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THE BERTINORO LIST

QUESTION 1: LEARNING AN f -TRANSFORMED PRODUCT DISTRIBUTION (ROCCO A. SERVEDIO)

In this learning setting there are n independent Bernoulli random variablesX1, ..., Xn with unknownE[Xi] =
pi. There is a known transformation function f : {0, 1}n 7→ R, where R is some range. The learner has
access to independent draws from f(X1, ..., Xn); i.e. each example for the learner is obtained by indepen-
dently drawing X1, ..., Xn, applying f , and giving the result to the learner. Call this distribution Df . The
learner’s job is to construct a hypothesis distribution D′ over the range set such that the variation distance
between Df and D′ is at most ε, with high probability.

Question: Give some necessary or sufficient conditions on f that make the “learn an f -transformed product
distribution” problem solvable using Oε(1) queries, independent of n.

Background: The following is known [DDS11]:
(1) For f(X) = X1 + ...+Xn, there’s a learning algorithm using poly(1/ε) queries independent of n.
(2) For f(X) =

∑n
i=1 i ·Xi, any algorithm for learning to constant accuracy must make Ω(n) queries.

QUESTION 2: TESTING SUBMODULARITY (C. SESHADHRI)

A function f : {0, 1}n 7→ R is submodular if for every i ∈ [n] and every S ⊂ T , such that i /∈ T ,

f(T ∪ {i})− f(T ) ≤ f(S ∪ {i})− f(S) .

Question: How efficient can we test that f is submodular (in terms of number of queries to f ). In particular,
can one do it in poly(n/ε)? Special cases of interest that are open:

(1) f is monotone and for every S and i ∈ [n], f(S ∪ {i})− f(S) is either 0 or 1. In this case f is the
rank function of a matroid.

(2) A more special case (suggested by Noam Nisan): f is said to be a coverage valuation if every
i ∈ [n] is associated with a set Vi from some measurable space with a measure µ (we might want
to think of Vi as discrete, in which case the measure is just the cardinality). Then f is defined by
f(S) = µ(

⋃
i∈S Vi). Observe that such f is a submodular function.

Background: The problem is interesting in algorithmic game theory. The best known upper bound on the
number of queries is O(ε−

√
n logn) [SV11]. We do not know the answer even for constant size R, although

for R = {0, 1} it is easy.

QUESTION 3: QUERY COMPLEXITY OF LOCAL PARTITIONING ORACLES (KRZYSZTOF ONAK)

A local partitioning oracle is defined in the paper of Hassidim, Kelner, Nguyen, and Onak [HKNO09], and
an implicit construction of a partitioning oracle is shown in the earlier paper of Benjamini, Schramm, and
Shapira [BSS08]. Partitioning oracles are a useful abstraction for approximation and testing algorithms in
the bounded degree model.

The best known oracle for bounded-degree planar graphs makes at most dpoly(1/ε) queries to the underly-
ing graph to answer each query about the resulting partition, where d is the bound on the maximum vertex
degree in the graph. See [Ona10] for a description of the method.

Question: Can one design an oracle that makes only poly(d/ε) queries? If so, then among other things,
this would lead to a tester for planarity in the bounded-degree model that makes only poly(1/ε) queries,
resolving an open question of Benjamini et al. [BSS08].
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QUESTION 4: APPROXIMATING MAXIMUM MATCHING SIZE (KRZYSZTOF ONAK)

Consider graphs with maximum degree bounded by d. It is possible to approximate the size of the maximum
matching up to an additive εn in time that is a function of only ε and d [NO08, YYI09]. The fastest currently
known algorithm runs in dO(1/ε2) time [YYI09].

Question: Is there an algorithm that runs in poly(d/ε) time?

QUESTION 5: TESTING MONOTONICITY AND THE LIPSCHITZ PROPERTY (SOFYA RASKHODNIKOVA)

Positive answers to the conjectures below would imply better testers for monotonicity and the Lipschitz
property. Consider a function f : {0, 1}d → R. It corresponds to a d-dimensional hypercube with the vertex
set {0, 1}d and (directed or undirected, depending on the problem) edges (x, y) for all x and y, where y can
be obtained from x by increasing one bit. Each node x is labeled by a real number f(x).

(1) A directed edge (x, y) of the hypercube is violated if f(x) > f(y). Function f is monotone if no
edges are violated.

Question: Suppose v edges are violated. Give an upper bound on the number of node labels that
have to be changed to make f monotone.

Background: The best known bound is vd [DGL+99] but the conjecture is v.

(2) An undirected edge (x, y) of the hypercube is violated if |f(x)− f(y)| > 1. Function f is Lipschitz
if no edges are violated.

Question: Suppose v edges are violated. Give an upper bound on the number of node labels that
have to be changed to make function f Lipschitz in terms of v and d.

Background: Nothing nontrivial is known for real labels. The conjecture isO(v). For integer labels,
the best known bound is 2v · ImageDiameter(f), where ImageDiameter(f) = maxx f(x) −
minx f(x) [JR11].

QUESTION 6: TESTING ACYCLICITY (DANA RON)

Consider the problem of testing acyclicity in directed bounded-degree graphs (in the incidence list model,
where one can query both outgoing and incoming edges).

Question: What is the best algorithm for this problem?

Background: There is a lower bound of Ω(n1/3) for adaptive, two-sided error algorithms, where n is the
number of vertices [BR02]. No sublinear upper bound is known. (For dense graphs, in the adjacency matrix
model, one can test the property using poly(1/ε) queries.) The best known lower bound for 1-sided error
testing is only Ω(

√
n).

QUESTION 7: GRAPH FREQUENCY VECTORS (NOGA ALON)

For a graph G, a k-disc around a vertex v is the subgraph induced by the vertices that are at distance at most
k from v. The frequency vector of k-discs of G is a vector indexed by all isomorphism types of k-discs of
vertices in G which counts, for each such isomorphism type K, the fraction of k-discs of vertices of G that
are isomorphic to K. The following is a known fact observed in a discussion with Lovász. It is proved by a
simple compactness argument.
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Fact: For every ε > 0, there is an M = M(ε) such that for every 3-regular graph G, there exists a 3-
regular graph H on at most M(ε) vertices (independent on |V (G)|), such that variation distance between
the frequency vector of the 100-discs in G and the frequency vector of the 100-discs in H is at most ε.

Question: Find any explicit estimate on M(ε). Nothing is currently known.

QUESTION 8: RANK LOWER BOUND (MADHU SUDAN)

We want to prove that the following tall matrix has full column rank. The columns are indexed by a1, . . . , ak
from the field F2n where n is prime; the rows are indexed by degrees d1 . . . dr. The entry in the ith column
and jth row is equal to adj

i .

Question: Is it true that for all k there exists an r such that for all d1, ..., dr that are powers of 2 and for all
a1, ..., ak that are linearly independent over F2, the rank of the matrix is k?

Background: Note that if di = i and r ≥ k, then the matrix is Vandermonde and so has full rank. If di = 2i,
then also the matrix has full rank [GKS08, Lemma 19]. The general case, when di’s are arbitrary, and not
successive powers of two remains open [BGM+11, Conjecture 5.9].

QUESTION 9: APPROXIMATING LIS LENGTH IN THE STREAMING MODEL (AMIT CHAKRABARTI)

The goal of LIS is to compute a 2-approximation of the length of the longest increasing subsequence in a
given stream of elements.

Question: What is the randomized streaming space complexity of LIS, for one pass or possibly a constant
number of passes?

Background: Gopalan et al. [GJKK07] gave anO(n1/2 polylog n)-space deterministic streaming algorithm,
using one pass, that achieves c-approximation for any fixed c > 0. For deterministic algorithms [EJ08,
GG07] showed an Ω(n1/2) space lower bound, for a constant number of passes. The latter arguments pro-
ceed by proving a lower bound for related communication complexity problems. However, it is known that
the randomized communication complexity of those problem is O(log n) [Cha10] so a different approach is
needed.

QUESTION 10: STREAMING MAX-CUT/MAX-CSP (ROBERT KRAUTHGAMER)

The problem is defined as follows: given a stream of edges of an n-node graph G, estimate the value of the
maximum cut in G.

Question: Is there an algorithm with an approximation factor strictly better than 1/2 that uses o(n) space?

Background: Note that 1/2 is achievable using random assignment argument. Moreover, using sparsifi-
cation arguments [Tre09, AG09], one can obtain a better approximation ratio using O(n polylog n) space.
Woodruff and Bhattacharyya (private communication) noted that subsampling O(n/ε2) edges gives, with
high probability, an ε-additive approximation for all cuts, and thus 1 + ε multiplicative approximation for
MAX-CUT.

Question: What about general constraint satisfaction problems with fixed clause-length and alphabet-size?
In this case it is even not known how to obtain O(n polylog n) space bound.
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QUESTION 11: FAST JL TRANSFORM FOR SPARSE VECTORS (JELANI NELSON)

Consider a distribution over linear mappings A from Rd to Rk, k = O(log(1/P )/ε2). We say that it has an
(ε, P )-JL property if for any vector x ∈ Rd we have

‖Ax‖2 = (1± ε)‖x‖2

with probability 1− P .

Question: Can we construct a distribution with this property such that the matrix-vector product Ax can be
evaluated in time (s+ k) · polylog(d) time given an s-sparse x?

Background: Such an algorithm is not known even for s = d (unless k is larger [AL11]).

Question: Provide an explicit construction of a distribution with the (ε, P )-JL property such that the random
variable A can be generated using O(log(d/P )) bits.

QUESTION 12: ANNOTATED STREAMING (GRAHAM CORMODE)

In the annotated stream model [CCM09], a stream is augmented with ‘annotation’, which takes the form
of a proof of a property of the stream. In its simplest form, the annotation may just be a reordering of the
stream to make it easy to compute a function of interest. The key parameters in this model are H , the size
of the annotation, and V , the space needed by the streaming party to view the stream and verify the proof.
The annotation proposed should be such that an honest annotation will always be accepted, while a mistaken
annotation will be detected and rejected with high probability.

We consider the problem of counting the number of triangles in a graph described by a stream of edges
(where each edge is promised to occur at most once). Partial results from the above reference are that
H = O(n2) and V = Õ(1) is possible, as is H = O(n3/2), V = O(n3/2).

Question: Can one achieve H = V = Õ(n)?

QUESTION 13: SKETCHING SHIFT METRICS (ALEX ANDONI)

For any x, y ∈ {0, 1}n, define the shift metric

sh(x, y) = min
σ
H(x, σ(y)),

where σ ranges over all n cyclic permutations of {1 . . . n}, and H() is the hamming distance.
For any c > 20, the promise problem Pc is to distinguish whether sh(x, y) > n/10 or sh(x, y) < n/c.

Consider probabilistic mappings Lc : {0, 1}n → {0, 1}s. We say that Lc is a sketching scheme for Pc if
there is an algorithm that, for any x, y ∈ {0, 1}n satisfying the promise of Pc, given Lc(x) and Lc(y), solves
Pc with probability at least 0.9.

Question: Is there a sketching scheme for Pc where c = O(1) and s = O(1)?

Background: If the shift metric is replaced by Hamming metric, one can achieve s = O(1) using random
sampling [KOR00]. The actual problem can be solved for c = O(log2 n) and s = O(1) [AIK08]. The
algorithm proceeds by embedding the shift metric into Hamming metrics, and it is known that this step must
induce Ω(log n) distortion [KN06].
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QUESTION 14: SKETCHING EARTH MOVER DISTANCE (PIOTR INDYK)

For any two subsets A,B of the planar grid [n]2, |A| = |B|, define

EMD(A,B) = min
π:A→B

∑
a∈A
‖a− π(a)‖1

where π ranges over one-to-one mapping from A to B.

Question: What is the sketching complexity of c-approximating EMD? That is, consider a distribution
over mappings Lc that maps subset of [n]2 to {0, 1}s, such that for any sets A,B with |A| = |B|, given
Lc(A), Lc(B), one can estimate EMD(A,B) up to a factor of c, with probability ≥ 2/3. Is it possible to
construct such a distribution for constant c and s = polylog n?

Background: It is known that one can achieve s = O(log n) for c = O(log n) by embedding EMD into
`1 [IT03, Cha02], and s = nO(1/c) polylog n for any c ≥ 1 [ABIW09].

QUESTION 15: SPARSE RECOVERY FOR TREE MODELS (PIOTR INDYK)

For any n = 2h − 1, we can identify the coordinates of a vector v ∈ Rn with the nodes of a full binary tree
Bh of height h and root 1. We define a k-sparse tree model Tk to be a set of all T ⊂ [n] of size k which
form a connected subtree in Bh rooted at 1.

We want to design an m × n matrix A such that for any x ∈ Rn, one can recover from Ax a vector
x∗ ∈ Rn such that:

‖x∗ − x‖1 ≤ min
x′∈Rn,supp(x′)⊂T for some T∈Tk

C
∥∥x′ − x∥∥

1
,

where supp(x′) is the set of non-zero coefficients of x′, and C > 0 is a constant.

Question: Is it possible to achieve m = O(k) for some constant C > 0?

Background: It is known that a weaker bound of m = O(k log(n/k)) is possible to achieve even if Tk is
replaced by the set of all k-subsets of [n] [CRT06]. However, since |Tk| = exp(O(k)), one can expect a
better bound for Tk. By using model-based compressive sensing framework of [BCDH10] (cf. [IP11]), one
can achieve the desired bound of m = O(k) but with superconstant C.

THE KANPUR LIST

QUESTION 16: RANDOM WALKS (RINA PANIGRAHY)

The paper of Das Sarma, Gollapudi, and Panigrahy [DGP08] shows a method for performing random walks
in the streaming model. In particular, a random walk of length l can be simulated using O(n) space and
O(
√
l) passes over the input stream. Is it possible to simulate such a random walk using Õ(n) space and

a much smaller number of passes, say, at most polylogarithmic in n and l? The goal is either to show an
algorithm or prove a lower bound.

Das Sarma et al. [DGP08] simulate random walks to approximate the probability distribution on the
vertices of the graph after a random walk of length l. What is the streaming complexity of approximating
this distribution? What is the streaming complexity of finding the k (approximately) most likely vertices
after a walk of length l?
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QUESTION 17: APPROXIMATE 2D WIDTH (PANKAJ AGARWAL AND PIOTR INDYK)

The width of a set P of points in the plane is defined as

width(P ) = min
‖a‖2=1

(
max
p∈P

a · p−min
p∈P

a · p
)
.

For a stream of insertions and deletions of points from a [∆] × [∆] grid, we would like to maintain an
approximate width of the point set. We conjecture that there is an algorithm for this problem that achieves a
constant approximation factor and uses polylog(∆ + n) space.

Progress: The conjecture has been resolved (in the positive direction) by Andoni and Nguyen, 2011 (per-
sonal communication).

QUESTION 18: “ULTIMATE” DETERMINISTIC SPARSE RECOVERY (PIOTR INDYK)

We say that a vector v ∈ Rn is k-sparse for some k ∈ {0, . . . , n} if there are no more than k non-zero
coordinates in v. The goal in the problem being considered is to design an m × n matrix A such that for
any x ∈ Rn, one can recover from Ax a vector x∗ ∈ Rn that satisfies the following “L2/L1” approximation
guarantee:

‖x∗ − x‖2 ≤ min
k-sparse x′∈Rn

C√
k

∥∥x′ − x∥∥
1
,

where C > 0 is a constant.
We conjecture that there is a solution that (a) uses m = O(k log(n/k)) and (b) supports recovery algo-

rithms running in time O(n polylog n).

Background: It is known that one can achieve either (a) or (b) (see, e.g., [NT10]). It is also possible
to achieve both (a) and (b), but with a different “L1/L1” approximation guarantee, where ‖x∗ − x‖1 ≤
mink-sparse x′ C‖x′ − x‖1 [IR08, BIR08].

QUESTION 19: COMMUNICATION COMPLEXITY AND METRIC SPACES (T. S. JAYRAM)

POINCARÉ INEQUALITIES. Alice and Bob are given two points x and y, respectively, from a specific metric
spaceM. We are interested in deciding whether dM(x, y) ≤ R or dM(x, y) ≥ αR, where dM is the dis-
tance function ofM, R > 0, and α > 1. What amount of information must be exchanged in order to solve
this problem? Answering this question is interesting in any standard communication model: unrestricted
communication between the players, one-way communication, sketching, etc.

The above question can partially be answered if the metric satisfies a specific “gap” Poincaré inequal-
ity [AJP10]. It is known that another kind of Poincaré inequality is equivalent to non-embeddability into
`22 [Mat02], but it is not known if non-embeddability into `22 implies lower bounds for communication com-
plexity. Can one show a formal connection between the communication complexity for approximating the
distance between two points and non-embeddability into `22?
PRODUCT METRICS. We are also interested in the following general class of metrics. Let each Mi =
〈Si, di〉, 1 ≤ i ≤ k, be a metric space on a set Si with a distance function di. A product metric space⊕k

i=1Mi is defined on the product S1 × . . .× Sk with the distance function

d ((x1, . . . , xk), (y1, . . . , yk)) = op (d1(x1, y1), . . . , dk(xk, yk)) ,

where op is a symmetric operator. For instance,
⊕k

i=1Mi is a proper metric space if op is the maximum
operator or the p-th norm for any p ∈ [1,∞). The case when

⊕k
i=1Mi is not necessarily a metric space

also finds applications.
Applications of product metric spaces include a nearest neighbor data structure for Ulam distance [AIK09],

and a near-linear time subpolynomial-approximation algorithm for edit distance [AO09].
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The following questions arise in the context of product spaces:

(1) Can one design efficient communication protocols for computing the distance between a pair of
points? Suppose that there is an efficient communication protocol for eachMi. What is the commu-
nication complexity for computing the distance between two points in

⊕k
i=1Mi? Andoni, Jayram,

and Pǎtraşcu [AJP10] prove lower bounds for some product metrics. Jayram and Woodruff [JW09]
show streaming algorithms which yield communication protocols.

(2) Can one design efficient streaming algorithms and data structures for product metric spaces? In par-
ticular, can one efficiently compute the distance between a pair of points? Jayram and Woodruff [JW09]
consider the related question of computing cascaded norms.

QUESTION 20: EQUIVALENCE OF TWO MAPREDUCE MODELS (PAUL BEAME)

The original MapReduce paper [DG04] gives two distributed models. First it only says that intermediate
key/value pairs with the same key are combined and sent as batch jobs to workers. Then in Section 4.2,
it additionally guarantees that the batch jobs received by a single worker are sorted according to the corre-
sponding key values. There are algorithms that rely on this additional feature of MapReduce. Are these two
models equivalent? For decision problems in the complexity world, we know strong time-space trade-offs
for sorting, but no similar lower bounds are known for distinctness.

QUESTION 21: MODELING OF DISTRIBUTED COMPUTATION (PAUL BEAME)

MapReduce has recently inspired two distributed models of computation in the theory community. One is
the MUD model of Feldman et al. [FMS+10]. In this model they assume that every worker has at most a
polylogarithmic amount of space available, which in total gives at most Õ(n) space, where n is the input
size (in the order of at least terabytes). The other model of computation, due to Karloff et al. [KSV10],
assumes that each of n1−ε workers has at most n1−ε space, where ε is a fixed positive constant. This totals
to n2−2ε space in the entire system. Can one design an interesting and practical model that only uses n1+o(1)

space/resources?

QUESTION 22: RANDOMNESS OF PARTIALLY RANDOM STREAMS (SUDIPTO GUHA)

Many streaming algorithms are designed for worst-case inputs and the first step of analysis is conducted
using truly random hash functions, which in the second step are replaced by hash functions that can be
described using a small number of truly random bits. In practice, the input stream is often a result of
some random process. Mitzenmacher and Vadhan [MV08] show that as long as it has sufficiently large
entropy, hash functions from a restricted family are essentially as good as truly hash functions. On a related
note, Gabizon and Hassidim [GH10] show that algorithms for random-order streams need essentially no
additional entropy apart from what can be extracted from the input.

In these two cases, the input can be seen as a source of randomness for the algorithm. How can one
quantify the randomness of the stream in a natural way? For instance, Mitzenmacher and Vadhan set a
lower bound for the Renyi entropy of each element of the stream, conditioned on the previous elements of
the stream. Are there measures that are likely to be useful in practice and that are possible to verify?

Once we fix a measure of randomness, how much randomness according to this measure is necessary to
derandomize or simplify specific streaming algorithms?
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QUESTION 23: STRONG LOWER BOUNDS FOR GRAPH PROBLEMS (KRZYSZTOF ONAK)

A large number of streaming papers consider graph problems. Typically, the input stream is an arbitrarily-
ordered sequence of edges. For many problems, one can show that solving the problem, even approximately,
requires Ω(n) bits of space. For instance, one can relatively easily prove that finding a constant-factor
approximation to the maximum matching problem requires Ω(n) bits of space. Therefore, in many cases,
the desired space complexity is of the form Õ(n). Despite this relaxation, it is plausible that for some
popular problems, there are barriers that cannot be overcome by (approximate) algorithms that use n1+o(1)

space and a small number of passes.
For example, let M(G) be the maximum matching size in the input graph G. McGregor [McG05] shows

that there is an algorithm that finds a matching of size (1−ε) ·M(G) in a number of passes that is a function
of only ε. It is plausible that for any constant k, there is no k-pass Õ(n)-space algorithm that finds a matching
of size greater than (1 − εk) ·M(G) times the optimum, where εk is a positive constant. In particular, to
the best of my knowledge, no one-pass Õ(n)-space algorithm that finds a (1 − ε)-approximation for any
constant ε ∈ (0, 1/2) is known. Can one prove lower bounds as suggested above? The question generalizes
to other problems. For instance, the best known Õ(n)-space algorithms for simulating random walks require
a large number of passes (see [DGP08] and Rina Panigrahy’s question). Can one prove for these problems
that a small number of passes requires n1+Ω(1) space?

To the best of my knowledge, the only problem for which this kind of lower bound is known is ap-
proximating graph distances. Feigenbaum et al. [FKM+08] show that obtaining a t-approximation for the
distance between two nodes in a single pass requires Ω(n1+1/t) space.

QUESTION 24: UNIVERSAL SKETCHING (JELANI NELSON)

Rather than designing different sketching algorithms for every problem, it would be desirable to have al-
gorithms that where universal, in some sense, for a variety of problems. Specifically, let F be a family of
functions mapping frequency vector [−M,M ]n to R. We say could say a sketching algorithm A is (ε, δ)
universal for F if for all x ∈ [−M,M ]n, A can recover a (1 + ε) approximation each f(x) for any f ∈ F
with probability 1− δ.

An example would be when F is {Fp : 0 ≤ p ≤ 2}. A simple approach would be to discretize p and
to utilize the fact that `p(x) ≈ `p′(x) if p and p′ are sufficiently close. Better yet would be to interpolate
through a small set of values, using ideas from Harvey, Nelson, and Onak [HNO08]. Consequently it should
be possible to be universal forF = {Fp : 0 ≤ p ≤ 2}while using only slightly more space than that required
to estimate a specific Fp. For what other families are there efficient universal algorithms? It seems that the
Indyk-Woodruff [IW05] technique would be useful here, and that the work of Braverman and Ostrovsky
[BO10] is also highly relevant.

QUESTION 25: GAP-HAMMING INFORMATION COST (AMIT CHAKRABARTI)

In the Gap-Hamming problem, two players Alice and Bob have vectors x, y ∈ {0, 1}n respectively and wish
to compute the function f

f(x, y) =

{
0 if ∆(x, y) ≤ n/2−

√
n

1 if ∆(x, y) ≥ n/2 +
√
n

where ∆(x, y) = |{i : xi 6= yi}| is the Hamming distance between the vectors and we are promised that
|∆(x, y)−n/2| ≥

√
n. The problem became interesting in the streaming community because a lower bound

on the communication complexity of evaluating f yields a lower bound on the space required by a streaming
algorithm to estimate the number of distinct elements or the entropy of a stream. After a series of papers, it
is know that evaluating f requires Ω(n) communication [IW03, Woo04, BC09, BCR+10, CR11] even if an
unlimited number of rounds of communication are used.
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An increasingly popular technique in communication complexity is to prove bounds by bounding the
information cost [CSWY01, BYJKS04]. Here we consider random input (X,Y ) and consider the mutual
information between the input and the random transcript of the protocol Π(X,Y ):

I(XY ; Π(X,Y )) = H(XY )−H(XY |Π(X,Y )) .

It would be interesting to prove a lower bound on the information cost for the Gap-Hamming problem for
some natural input distribution.

QUESTION 26: THE VALUE OF A REVERSE PASS (ANDREW MCGREGOR)

Multi-pass stream algorithms have been designed for a range of problems including longest increasing sub-
sequences [LNVZ06, GM08], graph matchings [McG05], and various geometric problems [CC07]. How-
ever, the existing literature almost exclusively considers the case when the multiple passes are in the same
direction. One exception is recent work by Magniez et al. [MMN10] on the DYCK2 problem: given a length
n string in the alphabet “(, ), [, ]”, determine whether it is well-parenthesized, i.e., it can be generated by the
grammar S → (S) | [S] | SS | ε? For this problem it can be shown that with one forward and one reverse
pass over the input, the problem can be solved with O(log2 n) space. On the other hand, any algorithm
using O(1) forward passes and no reverse passes, requires Ω(

√
n) space [CCKM10, JN10]. For what other

natural problems is there such a large separation?

QUESTION 27: GROUP TESTING (ELY PORAT)

Given a set S ⊂ [n] of size at most k, we want to identify S by the following 2-stage process.

(1) We choose a set of subsets T1, . . . , Tm ⊂ [n]. For each Ti we learn whether or not Ti ∩ S = ∅.
(2) Based on the outcomes of the first m tests, we may choose j1, . . . , jO(k) ∈ [n]. For each ji we learn

whether or not ji ∈ S.

The goal is to minimize m, the number of tests performed in the first stage. Without any further restric-
tions it has been shown that m = O(k log n/k) suffices [BGV05]. However for various pattern match-
ing applications we have the constraint that each Ti needs to be an arithmetic progression, e.g., Ti =
{2, 8, 14, 20, . . .}. In this case, m = O(k log2 n) suffices. Is it possible to decrease this to m = O(k log n)?

QUESTION 28: LINEAR ALGEBRA COMPUTATION (MICHAEL MAHONEY)

It is often not the case that the entire data sits on a single machine and that we are allowed to make one or
more passes over it. Instead the data is often distributed across multiple systems. This is one of the reasons
why the streaming model does not have more impact in practice for linear algebra computation. It would be
great to design new models that address this shortcoming.

Consider also the following problem. Let A be an m × n matrix and let k be a rank parameter. Let
PA,k be the projection matrix on the best rank-k left (or right) singular subspace. The goal is to compute
the diagonal of PA,k exactly or approximately in a small number of passes in the streaming model, or even
better, in a new model that addresses the aforementioned shortcoming.
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QUESTION 29: MAXIMAL COMPLEX EQUIANGULAR TIGHT FRAMES (JOEL TROPP)

Consider a system of unit vectors {xk : k = 1, 2, . . . , N} in Cd. It can be shown that the maximum inner
product among these vectors satisfies the Welch bound

max
i 6=j
|〈xi, xj〉| ≥

√
N − d
d(N − 1)

.

Miraculously, when this bound is attained, the modulus of the inner product between every pair of vectors
is identical. Such a configuration is referred to as an equiangular tight frame (ETF).

It can be shown that the cardinality N of an ETF is Cd must satisfy the bound N ≤ d2. When this bound
is attained, the ETF is referred to as a maximal ETF. In other words, a maximal ETF is a system of d2 unit
vectors in Cd whose pairwise inner products share the modulus (d+ 1)−1/2.

A striking geometric fact about maximal ETFs is that each one corresponds with a regular simplex con-
sisting of d2 points embedded in the set of rank-one, trace-one, complex, Hermitian matrices with dimension
d. This correspondence is achieved by mapping each vector x in the ETF to the matrix xx∗. Researchers
believe that there is a maximal ETF for every dimension d. This question, so far, has resisted all efforts at
solution.
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