Chernoff bound, it can
be argued that with high probability,gi the frequency ofi in the
sampled stream is also close topfi. In such a case, it can be shown
that i is also a heavy hitter in the sampled stream and will be de-
tected by an algorithm that identifies heavy hitters on the sampled
stream (with the right choice of parameters). Similarly, itcan be
argued that an itemi such thatfi < (1− ε)α(Fk)

1/k cannot reach
the required frequency threshold on the sampled stream, andwill
not be returned by the algorithm. We present the analysis below as-
suming that the heavy hitter algorithm on the sampled streamis the
CountMin sketch. Other algorithms for heavy hitters can be used
too, such as the Misra-Gries algorithm [17]; note that the Misra-
Gries algorithm works on insert-only streams, while theCountMin
sketch works on general update streams, with additions as well as
deletions.

THEOREM 6.1. Suppose that

F1(P ) ≥ Cp−1α−1ε−2 log(n/δ)

for a sufficiently large constantC > 0. There is a one pass stream-
ing algorithm which observes the sampled streamL and computes
theF1 heavy hitters of the original streamP with probability at
least 1 − δ. This algorithm usesO(ε−1 log2(n/(αδ))) bits of
space.



PROOF. The algorithm is to run theCountMin(α′, ε′, δ′) algo-
rithm of [8] for finding theF1-heavy hitters problem on the sam-
pled stream, forα′ = (1 − 2ε/5) · α, ε′ = ε/10, andδ′ = δ/4.
We return the setS of itemsi found byCountMin, and we scale
each of thef ′

i by 1/p.

Recall thatgi the frequency of itemi in the sampled streamL.
Then for sufficiently largeC > 0 given in the theorem statement,
by a Chernoff bound,

Pr

[

gi > max

{

p
(

1 +
ε

5

)

fi,
C

2ε2
log
(n

δ

)

}]

≤ δ

4n
.

By a union bound, with probability at least1− δ/4, for all i ∈ [n],

gi ≤ max

{

p
(

1 +
ε

5

)

fi,
C

2ε2
log
(n

δ

)

}

. (5)

We also need the property that iffi ≥ (1 − ε)αF1(P ), thengi ≥
p(1− ε/5)fi. For suchi, by the premise of the theorem we have

E [gi] ≥ p(1− ε)αF1(P ) ≥ C(1− ε)ε−2 log(n/δ) .

Hence, for sufficiently largeC, applying a Chernoff and a union
bound is enough to conclude that with probability at least1− δ/4,
for all suchi, gi ≥ p(1− ε/5)fi.

We set the parameterδ′ of CountMin to equalδ/4, and soCount-
Min succeeds with probability at least1− δ/4.

Also, E [[F1(L)] = pF1(P ) ≥ Cα−1ε−2(log n/δ), the in-
equality following from the premise of the theorem. By a Chernoff
bound,

Pr
[(

1− ε

5

)

pF1(P ) ≤ F1(L) ≤
(

1 +
ε

5

)

pF1(P )
]

≥ 1− δ

4
.

By a union bound, all events discussed thus far jointly occurwith
probability at least1−δ, and we condition on their joint occurrence
in the remainder of the proof.

LEMMA 6.1. If fi ≥ αF1(P ), then

gi ≥ (1− 2ǫ/5) · αF1(L) .

If fi < (1− ǫ)αF1(P ), then

gi ≤ (1− ǫ/2)αF1(L) .

PROOF. Sincegi ≥ p(1 − ε/5)fi and alsoF1(L) ≤ p(1 +
ε/5)F1(P ). Hence,

gi ≥ 1− ε/5

1 + ε/5
· αF1(L) ≥ (1− 2ε/5) · αF1(L).

Next consider anyi for whichfi < (1− ε)αF1(P ). Then

gi ≤ max

{

p
(

1 +
ε

5

)

(1− ε)αF1(P ),
C

2ε2
log
(n

δ

)

}

≤ max

{(

1− 3ε

5

)

αF1(L),
C

2ε2
log
(n

δ

)

}

≤ max
{(

1− ε

2

)

αF1(L),
α

2
· E [F1(L)]

}

≤ max
{(

1− ε

2

)

αF1(L),
(

1 +
ε

5

) α

2
F1(L)

}

≤
(

1− ε

2

)

αF1(L).

It follows that by settingα′ = (1 − 2ε/5) · α andε′ = ε/10,
CountMin(α′, ε′, δ′) does not return anyi ∈ S for which fi <
(1− ε)αF1(P ), since for suchi we havegi ≤ (1− ε/2)αF1(L),
and sogi < (1 − ε/10)α′F1(L). On the other hand, for every
i ∈ S for whichfi ≥ αF1(P ), we havei ∈ S, since for suchi we
havegi ≥ α′F1(L).

It remains to show that for everyi ∈ S, we havef ′
i ∈ [(1 −

ε)fi, (1 + ε)fi]. By the previous paragraph, for suchi we have
fi ≥ (1 − ε)αF1(P ). By the above conditioning, this means that
gi ≥ p(1 − ε/5)fi. We will also havegi ≤ p(1 + ε/5)fi if
p
(

1 + ε
5

)

fi ≥ C
2ε2

log
(

n
δ

)

. Sincefi ≥ (1 − ε)αF1(P ), this in
turn holds if

F1(P ) ≥ 1

2(1− ε)(1 + ε/5)
· Cp−1α−1ε−2 log

(n

δ

)

,

which holds by the theorem premise providedε is less than a suffi-
ciently small constant. This completes the proof.

The proof of the next theorem follows from the proofs of Theo-
rem 3.1 fork = 2 and Theorem 6.1 We omit the details.

THEOREM 6.2. Suppose thatp = Ω̃(m−1/2). There is a one
pass streaming algorithm which observes the sampled streamL
and computes theF2 heavy hitters of the original streamP with
probability at least1−δ. This algorithm uses̃O(p−1) bits of space.

THEOREM 6.3. Any algorithm for solving theF2-heavy hitters
problem with probability at least2/3 in the Bernoulli sampling
with probabilityp model must useΩ(p−1) bits of space.

PROOF. This follows from our lower bound in Section 3.3 for
estimatingF2 in this model. Indeed, there we show that any al-
gorithm which distinguishes between the case when the frequency
vector is(1, 1, . . . , 1) and the case when the frequency vector is
(s, 1, . . . , 1) requiresΩ(m/(ps2)) bits of space. If we sets =

m1/2, then in the first case the heavy hitters algorithm is required
to return an empty list, while in the second case the heavy hitters
algorithm must return a list of size1. Hence the algorithm can
distinguish the two cases and requiresΩ(1/p) bits of space.

7. CONCLUSION
In this paper we presented small-space stream algorithms and

space lower bounds for estimating functions of interest when ob-
serving a random sample of the original stream.

The are numerous directions for future work. As we have seen,
our results imply time/space tradeoffs for several naturalstream-
ing problems. What other data stream problems have interesting
time/space tradeoffs? Also, we have so far assumed that the sam-
pling probabilityp is fixed, and that the algorithm has no control
over it. Suppose this was not the case, and the algorithm can change
the sampling probability in an adaptive manner, depending on the
current state of the stream. Is it possible to get algorithmsthat can
observe fewer elements overall and get the same accuracy as our
algorithms? For which precise models and problems is adaptivity
useful?

8. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The Space Complexity

of Approximating the Frequency Moments.J. Comput. Syst.
Sci., 58(1):137–147, 1999.

[2] Z. Bar-Yossef.The complexity of massive dataset
computations. PhD thesis, UC Berkeley, 2002.

[3] Z. Bar-Yossef. Sampling lower bounds via information
theory. InSTOC, pages 335–344, 2003.



[4] S. Bhattacharyya, A. Madeira, S. Muthukrishnan, and T. Ye.
How to scalably and accurately skip past streams. InICDE
Workshops, pages 654–663, 2007.

[5] M. Charikar, S. Chaudhuri, R. Motwani, and V. R.
Narasayya. Towards estimation error guarantees for distinct
values. InPODS, 2000.

[6] Cisco Systems.Random Sampled NetFlow.
http://www.cisco.com/en/US/docs/ios/12_
0s/feature/guide/nfstatsa.html.

[7] G. Cormode and M. Garofalakis. Sketching probabilistic
data streams. InProceedings of the 2007 ACM SIGMOD
international conference on Management of data, SIGMOD
’07, pages 281–292, 2007.

[8] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications.
J. Algorithms, 55(1):58–75, 2005.

[9] N. G. Duffield, C. Lund, and M. Thorup. Properties and
prediction of flow statistics from sampled packet streams. In
Internet Measurement Workshop, pages 159–171, 2002.

[10] N. G. Duffield, C. Lund, and M. Thorup. Estimating flow
distributions from sampled flow statistics. InSIGCOMM,
pages 325–336, 2003.

[11] S. Guha and Z. Huang. Revisiting the direct sum theorem
and space lower bounds in random order streams. InICALP
(1), pages 513–524, 2009.

[12] N. J. A. Harvey, J. Nelson, and K. Onak. Sketching and
streaming entropy via approximation theory. InFOCS, pages
489–498, 2008.

[13] P. Indyk and D. P. Woodruff. Optimal approximations of the
frequency moments of data streams. InProceedings of the
37th Annual ACM Symposium on Theory of Computing
(STOC), pages 202–208, 2005.

[14] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee.
Estimating statistical aggregates on probabilistic data
streams.ACM Trans. Database Syst., 33:26:1–26:30,
December 2008.

[15] D. M. Kane, J. Nelson, and D. P. Woodruff. On the exact
space complexity of sketching and streaming small norms. In
SODA, pages 1161–1178, 2010.

[16] A. McGregor, editor.Open Problems in Data Streams and
Related Topics, 2007.http://www.cse.iitk.ac.in/
users/sganguly/data-stream-probs.pdf.

[17] J. Misra and D. Gries. Finding repeated elements.Science of
Computer Programming, 2(2):143–152, 1982.

[18] F. Rusu and A. Dobra. Sketching sampled data streams. In
ICDE, pages 381–392, 2009.


