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Abstract

We introduce a new spatial data struc-
ture for high dimensional data called the
approximate principal direction tree (APD
tree) that adapts to the intrinsic dimen-
sion of the data. Our algorithm ensures
vector-quantization accuracy similar to that
of computationally-expensive PCA trees with
similar time-complexity to that of lower-
accuracy RP trees.

APD trees use a small number of power-
method iterations to find splitting planes for
recursively partitioning the data. As such
they provide a natural trade-off between the
running-time and accuracy achieved by RP
and PCA trees. Our theoretical results es-
tablish a) strong performance guarantees re-
gardless of the convergence rate of the power-
method and b) that O(log d) iterations suf-
fice to establish the guarantee of PCA trees
when the intrinsic dimension is d. We demon-
strate this trade-off and the efficacy of our
data structure on both the CPU and GPU.

1. Introduction

Spatial partition trees are data structures that hierar-
chically subdivide a set of data points with the goal
that resulting partitions contain “similar” points. A
ubiquitous example is the k-d tree, which is widely
used in many unsupervised learning methods includ-
ing classification, regression, nearest-neighbor finding,
and vector quantization.

At level L of the tree, the data has been partitioned
into 2L different classes. Every time we subdivide a
set of points, we do so with the hope of reducing the

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0 0 0 0 0 0

    ) D          
r
r
r 
  
 
 

eeeeeeee

eeeeeeeeeeeeee

eeeeeee

Figure 1. Convergence of APD Trees to PCA Trees
on the MNIST Dataset (depth 4 trees): The VQ
error achieved by using APD trees with only a few power-
method iterations is close to that of PCA trees. This sub-
stantially improves upon the error for RP trees without
significant computational overhead.

the average distance between points in the same sub-
sets as much as possible. The goal is similar to that in
k-means clustering, but unfortunately, k-means clus-
tering is an NP-hard problem even when k = 2 (Das-
gupta, 2008).

We know that k-d trees are vulnerable to the so-called
curse of dimensionality – if the dimensionality of our
data is D, then we may have to traverse O(D) levels to
halve the average diameter. This is shown to be true
even when the intrinsic dimensionality of the data is
low (Verma et al., 2009). Thus, k-d tree are not well
suited to applications that involve high-dimensional
data, because to produce a good classifier, we would
need to branch our tree O(2D) times. Similarly, it
has been shown that using a k-d tree to do nearest-
neighbor queries in high-dimensional data is not much
more efficient than scanning every element (Lee &
Wong, 1977).

Recently, random-projection (RP) trees (Dasgupta &
Freund, 2008) and PCA trees (Verma et al., 2009) have
been proposed as alternatives to k-d trees that adapt
to intrinsic dimensionality. RP trees and PCA trees
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Figure 2. Left: k-d tree – partitions with hyperplane per-
pendicular to an axis. Right: PCA tree – partitions with
hyperplane perpendicular to the principal direction v.

differ from k-d trees in that their splitting planes are
not restricted to being axis-aligned. Thus, unlike k-d
trees, they can adapt to the covariance of the data (see
Figure 2).

Of the two choices, RP trees are appealing because
they can be computed very efficiently. Each subdivi-
sion in an RP tree is determined by a randomly-chosen
hyperplane. PCA trees are significantly more expen-
sive to compute, because the normal of each hyper-
plane is chosen by doing principal component analysis
(PCA) on the data to find the principal direction. This
requires one to compute the covariance matrix and
perform eigendecomposition, or to do singular value
decomposition (SVD). However, PCA trees perform
significantly better than RP trees at reducing the aver-
age diameter, as demonstrated in (Verma et al., 2009).

APD Trees. We propose a new spatial partition
tree, the approximate principal direction tree or APD
trees, which generalize the idea behind RP trees, but
perform almost as well as PCA trees when it comes
to reducing average diameter with respect to intrinsic
dimensionality.

When choosing the normal of the hyperplane, APD
trees start with random vectors like RP trees, but
then apply a small number of power-method iterations
(Burden & Faires, 2010) to these vectors. The power
method is often used in data intensive applications
to approximate principal eigenvectors (e.g., Google’s
PageRank (Wills, 2007)) and for spectral clustering
(Lin & Cohen, 2010). However, it is important to note
that in our application we are not simply concerned
with getting a good approximation of the principal
eigenvector. Rather, we are finding a hyperplane that
will yield a good subdivision. This is important be-
cause the power method can be slow to converge when
the first principal component has the same variance as
the second principal component. However, this is not
a concern for us since either component (or some linear
combination thereof) would suffice for a good split.

We show strong performance guarantees with only one
or two power-method iterations. See Figure 1 for an
empirical illustration. Furthermore, when the intrin-
sic dimension of a dataset is d, we prove that O(log d)
power-iterations are sufficient to produce trees that re-
duce average diameter at the same rate as PCA trees.
Again, this is true even when the principal direction is
not dominant in the data.

Outline. In Section 2, we present the necessary def-
initions including that of local covariance dimension
(Dasgupta & Freund, 2008) and what it means for a
tree to adapt to intrinsic dimensionality. In Section
3, we presents the algorithm for building APD trees.
Then, in Section 4, we prove that it adapts to intrinsic
dimensionality with the average diameter converging
at a similar rate to PCA trees. This is further demon-
strated by our experimental results (Section 5), which
also show that APD tree is much faster than the stan-
dard PCA tree algorithm. Finally, we also present a
GPU-based implementation, which is even faster.

2. Preliminary Definitions

2.1. Average Diameter

For a given set of points S = {x1, . . . , xn} ⊂ RD we
measure their similarity in terms of the average dis-
tance between points in the set. We will use the fol-
lowing notation:

Definition 2.1 (Average diameter of a set of points).

∆a(S) =
1

|S|

√ ∑
x,y∈S

‖x− y‖2

or equivalently1

∆a(S) =

√
2

|S|
∑
x∈S
‖x−mean(S)‖2 ,

where mean(S) =
∑
x∈S x/|S|.

We are interested in partitioning S as {S1, S2} such
that the average diameter of S1 and S2 is small.

Definition 2.2 (Average diameter over two sets).

∆a(S1, S2) =

√
∆2
a(S1)|S1|+ ∆2

a(S2)|S2|
|S1|+ |S2|

.

2.2. Local Covariance Dimension

Several possible definitions of intrinsic dimension are
discussed in (Verma et al., 2009). The one they use in

1See, e.g., (Dasgupta & Freund, 2008).
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their analysis of RP trees and PCA trees, local covari-
ance dimension is based upon a statistical representa-
tion of the data, and is thus well-suited to modeling
data from machine learning problems. We will analysis
APD trees using the same definition.

Recall that the covariance matrix C ∈ RD×D of a set
of points S = {x1, . . . , xn} ⊂ RD with mean(S) = 0,
can be written as C = XTX where X ∈ Rn×D is
the matrix whose i-th row equals xi. The idea behind
local covariance dimension is as follows. The eigen-
vectors of the covariance matrix form an orthonormal
basis for the data. If a small number of the eigenvec-
tors describe almost all the variance in the data, then
we know that the data is well represented by the sub-
space spanned by those eigenvectors. We can think of
the dimension of this subspace as being the intrinsic
dimension of the data.

Definition 2.3 (Local Covariance Dimension). Let
λ1 ≥ λ2 ≥ . . . ≥ λD be the eigenvalues of the co-
variance matrix of S = {x1, . . . , xn} ⊂ RD. We say
S has local covariance dimension (d, ε) for d ≤ D and
0 < ε < 1 when

d∑
i=1

λi ≥ (1− ε)
D∑
i=1

λi .

Notice that the local covariance dimension is also
parametrized by ε, which corresponds to how closely
the subspace represents the data.

We say a method for partitioning S adapts to the
intrinsic dimension of S if the resulting partition
{S1, S2} satisfies ∆a(S1, S2) < f(S) · ∆a(S) where f
is independent of D, the extrinsic dimension.

3. The APD Construction

A spatial partition tree is determined by the rule used
to partition the points at each node of the tree. Be-
fore we discuss the partitioning rule used in APD trees,
we review a general template for possible rules. This
template is presented in Algorithm 1. If we assume
S corresponds to the set of points assigned to a par-
ticular node in the tree, then it is obvious that this
meta-algorithm can be applied recursively to produce
a balanced binary tree.

The tree produced by this meta-algorithm is a hybrid
of a BSP tree and a sphere tree (Devroye et al., 1996).
If S is considered to contain “outliers”, we use a sphere
to partition points that are close to the center of the
data away from those that are not. We discuss this
case further in Section 3.2. Otherwise, we use a hyper-
plane to partition the data. The choice of this hyper-

Algorithm 1 Tree construction meta-algorithm

if S has outliers then
D := {‖x−mean(S)‖ | x ∈ S}
S1 := {x ∈ S | ‖x−mean(S)‖ ≤ median(D)}

else
Choose p ∈ RD according to a splitting rule
P := {x · p | x ∈ S}
S1 := {x ∈ S | x · p ≤ median(P )}

end if
S2 := S \ S1

return {S1, S2}

Algorithm 2 APD splitting rule

p := a random vector s ∈ RD
for 1 . . . t do
q :=

∑n
h=1 (xh · p)xTh

p := q/‖q‖
end for
return p

plane depends upon a splitting rule, which determines
the normal for the hyperplane. Two existing splitting
rules are the RP and PCA rules:

1. RP rule: p is chosen uniformly at random from
the unit sphere in RD.

2. PCA rule: p is the principal eigenvector of C.

As we mentioned earlier, the downside of the PCA
splitting rule is that computing p either requires one
to compute the covariance matrix and perform eigen-
decomposition, or to do singular value decomposition
on the data. Both are computationally intensive tasks.
On the other hand, applying the RP splitting rule is
computationally trivial. However, this splitting rule
does not achieve as good accuracy as the PCA split-
ting rule.

3.1. The New Splitting Rule

The new splitting rule we propose allows us to achieve
similar accuracy to that achieved by the PCA rule
without the computational overhead. The rule is based
on the Power Method (Burden & Faires, 2010), a well-
known technique for approximating eigenvectors. See
Algorithm 2. The technique translates nicely into a
parallel algorithm we can implement on the GPU, as
we will see in Section 5.

Theorem 3.1. For i ∈ [D], let pi ∈ RD and λi > 0 be
the (normalized) eigenvectors and eigenvalues of the

covariance matrix C. If s =
∑D
i=1 βipi is the initial
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vector used in the APD splitting rule, then the vector
returned by the splitting rule is

p =
Cts

‖Cts‖
=

∑D
i=1 λ

t
iβipi√∑D

j=1 λ
2t
j β

2
j

.

Proof. The result follows from the observation that∑n
h=1(xh · p)xTh = (XTX)p = Cp.

Below are two properties of the APD splitting rule:

Generalization of RP and PCA: As t increases,
p will converge to the principal eigenvector of the co-
variance matrix, i.e., the vector we would get if we
were to use the PD splitting rule. On the other hand,
when t = 0, p is a random unit vector in RD, and thus
equivalent to if we were using the RP splitting rule.
So intuitively, using the APD splitting rule gives us a
trade-off between the RP splitting rule and the PCA
splitting rule.

Doesn’t require convergence of power method:
It is important to emphasize that the idea behind ap-
plying the power method in our setting is not to ap-
proximate the principal eigenvector per se. We need
the splitting rule to be computed quickly and will pri-
marily be interested in the case when t = 1 or 2. In this
case, it is unlikely that the vector returned is similar
to the principal eigenvector. For example, the power
method converges slowly when the first few principal
values are very close to each other. However, this is
not an issue in our setting since a few iterations will
still ensure that the direction of p has high variance.

3.2. Fast outlier detection

The tree construction meta-algorithm has a special
case for they S contains outliers, i.e., when there av-
erage distance between points is significantly less than
the maximum distance between two points. This is
important, because even if we were to find a good hy-
perplane to split our data, the average diameter of the
resulting partitions will still be influenced by the out-
liers.

Following (Dasgupta & Freund, 2008; Verma et al.,
2009), we say that S has outliers if the maximum de-
pends on the relative size of the average diameter and
the maximum diameter:

Definition 3.1 (Outliers). For an user-definable pa-
rameter c > 0, we say S contains outliers if

∆2(S) > c∆2
a(S)

where ∆(S) = maxx,y∈S ‖x− y‖.

It was shown in (Dasgupta & Freund, 2008) that in
the case S has outliers according to this definition,
the meta-algorithm (Algorithm 1) still guarantees a
constant reduction in average diameter.

Proposition 3.1. Suppose ∆2(S) > c∆2
a (S), so that

S is split into {S1, S2} as described in Algorithm 1.
Then the following holds:

∆2
a(S1, S2) ≤

(
1

2
+

2

c

)
∆2
a(S)

Unfortunately, it is computationally expensive to use
Definition 3.1 to determine if there are outliers, be-
cause calculating ∆2(S) involves comparing O(|S|2)
distances. Instead we proposed a simple variant. For
an arbitrary point a ∈ S, let D(S) = maxx∈S ‖x− a‖.
It can easily be shown that ∆(S)/2 ≤ D(S) ≤ ∆(S).

Definition 3.2 (Outlier heuristic). S has outliers if

D2(S) > c∆2
a(S) .

3.3. Comparison between splitting rules

We can now state our main theoretical result for the
APD splitting rule and contrast it with the analogous
results for RP and and PCA trees. Henceforth, we as-
sume that there are no outliers, i.e., ∆2(S) < c∆2

a(S).

The following results were shown in (Dasgupta & Fre-
und, 2008) and (Verma et al., 2009).

Proposition 3.2. There exist constants c1, c2 ∈ (0, 1)
such that if S has local covariance dimension (d, c1):

1. RP rule: If p is chosen uniformly at random
from the unit sphere in RD then,

E
[
∆2
a(S1, S2)

]
< (1− c2/d) ∆2

a(S) .

2. PCA rule: p is the principal eigenvector then,

∆2
a(S1, S2) <

(
1− c2/k2

)
∆2
a(S) ,

where k = 1
λ1

∑d
i=1 λi. Note that k ≤ d.2

These results show that RP trees and PCA trees both
adapt to intrinsic dimensionality, since the squared av-
erage diameter of nodes in the tree is decreasing as a
function of d, the local covariance dimension of the
data, rather than its extrinsic dimension D.

In the next section we will prove that a similar diam-
eter reduction guarantee holds for APD trees:

2k can be much less than d. For example, in the MNIST
data set k2 < d for d larger than 80.
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Theorem 3.2 (Main Result). For c1, δ ∈ (0, 1), there
exists constant3 c2 ∈ (0, 1) such that if

1. S has local covariance dimension (d, c1) and

2. p ∈ RD is returned by the APD splitting rule with
t iterations

then with probability 1− δ,

∆2
a(S1, S2) <

(
1− c2

k2(d− 1)
2

2t+1

)
∆2
a(S)

where k = 1
λ1

∑d
i=1 λi.

Note that for t = O(log d), this gives

∆2
a(S1, S2) <

(
1− c2/k2

)
∆2
a(S) ,

i.e., the same improvement as that achieved for PCA
trees. However, even for smaller t, the bound only has
a weak dependence on d.

4. Theoretical Analysis of APD trees

To prove Theorem 3.2 we will need to analyze the
quantity

V (S, p) =
1

n

∑
x∈S

(x · p)2 .

For a fixed vector p, observe that V (S, p) corresponds
to the variance of x · p when x is drawn uniformly
at random from S. Intuitively, it makes sense that a
good splitting vector is one for which V (S, p) is large.
Specifically, if we can prove a lower bound for V (S, p)
when p is chosen according to the APD splitting rule,
then we can appeal to the following variant of a propo-
sition from (Verma et al., 2009).

Proposition 4.1. There exist constants 0 < c1, c2 <
1 with the following property. Suppose ∆2(S) ≤
c∆2

a (S), so that S is split into {S1, S2} using the pro-
jection vector p. If S has local covariance dimension
(d, c1), then:

∆2
a(S1, S2) <

(
1− c2

k2

(
V (S, p)

λ1

)2
)

∆2
a(S)

where k = 1
λ1

∑d
i=1 λi.

To lower bound V (S, p) we prove the following se-
quence of lemmas that relate V (S, p) to the eigen-
vectors p1, . . . , pD and corresponding eigenvalues

3Where c2 ∝ c2δ(1−c1)4 and cδ is at worst polynomial in
δ and the corresponding percentile of the χ2 distribution.
Empirically, it suffices for cδ = 1/3 when δ = 0.01.

λ1, . . . , λD of the covariance matrix C. Recall that
λ1 ≥ λ2 ≥ . . . ≥ λD and that the eigenvalues are
non-negative since C is positive semi-definite.

Lemma 4.1. For any q =
∑D
i=1 αipi,

V (S, q) =

D∑
i=1

λiα
2
i .

Proof.

V (S, q) =

n∑
i=1

(xi · q)2

n
=

1

n
(Xq)

T
(Xq) = qTCq

=

(
D∑
i=1

αipi

)T ( D∑
i=1

Cαipi

)

=

(
D∑
i=1

αipi

)T ( D∑
i=1

λiαipi

)
=

D∑
i=1

λiα
2
i ,

where the last equality follows because the eigenvec-
tors are orthonormal.

Lemma 4.1 and Theorem 3.1 imply the next lemma.

Lemma 4.2. Let p be the vector computed by the APD
rule after t iterations where s =

∑
i βipi is the initial

vector. Then

V (S, p) =

∑D
i=1 λ

2t+1
i β2

i∑D
j=1 λ

2t
j β

2
j

.

We now analyze the distribution of the βi coefficients
to prove the next lemma.

Lemma 4.3. For any δ < 1 and λ1, . . . , λD ≥ 0, there
exists cδ > 0 with

P

[∑D
i=1 λ

2t+1
i β2

i∑D
j=1 λ

2t
j β

2
j

≥ cδ
∑D
i=1 λ

2t+1
i∑D

j=1 λ
2t
j

]
≥ 1− δ , (1)

if the direction of s =
∑
i βipi is chosen uniformly.

Proof. Let {γi}i∈[D] be independently distributed χ2-
random variables with one degree of freedom. Then,
since the direction of the vector 〈β1, . . . , βD〉 is chosen
uniformly at random in the APD rule, we know that∑D

i=1 λ
2t+1
i β2

i∑D
i=1 λ

2t
i β

2
i

∼
∑D
i=1 λ

2t+1
i γi∑D

i=1 λ
2t
i γi

=

∑D
i=1 µ

2t+1
i γi∑D

i=1 µ
2t
i γi

,

where µi = λi/λ1 so that 1 = µ1 ≥ µ2 ≥ · · · ≥ µD.
This follows because a) a random point on the unit
sphere can be sampled by choosing each coefficient ac-
cording to the standard normal distribution and then
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renormalizing (Muller, 1958); and b) the square of a
variable with standard normal distribution has the χ2-
distribution with one degree of freedom.

The lemma follows by the union bound if we can show
that there exist constants c1, c2 > 0 such that:

P

 D∑
j=1

µ2t
j γj ≥ c1

D∑
j=1

µ2t
j

 ≤ δ/2 (2)

P

[
D∑
i=1

µ2t+1
i γi ≤ c2

D∑
i=1

µ2t+1
i

]
≤ δ/2 (3)

since then Eq. 1 holds with cδ = c2/c1.

For the first inequality, note that E [γi] = 1 (expecta-
tion of χ2 distribution) and hence

E

 D∑
j=1

µ2t
j γj

 =

D∑
j=1

µ2t
j .

Therefore Eq. 2 follows from an application of the
Markov inequality with c1 = 2/δ.

For the second inequality there are two cases. First
suppose that

∑D
i=1 µ

2t+1
i ≤ 16/δ. Using the inverse

CDF of the χ2 distribution, we can compute σ where
P [γ1 ≤ σ] = δ/2. Then note that,

D∑
i=1

µ2t+1
i γi ≥ γ1 ≥ σ ≥

δσ

16

D∑
i=1

µ2t+1
i

where the second inequality (γ1 ≥ σ) holds with prob-
ability at least 1− δ/2.

Alternatively, suppose that
∑D
i=1 µ

2t+1
i ≥ 16/δ. Then,

appealing to the Chebyshev inequality given that

V

[
D∑
i=1

µ2t+1
i γi

]
= 2

D∑
i=1

µ4t+2
i ≤ 2

D∑
i=1

µ2t+1
i ,

we conclude

P

[
D∑
i=1

µ2t+1
i γi ≤

1

2

D∑
i=1

µ2t+1
i

]
≤

8
∑D
i=1 µ

2t+1
i

(
∑D
i=1 µ

2t+1
i )2

≤ δ

2
.

This establishes Eq. 3 with c2 = min(δσ/16, 1/2).

Lemma 4.4. For S = {x1, . . . , xn} ∈ RD with local
covariance dimension (d, ε) with mean(S) = 0.∑D

i=1 λ
2t+1
i∑D

j=1 λ
2t
j

≥ (1− ε)
∑d
i=1 λ

2t+1
i∑d

j=1 λ
2t
j

.

Proof. Since
∑D
i=1 λ

2t+1
i ≥

∑d
i=1 λ

2t+1
i , it suffices to

show that
∑d
j=1 λ

2t
j ≥ (1− ε)

∑D
j=1 λ

2t
j .

From Definition 2.3, it follows that
∑d
j=1 λj ≥

(1− ε)
∑D
j=1 λj and therefore ε

∑d
j=1 λj ≥

(1− ε)
∑D
j=d+1 λj . And hence, it follows that:

ε

d∑
j=1

λ2tj ≥ ε
d∑
j=1

λjλ
2t−1
d ≥ (1− ε)

D∑
j=d+1

λjλ
2t−1
d

≥ (1− ε)
D∑

j=d+1

λ2tj

and therefore
∑d
j=1 λ

2t
j ≥ (1− ε)

∑D
j=1 λ

2t
j .

Theorem 4.1. Let p be the vector computed by the
APD rule after t ≥ 1 iterations. Then with probability
1− δ, there exists a constant cδ > 0 such that

V (S, p) ≥ λ1cδ(1− ε)
1 + 2t

1 + 2t+ 2t
2t

2t+1 (d− 1)
1

2t+1

.

Note this implies V (S, p) ≥ λ1cδ(1− ε)(d− 1)
−1
2t+1 /2.

Proof. Let α = 1/(2t). By Lemmas 4.2, 4.3, and 4.4,
if we set µi = λ2ti /λ

2t
1 , we get

V (S, p)

cδ (1− ε)
≥

∑d
i=1 λ

2t+1
i∑d

j=1 λ
2t
i

=

∑d
i=1 µ

1+α
i∑d

j=1 µi

≥ min
1≥µ2,...,µd

1 +
∑d
i=2 µ

1+α
i

1 +
∑d
j=2 µi

≥ min
1≥µ2,...,µd≥0

1 + (d− 1)
∑d
j=2( µi

d−1 )1+α

1 +
∑d
j=2 µi

≥ min
µ≥0

1 + (d− 1)−αµ1+α

1 + µ

≥ min
µ≥0

1 + (d− 1)−αµ1+α

1 + (d− 1)−αµ1+α + µ
,

where the third last inequality follows from the con-
vexity of the function x1+1/(2t) and the second last
inequality follows by setting µ =

∑d
j=2 µi.

By analyzing the derivatives, it can be verified that

f(u) =
1 + µ1+α

/
(d− 1)

α

1 + µ1+α
/

(d− 1)
α

+ µ

has a unique minimum at u =
(

(2t)
2t

(d− 1)
)1/(2t+1)

.

Substituting in this value establishes the theorem.
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(a) Synthetic Data Set.
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(b) MNIST Data Set.

ttttttttttttttttttttttttttttttttt

0000000

0000000

0000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

0 0 0 0 0 0 0 0

htttttttth

r
r

t
rt

r
r

rr
tt

t
t

eeeeeee )e)eeeeee)0e))ee))))))
)e)eeeeee)0e))ee))))))) )e)eeeeee)0e))ee)))))))
)))))ee)eeeeee)))))

(c) Protein Homology Data Set.

Figure 3. Compare VQ-error of RP, PCA and APD trees on the synthetic, MNIST, and Protein homology data sets. Each
graph plots the decay of the VQ-errors (averaged over 15 runs) as the depth of the tree increases. For APD trees, we
show results for one, two, and three power iterations. RP tree is equivalent to using no power iteration. Note that the
differences between APD trees and PD trees are small, and using 1 iteration already provides very good quality.

Table 1. Timing of our CPU and GPU APD tree implementations on three data sets. t denotes the number of power
iterations (t = 0 is equivalent to RP). In all cases, the tree is subdivided to depth 4. The GPU implementation generally
achieve 5 ∼ 12× speedup over the CPU version, both of which are written in MATLAB. Note that each additional power
iteration incurs only small extra cost. We also show the timing of a CPU PCA tree implementation for comparison.

Data set CPU timing (seconds) GPU timing (seconds)
Name Size t=0 t=1 t=2 t=3 t=4 PCA t=0 t=1 t=2 t=3 t=4

Synthetic 10K × 1K 4.88 4.94 5.00 5.06 5.12 22.6 0.41 0.43 0.45 0.47 0.49
MINIST10K 10K × 784 3.58 3.62 3.66 3.70 3.75 12.9 0.31 0.33 0.35 0.36 0.39
KDDCup04 285K × 74 5.16 5.18 5.29 5.44 5.60 33.0 1.01 1.26 1.49 1.72 1.95

5. Experimental Results

We compare the quality of APD trees to that of RP
trees and PCA trees by measuring the vector quantiza-
tion error (VQ-error). In vector quantization, the goal
is to map all vectors (or points) in a given data set to
a small number of representative vectors (or points).
This can be done with a spatial partitioning tree – the
points belonging to each partition are represented by
the average of the points in that partition. Following
this, the VQ-error is defined as the average squared
representation error. Specifically, if S1, S2, . . . , S2` are
the sets of points associated with the leaves of a tree
T of depth `, then

V QT (S) =

2`∑
i=1

∑
x∈Si

‖x−mean(Si)‖2

|S|
=

2`∑
i=1

|Si|∆2
a(Si)

2|S|
.

We try to closely replicate the experiments done in
(Freund et al., 2008), using the same kind of datasets
and the same parameters. We ran our experiments
on a synthetic dataset and the MNIST test dataset.
Additionally we use a protein homology dataset from
the KDD Cup 2004 data mining competition.

As in (Freund et al., 2008), the synthetic dataset con-
sists of 10,000 points, each a 1,000-d vector and gener-

ated as follows: choose a peak value p uniformly ran-
domly from [0, 1], and then generates the coordinates
of the point from the normal distribution N(p, 1). The
MNIST test dataset is a set of 10,000 images of hand-
written digits, each of which has been normalized to
28 × 28 pixels, and is thus a 784-d vector. The pro-
tein homology dataset consists of pairs of proteins that
have been tested for homology. It contains 285,409
data points, each of which is a 74-d vector.

For RP trees and APD trees, we perform 15 runs of
each experiment, and calculated the average VQ-error.
For PCA trees, we only needed to run each experiment
once since there is no randomization in that algorithm.
The results are shown in Figure 3. Each curve plots
the decay of average VQ-errors as the depth of the tree
increases. For APD trees, we show results of applying
1, 2, and 3 power iterations. RP tree is equivalent to
applying no power iteration. The quality differences
between APD trees and PCA trees are small, while
the differences of RP trees with them are much more
visible. Note that using 1 power iteration in APD trees
already provides very good quality and gives the the
biggest drop in VQ-error from RP trees.

GPU Implementation of APD Trees. Our APD
tree algorithm is well-suited for parallel computation
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on modern GPUs. Since it only relies on basic matrix
operations, most GPU-based linear algebra packages
can be applied directly. Our implementation is writ-
ten in MATLAB using the Jacket GPU library (Ac-
celerEyes). The main tree building uses a standard
recursive subdivision algorithm controlled by the host
CPU, while the tree splitting algorithm (Algorithm 1)
is accelerated on the GPU. Experimental results are
presented in Figure 1 and 4. These results were ob-
tained on a PC with NVIDIA 470 GTX graphics card
(1.2GB GPU memory) and an Intel Core-i7 3.0GHz
CPU with 8 hyperthreads.

Figure 1 lists the computation time using the GPU
and CPU implementations. The timing is averaged
over 15 runs per test. The GPU implementation gen-
erally achieves 5 ∼ 12× speedup compared to the CPU
version, which is also written in MATLAB and multi-
threaded. This performance gain is mainly due to the
acceleration of matrix-matrix and matrix-vector mul-
tiplications, which can easily exploit the GPU’s par-
allel computation power. Note that the speedup for
the KDDCup04 dataset is moderate, mainly because
of the small vector size. We generally obtain higher
performance gain on higher dimensional datasets, be-
cause they can better utilize available GPU resources.

For comparison we have also included a CPU PCA
tree implementation using MATLAB’s svds routine.
As seen from the table, the CPU PCA trees are 4 ∼ 6
times slower than the CPU APD trees, which are in
turn 5 ∼ 12 times slower than the GPU APD trees. We
did not include a GPU PCA tree because the Jacket
library only provides a full svd routine but not svds.
As a result, the GPU PCA tree is only moderately
faster than the CPU counterpart. This shows that our
APD tree algorithm is well-suited for exploiting the
GPU, due to its simplicity, at the same time providing
comparable quality to PCA trees.

Figure 4 plots the computation times for synthetic
data sets containing different numbers of points. Each
point is a 512-d vector generated using the same algo-
rithm before. We plot the CPU and GPU timing for
each data set and with 0 to 4 power iterations. From
this plot we observe that the cost incurred by each
additional APD iteration is generally quite small.

6. Conclusion

We presented the APD-tree, a new spatial data struc-
ture for high-dimensional data. APD-trees use a small
number of power iterations to achieve computational
efficiency (comparable to RP trees) and high quality
(comparable to PCA trees). The approach is insensi-
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Figure 4. Timing of CPU and GPU APD trees on synthetic
datasets with different number of points. Each point is a
512-d vector. Note for both CPU and GPU, the number
of power iterations t has little impact on performance.

tive to the convergence properties of the power method
and is well-suited for GPU computation.
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