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Abstract. We consider the problem of identifying periodic trends in
data streams. We say a signal a ∈ Rn is p-periodic if ai = ai+p for all
i ∈ [n− p]. Recently, Ergün et al. [4] presented a one-pass, O(polylogn)-
space algorithm for identifying the smallest period of a signal. Their
algorithm required a to be presented in the time-series model, i.e., ai is
the ith element in the stream. We present a more general linear sketch
algorithm that has the advantages of being applicable to a) the turnstile
stream model, where coordinates can be incremented/decremented in an
arbitrary fashion and b) the parallel or distributed setting where the
signal is distributed over multiple locations/machines. We also present
sketches for (1+ε) approximating the `2 distance between a and the near-
est p-periodic signal for a given p. Our algorithm uses O(ε−2 polylogn)
space, comparing favorably to an earlier time-series result that used
O(ε−5.5√p polylogn) space for estimating the Hamming distance to the
nearest p-periodic signal. Our last periodicity result is an algorithm for
estimating the periodicity of a sequence in the presence of noise. We con-
clude with a small-space algorithm for identifying when two signals are
exact (or nearly) cyclic shifts of one another. Our algorithms are based
on bilinear sketches [10] and combining Fourier transforms with stream
processing techniques such as `p sampling and sketching [11,13].

1 Introduction

We consider the problem of identifying periodic trends in data streams. Mo-
tivated by applications in computational biology and data mining, there has
recently been a series of papers related to finding such trends in large data
sets [3–5, 9, 16]. We say a signal a ∈ Rn is p-periodic if it can be expressed as
a concatenation a = x ◦ . . . ◦ x ◦ x′ for some x ∈ Rp and some x′ ∈ Rn−pbn/pc
that is a prefix of x. We say a is perfectly p-periodic if a is p-periodic and p | n.
Given a signal a ∈ Rn, we define the distance to p-periodicity as

Dp(a) ≡ min
y∈Pp,n

‖a− y‖2 where Pp,n = {y ∈ Rn : y is p-periodic}

where ‖v‖2 =
√
v2
1 + . . .+ v2

n denotes the `2 norm of the vector v ∈ Rn. (We
will later discuss our choice of distance measure and observe that many of our
results still hold if an alternative measure is chosen.) We denote the minimum
period of a signal a ∈ Rn by

period(a) = min{p : a is p-periodic} .
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In this paper, we consider signals defined by a stream of data. Previous
periodicity work assumes that the stream is the signal, e.g., the stream 〈1, 2, 3, 4〉
defines the signal a = [1, 2, 3, 4]. However, we wish to consider a more general
setting. For example, consider a sensor network in which each node is tasked with
recording the times when certain local events occur. These records are forwarded
through the network to some central node for processing. In this situation, there
is no guarantee that the records are received in the order they were generated.
Hence, we would need an algorithm that could identify patterns even if the
records arive out of order. A yet more challenging example would be if each
sensor monitors the local temperature at each time step and we are interested
in identifying periodic trends in the average temperature. In this case, not only
can records arrive out of order but the signal will be determined by the value of
multiple records.

Following the terminology of Muthukrishnan [14, pg. 12–13], we consider
three different stream models in which the signal a of interest can be defined. In
the time-series model the stream S = 〈a0 . . . an−1〉 defines the signal directly.
More general is the permutation model where coordinates of a may arrive out
of order, i.e., S = 〈(π(0), aπ(0)) . . . (π(n− 1), aπ(n−1))〉, for some permutation π
of {0, . . . , n − 1}. Finally, in the turnstile model, a is defined by a sequence of
increments and decrements, i.e., for a stream

S = 〈(u1, ∆1), . . . , (um, ∆m)〉 where ui ∈ {0, . . . , n− 1}, ∆i ∈ R

we define a by aj =
∑
i:ui=j

∆i. All of our algorithms work in the turnstile model
and are sketch-based. We will discuss sketches in more detail in Sect. 2 but note
here that one of their main advantages is that they work in a distributed setting
where parts of the streams are monitored at different locations: after the stream
concludes, it is sufficient to communicate only the sketches, as these can then be
merged in order to estimate the global property of interest. This would enable
data aggregation in the sensor network example outlined above.

1.1 Our Results and Related Work

Our first result is an O(ε−2 polylog n) space algorithm that (1+ ε)-approximates
Dp(a) for any given p (where p need not divide the length of the sequence). In
contrast, an earlier paper by Ergün et al. [4] presented and an algorithm using
O(ε−5.5√ppolylog n) space for estimating the Hamming distance to the nearest
p-periodic signal. They also present a single-pass, O(polylog n)-space algorithm
for computing period(a) in the time-series model. Our second result generalizes
this result to the turnstile model although our algorithm in this case requires
that a is perfectly periodic.

Next we examine estimating the periodicity of a sequence in the presence of
noise. While a seemingly natural problem, defining the precise problem is subtle.
For example, should we deem the noisy signal

a = [1, 2, 3, 1, 2, 3.5, 1, 2, 3.1, 1, 2, 3.4] (1)



to be 3-periodic, 6-periodic, or aperiodic? Our algorithm achieves a natural “gap
promise” guarantee: given ϕ, ε with 0 < ϕ < ε < 1, it returns a period p | n with

Dp(a) ≤ ε‖a‖2 and p ≤ min{q | n : Dq(a) ≤ (ε− ϕ)‖a‖2} .

(Note that there is always such a p, since any length-n signal trivially has
Dn(a) = 0.) In other words, we ensure that a is close to being perfectly p-
periodic and that there is no q ≤ p such that a is “significantly closer” to being
perfectly q-periodic. This algorithm operates in the general turnstile model and
uses poly(log n, ϕ−1) space. The algorithm is based on sampling in the Fourier
domain and was actually inspired by Shor’s algorithm for quantum factoriza-
tion [17]. There is no analog in the recent Ergün et al. [4] paper but an earlier
result [5] in the combinatorial property-testing model can be applied in the
streaming setting if we may use O(

√
npolylog n) space.

We conclude with a simple sketch algorithm for the related problem of iden-
tifying when two sequences are cyclic shifts of one another. This algorithm uses
O(ε−2

√
npolylog n) space and has the additional feature that it actually approx-

imates how close the strings are to being cyclic shifts.

Notation. We write [n] = {0, 1, 2, . . . , n − 1}. We denote signals in lower-
case bold and their corresponding Fourier transforms in upper-case bold. For a
complex number z ∈ C we denote the real and imaginary parts by Re(z) and
Im(z) respectively. For functions f(n), g(n), we write f(n) = Õ(g(n)) when there
is a constant k such that f(n) = O(g(n) logk n). I[ϕ] is the 0-1 indicator function
which is 1 whenever ϕ is true.

Precision. Throughout, we will assume that the values of the signals can be
exactly stored with 1/ poly(n) precision. For example, this would be guaranteed
in the turnstile model with a number of updates m = poly(n) and with each
∆j ∈ {−M,−M+1, . . . ,M−1,M} for some M = poly(n). We also assume that
the approximation parameters ε, ϕ, δ satisfy 1/ε, 1/δ, 1/ϕ ∈ O(poly n).

2 Fourier Preliminaries and Choice of Distance Function

In this section, we review the basic definition and properties of the discrete
Fourier transform. We then discuss the utility of the transform in the context of
sketch-based data stream algorithms.

2.1 Discrete Fourier Transform and Sketches

Given a signal a ∈ Rn, the discrete Fourier transform of a, denoted A = F(a),
is defined as

A = (A0, A1, . . . , An−1) where Ak =
1√
n

n−1∑
j=0

aje
2πi
n jk .

The following proposition states some standard properties that will be of use.



Proposition 1. For any signal a ∈ Rn,

1. a is perfectly p-periodic iff (Ak 6= 0⇒ n/p | k).
2. ‖a‖2 = ‖A‖2 (Parseval’s identity).

Of particular importance in the context of data streams is the fact that the
transformation from a to A is a linear transformation, i.e.,

AT = V aT where V ∈ Cn×n and Vkj = 1√
n
e

2πi
n kj for k, j ∈ [n] . (2)

This is significant because many data stream algorithms are based on ran-
domized linear projections called sketches. Suppose we are interested in a func-
tion f of x ∈ Rn where each coordinate xj is determined by the turnstile stream
S = 〈(u1, ∆1), . . . , (um, ∆m)〉 according to xj =

∑
i:ui=j

∆i. A sketching algo-
rithm chooses a random linear map W ∈ Rk×n such that WxT can be post-
processed to yield an estimate of f(x) (with certain error and probability guar-
antees). The algorithm computes WxT incrementally using space proportional
to k rather than n:

WxT = (. . . (((Weu1) +Weu2) +Weu3) + . . .) +Weum

where eui = (0, . . . , 0, ∆i, 0, . . . , 0)T has the non-zero entry in the ui-th position.
For many functions, such as quantiles and heavy hitters [2], distinct items [12],
and `1 and `2 norms [8], such sketches exist where k is only polylogarithmic in
n. Of course, it would still defeat the object of small-space computation if the
algorithm needed to explicitly store a random k×n matrix. Instead the random
matrices of interest are constructed either using limited independence or via a
pseudo-random generator, e.g., Nisan [15]. Either way, the relevant entries can
be reconstructed from some small seed as required.

We will make use of the simple, but very useful, observation that rather than
estimating functions in the time domain, we may estimate these functions in the
frequency domain by combining the change of basis matrix V with the sketch
matrix W . For example, if the random sketch matrix W ∈ Rk×n can be used to
estimate the number of non-zero entries in a then the sketch matrix WV ∈ Ck×n
can be used to estimate the number of non-zero entries1 in A.

2.2 Choice of Distance Function

In the context of the Fourier transform and many signal processing applications,
the natural measure of dissimilarity between two signals is the `2 norm of their

1 To be precise, it is often necessary to separate real and imaginary parts of V . That
is, we consider W ∈ Rk×2n and let V ∈ R2n×n have entries Vkj = cos(2πjk/n) for
k ∈ {0, . . . , n− 1} and Vkj = sin(2πjk/n) for k ∈ {n, . . . , 2n− 1}. In calculating the
`2 norm this causes no difficulties, but in other cases we may need to be careful. If
we counted the number of nonzero entries of V , for example, we would find the total
number of non-zero real parts and non-zero imaginary parts.



difference. In contrast, Ergün and coauthors [4,5] considered a measure based on
the Hamming distance, D0

p(a) ≡ miny∈Pp,n ∆(a,y) where ∆(a,y) = |{i ∈ [n] :
ai 6= yi}|. While different measures are suited to different applications, many of
our algorithms can also be applied to approximate the Hamming distance, at
least in the permutation model.

Suppose Σ = {σ1, . . . , σr} and consider the mapping from Σ → {0, 1}r:

h(σ) = x1 . . . xr where xj =

{
1 if σ = σj

0 otherwise
.

The following lemma demonstrates that D0
p(a) and (Dp(h(a)))2/2 are closely

related. Hence, if each element of the sequence is first transformed using h (as
is possible in the permutation model) then the Hamming distance to periodicity
can be approximated via the `2 distance to periodicity. The approximation is
by a factor close to 1 if the sequence is close to being p-periodic. Note that we
would expect this to be the more relevant case in the sense that we would be
measuring the distance from periodicity of a nearly-periodic sequence.

Lemma 1. For any a ∈ Σn, with Σ = {σ1, . . . , σr}, let T (a) = (Dp(h(a)))2/2.
Then we have,

1
2 D0

p(a) ≤ T (a) ≤ D0
p(a) . (3)

Furthermore, if a is almost periodic in the sense that at least a 1 − ε fraction
of the elements {aj , aj+p, . . . , aj+n−p} are identical for each j ∈ [p], then (1 −
ε) D0

p(a) ≤ T (a) ≤ D0
p(a).

We can also relate Dp(a) to the `1 distance to the nearest p-periodic signal.
For this, consider the alphabet Σ = {1, . . . , t}, and use the mapping h(σ) =
x1 . . . xr where xj = I[σ ≥ j].

3 Periodicity

3.1 Distance from Fixed Periodicity

We first present a fast algorithm for measuring the distance between the signal
and the closest (under the `2 norm) p-periodic sequence, for fixed p. In this
section, we emphasize that we do not require that the length of sequence is a
perfect multiple of the periods considered. For p < n, we write n = dp+ r where

d = bn/pc and r = n mod p .

Basic properties of the `2 norm imply that the p-periodic pattern that is `2-
closest to a vector a is the arithmetic mean of length-p segments of the vector:

Lemma 2. For any sequence a ∈ Rn, let c = argminy∈Pn,p ‖a − y‖2 be the
p-periodic vector which is `2-closest to a. Then c = b ◦ . . .b ◦ (b0b1 . . . br−1)
where

bi =

{∑d
j=0 ai+jp/(d+ 1) for 0 ≤ i < r∑d−1
j=0 ai+jp/d for r ≤ i ≤ p− 1

.



With this explicit form for c, there is a natural algorithm using Tug-of-War
sketches [1] to approximate Dp(a) = ‖a− c‖2. Alon et al. showed that if the
entries of a random vector z = z0 . . . zn−1 ∈ {−1, 1}n are chosen with 4-
wise independence then the random variable T =

∑n−1
i=0 zi(ai − ci) satisfies

E
[
T 2
]

= ‖a − c‖22. They show that the estimator has sufficiently low vari-
ance that, by averaging O(ε−2 log δ−1) independent estimators, we can find a
(1+ ε) approximation for ‖a−c‖22. The value of T can easily be constructed in a
streaming fashion: when the ith element of a is incremented by ∆ we increment

T +=

zi − ∑
j:i=j mod p

zj
|{j : 0 ≤ j ≤ n− 1, i = j mod p}|

∆

A naive implementation of this update method takesΩ(n/p) time per update.
To avoid this we adapt the bilinear sketch method of Indyk and McGregor [10].
This technique was originally designed to detect correlations in data streams but
we can exploit the structure of this sketch to reduce the update time. Rather
than view a as a length n vector, we encode it as a (d+ 1)× p matrix A where
Aij = aip+j if ip + j ≤ n − 1 and Aij = bj otherwise. Similarly let C be the
(d + 1) × p matrix where Cij = bj . E.g., for n = 10 and p = 4 we have the
matrices

A =

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 b2 b3

 and B =

 b0 b1 b2 b3
b0 b1 b2 b3
b0 b1 b2 b3

 .

Let x ∈ {−1, 1}p and y ∈ {−1, 1}d+1 be random vectors whose entries are
4-wise independent. Indyk and McGregor extended the Alon et al. result to
show that the outer product of x and y had sufficient randomness for a result
similar to the Tug-of-War sketch. In our context, the result implies that if T =∑

0≤i≤d,0≤j≤p−1 xjyi(Aij − Cij), then by appealing to Lemma 2, we have that

E
[
T 2
]

=
∑

0≤i≤d,0≤j<p

(Aij − Cij)2 = D2
p(a)

and there is still sufficiently low variance for O(ε−2 log δ−1) parallel repetitions
to be sufficient for constructing a (1 + ε) approximation with probability 1− δ.
We next show that each T can be constructed in only O(1) update time. To do
this, decompose T as

T =
∑

0≤i≤d
0≤j<p

xjyiAij −
∑

0≤i≤d
0≤j<p

xjyiCij =
∑

0≤i≤d
0≤j<p

xjyiAij −

 ∑
0≤i≤d

yi

 ∑
0≤j<p

xjbj


and define T1 =

∑
0≤i≤d,0≤j<p xjyiAij and T2 =

∑
0≤j<p xjbj . Since

∑
0≤i≤d yi

can be computed in pre-processing, it suffices to compute T1 and T2. We initialize



T1 = T2 = 0. As the stream is read T1 and T2 are updated in O(1) time using
the following rule: when the (ip+ j)th entry of a is incremented by ∆,

T1 +=
(
xjyi + I[j ≥ r]xjyd

d

)
∆ and T2 +=

(
I[j < r]

xj
d+ 1

+ I[j ≥ r]xj
d

)
∆

where r = n mod p and I is the indicator function.

Theorem 1. Dp(a) can be approximated up to a factor (1 + ε) with probability
1− δ using Õ(ε−2) space and Õ(ε−2) update time. The algorithm operates in the
turnstile model using one pass.

3.2 Determining Perfect Periodicity: Noiseless Case

In this and the next section we consider finding the period of a sequence that
is perfectly periodic, i.e., we now assume that period divides the length. In this
case, a possible approach to detecting periodicity with unknown period would
be to use the above algorithm to test all factors p | n and return the minimum
p such that Dp(a) = 0 (it suffices to set ε = 1 for this purpose). Unfortunately,
in the worst case n may have d(n) = O (exp(log n/log log n)) factors [7, pp. 260–
264] and therefore this approach would take too much time and space. However,
a simple modification suffices: we check for periodicity at each prime or power-
of-a-prime factor k of n. Define the set

K(n) = {k : k divides n and is the power of a prime} .

We first observe that |K(n)| ≤ O(log n) (since each prime factor of n is at
least 2, we have from the prime factorization n = pr11 p

r2
2 . . . prtt that |K(n)| =∑

ri ≤ log2 n). The following lemma (see the appendix for the proof) demon-
strates that testing periodicity for p ∈ K(n) is sufficient to determine period(a).

Lemma 3. For any a ∈ Rn which is perfectly periodic,

period(a) = GCD(n/k : k ∈ K(n) and a is n/k-periodic) .

We can thus detect the minimum p for which a is perfectly p-periodic by
running |K| = O(log n) parallel copies of the algorithm from Section 3.1. With
O(log n) points of failure, we must ensure that each algorithm fails with prob-
ability at most δ/ log n; this increases the space by a log log n factor which is
dominated by other factors in the analysis.

Theorem 2. There is a single-pass, turnstile algorithm for computing period(a)
of perfectly periodic strings that uses O(polylog n) space and update time.

3.3 Determining Perfect Periodicity: Noisy Case

In this section, we present an algorithm for estimating the periodicity of a noisy
signal. As a stepping stone to this result, we discuss an alternative approach for
the noiseless case based on sampling. An advantage of the alternative approach
is that it does not require the factorization of n to be computed thereby avoiding
any (admittedly sublinear time) preprocessing. However, the guarantee achieved
is weaker.



Fourier Sampling. If a is perfectly periodic with period p, then the Fourier
transform A = F(a) has at most p nonzero components. Letting d = n/p,
we know by Prop. 1 that the only non-zero coordinates of A are Akd for k ∈
{0, . . . , p − 1}. For the case of general a, let Xp denote the restriction of A to
the coordinates corresponding to a perfectly p-periodic signal, i.e.,

Xp = (A0, 0, . . . , 0, Ad, 0, . . . , 0, . . . , A(p−1)d, 0, . . . , 0) .

In the frequency domain, Xp is the closest Fourier transform of a period-p
vector to A. By Plancherel’s theorem, F and F−1 preserve inner products and
`2 distances. Therefore, F−1(Xp) is the p-periodic vector that is closest to a in
the `2 distance. This implies that

Dp(a) = ‖a−F−1(Xp)‖2 = ‖A−Xp‖2 = ‖Yp‖2 =
√∑
d - k

|Ak|2 . (4)

Our algorithms in this section are based on combining the above relationship
with a technique for sampling in the Fourier domain.

Recently, Monemizadeh and Woodruff [13] presented a general approach for
`p-sampling in the time-domain: for a signal a ∈ Rn defined in the turnstile
model, the goal here is to output k with probability in the interval[

(1− α)
|ak|p

`pp(a)
, (1 + α)

|ak|p

`pp(a)

]
for some small user-defined parameter α > 0. They show that this can be per-
formed efficiently in space poly(α−1 log n).2

For our purposes, rather than considering the time-series vector a, we con-
sider the vector

A′ = (Re(A1), . . . ,Re(An), Im(A1), . . . , Im(An)) ∈ R2n .

defined by applying the appropriate Fourier transform matrix to the signal. If
`2-sampling is performed on A′ and we return the value modulo n, then the
probability that k is returned is in the interval:[

(1− α)
|Ak|2

‖A‖22
, (1 + α)

|Ak|2

‖A‖22

]
, (5)

because Re(Ak)
2+Im(Ak)

2P
i∈[n] Re(Aj)2+Im(Aj)2

= |Ak|2

‖A‖22
.

To perform this sampling we follow the approach suggested in Sect. 2. Specif-
ically we use the fact that Monemizadeh and Woodruff’s `p-sampling algorithm
can be performed using a sketch matrix W and that there exists a matrix trans-
formation V ∈ R2n×n that transforms any signal a ∈ Rn into the corresponding
A′ vector. Hence, applying the sketch matrix WV allows us to sample from A′

as required. We will show how to use this sampling to the next two sections.3

2 There is an additive error probability of n−C for arbitrarily large constant C but
this can be ignored in our subsequent analysis.

3 The reader might also observe that the technique of sketching in the Fourier domain
gives an alternative approach to estimating the distance to perfect periodicity using



Application to the Noiseless Case. Suppose there is no noise and that p =
period(a). Let the samples collected be k1, . . . , kw ∈ [n]. We know from Prop. 1
that each sample ki = cd for some c ∈ [p]. Let q = n/GCD(k1, . . . , kw, n). We
have q = p/c′ for some c′ | p. Next we will show that for sufficiently large w, with
high probability, either q = p or the sequence was nearly perfectly q-periodic.
(For example, in the case of the sequence in Eq. (1), perhaps we return q = 6.)

Choose an approximation parameter ϕ > 0. Assume for contradiction that
q = p/c′ for some c′ > 1, but that Dq(a) ≥ ϕ

√
1 + α‖a‖2. Summing over bins j,

by appealing to Eq. (4), we have that

∑
n/q - j

|Aj |2

‖A‖22
=

1
‖a‖22

∑
n/q - j

|Aj |2 =
(Dq(a))2

‖a‖22
≥ ϕ2(1 + α) .

Therefore, using the (1 + α) approximation to `2-sampling, the probability that
we return a sample that is not a multiple of n/q is at least ϕ2. Taking w =
O(ϕ−2 log(δ−1 log p)) samples ensures that we find some sample that is not a
multiple of n/q for allO(log p) prime factors q of p. Consequently, if the algorithm
does not return the exact value of period(a), it returns a value h | period(a) such
that the sequence was very close to being h-periodic with high probability.

Application to the Noisy Case. For noisy signals, a natural question is to find
the smallest period p such that Dp(a) ≤ ε‖a‖2. Unfortunately, since Dp(a) could
be just under ε‖a‖2 while another value q < p may have Dq(a) just larger
than ε‖a‖2, this is too much to hope for. Instead we consider two parameters
ε, ϕ with ε > ϕ > 0, and use a slight modification of the above approaches to
accept some p | n such that Dp(a) ≤ ε‖a‖2, and for no smaller q do we have
Dq(a) ≤ (ε− ϕ)‖a‖2.

Our algorithm proceeds by taking samples of the Fourier coefficients as be-
fore. It then returns the smallest value p | n such that at least 1 − (ε − ϕ/2)
fraction of the samples are of Fourier coefficients k = cn/p. With probabil-
ity at least 1 − δ, we can guarantee that this condition is satisfied for all p
with Dp(a) ≤ (ε − ϕ)‖a‖2, and by no p with Dp(a) > ε‖a‖2; this requires
O(ϕ−2 log δ−1) samples by an application of the Chernoff bounds.

any sketch-based algorithm that returns a (1+ε) approximation for `2, e.g., [1,8,11].
For example, consider the Tug-of-War sketch matrix W ∈ {−1, 1}t×2n used by Alon
et al. [1] for `2 estimation, and the matrix

U ∈ R2n×2nwhere Ukj =

(
1 for j = k and d | j
0 otherwise

.

By appealing to (4), ‖UV a‖22 = (Dp(a))2. Then, following the analysis of [1] for W ,
we find E

ˆ
(WUV a)2

˜
= Dp(a)2 if W is chosen according to the appropriate distri-

bution. Furthermore, the variance is sufficiently low such that a (1+ε) approximation
can be constructed with probability 1− δ, it suffices to set t = O(ε−2 log δ−1). This
leads to a one-pass algorithm using O(ε−2 log δ−1 polylogn) space.



Theorem 3. For any ε, ϕ, δ, there exists a single-pass, O(poly(log n, ϕ−1))-
space turnstile algorithm which returns p | n such that both of the following
conditions are satisfied with high probability:

1. Dp(a) < ε‖a‖2
2. There does not exist q < p such that q | n and Dq(a) < (ε− ϕ)‖a‖2.

4 Cyclic Shifts

In this section, we consider the problem of identifying whether two sequences
a,b ∈ Σn are close to being cyclic shifts of each other. We will assume for
convenience that Σ ⊂ R. Let CSs : Rn → Rn be the function that “rotates” the
input sequence by s positions, i.e.,

CSs(a1a2 . . . an) = as+1as+2 . . . ana1 . . . as .

Then a and b are cyclic shifts iff there exists s such that b = CSs(a).
Our goal is to recognize cyclic shifts using linear sketches. We first note

that the analogous problem in the simultaneous communication model is rather
straightforward. Supose Alice knows a ∈ Σn and Bob knows b ∈ Σn. They can
easily determine whether CSs(a) = b for some s by each transforming a and b
into some canonical form and then using an equality test. Specifically, consider
an arbitrary ordering of the sequences in Σn. Alice generates the cyclic shift â
of a that is minimal under this ordering. Similarly, Bob generates the minimal
cyclic shift b̂ of b. Clearly â = b̂ iff a is a cyclic shift of b. This can be verified
with O(log n) communication using standard fingerprinting techniques.

Obviously such an approach is not possible in the data stream model. In the
time-series model, existing work combined with simple observations leads to an
efficient algorithm for determining if two sequences are cyclic shifts. We first
review this before presenting a new streaming algorithm that is sketch-based
and thus applies in the turnstile steaming model. Furthermore, it can estimate
the distance of two sequences from being cyclic shifts.

Time-Series Model. In the time-series model, a one-passO(polylog n)-space algo-
rithm follows from Ergün et al.’s extensions [4] of the pattern matching algorithm
of Porat and Porat [16]. The algorithm works when one of the strings precedes
the other, i.e., S = 〈a0, a1, . . . , an−1, b0, b1, . . . , bn−1〉, or when the strings are
interleaved, i.e., S = 〈a0, b0, a1, b1, . . . , an−1, bn−1〉. (It is actually sufficient for
the elements of one sequence to always precede the corresponding elements of
the other; e.g., the stream S = 〈a0, b0, a1, a2, b1, a3, b2, b3〉 is acceptable.)

The pattern-matching algorithm of [4] uses a fingerprinting function Φ to
maintain a series of exponentially-lengthening fingerprints ϕj = Φ(a0 . . . a2j−1);
by cleverly updating appropriate fingerprints of b, they keep track of each match
for ϕj which occurred within the last 2j characters. When we reach the final char-
acter of b, for each m such that Φ(bm . . . bm+2j−1) = Φ(a0 . . . a2j−1), we have ac-
cess to the fingerprints Φ(b0 . . . bm−1), Φ(bm . . . bm+2j−1), and Φ(bm+2j . . . bn−1).



By adjusting the fingerprints appropriately, we can determine whether there
exists m ∈ [n] such that

Φ(a0 . . . an−1) = Φ(bm . . . bm+2j−1bm+2j . . . bn−1b0 . . . bm−1) .

4.1 Cyclic Shift Distance

In this section, we present a simple turnstile algorithm for estimating how close
two sequences are to being cyclic shifts. We define the cyclic shift distance, CSD,
between two strings as

CSD(a,b) = min
s
‖a− CSs(b)‖2 .

Clearly, if b is a cyclic shift of a then CSD(a,b) = 0.
The algorithm proceeds as follows: assume for simplicity that n is a perfect

square. We will use two sets of candidate shifts, S = {0, 1, 2, . . . ,
√
n− 1} and

T = {
√
n, 2
√
n, 3
√
n, . . . , n}. As we process the turnstile stream, we construct

Tug-of-War sketches [1] of CSs(a) and CSt(b) for each s ∈ S, t ∈ T . Using
O(ε−2 log 1

δ log n)-sized sketches, this allows us to (1+ε)-approximate ‖CSs(a)−
CSt(b)‖2 for each s ∈ S and t ∈ T with probability at least 1 − δ′. Since for
all r, s we have that a − CSs(b) = CSr(a) − CSr+s(b), these shifts suffice to
(1 + ε)-approximate ‖a− CSu(b)‖2 for each u ∈ {1, . . . , n}.

Choosing δ′ = δ
n , we have that each pair r, s is simultaneously a (1 + ε)-

approximation with probability ≥ 1− δ. We then find:

Pr
[∣∣∣ min
s∈S,t∈T

‖CSs(a)− CSt(b)‖2 − CSD(a,b)
∣∣∣ ≥ εCSD(a,b)

]
≤ δ . (6)

Theorem 4. There exists a single pass algorithm using space Õ(ε−2
√
n) that

returns a (1 + ε) approximation for CSD(a,b) with probability at least 1− δ.

5 Conclusion

We presented one-pass data stream algorithms for detecting periodic sequences
and cyclic shifts, and for measuring the distance to the closest periodic sequence
or cyclic shift. Our principle goal was to minimize the space used, and all of our
periodicity algorithms used O(polylog n) space. Our algorithms used a range of
techniques including bilinear sketches and combining a Fourier change of basis
transform with a range of sketching techniques. This second technique is particu-
larly powerful and we would be surprised if it didn’t have applications that were
still to be discovered (either via the Fourier basis or other bases). An important
future direction is analyzing the structure of the sketches formed by combining
the transform and sketch matrices: among other things, this could lead to more
time-efficient algorithms. Another question is to generalize our results in Sects.
3.2 and 3.3 to estimate the period of signals that conclude with a partial rep-
etition. This was not an issue with time-series data since there would always



be a point near the end of the stream where there had been an exact number
of repetitions. In the turnstile model the issue is more complicated, but we are
hopeful that a more involved analysis of the Fourier approach may yield results.
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from the pattern matching result in Ergün et al. can be applied to cyclic shifts
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