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ABSTRACT

In many stream monitoring situations, the data arrivalisase high
that it is not even possible to observe each element of tearstr
The most common solution is to sample a small fraction of tia d
stream and use the sample to infer properties and estimgte-ag
gates of the original stream. However, the quantities teadrto
be computed on the sampled stream are often different fr@n th
original quantities of interest and their estimation regsinew al-
gorithms. We present upper and lower bounds (often mat}ifing
estimating frequency moments, support size, entropy, @&@asyh
hitters of the original stream from the data observed in &meed
stream.

Categories and Subject Descriptors
F.2 [Analysisof Algorithms & Problem Complexity]

General Terms
Algorithms, Theory
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1. INTRODUCTION

In many stream monitoring situations, the data arrival st
high that it is possible to observe each element in the strddma
most common solution is to sample a small fraction of the data
stream and use the sample to infer properties of the origtnedm.

For example, in an IP router, aggregated statistics of tlukgta
stream are maintained through a protocol such as Netflowl{6].
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high-end routers, the load due to statistics maintenancebeaso
high that a variant of Netflow callesampled Netflonas been de-
veloped. In randomly sampled netflow, the monitor gets tavvie
only a random sample of the packet stream, and must maintain
statistics on the original stream, using this view.

In such scenarios of extreme data deluge, we are faced wath tw
constraints on data processing. First, the entire dats settiseen
by the monitor; only a random sample is seen. Second, even the
random sample of the input is too large to be stored in main-mem
ory (or in secondary memory), and must be processed in aesingl
pass through the data, as in the usual data stream model.

While there has been a large body of work that has dealt wtth da
processing using a random sample (see for example, [2,3), a
extensive work on the one-pass data stream model (see fopéxa
[1,15,17]), there has been little work so far on data prdngss
the presence of both constraints, where only a random saofiple
the data set must be processed in a streaming fashion. Wéhatte
the estimation of frequency moments over a sampled streaneis
of the open problems from [16], posed as Question 13, “Edfett
Subsampling”.

1.1 Problem Setting

We assume the setting 8ernoulli sampling described as fol-
lows. Consider an input streaf = (a1, az, .. .,an) Wherea; €
{1,2,...,m}. For a parametep, 0 < p < 1, a sub-stream aP,
denotedL is constructed as follows. Far< i < n, a; is included
in L with probability p. The stream processor is only allowed to
see, and cannot se®’. The goal is to estimate properties of
P through processing stream In the following discussion[. is
called thesampled strearand P is called theoriginal stream

1.2 Our Results

We present algorithms and lower bounds for estimating key ag
gregates of a data stream by processing a randomly samged su
stream. We consider the basic frequency related aggregatksi-
ing the number of distinct elements, tkéh frequency moments
(Fy for k > 1), the empirical entropy of the frequency distribution,
and the heavy hitters.

1. Frequency Moments. For the frequency moments,, k >
2, we presentl+¢, §)-approximation algorithms with space
complexity O(p~1m!~2/%). We show a matching lower

WhereO notation suppresses factors polynomial jfx and1/¢
and factors logarithmic im andn.



bound ofQ(p~tm!'~2/*), showing that the above algorithm
is space optimal. This result yields an interesting trafdeof

through processing the sampled stream. Our work differsi fro
theirs in the following ways. First, their algorithm for tsecond

between the sampling probability and the space used by the frequency moment does not yield &h+ ¢, §) approximation of

algorithm. The smaller the sampling probability (up to & cer
tain minimum probability), the greater is the streamingcgpa
complexity of Fj.. The algorithms and lower bounds féF,
are presented in Section 3.

. Distinct Elements: For the number of distinct elements;,
we show that the current best offline methods for estimating

the second frequency moment, while ours does. Next, we @ensi
higher frequency moments;, for k > 2, as well as the entropy,
while they do not. Finally, our technique for estimatify is dif-
ferent from theirs; ours relies on counting the number dlisiohs

in the sampled stream, while theirs relies on estimatingéuand
frequency moment of the sampled stream; this way we are able t
get the theoretically optimal dependence of space on thelsam

Fy from a random sample can be implemented in a stream- 5 opapility p. Rusu and Dobra have not explicitly mentioned the
ing fashion using very small space. While it is known that  gpace hound of their algorithm; when we derived an- €, ) es-
random sampling can significantly reduce the accuracy of an timator for £, based on their algorithm, we found that the estima-
estimate forFy [5], we show that the need to process this 4, took O(1/p?) space. We improve the dependency on the sam-

stream using small space does not. The upper and lower

bounds are presented in Section 4.

. Entropy: For estimating entropy we first show that no mul-
tiplicative approximation is possible in general even when
is constant. However, we show that estimating the empirical

pling probability and obtain an algorithm that only reqsié(1/p)
space.

Bhattacharya et al. [4] consider stream processing in théemo
where the stream processor can adaptively “skip” pastrateda-
ments, and look at only a fraction of the input stream, thieedp

entropy on the sampled stream yields a constant factor ap- ing up stream computation. In their model, the stream pemres

proximation to the entropy of the original stream given that
the entropy is larger than some vanishingly small functibn o
p andn. These results are presented in Section 5.

. Heavy Hitters: We show tight bounds for identifying a set of
O(1/«) elements whose frequency exceedgj/k fork €
{1,2}. In the case ok = 1, we show that existing heavy
hitter algorithms can be used if the stream is sufficienthglo
compared withp. In the case ok = 2, we show how to adapt
ideas used in Section 3 to prove matchégl /p) upper and
lower bounds. These results are presented in Section 6.

Another way of interpreting our results is in terms of tinpase
tradeoffs for data stream problems. Almost every strearaing
gorithm has a time complexity of at least since the algorithm

has the power to decide which elements to see and which to skip
past, hence itis “adaptive”; in our model, the stream pregsedoes

not have such power, and must deal with the randomly sampled
stream that is presented to it. Our model reflects the setaprin
rent network monitoring equipment, such as Randomly Saginple
Netflow [6]. They present a constant factor approximatianAsg,
while we presentl + ¢, d) approximations for all frequency mo-
mentsFy, k > 2.

There is work onprobabilistic data stream§7, 14], where the
data stream itself consists of “probabilistic” data, andheale-
ment of the stream is a probability distribution over a sepas-
sible events. In contrast with our model, in this model thhean
processor gets to see the entire input.

2. NOTATION AND PRELIMINARIES

reads and processes each stream update. We show that for esti

mating F}, (and other problems) it is unnecessary to process eac
update; instead, it suffices for the algorithm to read eamm iin-
dependently with probability, and maintain a data structure of
sizeO(p~! - m*~2/%). Interestingly, the time to update the data
structure per sampled stream item is still o6ly1). The time to
output an estimate at the end of observatio®{p " - m'~2/%),

i.e., roughly linear in the size of the data structure. As sane

ple of the type of tradeoffs that are achievable, for estingaf

if n = ©(m) we can sep = ©(1/4/n) and obtain an algorithm
usingO(y/n) time andO(,/n) space.

1.3 Related Work

Duffield et al. [9] study issues in Internet traffic measurame
using a sampled packet stream, and consider the estimdttbe o
sizes of IP flows and the number of IP flows in a packet stream
through observing the sampled stream. In a follow up worK,[10
they provide methods for estimating the distribution of $iees of
the input flows by observing samples of the original streduis;dan
be viewed as constructing an approximate histogram. Thik 80
focused on Internet traffic estimation. The techniques hsee are
maximum likelihood estimation, as well as protocol levefadeat
the IP and TCP level. While this work deals with inferencenfra
random sample in detalil, it does not consider the streanspga
of the computation, as we do here. Further, the aggregedéesven
consider (frequency moments, entropy) are not considéee t

Rusu and Dobra [18] consider the estimation of the second fre
guency moment of a stream, equivalently, the size of thejsielf

h  Throughout this paper, we will denote the original lengtstream

y P = (a1, az2,...,a,) and will assume that each elementc
{1,2,...,m}. We denote the sampling probability with The
sampled streamh is constructed by including eaeh, 1 < i < n,
with probability p. It is assumed that the sampling probabilitys
fixed in advance and is known to the algorithm.

Throughout letf; be the frequency of iternin the original stream
P. Let g; be the frequency in the sub-sampled stream and note
that g; ~ Bin(fi,p). Thus the streanP can be thought of as a
frequency vectof = (f1, f2,..., fm). Similarly L can be repre-
sented by frequency vectar= (g1, 92, ..., 9m).

When considering a functiof’ on a stream (e.g., a frequency
moment or the entropy) we will denot&(P) and F(L) to indi-
cate that value of the function on the original and samplezhst
respectively. When the context is clear, we will also abugation
and useF’ to indicateF'(P).

We will primarily be interested in (randomized) multiplicae
approximations.

DEFINITION 2.1. For o > 1 andé € [0, 1], we sayX is an an
(a, 6)-estimator forX if Pr [ofl <X/X<a|>1-4.

3. FREQUENCY MOMENTS

We first present our algorithm for estimating thih frequency
momentFy, and then in Section 3.3, we present lower bounds on
space for estimating},. We assumé is constant throughout. The
guarantee provided by our algorithm is as follows.



THEOREM 3.1. There is a one pass streaming algorithm which
observesL and outputs a(1 + e, §)-estimator to F (P) using

O(p~'m!~?/*) space, assuming = Q(min(m,n)~*/%).

Forp = O(min(m,n)~/*) there is not enough information to
obtain an(1 + ¢, §) approximation taFy (P) with any amount of
space, see Theorem 4.33 of [2].

DEerINITION 3.1. The number of-wise collisions inP is Cy(P) =
S (%) similarly Co(L) = 357 (%).

Our algorithm is based on the following connection betwédwn t
(th frequency moment of a stream and theise collisions in the
stream.

£—1
Fy(P) = {!-Cy(P)+ > BIF:(P) (1)
i=1

where

B = (—1)" g1 g2 e

>

1<j1<...<gp—i <£—1

The following lemma relates the expectation@f( L) to C,(P)
and bounds the variance.

LEMMA 3.1.
E[Ci(L)] = p'Ce(P)
ViC(L)] = Oo@* 'EMY.

PROOF LetC denoteCy(L). Since eacl-way collision in P
appears irl, with probability p*, we haveE [C] = p*Cy(P). For
eachi € [m], letC; be the number of-wise collisions inL among
items that equal. ThenC' = Zie[m] C;. By independence of the
C;

ViCl= Y VIC] .
1€[m]

Fix an: € [m]. LetS; be the set of indices in the original stream
equal toi. For eachJ C S; with |J| = k, let X ; be an indicator
random variable if each of the stream elementd @mppears in the
sampled stream. Thefi; = >~ ; X ;. Hence,

Ve = > E[X,X;]-E[X/E[X,]
J,J!
= S
J,J!
£
_ fi fi—1J 20—2j 2€—j 20
j;(j 20— 2j - @ Pr)
4
= > o).
j=1
SinceF,/ %" < F}/*forall j = 1,...,¢, we have

I £
V[C] — 0(1) . ZF267]_ .p2[*j — O(l) . ZF?*J/( . p2[*j.
j=1 Jj=1
If we can show that the first term of this sum dominates, the
desired variance bound follows. This is the casge -ifFL,l/‘Z > 1,

Algorithm 1: Fy(P)
1 ComputeF; (L) exactly and sep; = Fi (L) /p.
2 for ¢ =2tokdo
3 Let C,(L) be an estimate fof (L), computed as
described in the text.
4 Compute

. 5 e
PRI P
=1

5 end
6 Returngy.

since this is the ratio of two consecutive summands. Notefha
is minimized when there arg, frequencies each of valug, / Fy.
In this case,

F/t = (Fo - (B Fo) )" = /Ry e

Hence,p > 1/F,/" if p > F,~"/*/F\, which holds by assump-
tion. O

We will first describe the intuition behind our algorithm. &e-
timate I, (P), by Eq. 1, it suffices to obtain estimates #®r(P),
F>(P),...,Fr—1(P) andCy(P). Our algorithm attempts to es-
timate Fy(P) for £ = 1,2,... inductively. Since, by Chernoff
bounds,F1 (P) is very close taFi (L) /p, F1(P) can be estimated
easily. Thus our problem reduces to estimaiiig P) by observ-
ing the sub-sampled streai Since the expected number of colli-
sions inL equalsp®C (P), our algorithm will attempt to estimate
Cx(L), the number of-wise collisions in the sub-sampled stream.
However, it is not possible to find a good relative approxiorabf
Cx(L) in small space i’ (L) is small. However, whe@' (L) is
small, it does not contribute significantly to the final ansamd we
do not need a good relative error approximation! We only rieat
our estimator does not grossly over estimaig L). Our algorithm
to estimateC (L) will have the following property: IfC (L) is
large, then it outputs a good relative error approximatimg if
Cx(L) is small the it outputs a value that is at m8ét; (L).

3.1 TheAlgorithm
Define a sequence of random variabfes

_ R

Co(L)0!
o1 P

pl

-1
and ¢p = + Zﬂf@ foré > 1.
i=1

Algorithm 1 inductively computes an estimatefor eachg;. Note
that if C,(L)/p* takes its expected value @f,(P) and we could
computeC, (L) exactly, then Eg. 1 implies that the algorithm would
return F (P) exactly. While this is excessively optimistic we will
show thatC (L) /p* is sufficiently close ta’,(P) with high prob-
ability and that we can construct an estimated( L) for C,(L)
such that the final result returned is stil{a+ €) approximation
for Fi(P) with probability at least — 4.

We compute our estimate @f;(L) via an algorithm by Indyk
and Woodruff [13]. This algorithm attempts to obtaii a e;—1
approximation ofC, (L) for some value ot,_ to be determined.
The estimator is as follows. Fer= 0, 1,2, . .. define

Si={jeml:nl+¢) <g; <nl+e)*'}

wheren is randomly chosen between 0 and 1 ahd= ¢, /4.
The algorithm of Indyk and Woodruff [13] returns an estiméte



for |.S;| and our estimate fof'; (L) is defined as

Cfe(L) — Zgz (77(1 —]L— 5’)2’)

i

The space used by the algorithm(gp~'m'~2/*). We defer the
details to Section 3.2.

We next define an everdt that corresponds to our collision es-
timates being sufficiently accurate and the sampled strezingb
“well-behaved." The next lemma establishes thaf] > 1 — 4.
We will defer the proof until Section 3.2.

LEMMA 3.2. Definethe everf = & Né&: N ... N Ex where
& pre(lta)Fi(P)
& ¢ |Co(L)/p" — Co(P)| < er_1Fy(P)/0) for £>2

wheree, = ¢, ¢, = (Ar + 1)ee—1, and A, = 3¢, |5¢]. Then
Pri]>1-9.

The next theorem establishes that, conditioned on the &ient
the algorithm returns @l +¢) approximation ofFy, (P) as required.

LEmMMA 3.3. Conditioned ort, we havep, € (1 + e/)Fy(P)
for all ¢ € [k] and specificallypy, € (1 £ €) Fi(P).

PROOF The proof is by induction of. By our assumptiomb;
isan(1+ ¢;) approximation off; (P). If i < j, e; < ¢;. Thus the
induction hypothesis ensures th@at, ¢», . .., ¢, are each(1 +
€¢—1) approximations foi; (P), . .., Fy—1(P) respectively. Now
considerg,:

. p o
g = DL S g,
=1

£—1
L > Bl +e1)F(P)
i=1

-1
C OC(P)te 1 Fo(P)+ Y Bi(1+e1)Fi(P)

=1

C [0C(P)+ i BLF;(P)] £ [eo—1 Fu(P)

£—1
+>  Bier 1 Fo(P)]

C F(P)+ (AZ:+ Der_1Fo(P)
C (1£e)F(P).

O

3.2 Proof of Lemma 3.2.

Our goal is to show thar [E; N & N...NE] > 1—4. Todo
this it will suffice to show that for eache [k], Pr €] > 1—§/k
and appeal to the union bound. It is easy to see that, by Ctierno
bounds, the everdl; happens with probability at least— ¢ /k. To
analyzePr [£,] for 2 < £ < k we consider the events:

&+ |CuL) ' = Cu(P)| < 6#12712@)
e ¢ |euw) - o] < D)

- 20!

By the triangle inequality it is easy to see tHat [£; N EF] <
Pr[£,] and hence it suffices to show that [£;] > 1 — 6/(2k)
andPr [£7] > 1 — §/(2k). The first part follows easily from the
variance bound in Lemma 3.1.

LEMMA 3.4.Pr[&] >1- 2.
PROOF. There are two cases depending on the siz&[6t,(L)].

deg_1p'Fy

Casel: Firstassumé& [C(L)] < —F7

3.1, we also know that

. Therefore, by Lemma

deg_1Fy
< .
Ci(P) < Sl 2
By Markov’s bound

)

< co—1p'Fy ‘
4k

Pr{Cg(L)f T }21— ®)

Eqg. 2 and Eq. 3 together imply that with probability at lehst %

_\F,
CeL)/p ~ C[(P)‘ < max (CZ(L)/ZJZ7C@(P)) < El2éu -
Se_1p'Fy

Case I1: Next assumé [C,(L)] > —5i5

bound, and using Lemma 3.1, we get:

. By Chebyshev’s

Pr {|CK(L) _E[C(L)]| > M]

2
4V [Cy(L)] DE*(01)?
6%71(33 [Ce(L)])? — 5252171pF[1/l

whereD is a sufficiently large constant. The last inequality foltow
because,/* > F1/F,'/* and our assumption qn

SinceE [C,(L)] = p*Ce(P) andCy(P) < Fy(P) /¢!, we have
that

9
1k

<

Pr |:‘CZ(L)/p[ —Cy(P)| < %] >1— i

as required. [

We will now show that€? happens with high probability by ana-
lyzing the algorithm that compute&s,(L). We need the following
result due to Indyk and Woodruff [13]. Recall thét= ¢,_; /4.

THEOREM3.2 (INDYK AND WOODRUFF[13]). LetG be the
set of indices for which

I\2i YF>(L
1S:|(1 +¢€) EW(llign)’ (4)
then
1)
AR
For every: (whether it i§ inG or not) §; < 3|S;|. Moreover, the
algorithm runs in spac®©(1/7).

PrVie G, s e (1+€)|Si[] >1-

We say that a sef; contributes if

5l ((14;;)2) .

where B = poly(e'"'logn). We will first show that for every

S; that contributes, Eq. (4) holds with high probability with=
pm71+2/z_

Ci(L)
B




eo_ 1P Fy(P)

LEMMA 3.5. Suppose that,(L) > o . If S; con-
tributes then
i (5pF2(L) 1
Pr||S:|(1+€)* > >1— —.
r |15 +e)™ 2 m!=2/fpoly(e¢/~1logn)| — 8k

PROOF Consider a sef; that contributes. Note that the prob-
ability that numbem < 1/poly(6~*¢~*logn) with is at most
1/ poly(§~te¢’"tlogn). Without loss of generality we can take
this probability to be less tha¥y 16k. By our assumption 06, (L),

¢'p'Fe(P)
B!
holds with probability at least — §/8k. Thus

|Sil(1+€¢)" 2

6'2/Zp2FZ2/e(P)
(Be)2/¢

p*F>(P)
= m1-2/tpoly(e~1logn)

|Si](1+€)* >

where the second inequality is an application of Holderégjimal-
ity.
Note that

E[F3(L)] = p*F2(P) + p(1 — p)F1(P) < 2pF»(P) .
Thus, an application of the Markov bound,

32kpFy(P)] | 0

< .
Pr|Fy(L) < T

Thus
SpFs(L)
m1=2/€poly(e~1logn)

with probability at least — §/8k. [

|61+ €)% >

Now we are ready to prove that the eveift holds with high
probability.
LEMMA 3.6. Pr[£7] > 1— 2
PROOF There are two cases depending on the siz84L).
4
Casel: AssumeCy (L) < “=22F() By Theorem 3.2, it follows

thatC, (L) < 3C,(L). Thus

€_1p" Fo(P)

((Z‘e(L) - G| < 20u(p) < 2

£
Case 2: AssumeCy(L) > ”’iz Fe By Lemma 3.5, for eveng;
that contributes,

o {|5i|(1 +e)* > Pl ] = 85k’

m!=2/€ poly (¢~ log n) 8k

Now by Theorem 3.2 for eac$; that contributes; € (1+¢€')|S;|,
with probability at least — 8% Therefore,

Ce(L) — CZ(L)‘ < EIC[(L)] >1-— 9

Pr[ ik

If £} is true, then:

er—1Fo(P)p*

0
Ce(L) S Cz(P)p + 20

Since&; holds with probability at least — 2,

equalities hold with probability at least— %

the following in-

eo—1¢' Fo(P)p*

Co(L) = Ce(L)| < €Ci(L) < €Ce(P)p" + 571
< Eng(P)pl Eefleng(P)pl
- ! 20!
Fy(P)p*
< %(6[71 +ep—1€0-1)
< Fu(Pyple
- 20!

O

3.3 Lower Bounds

In this section we prove tha®(n'~2/*/p) bits of space are
necessary for estimatingj, in the Bernoulli sampling model for
n = ©(m). Henceforth we assume< 1/2 since for any constant
p > 0, anQ(n'~2/*) bound follows immediately from existing
bounds when there is no subsampling [11]. The bound will also
apply if the original strean® is not ordered adversarially but has
been permuted at random.

3.3.1 Intuition

The intuition behind the result is as follows. Existing dstt@am
research establishes tha¢nt ~2) bits of space are required to dis-
tinguish between the cases a)malkelements in a stream are unique
and b) there exists a high frequency element with multiglici
If ¢ > n'/*, then a good constant approximation Bf distin-
guishes these cases. However, if every element of the stigam
only observed with probability, then the length of the new stream
is roughlyn” = np and any high frequency element now only has
frequency roughlyt’ = pt. Hence, distinguishing the two cases
now requires)(n’t’~2) = Q(nt=2/p) = Q(n*~%*/p) bits of
space.

3.3.2 Details

Consider the following distributiop(n, p, t) over data streams:

e With probability 1/2: for each ofn items, include it in the
stream once with probability, otherwise do not include it.
Output a random ordering.

e With probability 1/2: choose a random special iteinin-
clude: in the streant times, and for each € [n] \ {i},
includej in the stream once with probabilify otherwise do
not include it. Output a random ordering.

Guha and Huang [11] show that ahy3-error, 1-pass streaming
algorithm that determines whether there is a special itesrstineam
stream distributed according tdn, 1/2, t), requires(n/t?) bits
of space. Furthermore, and importantly for our applicatitrey
show this even if the streaming algorithm is given an arhlyra
large read-only random tape. This follows from the fact titnat
lower bound in Theorem 2 of their paper is for a multi-partynco
munication game with public coins. In the reduction from the
streaming algorithm to a communication game, the first playes
the streaming algorithm on his input, who passes the stdteafl-
gorithm to the second player, etc. Therefore, we can asshee t
public-coin encodes an arbitrarily large read-only randape that
the streaming algorithm can access.

We need to generalize the lower bound of [11] to hold for strea
distributed according tp(n, p, t). We assume, w.l.0.g., that(2p)
andn are powers of.



LEMMA 3.7. There is a constardly > 0 for which any constant-
pass streaming algorithm which with probability at ledst- do
decides whether there is a special item in the stream, when th
stream is distributed according ta(n, p,t), requires Q(np/t*)
bits of space.

PROOF. Suppose we had a constant-pass streaming algodthm
for u(n, p, t) which succeeds with sufficiently large constant prob-
ability 1 — 0. We claim thatA also succeeds with probability at
least2/3 onu(n - (2p),1/2,t). The reduction is as follows.

Given a streamS from p(n - (2p),1/2,t), we use the algo-
rithm’s random tape to specify a uniformly random injection
[n - (2p)] — [n]. This can be done usin@(logn) bits of space
(not counting that for the random tape), since given ann-(2p)],
specified withO(log n) bits, the streaming algorithm sei$i) to
equal the-th chunk oflog n bits in the random tape. The algorithm
replaces each itete [n - (2p)] in S with the itemh(z), obtaining
a streamS’. Observe that there is a special itemsiif and only if
there is a special item if.

It is clear thatS” is randomly ordered sincé is randomly or-
dered, so we just need to compare the induced distributidnesn
quency vectors of’ and of those from a stream drawn frartn, p, t).
The latter corresponds te i.i.d. Bernoulli(p) variables. For the
former, we choose a random subsefrdfof sizen - (2p), then in-
clude each element in our subset in the stream independeittly
probability 1 /2.

We argue that the variation distance of these two distioimgti
on frequency vectors is sufficiently small. To make this argnt,
it suffices to consider the number of non-zero frequencidsoth
distributions, since conditioned on this number any segisady
likely in both distributions.

In one case the number of non-zero frequencies is distdlage
Bin(n, p), and in the other case it is distributed as @ipr, 1/2).
We use the following well-known fact about binomial distrilons.

FacT 3.1 (FOLKLORE). Consider aBin(m, q) distribution,
whereg > (logm)/m. There are absolute constan), , >

CE , > 0sothat for anyi € [gm — \/gm, gm + \/gm],

L CU
=L < (i) < —L.
qm Jqm

Let i1 be the Bir{n, p) distribution, andus the Bin(2pn, 1/2)
distribution. Applying Fact 3.1, there are positive conssaD™ <
DY so that for anyi € [pn — /pn, pn + /pn) andp € {u1, p2},

L U
L cun <
pn v bn

If A(u1, p2) denotes the variation distance, it follows that
1 1
A, p2) = 5l = pially < - (2= 2D =1- D" < 1.

Hence, ifA succeeds with sufficiently high success probability on
u(n,p,t), then it succeeds with probability at le&@st3 on u(n -
(2p),1/2,t). By the lower bound of [11]A requiresQ(np/t?)
bits of space. [

In our Bernoulli sampling with probability model, parameterized
by s, we have the following distribution:
e With probability1/2, the frequency vector i€l, 1, ..., 1).

e With probability 1/2, the frequency vector i&, 1, ..., 1).

In each case we randomly permute the multiset of items (ifirtste
case there are, while in the second case there arg- s), then the
stream is formed by walking through the permutation ancligiclg
each item independently with probability

The claim is that if we had a streaming algorithirfor distin-
guishing these two cases with sufficiently large probabilit- 1,
then we could design a streaming algorithm for deciding twet
there is a special item in the stream when the stream islaliséd
according tau(n, p,t) for a valuet € [ps — \/ps,ps + /ps]. In-
deed, by Fact 3.1 and averaging, there must be a valnethis
range so thatl succeeds with probability at lea&t3 conditioned
on the number of samples of the special item equalinghe re-
sulting distribution is equal tp(n, p, t), and so by Lemma 3.74
must use(np/(p*s?)) = Q(n/(ps?)) bits of space.

To get a lower bound foF},, we sets = n'/* to obtain a con-
stant factor gap in thé);-value of the streams. Hence, we have the
following theorem.

THEOREM 3.3. Any constant-pass streaming algorithm which
(14, 61)-approximatedy,, for sufficiently small constants 6; >
0, in the Bernoulli sampling model, requir€sm'~2/* /p) bits of
space.

4. DISTINCT ELEMENTS

There are strong lower bounds for the accuracy of estimates f
the number of distinct values through random sampling. Tihe f
lowing theorem is from Charikar et al. [5], which we have a¢stl
slightly to fit our notation (the original theorem is aboutatzase
tables). LetFy be the number of elements in a data Feof to-
tal sizen. Note thatl’ maybe a stored data set, and need not be
processed in a one-pass manner.

THEOREM4.1 (CHARIKAR ET AL. [5]). Consider any (ran-
domized) estimatoF}, for the number of distinct valueg, of T,
that examines at mostout of then elements iril". For any~y >
e~ ", there exists a choice of the inpIitsuch that with probability
atleasty, the multiplicative error is atleasy/(n — r)/(2r) Iny—1.

The above theorem implies that if we obsen(e) elements of
P, then it is not possible to get even an estimate with a constan
multiplicative error. This lower bound for the non-streagimodel
leads to the following lower bound for sampled streams.

THEOREM4.2 (Fy LOWERBOUND). For sampling probabil-
ity p € (0,1/12], any algorithm that estimatefs, by observingL,
there is an input stream such that the algorithm will have dtimu
plicative error ofQ (1/,/p) with probability at leas{1—e™"?) /2.

PROOF Let&; denote the everjtL| < 6np. Let 3 denote the
multiplicative error of any algorithm (perhaps non-stréagh that

estimatesFy (P) by observingL. Leta = /22, Let &, denote

12p*
the events > a.
Note that|L| is a binomial random variable. The expected size
of the sampled streamB[| L|] = np. By using a Chernoff bound:

Pr(&]=1—Pr[|L| >6E[L|]] >1—2 Ll 5 1 _e7mP

If & is true, then the number of elements in the sampled stream
is no more tharGnp. Substitutingr = 6np and~y = 1/2 in Theo-
rem 4.1, we get:

& >

N =

Pr[&&1] > Pr [ﬂ> (n_an>ln2
12np




Simplifying, and using < 1/12, we get:

Pr[£2] > Pr (&1 A &) = Pr[&4] - Pr[€a)€1] > %(1 _ )
O

We now describe a simple streaming algorithm for estimating
Fo(P) by observingL (P, p), which has an error ad(1/,/p) with
high probability.

Algorithm 2: Fy(P)

1 Let X denote g1/2, ¢)-estimate offy (L), derived using any
streaming algorithm foF}, (such as [15]).
2 ReturnX/,/p

LEMMA 4.1 (F, UPPERBOUND). Algorithm 2 returns an es-
timateY for Fy(P) such that the multiplicative error of is no
more thard/,/p with probability at leastl — (6§ 4 e P (F)/8),

PROOF LetD = Fy(P),andDy = Fy(L). Let&; denote the
event(Dr > pD/2), & denote(X > Dy /2), and€s denote the
event(X < 3D /2). Let€ = Ni_,&:.

Without loss of generality, let, 2, ..., D denote the items that
occurred in strean®. DefineX; = 1 if at least one copy of item
appeared irL, and0 otherwise. The differenk’;s are all indepen-
dent. ThusDy, = 37| X; is a the sum of independent Bernoulli
random variables and

=1].

Since each copy of itennis included inD;, with probability p, we
havePr [X; = 1] > p. Thus,E [D.] > pD. Applying a Chernoff
bound,

Pr[&] = Pr{DL<p2D] < Pr {D <E[2DL]]

< o EIDLI/S o -pD/8

Suppose is true. Then we have the following:

pD DL < X < 3DL @
=2 2 2
and thereforeX has a multiplicative error of no more thag, /p.
We now bound the probability thatis false.

<

<5+67PD/8

ZPr

where we have used the union bound, Eg. (5), and the facXhat
isa(l/2,0)-estimator ofD;. [

5. ENTROPY

In this section we consider approximating the entropy ofeesh.

DEFINITION 5.1. Theentropyof a frequency vector
f: (f17f27"'7fm)

is defined ad (f) = 37, L2 1g = wheren = 7| ;.

Unfortunately, in contrast téy and Fy, it is not possible to mul-
tiplicatively approximatef (f) even ifp is constant.

LeEmMA 5.1. No multiplicative error approximation is possible
with probability9/10 even withp > 1/2 . Furthermore,

1. There exist§ such thatt (f) = ©(logn/pn) butH(g) =
with probability at leas®/10.

2. There exist§ such that|H(f) —
probability at least9/10.

PROOF First consider the following two scenarios for the con-
tents of the stream. In Scenario I, = n and in Scenario 2,
fi=n—kandf; = fs =... = fry1 = 1. In the first case the
entropyH (f) = 0 whereas in the second,

H(g)| > |lg(2p)| with

n —

k k
H(f) (lge)lnni +ﬁ1gn

2RO/ (n— k) + 2

(©) +1gn)~

Ign

Distinguishing these streams requires that at least one\ather
that 1 is present in the subsampled stream. This happengneith
ability (1 — p)* > 1 — pk and hence witlk: = p~! /10 this proba-
bility is less thard/10.

For the second part of the lemma consider the stream fvita
fo = = fm = 1 and henceH (f) = lgm. But H(g) =
lg|L| where|L| is the number of elements in the sampled stream.
By an application of the Chernoff bourd| is at most2pm with
probability at leas®/10 and the result follows. 1

Instead we will show that it is possible to approximéféf) up
to a constant factor with an additional additive error telat tends
to zero ifp = w(n~'/3). It will also be convenient to consider the
following quantity:

"~ gi PN
Hpn(g) = Z o lg—.
=1 P 9

The following propositions establishes tHd}, (g) is a very good
approximation taf (g).

PropPoOSITION 5.1. With probability199/200,

|Hpn(g) — H(g)| = O(log m/+/pn) .
PROOF By an application of the Chernoff bound, with proba-
bility 199/200

m
lpn =Y gl < cvpm

i=1

for some constant > 0. Hence, ifn’ = 37", g; andy = n'/pn
it follows thaty = 1 + O(1/,/pn). Then
o~ gi . PN
Hyn = — lg —
»n(8) ; on g i
N9
i=1 n' REL
= H(g)+O(1/\/pn) + O(H(g)/\/Pn) .
O

The next lemma establishes that the entropy fwithin a con-
stant factor of the entropy dfplus a small additive term.



LEMMA 5.2. With probability99/100, if p = w(n~/3),
1. Hpn(g) < O(H(F)).
2. Hyn(g) = H(£)/2 = O (5717 )

PrROOF For the first part of the lemma, first note that

2 1]

E[Hpn(g)]

Elgil , _pn
< 1
= 2 pn °E[g]
_ pfi g 22
—~ pn " pfi
= H(f)

where the inequality follows from Jensen’s inequality sirtbe
functionz 1g 2! is concave. Hence, by Markov's inequality
Pr[Hpn(g) < 100H (f)] > 99/100 .

To prove the second part of the lemma, define
f* = ep~te?logn for some sufficiently large constantand
€ (0,1). We then partitioqm] into A = {¢ : f; < f*} and
B ={i: f; > f*} and considef] (f) = H*(f) + H”(f) where

Zfl _ and HB ZfL

i€A fi i€B

By applications of the Chernoff and union bounds, with plolig
at least299/300,

ot —phil < {epf* ificA

epfi fieB
Hence,
i n
Hp(g) = Z I g p_
ZEB gi
o Z fz 1 + E n
1€B 1i€)f7,

= 1+ E)HB(f) +O(e) .

For H;,,(g) we have two cases depending on whethgr , f
is smaller or larger thafl := cp~'e . If >, _, fi < 6 then

fL n Glgn
n=) ylr<=,

On the other hand i}, _, fi > 60 then by an application of the
Chernoff bound,

1> gi—pY fil<epd fi

i€A i€EA i€A

>l

ZEA

and hence
Hp(g)

gi

gz
(1+e€ f*z
n fz
(-9l gor2 5y
(1_E_M) HA(f) .

Ign

Y

Y

Y

Combining the above cases we deduce that

lg(p~te 2 logn) e Zlnn
a(g) > (1—e— B2 € 08T —0(e) - :
Hyn(g) > (1—¢ () - 010 - —
Settinge = p~/2n~'/% we get

1/3
lg(n*/®logn) I
Ign

~o( i — o (1)

H(f)/2 - O(p *n~ %) .

Hpn(g) > (1—1771/2”71/6—

%

O

Therefore, by using an existing entropy estimation algamit
(e.g., [12]) to multiplicatively estimatéi(g) we have a constant
factor approximation taH (f) if H(f) = w(p~*/?>n~/5). The
next theorem follows directly from Proposition 5.1 and Leandn2.

THEOREM 5.1. Itis possible to approximaté (f) up to a con-
stant factor inO(polylog(m,n)) space ifff (f) = w(p~'/?n=1/%).

6. HEAVY HITTERS

There are two common notions for finding heavy hitters in a
stream: theF; -heavy hitters, and thé>-heavy hitters.

DEFINITION 6.1. In the Fj;,-heavy hitters problenk € {1, 2}
we are given a stream of updates to an underlying frequencipre
f and parametersx > &, and§. The algorithm is required to
output a sefS of O(1/«) items such that: (1) every iteiior which
fi > a(Fy)'* is included inS, and (2) no item for which f; <
(1 — &)a(Fx)Y* is included inS. The algorithm is additionally
required to output approximation with

VZ€S7 lee [(1_E)fl7(1+5)fl]

The overall success probability should be at lehst 6.

The intuition behind the algorithm for heavy hitters is a& fo
lows. Suppose an itemwas anFj heavy hitter in the original
streamP, i.e. fi > a(F;)"/*. Then, by a Chernoff bound, it can
be argued that with high probability, the frequency of in the
sampled stream is also closeptfi. In such a case, it can be shown
thats is also a heavy hitter in the sampled stream and will be de-
tected by an algorithm that identifies heavy hitters on tmepded
stream (with the right choice of parameters). Similarlycan be
argued that an itemsuch thatf; < (1 —¢)a(Fy)'/* cannot reach
the required frequency threshold on the sampled streamwihd
not be returned by the algorithm. We present the analysombas-
suming that the heavy hitter algorithm on the sampled stisdhe
CountMin sketch. Other algorithms for heavy hitters can be used
too, such as the Misra-Gries algorithm [17]; note that therkh
Gries algorithm works on insert-only streams, while @@intMin
sketch works on general update streams, with additions dssve
deletions.

THEOREM 6.1. Suppose that
Fi(P) > Cp 'a e ?log(n/d)

for a sufficiently large constarf’ > 0. There is a one pass stream-
ing algorithm which observes the sampled streamnd computes
the Fi heavy hitters of the original strear® with probability at
least1 — §. This algorithm use®) (¢! log?(n/(ad))) bits of
space.



PrROOF The algorithm is to run th€ountMin(a’, €', §") algo-
rithm of [8] for finding the F;-heavy hitters problem on the sam-
pled stream, for”’ = (1 — 2¢/5) - o, €’ = /10, andd’ = §/4.
We return the sef of items+: found by CountMin, and we scale
each of thef; by 1/p.

Recall thatg; the frequency of item in the sampled strearh.
Then for sufficiently large” > 0 given in the theorem statement,

by a Chernoff bound,
()] <&

Pr {gi > max {p(

By a union bound, with probability at least- § /4, for all i € [n],

giSmaX{ ( )fu log(g)}- (5)

We also need the property thatfif > (1 — ¢)aF1(P), theng; >
p(1 —¢/5) fi. For suchi, by the premise of the theorem we have

E[g:] > p(1 —e)aF1(P) > C(1 — 6)672 log(n/d) .

Hence, for sufficiently large”, applying a Chernoff and a union
bound is enough to conclude that with probability at ldasts /4,
for all suchi, g; > p(1 —¢/5) fi.

We set the parametéf of CountMin to equaly /4, and scCount-
Min succeeds with probability at leakt- § /4.

Also, E[[Fi(L)] = pFi(P) > Ca ‘e ?*(logn/s), the in-
equality following from the premise of the theorem. By a Giodf
bound,

Pr [(1 - g)pFl(P) <F(L) < (1 n %)pFl(P)] >1- %.

By a union bound, all events discussed thus far jointly owdtir
probability at least — 4, and we condition on their joint occurrence
in the remainder of the proof.

LEMMA 6.1. If f; > aF1(P), then
gi > (1—2¢/5) - aFa(L) .
(1 — €)aF1(P), then
g < (1—¢/2)aF(L).

If fi <

PROOF Sinceg; > p(1 — ¢/5)f; and alsoF; (L)
e/5)F1(P). Hence,

1—¢/5
1+¢/5

Next consider any for which f; <

< p(1+

gi > aFy (L) > (1 - 2/5) - aFi(L).

(1 —e)aF1(P). Then

max {p (1 + %) (1 —e)aFi(P), % log (%)}

()

gi <

IN
=
o
<
—
/N
[
|
o &
~
o
i
E

< max{(l— %) aFi (L), 5 E[Fi(L )]}
< max{(l—%) aFi (L), 1—&—%) 2F1(L)}
< (1 - %) aFy (L)

It follows that by settingr’ = (1 — 2¢/5) - @ ande’ = /10,
CountMin(a’, €, 6") does not return any € S for which f; <
(1 — e)aF1(P), since for suchi we haveg; < (1 — e/2)aF1 (L),
and sog; < (1 —¢/10)a’Fi(L). On the other hand, for every
1 € S forwhich f; > aF1(P), we havei € S, since for suchi we
havegz- > Oé,Fl (L)

It remains to show that for every € S, we havef; € [(1 —
€)fi, (1 + ¢)fi]. By the previous paragraph, for suchve have
fi > (1 —e)aF1(P). By the above conditioning, this means that
gi > p(1 —¢e/5)fi. We will also haveg; < p(1 + ¢/5)f; if
p(1+£)fi > S log (%). Sincefi > (1 — e)aFi(P), thisin
turn holds if

1 -1 _—1_-2 n
Bz sa =g tem) P @ € e (5)

which holds by the theorem premise provide less than a suffi-
ciently small constant. This completes the proof.

The proof of the next theorem follows from the proofs of Theo-
rem 3.1 fork = 2 and Theorem 6.1 We omit the details.

THEOREM 6.2. Suppose thap = Q(m~'/2). There is a one
pass streaming algorithm which observes the sampled stleam
and computes thé, heavy hitters of the original strear® with
probability at leastl —4. This algorithm use®(p~1) bits of space.

THEOREM 6.3. Any algorithm for solving théx-heavy hitters
problem with probability at leas2/3 in the Bernoulli sampling
with probabilityp model must us€(p~*) bits of space.

PrROOF This follows from our lower bound in Section 3.3 for
estimatingF; in this model. Indeed, there we show that any al-
gorithm which distinguishes between the case when the émoyu
vector is(1,1,...,1) and the case when the frequency vector is
(s,1,...,1) requiresQ(m/(ps?)) bits of space. If we set =
m*/2, then in the first case the heavy hitters algorithm is require
to return an empty list, while in the second case the heavgrhit
algorithm must return a list of sizé. Hence the algorithm can
distinguish the two cases and requif®d /p) bits of space. [

7. CONCLUSION

In this paper we presented small-space stream algorithimhs an
space lower bounds for estimating functions of interestrwbie-
serving a random sample of the original stream.

The are numerous directions for future work. As we have seen,
our results imply time/space tradeoffs for several natataam-
ing problems. What other data stream problems have integest
time/space tradeoffs? Also, we have so far assumed thaathe s
pling probability p is fixed, and that the algorithm has no control
over it. Suppose this was not the case, and the algorithmrzage
the sampling probability in an adaptive manner, dependimthe
current state of the stream. Is it possible to get algorittirascan
observe fewer elements overall and get the same accuraayras o
algorithms? For which precise models and problems is adgpti
useful?
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