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Abstract: The generic problem of estimation and inference given a sequence of i.i.d. samples has
been extensively studied in the statistics, property testing, and learning communities. A natural quantity
of interest is the sample complexity of the particular learning or estimation problem being considered.
While sample complexity is an important component of the computational efficiency of the task, it is
also natural to consider the space complexity: do we need to store all the samples as they are drawn, or
is it sufficient to use memory that is significantly sublinear in the sample complexity? Surprisingly, this
aspect of the complexity of estimation has received significantly less attention in all but a few specific
cases. While space-bounded, sequential computation is the purview of the field of data-stream compu-
tation, almost all of the literature on the algorithmic theory of data-streams considers only “empirical
problems”, where the goal is to compute a function of the data present in the stream rather than to infer
something about the source of the stream.
Our contributions are two-fold. First, we provide results connecting space efficiency to the estimation
of robust statistics from a sequence of i.i.d. samples. Robust statistics are a particularly interesting class
of statistics in our setting because, by definition, they are resilient to noise or errors in the sampled
data. We show that this property is enough to ensure that very space-efficient stream algorithms exist
for their estimation. In contrast, the numerical value of a “non-robust” statistic can change dramatically
with additional samples, and this limits the utility of any finite length sequence of samples. Second, we
present a general result that captures a trade-off between sample and space complexity in the context of
distributional property testing.
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1 Introduction

Consider a sequence of i.i.d. samples
x1, . . . , xm drawn according to some unknown
distribution. Estimating the parameters of the
unknown distribution or testing if the distribution
satisfies a given property are problems that have
been extensively studied by the statistics, property
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testing, and learning communities. One natural
quantity of interest is the sample complexity—that
is, how large must m be such that the desired
inference can be made with high probability. For
example, in distributional property testing, we
ask how many samples are required to determine
whether the source distribution satisfies a property
or is “far” (in an appropriate sense) from any dis-
tribution that satisfies the property. Unfortunately,
even in the restricted case of testing discrete
distributions, it can be shown that the sample
complexity of many properties is polynomial in
the support size of the distribution in question.

While sample complexity is an important com-
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ponent of the computational efficiency of the task,
it is also natural to consider the space complexity
of the task—an algorithm that can process sam-
ples sequentially using only small space might be
considered more practical than one that stores the
entire set of samples and then runs a complex al-
gorithm on the entire data set. Perhaps surpris-
ingly, this aspect of the complexity has received
significantly less attention in all but a few specific
cases. For example, if the distribution is promised
to belong to a parametrized family of distribu-
tions, Fisher’s theory of sufficient statistics [Fis22]
gives a framework for reasoning about the minimal
statistics that should be maintained, such that no
information relevant to the parameter estimation is
disregarded. Some online learning algorithms are
either naturally space efficient in practice or can be
engineered to use less space than that required by a
naive implementation (e.g., Dekel et al. [DSS08]).
Kearns et al. [KMR+94] also present an intrigu-
ing example of a learning task that requires all the
samples to be stored. However, our general prob-
lem is still poorly understood.

It would seem that statistical estimation and
property testing are a natural fit for data-stream al-
gorithms where an algorithm must process data se-
quentially given only a limited amount of memory
to summarize the data. However, almost all of the
literature on the algorithmic theory of data-streams
to date considers “empirical problems” where the
answer sought is solely determined by the m el-
ements that appear in the stream. Yet there is no
good reason to limit attention to such problems:

Isn’t understanding the process generating the
stream as important, if not more important, than

the data in the stream itself?

This paper makes two main contributions to re-
dressing this issue. First, we identify robust statis-
tics as an important class of statistics in our set-
ting because a) we can show that they can be ap-
proximated in small space and b) a statistic that
is “not robust” is of less interest as its numeri-
cal value may change dramatically with additional
samples, limiting the utility of any finite length se-
quence of samples. Second, following recent work
by Valiant [Val08], we demonstrate a general result
that exhibits a trade-off between sample and space
complexity in the context of distributional property

testing. In the rest of this section, we discuss both
contributions in further detail.

1) Robust Statistics
Robust statistics is an established area of the-

oretical statistics that studies when statistical es-
timators are resilient, or “robust”, to perturbation
of the distribution being considered or model as-
sumptions. It can be argued that robustness quan-
tifies an important sense of how meaningful an es-
timator is, e.g., it is hard to utilize the outcome of
an estimator if it is very sensitive to a slight pertur-
bation of the distribution. The area has seen con-
siderable growth in both understanding and impor-
tance over the past several decades. In that time,
statisticians have devised a number of notions of
robustness. Subsequently, various families of es-
timators have been identified along with the types
of distributions under which they qualify as robust.
We defer details and formal definitions to Section
2.

In this paper, we study the robust statistics
framework from a computational perspective, in
particular from the vantage point of data-stream al-
gorithms, in which we are given a limited amount
of space to process a sequence of independent sam-
ples from the distribution. Our main question is:

Does the robustness of a statistic make it easier or
harder to approximate in a streaming fashion?

Our answer is a happy one. We find ourselves
in the fortunate situation that the estimators that
are arguably the most desirable are those that we
are able to efficiently approximate. In general,
robust statistics turn out to be very amenable to
space-efficient streaming computation: robustness
to perturbation yields a certain degree of robust-
ness to the sampling techniques that are typical
in streaming algorithms. In one sense, this is
straightforward—as we describe later, it follows
almost immediately from known results that ro-
bust statistics can be estimated within additive er-
ror ε in small space by simply computing the statis-
tic on an O(1/ε2)-sized sample of the data. We
show, however, that we can do better than this,
and develop algorithms that achieve much better
space complexity, typically Õ(log 1/ε), for sev-
eral broad classes of estimators, including the three
major well-established classes known as location
M-estimators, L-estimators, and R-estimators. To-
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gether, these results can be interpreted as a strong
proof of concept, in that they cover a variety of
estimators, including many of the best-known and
commonly used statistics.

We are not the first to draw a connection be-
tween robust statistics and a field of computer sci-
ence. For example, Dwork and Lei [DL09] re-
cently demonstrated that a number of robust statis-
tical analyses can also be computed in a differen-
tially private fashion. Differential privacy captures
the notion that the output of a computation on a
database of private information should not be sen-
sitive to a small change in the input database (the
presence of absence of a particular individual), and
the work of Dwork and Lei draws an parallel be-
tween the privacy literature’s notion of sensitivity
and the statistics literature’s notion of robustness.

2) Distribution Property Testing

The study of distribution property testing is con-
cerned with distinguishing if a distribution satis-
fies a certain property or is “far” from all distribu-
tions that satisfy the property. Often the property
can be expressed in terms of a real-valued func-
tion defined on the distribution, e.g., is the entropy
of the distribution less than some threshold? Un-
like the work on robust statistics, in this setting it
is standard to consider distributions over a finite
domain [n]. Typically, properties require nΩ(1)

samples to test. For example, given two distri-
butions, Θ(n2/3) samples are necessary and suffi-
cient to distinguish between the case where the dis-
tributions are identical and the case where the dis-
tributions are at variation distance 1/2 [BFR+00,
Val08]. In the case of entropy, for sufficiently large
constants α < β, nα/β−o(1) samples are neces-
sary and nα/β+o(1) samples are sufficient to dis-
tinguish between the entropy being below α or
above β [BDKR05, Val08]. The space complex-
ity of these problems has not been considered be-
fore. We present a technically straightforward, but
very general, result showing it is possible to en-
sure low space complexity at the cost of increas-
ing sample complexity; we defer further details
to Section 6. For entropy, the result shows that
for any γ > 0, there exists a O(nα/β+o(1)−γ)
space solution if sample complexity is increased
to O(nα/β+o(1)+γ). However, for O(polylog n)
space, O(n1+o(1)) samples suffice.

3) Data Streams
The data access model we adopt assumes that

the samples are processed in the order they are
(independently) drawn from the distribution. This
implicitly means that the m samples in the stream
are in random order, i.e., conditioned on the set of
samples, each of the possible m! orderings of the
samples are equally likely. Guha and McGregor
[GM09] demonstrate the power of random-order
data models, showing that median-finding requires
exponentially more passes in the adversarial-order
model. The selection algorithm for order statis-
tics that we use as a building block in our algo-
rithms for robust estimators is based on their algo-
rithm. Random order streams were also considered
in [Woo09, CCM08, GMV06, CJP08, DLOM02]
but almost all of this work only considers em-
pirical problems. For example, while Guha et
al. [GMV06] explored connections between the
random-order model and property testing, they
were interested in properties of the stream itself
rather than the process that generated the stream.
One exception is work on estimating the density
function of a k-piece-wise linear density function
from a series of samples [CK09, GM07]. Lastly,
we note that in our model we assume that samples
from the distribution are stored in unit space, but
that maintaining a counter requires space logarith-
mic in the largest value.

Notation: When discussing a probability distri-
bution over the real line, we will always use a capi-
tal letter to denote its cumulative distribution func-
tion (cdf), and the corresponding lower case let-
ter to denote its probability density function (pdf)
when it exists. For a distribution F , F −1 is the
well-defined function F −1(t) = supx∈R

{F (x) <
t}. Let ∆y refer to the cdf of the distribution where
all mass is concentrated at y. We say that a se-
quence of values x1, . . . , xm defines the empirical
distribution with cdf Fm = 1

m

∑
i∆xi . We will

use D[n] and DR to denote the set of probability
distributions over [n] := {1, . . . , n} and the real
line respectively.

2 Robust Statistics: Background and
Preliminaries

For a comprehensive overview of robust statis-
tics, we direct the reader to an invaluable book by
Hampel et al. [HRRS05].
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An estimator is a family of real-valued func-
tions (Tm)m=1,2,... on collections of sample data
(represented by the corresponding empirical dis-
tribution). Many estimators, including those we
consider in the next three sections, are function-
als (i.e. there exists some T : DR → R such that
Tm(Fm) = T (Fm)) or converge in probability to a
functional. As an example, for the mean, we have
Tm(

∑
i ∆xi) = 1

m

∑
xi and T (F ) =

∫
xdF (x).

Following the statistics literature, we consider ad-
ditive approximations of T (F ) where F is the
source distribution: an ε-approximation of a value
T (F ) is a value in the interval [T (F )−ε, T (F )+ε].

A central concept in the study of robust statistics
is the influence function:

Definition 2.1. Given an estimator T : DR → R,
its influence function at a distribution F is

IF(x;T, F ) = lim
t→0

T ((1− t)F + t∆x)− T (F )
t

.

The gross error sensitivity is defined as
supx |IF(x;T, F )|.

The influence function can be interpreted as a
derivative, measuring the rate of change of the es-
timator as an infinitesimal amount of probability
mass is transferred to x. Note that the influence
function is parametrized by both the estimator T
and a distribution F , and many measures of ro-
bustness are intended to describe such a (T, F )
pair rather than just the estimator T . The gross
error sensitivity describes the maximum change to
an estimator that adding an infinitesimal amount
of noise to the distribution can effect. It is almost
a prerequisite that this quantity be bounded for an
estimator to be intuitively thought of as robust.∗

Generally, we will say that an estimator is
(σ, τ)-robust at a distribution if its “average” in-
fluence function is bounded by τ inside a σ-
neighborhood of the distribution. The standard
distance used in this context is the Lévy distance.

Definition 2.2 (Lévy distance). Given two distri-
butions F and G, the Lévy distance between them

∗Other measures of robustness can be derived from the in-
fluence function. These include the local shift sensitivity, which
describes the effect of shifting a small amount of probability
mass a small amount, and the rejection point, which, when fi-
nite, indicates the point beyond which outliers are disregarded
completely.

is defined as d(F,G) = inf{ε : F (x − ε) − ε ≤
G(x) ≤ F (x+ ε) + ε}.

Informally, this is the side length of the largest
axis-parallel square that can be inscribed between
the graphs of F and G. Note that because the
Lévy distance concerns cdfs, it can be quite dif-
ferent than other, perhaps more familiar, distances
between distributions, such as variation distance
between the pdfs.

Example: Our intuition suggests that the me-
dian is generally robust, while the mean is not.
We can see this quantitatively in their respective
influence functions. For the mean, for any distri-
bution F , we have IF(x;T, F ) = x − T (F ), and
so the influence function (and hence the gross er-
ror sensitivity) is unbounded. On the other hand,
when T is the median, the influence function is
IF(x;T, F ) = sign(x−T (F ))

2f(T (F )) , which is bounded so
long as f(T (F )) > 0. This is in accord with our
intuition that the median should be fairly stable so
long as there is some probability mass at its value;
the more density at the median value, the more sta-
ble that value is. We can see that some non-robust
estimators such as the mean can be impossible to
approximate accurately. For example, let D t rep-
resent the distribution (1− t)∆0 + t∆1/t2 ; this has
mean 1

t . LetA be an approximation algorithm that
(with high probability) takes at most m samples
when presented with ∆0 as its input. Then with at
least constant probability,Awill not be able to dis-
tinguish ∆0 and D1/100m, as it is unlikely to draw
an outlier among its samples.

Our definition of robustness is based on the idea
of a bounded gross error sensitivity, which intu-
itively limits the potential effect of a single data
point as the total number of samples goes to in-
finity. Ideally, we would like to say that for our
purposes, an estimator T is robust at a distribution
F if its gross error sensitivity is bounded by a fixed
constant τ . Since we cannot actually draw an in-
finite number of samples, however, we will use a
more coarse-grained version—intuitively, we say
that T is robust at F if the average of the influ-
ence function is bounded along all paths within a
neighborhood of F of small constant radius σ. The
intended consequence of this will serve as our for-
mal definition:
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Definition 2.3. Given an estimator T and a dis-
tribution F , we say that T is (σ, τ)-robust at F if
for all distributions F ′ such that d(F, F ′) ≤ σ,
|T (F )− T (F ′)| ≤ τd(F, F ′).

Classes of Estimators As mentioned earlier, we
study three types of commonly used estimators:
location M-estimators, which generalize maxi-
mum likelihood estimators, L-estimators, which
are linear combinations of order statistics (for ex-
ample, the mean of all elements between the 25th
and 75th percentiles), and R-estimators, which
are based on standard statistical rank tests. All
three classes contain familiar examples that are de-
ployed in real-world practice, and will be formally
defined later.

2.1 Preliminary Results
As mentioned in the introduction, any robust es-

timator can be approximated to within ε if we are
willing to allow ourselves the use of space that
scales with ε−2. The essential idea is that a sample
of this size induces an empirical distribution that is
close to the actual distribution, and we can simply
calculate the estimator on the sample. The main
tool we will use is the following:

Theorem 2.4. [Dvoretzky-Kiefer-Wolfowitz in-
equality] Let x1, . . . , xm be m samples drawn
independently with respect to F , and let Fm =
1
m

∑m
i=1 ∆xi . Then Pr[supx |Fm(x) − F (x)| >

ε] ≤ exp(−2mε2).

With this in mind, the next theorem follows
because the Kolmogorov-Smirnov distance, i.e.,
supx |Fm(x) − F (x)|, is upper bounded by the
Lévy distance.

Theorem 2.5. Let T be an estimator and F be
a distribution at which T is (σ, τ)-robust, and
let ε ≤ στ . For m = τ2

2ε2 ln 1
δ , define Fm =∑m

i=1 ∆xi where x1, . . . , xm are m independent
samples drawn from F . With probability at least
1−δ, T (Fm) lies in the interval [T (F )−ε, T (F )+
ε],

Proof. The theorem follows more or less imme-
diately from the Dvoretzky-Kiefer-Wolfowitz in-
equality, which implies that Pr[d(F, Fm) > ε

τ ] ≤
exp(− 2mε2

τ2 ) = δ. Since T is (σ, τ)-robust at F ,
we have |T (F )− T (Fm)| ≤ τ (.F, Fm) < τ ετ = ε,
as required.

Algorithm 1 Order statistics(t∗; ε, δ) (adapted
from [GM09])

(a, b) = (−∞,∞).
repeat

Sample u ∈ (a, b) using up to 1
ε ln 3

δ sam-
ples (i.e. draw samples from F until finding
a point in (a, b) or until reaching the given
number of samples, when sampling fails.)

Estimate F−1(u) using 2
ε2 ln 3

δ samples; call
result t
if t− t∗ < ε

2 then a← u;
else if t− t∗ > ε

2 then b← u.
until sampling step fails or |t− t∗| < ε

2
if |t− t∗| < ε

2 then output u;
else [sampling step failed] output a.

Algorithm 1, for computing order statistics, is
adapted from Guha, McGregor [GM09]. We will
use it as a sub-routine in other algorithms.

Lemma 2.6 (adapted from Guha, McGregor
[GM09]). Algorithm 1, given as input a distribu-
tion F , t∗ ∈ [0, 1], and any ε, δ > 0, returns
an element u such that ∃t ∈ [t∗ − ε, t∗ + ε] for
which F−1(t) = u, with probability at least 1− δ,
while using at most O(log 1

ε log log 1
δ ) space and

O(ε−2 log ε−1 ln2 δ−1) samples.

3 M-estimators
Perhaps the most prominent class of robust esti-

mators is that of M-estimators, so named because
they generalize standard maximum likelihood esti-
mators. There are two main types of M-estimators:

Definition 3.1. Given a function ρ : R × R →
R, a ρ-type M-estimator T for a given probabil-
ity distribution F over R is defined as T (F ) =
argminθ

(∫
ρ(x, θ)dF (x)

)
.

Definition 3.2. Given a functionψ : R×R→ R, a
ψ-type M-estimator T for a given probability dis-
tribution F is the value of θ (if it exists) for which∫
ψ(x, θ)dF (x) = 0,

Definition 3.1 can be interpreted as minimizing
the average loss as measured by ρ. Note that if ρ
is differentiable, then its derivative can be used to
describe an equivalent M-estimator under Defini-
tion 3.2.
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For now, we consider the major class of loca-
tion M-estimators, in which ρ(x, θ) = ρ(x− θ) or
ψ(x, θ) = ψ(x − θ). The mean can be character-
ized by ρ(y) = y2 or ψ(y) = y, while the median
can be specified by ρ(y) = |y| or ψ(y) = sign(y)
for y �= 0. Among more specialized M-estimators
is the Huber estimator, where for a given constant
b, ψ(x) = x for |x| ≤ b and ψ(x) = b · sign(x)
for |x| > b. Each of these also has a “redescend-
ing” version in which there exists some r > 0 such
that ψ(x) = 0 when |x| ≥ r; this has the effect of
removing the influence of any points that are more
than a distance r from a prospective estimate θ.†

We will find it useful to distinguish between M-
estimators that are redescending and those that are
not.

The influence function of an M-estimator is pro-
portional to its ψ function, and perhaps for this rea-
son M-estimators tend to be characterized by their
ψ-functions; consequently we also generally focus
on ψ-type estimators. We will make the following
assumptions about ψ, which we argue are natural
and satisfied by all robust location M-estimators
we encountered:
• ψ is odd (i.e. ψ(−x) = −ψ(x)), with ψ(x) ≥

0 ∀x ≥ 0.
• ψ is bounded, with |ψ| denoting its supre-

mum, and also piecewise continuous.
• There exists some neighborhood around 0 in

which ψ(x) = 0 implies x = 0. The parame-
ter ε will be understood to be smaller than the
radius of this neighborhood.

3.1 Non-redescending M-estimators

We first present our algorithm for the case of
non-redescending M-estimators, where ψ is only
zero at 0. Typically, ψ(x) is monotonically non-
decreasing over its entire domain, and we will as-
sume this from now on. Note that limx→∞ ψ(x)
exists, and thus there exists γ such that for all
x ≥ γ, |ψ(x) − ψ(γ)| < ε|ψ|

2τ .
For any u ∈ R, define Ψ(u) =

∫
ψ(x −

u)dF (x); we wish to find the value θ = T (F )
where Ψ(θ) = 0. Note that because ψ is nonde-
creasing, Ψ must be nonincreasing, with positive

†These are sometimes referred to as the skipped mean,
skipped median, and skipped Huber estimator since outlying
points are skipped.

value at −∞ and negative value at∞.‡ The main
purpose of this section is to prove the following:

Theorem 3.3. Let T be a non-redescending lo-
cation M -estimator as described above, and let
F be a distribution at which T is (σ, τ)-robust.
Then for any 0 < ε ≤ στ and any δ > 0, Algo-
rithm 2 returns u within ε of T (F ) with probability
1 − δ, using at most Õ(log τ

ε log log 1
δ ) space and

poly(τ, 1/ε, ln 1
δ ) samples.

Before proving the theorem, we give the intu-
ition behind the algorithm and show the key lem-
mas that capture the applications of robustness.

Algorithm 2 Non-redescending M-estimators
Main algorithm

(a, b) = (−∞,∞).
repeat

Sample u ∈ (a, b), using up to �1 samples.
Estimate Ψ(u) by Ψ̃(u), using �2 samples.
if Ψ̃(u) ≥ ε|ψ|

2τ then a← u;

else if Ψ̃(u) ≤ − ε|ψ|2τ then b← u;
else output u and terminate.

until sampling step fails or b − a ≤ ε or r loop
iterations finished.

if b− a ≤ ε then output a and terminate;
else (sampling step failed) call Low probability
phase (a, b).

Low probability phase (a, b)
if either |Ψ̃(a+ γ)| < ε|ψ|

2τ or |Ψ̃(b− γ)| < ε|ψ|
2τ

then output a+ γ or b− γ as appropriate;
else [it must be that Ψ(u) changes sign in
(a, a+ γ) or (b− γ, b)] perform binary search
in the appropriate interval.

Our algorithm works in two phases, each of
which is a form of binary search that uses the sign
of (an estimate of) Ψ(u) to determine if our cur-
rent guess u is too large, too small, or close to
the correct answer θ. In the first phase, we begin
with the interval (a, b) = (−∞,∞) and obtain our
next guess by sampling a point inside the interval.
Ideally, the probability mass in (a, b) shrinks by a

‡In this case, we can generalize the Definition 3.2 to define
T (F ) = sup{u : Ψ(u) > 0}when Ψ(u) is never 0. Our
algorithm works for this definition as well.
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constant factor in each round. The second phase
begins when the probability in (a, b) becomes too
small to sample and is a more traditional binary
search in which the next guess is the midpoint of
the interval (a, b). The search terminates when the
length of the interval becomes smaller than ε, or we
find a point u such that |Ψ̃(u)| < ε|ψ|

2τ . Robustness
is critical in three ways: 1) in Lemma 3.4, it tells
us that if |Ψ(u)| is too small to be reliable, then u
must be close to θ; 2) in Lemma 3.5, it allows to
prove a concentration bound on the accuracy of our
estimates of Ψ(u); and 3) in Lemma 3.6, it guar-
antees that θ must be in a small interval when the
second phase of the algorithm begins.

Lemma 3.4. If |Ψ(u)| < ε|ψ|/τ , then |u− θ| ≤ ε.
Proof. Suppose that u > θ (the case where u < θ
is handled in a similar way); hence Ψ(u) < 0.
Starting from F , consider now a modified distri-
butionG in which min{ ετ ,

∫
x<u

dF (x)} of proba-
bility mass is moved from the left of u to a value
of at least u + y to the right of u, where ψ(y) ≥
|Ψ(u)| τε . (Since |Ψ(u)| τε < |ψ|, such a y must ex-
ist.) We will define ΨG(u) as

∫
ψ(x, u)dG(x) in

analogy to Ψ(u).
If

∫
x<u dF (x) mass is moved, then∫

x<u dG(x) = 0 and hence ΨG(u) ≥ 0,
implying that T (G) ≥ u. If ε

τ is moved, then we
have ΨG(u) ≥ Ψ(u) + ε

τ ψ(y) ≥ 0, and again
T (G) ≥ u.

However, since T is assumed to be (σ, τ)-robust
at F and ε < στ , then T (G) − T (F ) ≤ ετ

τ =
ε. Noticing that T (F ) ≤ u ≤ T (G) finishes the
proof.

Lemma 3.5. Let x1, . . . , x	 be � independent sam-
ples from F . Then Pr[|Ψ(u)) −∑	

i ψ(xi, u)| ≥
ε|ψ|
2τ ] ≤ exp(− ε2	

8τ2 ).

Proof. This follows from a direct application
of Hoeffding’s inequality after observing that
ψ(xi, u) is a random variable in [−|ψ|, |ψ|] with
expectation Ψ(u).

Between this and the preceding lemma, if u is
such that |Ψ̃(u)| < ε|ψ|

2τ , then |u − θ| ≤ ε with
high probability.

Lemma 3.6. Suppose
∫
x∈(a,b)

dF (x) ≤ α. Then

if a+γ ≤ b−γ, Ψ(a+γ)−Ψ(b−γ) < ε|ψ|
2τ +2α|ψ|.

Proof. We will consider the contributions to Ψ(b−
γ) and Ψ(a + γ) from the values x ≤ a, a <
x < b, and x ≥ b separately. For any x ≤ a
and x ≥ b, since both |x − (a + γ)| ≥ γ and
|x − (b − γ)| ≥ γ then ψ(x − (a + γ)) − ψ(x −
(b+γ)) < ε|ψ|

2τ and hence
∫
x≤a or x≥b[ψ(x− (a+

γ))−ψ(x− (b−γ))]dF (x) < ε|ψ|
2τ . Further, since∫

x∈(a,b)
dF (x) ≤ α,

∫
x∈(a,b)

[ψ(x − (a + γ)) −
ψ(x − (b − γ))]dF (x) ≤ 2α|ψ|. Summing the
contributions gives the desired result.

This leads to the following.

Corollary 3.7. If
∫
x∈(a,b)

dF (x) ≤ ε
4τ , and θ ∈

(a + γ, b − γ), then at least one of |Ψ(a + γ)| or
|Ψ(b− γ)| must be at most ε|ψ|2τ .

Proof. From Lemma 3.6, Ψ(a+ γ)−Ψ(b− γ) ≤
ε|ψ|
τ . Combining this with the fact that Ψ is zero

somewhere in the interval (a + γ, b − γ) finishes
the proof.

Note that this proves the bracketed comment in
the final else statement in the description of Al-
gorithm 2.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. There are three sources of
failure probability: sampling failure despite suf-
ficiently high remaining probability in (a, b), es-
timation failure, and failure to reduce the range
(a, b) sufficiently even after many rounds. We will
set each of these failure probabilities to be at most
δ
3 .

On each round when we perform a range update,
with probability 1/2 we reduce

∫
x∈(a,b)

dF (x) by
at least a factor of 3/4. Thus, by a Chernoff bound,
r > 16 ln 3

δ + 4 log3/4 α iterations of the main
loop of the algorithm will be sufficient to obtain∫
x∈(a,b) dF (x) ≤ α with probability at least 1 −
δ/3, so long as the sampling step succeeds while∫
x ∈ (a, b)dF (x) > α. If

∫
x∈(a,b) dF (x) >

α, then the probability that �1 independent sam-
ples are all outside (a, b) on any round is at most
r(1 − α)	1 . Thus if we set �1 > 1

α

(
ln 3r

δ

)
, the

probability that any of the sampling steps fails er-
roneously is at most δ/3. We set α ≤ ε

4τ , so that
by Corollary 3.7, if θ ∈ (a+γ, b−γ), one of a+γ
or b− γ is within ε of θ, and further, detectable by
estimating its Ψ̃ value.
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The low probability phase lasts for at most
log2 γ/ε rounds, making for a total of r +
log2 γ/ε estimations of Ψ. By a union bound,
all r + log2 γ/ε estimates of |Ψ(u)| are cor-
rect to within ε|ψ|

2τ with probability at least

1 − (r + log2 γ/ε) exp
(
− ε2	22τ2

)
. Thus, �2 >

2τ2

ε2

(
ln 3(r+log2 γ/ε)

δ

)
is sufficient.

The total number of samples needed is at most
r(�1 + �2) + 2�2 log2 γ/ε. The space required is
the logarithm of the max counter values for the � 1

and �2 counters, plus a storing a constant number
of samples, each of unit size.

3.2 Redescending M-estimators

Algorithm 3 Redescending M-estimators

Let ξ1, . . . , ξt2 ∈ R be a precomputed sequence
based on ρ.
for i = 1, . . . , t1 do

Sample xi from F .
for j = 1, . . . , t2 do

Let yij = xi + ξj .
Estimate R(yij) using t3 samples; if this is
the minimum estimate thus far let u = yij .

end for
end for
Output u.

We now turn to redescending M-estimators. Re-
call that for a redescending estimator T there exists
some r for which ψ(x) = 0 whenever |x| > r; let
r∗ = inf{r > 0 : ψ(r) = 0 when |x| > r}. Since
ψ and thus Ψ are no longer monotonic, there may
not be a unique value u for which Ψ(u) = 0. We
choose one common method of remedying this by
defining T (F ) using Definition 3.1 instead; thus
T (F ) = argminθ

(∫
ρ(x − θ)dF (x)

)
.§

We will make the reasonable assumptions that
ρ(x) is bounded and continuous and will use |ρ| to
denote |ρ| = supx |ρ(x)|. Let γ(x) = supz |ρ(z +
x) − ρ(z)|, or the maximum possible change in ρ
over an interval of length x, and let β(x) be the
value of z for which this is achieved (i.e. ρ(β(x)+
x)− ρ(β(x)) = γ(x).

§Other common methods include taking the value of u sat-
isfying Ψ(u) = 0 closest to the median, or using Newton’s
method on Ψ using the median as the starting point.

Our main theorem here is this, which we prove
after showing several useful lemmas.

Theorem 3.8. Let T be a redescending location
M -estimator, and let F be a distribution at which
T is (σ, τ)-robust. Then for any 0 < ε ≤ στ
and any δ > 0, Algorithm 3 returns u within
ε of T (F ) with probability 1 − δ, using at most
poly(τ, |ρ|, ε−1, (γ(ε/2))−1, ln δ−1) samples and
Õ(log τ |ρ|

εγ(ε/2) log log 1
δ ) space.

The non-monotonic nature of ψ means we can-
not directly apply the binary search approach de-
scribed above, and so we appeal to the ρ function
instead. Analogously with Ψ(u), define R(u) =∫
ρ(x, u)dF (x); where there is the possibility of

confusion, we will indicate the distribution as in
RF (u). We wish to find θ = T (F ), the global
minimum of R over R. On the surface, this may
appear difficult, as we need to be lucky enough to
sample or find a point near the global minimum of
R, and successfully distinguish it from all other
candidate points, some of whose own R-values
may a priori be close to that of θ.

Fortunately, if we have a robustness guarantee,
the problem becomes manageable. First, the fol-
lowing lemma guarantees that for any point u suf-
ficiently far from θ, there is a gap between R(u)
and R(θ). Otherwise, a small change to F would
cause R(·) to be smaller at u than at any point in a
neighborhood around θ. Thus θ should be recog-
nizable as the global minimum if we can find it.

Lemma 3.9. Let T (F ) = θ. Then for all u, we
have that R(u) − R(θ) ≥ z

2τ γ( z2 ), where z =
min{|u− θ|, 2στ}.
Proof. The result is trivial if u = θ, so suppose
that u �= θ and that in factR(u)−R(θ) < z

2τ γ( z2 ).
Intuitively, we will show that sinceR(u) andR(θ)
are relatively close, a small change to the distribu-
tion F will result in a nearby distribution F ′ for
whichRF ′(·) will be smaller at u than at any point
close to θ. This will contradict the robustness of T
at F .

Assume without loss of generality that u ≥ θ (a
similar argument holds for the other case). Specif-
ically, let H be the subdistribution of F with∫
dH(x) ≤ z

2τ that maximizes
∫
(ρ(x−θ)−ρ(x−

u)dH(x). Our modified distribution F ′ will then
take the formF ′ = F−H+(

∫
dH(x))∆u+β(z/2).
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Essentially, this moves the (at most) z
2τ of proba-

bility that most favors θ over u, and moves it to
the point where it most favors u over θ. Note that
d(F, F ′) ≤ z

2τ ≤ σ.
We now claim that in the new distribution,

RF ′(u) < RF ′(y) for all y ∈ [θ − z
2 , θ + z

2 ]. If∫
dH(x) < z

2τ then H contains all of the parts of
F for which ρ(x − θ) > ρ(x − u), and the claim
follows. Otherwise, consider any such y in the
given interval. We observe that since z

2 ≤ |u−θ|
2 ,

|u − y| ≥ z
2 . Then by definition of γ(·), we have

that

(R(u)−RF ′(u))− (R(y)−RF ′(y))

≥ z

2τ
γ(
z

2
)

> R(u)−R(θ)
≥ R(u)−R(y).

Rearranging the terms yields RF ′(y)− RF ′(u) >
0.

Since RF ′(·) is smaller at u than at any point in
[θ− z

2 , θ + z
2 ], we know that T (F ′) �∈ [θ − z

2 , θ+
z
2 ]. Hence |T (F ′) − T (F )| > z

2 ≥ τd(F, F ′), a
contradiction.

Lemma 3.9 states that in particular, for any u
with |u − θ| > ε, R(u) − R(θ) > ε

2τ γ( ε2 ). Let
0 = ξ1 < ξ2 < · · · < ξt2 = r∗ be an increas-
ing sequence of reals such that ρ(ξj)− ρ(ξj−1) ≤
ε
8τ γ( ε2 ). The idea is that for any pair of points a
and bwith a < b such that |ρ(b)−ρ(a)| > ε

8τ γ( ε2 ),
there must exist a j for which ξj ∈ [a, b]. Note
that this sequence can be constructed using t2 ≤
8τ |ρ|
εγ( ε

2 ) + 1 points.

With this sequence in hand, we can lower bound
the probability that sampling a point will lead us
close to θ. We observe that the gap R(u) − R(θ)
for all points u outside a neighborhood around θ
implies a lower bound on the average derivative of
R(·) around θ. Since ψ (the derivative of ρ, and
the potential contribution to the derivative of R(·)
from a single particle of probability) is bounded
from above, many points must contribute to the rel-
atively large average derivative of R near θ. This
is the content of the following lemma.

Lemma 3.10. Let x be a random sample from the

distribution F . Then

Pr
[
∃ j s.t. R(x+ ξj)−R(θ) ≤ ε

4τ
γ(
ε

2
)
]

≥
ε
8τ γ

(
ε
2

)
|ρ| − ε

8τ γ( ε2 )
≥ εγ( ε2

8τ |ρ| ).

Proof. From Lemma 3.9, we know thatR(θ+ε)−
R(θ) > ε

2τ γ( ε2 ). Let 0 ≤ z ≤ ε be the smallest
value for which R(θ+ z)−R(θ) > ε

4τ γ( ε2 ); thus,∫
[ρ(x − (θ + z)) − ρ(x − θ)]dF (x) > ε

4τ γ( ε2 ).
Given this lower bound on the average value of
ρ(x− (θ+ z))− ρ(x− θ) over all x and the upper
bound of |ρ| on the value of ρ(·), we can see that
for a certain fraction of x, ρ(x− (θ+ z))− ρ(x−
θ) > ε

8τ γ( ε2 ); a quick calculation shows this frac-

tion to be
ε
8τ γ( ε

2 )

|ρ|− ε
8τ γ( ε

2 ) . By the construction of ξj ,
when we find such a value of x, there must exist
some j for which x+ ξj ∈ [θ, θ+ z]. This finishes
the proof.

Given this, our algorithm is straightforward in
the extreme. It merely draws a sufficiently large
number of samples, and for each sample x i ex-
amines all points xi + ξj where xi would induce
a large derivative. Theorem 3.8 implies the algo-
rithm’s correctness.

Proof of Theorem 3.8. Our algorithm will succeed
if (1) it samples an xi for which there exists j such
that R(xi + ξj)− R(θ) ≤ ε

4τ γ( ε2 ) (in which case
xi+ξj ∈ [θ, θ+ε]), and (2) the estimate R̃(xi+ξj)
is smaller than R̃(yij) for all yij �∈ [θ − ε, θ + ε].
This second condition will hold so long as all of
the R̃ estimates have error at most ε

8τ γ( ε2 ) (as we
have a gap of twice that size between R(xi + ξj)
and R(yij).

By Lemma 3.10, condition (1) fails to hold with

probability at most
(
1− ε

8τ |ρ|γ( ε2 )
)t1

, which is

less than δ
2 when t1 >

8τ |ρ|
εγ( ε

2 ) ln(2
δ ).

Using a Hoeffding bound, when t3 >
64τ2|ρ|2
ε2γ( ε

2 )2 ln 2t1t2
δ , then Pr[|R(y) − R̃(y)| >

ε
8τ γ( ε2 )] < δ

2t1t2
. Applying a union bound, all

t1t2 estimates ofR(·) satisfy the bound with prob-
ability at least 1− δ

2 .
The number of samples used is t1t2t3. As ob-

served above, t2 ≤ 8τ |ρ|
εγ(ε/2) + 1. The space re-

quirement is logarithmic in the maximum size of
the counters t1, t2, t3, plus a constant number of
samples, each of unit size.
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4 L-estimators
Another major class of robust estimators is that

of L-estimators, or “linear combination of order
statistics.” In functional form, an L-estimator T is
defined by a function h : [0, 1]→ R as follows:¶

T (F ) =

∫ 1

0
F−1(t)h(t)dt∫ 1

0 h(t)dt
. (1)

The classic example of an L-estimator is the me-
dian, defined by h = δ1/2, or the Dirac delta
function at 1

2 . Also well-known is the α-trimmed
mean for some α < 1

2 , defined by h(t) = 1 for
t ∈ [α, 1 − α] and h(t) = 0 elsewhere; thus the
1
5 -trimmed mean is the mean of the middle 60%
of the distribution. A frequently used measure of
spread is the interquartile distance, specified by
h(t) = δ3/4 − δ1/4.

Our algorithm for approximating L-estimators
to within an additive ε error works essentially by
discretizing the numerator in equation (1) above.
To that end, we partition the interval [0, 1] into
1
w subintervals, where w is chosen so that wτ ≤
ε. We will denote these subintervals Ik, k =
1, . . . , 1/w, where Ik = [(k − 1)w, kw].

Algorithm 4 L-estimators

for k = 1, . . . , 1/w do
Compute (exactly)

∫
Ik
h(t)dt; denote this

quantity by hk.
Set tk = (k − 1

2 )w; i.e. the midpoint of Ik .
Estimate xk = F−1(tk), using Algorithm 1,
with parameters (w/2, wδ).
Let Xk = hkxk.

end for
Output

∑
kXk.

Theorem 4.1. Let T be an L-estimator and F
be a distribution at which T is (σ, τ)-robust.
Then Algorithm 4 outputs a value u within ε of
T (F ) with probability at least 1 − δ, using space
Õ(log τ

ε log log 1
δ ), for any 0 < ε ≤ στ and any

δ > 0.

¶Another very similar definition is T (F ) =∫
xh(F (x))dF (x)∫
h(F (x))dF (x)

. The two behave differently where F

is discontinuous (i.e. has a point mass); in these cases we
believe our given definition is more appropriate.

Proof. By (σ, τ)-robustness, it is sufficient to
show that with probability at least 1−δ there exists
a distribution F ′ such that (a) T (F ′) = u and (b)
d(F, F ′) < ε

τ .
We first observe that in the main loop of our al-

gorithm, the value xk returned by a call to Algo-
rithm 1 is equal to F−1(t′k) for some t′k ∈ [0, 1].‖

Hence, we have u =
∑1/w

k=1 hkF (t′k). Further, by
Lemma 2.6, for each k, there exists t ′k such that
|tk − t′k| ≤ w

2 with probability at least 1−wδ. By
a union bound, we obtain

Pr[|tk − t′k| ≤
w

2
∀k] ≥ 1− δ. (2)

In particular, when this holds, we have that t ′k ∈
[(k − 1)w, kw].

We now claim that when (2) holds, the distri-
bution F ′ =

∑1/w
k=1 w∆xk

satisfies the two condi-
tions above. Condition (a) holds by construction:
note that

T (F ′) =
∫ 1

0

F ′−1(t)h(t)dt

=
1/w∑
k=1

∫
Ik

F ′−1(t)h(t)dt

=
1/w∑
k=1

hkxk = u .

As for condition (b), it is sufficient to show that
for all x, |F (x)−F ′(x)| ≤ w. For convenience, let
x0 and t′0 be understood to be −∞ and 0 respec-
tively. Now consider any x and the largest value
of k such that xk ≤ x; thus either k = 1

w , an eas-
ily handled special case, or x < xk+1 and hence
F (x) ≤ F (xk+1). By the construction of F ′, we
have F ′(xk) = F ′(x) = kw. We also have that
t′k ≤ F (x), and that F (x) < t′k+1. Now, by (2),
t′k ≥ (k−1)w and, if applicable, t′k+1 ≤ (k+1)w,
and so |F (x)− F ′(x)| ≤ w, as needed.

The space requirement is logarithmic in the
counter that ranges from 1 to 1/w, plus the space
required by the call to Algorithm 1, plus space for a
constant number of samples, each of unit size.

‖Note that there may be more than one such value of t′k if
F is discontinuous at xk .
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5 R-estimators

Given a distribution F and a value u ∈ R, let
F̄ be the reflection of F across u; i.e. if f ex-
ists, f̄(x) = f(2u − x). Let G be the com-
bined distribution 1

2F + 1
2 F̄ , or equivalently,G =

1
2 [1 + F (x) − F (2u − x)]. Then for any function
a : [0, 1] → R that is skew-symmetric around 1

2
(namely, a( 1

2 + y) = −a(1
2 − y)) and for which

a(x) ≥ 0 for x > 1
2 ), we can define the related

function S(u) =
∫
aG(x)dF (x), where aG(x) is

the average value of a(·) from G(x−) to G(x+),
the limits of G(x) from the left and right.∗∗ This
leads to a definition for a new class of estimators
called R-estimators. For convenience, we define
|a| = ∫

y> 1
2
a(y), and assume without loss of gen-

erality that |a| ≥ 1.

Definition 5.1. Given a function a : [0, 1] → R,
the associated R-estimator T (F ) is a value of θ for
which S(θ) = 0, if one exists.

The median is the R-estimator with a(t) =
sign(t − 1

2 ). Other noteworthy R-estimators in-
clude the normal scores estimator (a(t) = Φ−1(t),
where Φ is the normal distribution), and the
Hodges-Lehmann estimator (a(t) = t − 1

2 ), de-
rived from the well-established Wilcoxon signed-
rank test.

The formulation of R-estimators combines ele-
ments from both M-estimators and L-estimators.
They resemble M-estimators in that there is an ag-
gregate function S(·), analogous to Ψ(·) in the
non-redescending case, for which we wish to find
a zero. On the other hand, R-estimators and L-
estimators also evaluate weighted sums of ranks,
though the R-estimator variant is more compli-
cated in that its sum depends on two different dis-
tributions (F and G) rather than one.

Nonetheless, as the following theorem states,
robust R-estimators can be approximated in a
space-efficient manner, and the fact that even this
more complicated class can be handled gives us
confidence that the classes we examine are exam-
ples of a more general principle, as opposed to a
few fortunate instances.

∗∗For reasons similar to those in Section 4, we use this defi-
nition instead of the more compact

∫
a(G(x))dF (x) to handle

the case where F (and hence G) has discontinuities.

Algorithm 5 EstimateS(u; ε, δ)

Set w = ε
4 .

Define ak =
∫
x∈( 1

2+(k−1)w, 12+kw] a(t)dt.
Define bk = G−1(u + (k − 1)w) for k =
0, . . . , 1

2w , and Ik = (bk−1, bk].
for k = 1, . . . , 1

2w do
Let b̃k be the estimate of G−1(1

2 + kw) from
Algorithm 1, with parameters ( wε

16+2ε ,
wδ
2 );

let Ĩk = (b̃k−1, b̃k].

Estimate ck =
∫

Ĩk
dF (t)∫

Ĩk
dG(t)

using the first t sam-

ples from G in the interval Ĩk. (To sample
from G, take a sample x from F and return
either x or 2u− x each with probability 1

2 .)
end for
Output w

∑
k ak(2ck − 1).

Theorem 5.2. Given an R-estimator T defined by
a : [0, 1] → R and a distribution F at which
T is (σ, τ)-robust, Algorithm 6 produces a value
within ε of T (F ) with probability at least 1 − δ,
for any 0 ≤ ε ≤ στ and any δ > 0 using at most
Õ(log τ

ε log log C
δ ) space, where C is the maxi-

mum length of an interval (a, b) containing T (F )
for which

∫ b
a dF (x) ≤ ε

τ .

The dependence on log logC in the space bound
is admittedly inelegant, but is significant only
when F has very little density in an extremely
large range around T (F ). We also note that C is
comparable in size to sample points a and b, and
thus reflects the spread of F .

The algorithm performs binary search as in Al-
gorithm 2, using the sign of S(u) for comparison.
We therefore need a subroutine that gives us a use-
ful estimate of the value of S(u) for any u. This is
given by Algorithm 5 and the following lemma:

Lemma 5.3. With probability at least 1 − δ
2 , the

algorithm EstimateS(u) outputs a value that is the
correct value of S(u) for a distribution F ′ with
d(F, F ′) ≤ ε.

Informally, the EstimateS algorithm evaluates
the integral

∫
aG(x)dF (x) by interpreting it as∫ 1

0 a(t)
f(G−1(t))
g(G−1(t))dt. In a sense, we are integrat-

ing a(t) over the [0, 1] interval while weighting by
the fraction of g(G−1(t)) that belongs to F . The
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Algorithm 6 R-estimators
Main

(a, b) = (−∞,∞)
repeat

Sample u ∈ (a, b) fromF using up to �1 sam-
ples.
Let S̃(u) = EstimateS(u; ε

2τ ; δ
3(r+r2)

). [Pa-
rameters r, r2 defined in text.]
if |S̃(u)| > |a| ε2τ then

Update (a, b).
end if

until sampling step fails or r loop iterations fin-
ished or |S̃(u)| ≤ |a| ε2τ or b− a ≤ ε

2

if |S̃(u)| ≤ |a| ε2τ or b− a ≤ ε
2 then

Output u.
else {sampling step failed}

call Low probability phase (a, b).
end if

Low probability phase (a, b)
If either a or b is infinite, then output the finite
one and terminate.
repeat

Let u = a+b
2 .

Let S̃(u) =
EstimateS(u; ε

2τ ; r2δ
3(r+r2 log2(b−a)/ε ).

if |S̃(u)| > |a| ε2τ then
Update (a, b).

end if
until |S̃(u)| ≤ |a| ε2τ or b− a ≤ ε

2
Output u.

algorithm does this by discretizing the [0, 1] inter-
val into slices of size w, while also taking advan-
tage of the realization that because a(·) is skew-
symmetric around 1

2 , we only need to consider the
interval ( 1

2 , 1].

Proof. We first note that by a union bound, with

probability at least 1− δ
2 , we can assume

∃ tk s.t.

G−1(tk) = b̃k

and∣∣∣∣tk −
(

1
2

+ kw

)∣∣∣∣ ≤ wε

16 + 2ε
, (3)

∀k = 1, . . . ,
1

2w
.

Among other things, this implies that b̃k−1 ≤ b̃k
for all k. Note that our algorithm will return the
value w

∑1/2w
k=1 ak(2ck − 1); we can see that this

would be the correct value of S(u) for the under-

lying distribution F ′ = w
∑1/2w

k=1 ck∆b̃k
+ (1 −

ck)∆2u−b̃k
. We need to show that d(F, F ′) ≤ ε

with high probability. The following claim will be
useful:

Claim 5.4. With probability at least 1 − δ,
| ∫
Ik
dF (x) − ckw| ≤ wε

4 , or equivalently,

|
∫

Ik
dF (x)

w − ck| ≤ ε
4 , for all k.

In words, we claim that all of our estimates of
the proportion of G that belongs to F in each slice
are reasonably accurate.

Proof. For each k, our estimate ck is derived by
taking t independent samples from G conditioned
on their falling into the interval Ĩk, and observing
what fraction of these belong to F . There are two
possible sources of error—first, the proportions of
F in the intervals Ĩk and Ik will not match exactly;
and second, there will be sampling error when try-
ing to measure these proportions. We deal with
both of these below.

Our algorithm will be measuring∫
Ĩk
dF (x)

/∫
Ĩk
dG(x), and we want to argue that

this is close to
∫
Ik
dF (x)

/∫
Ik
dG(x).†† Recall

††There is a technicality that needs to be addressed when F
and G are discontinuous at some of the bk and b̃k . In this case,
when measuring

∫
I

dF (x) or
∫

I
dG(x) for some interval I ,

we may introduce substantial error if (for example) G(bk) >
1
2

+ kw. In this case, the EstimateS algorithm will include
all samples of bk as belonging to Ik, as opposed to only the
fraction that should be attributed to the range ending at 1

2
+kw.

This can be fixed by making several minor changes. First,
we no longer treat all samples of a particular value as indistin-
guishable. Instead, each time a sample s is drawn, it is asso-
ciated with a newly chosen uniform random number r in [0, 1]
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now that we assumed that |tj− (1
2 + jw)| ≤ wε

16+2ε
for all j. Hence
∣∣∣∣∣
∫
Ĩk
dF (x)∫

Ĩk
dG(x)

−
∫
Ik
dF (x)∫

Ik
dG(x)

∣∣∣∣∣ ≤

sup
α1,α2,β1,β2

∣∣∣∣∣
∫
Ik
dF (x) + α1 + α2∫

Ik
dG(x) + β1 + β2

−
∫
Ik
dF (x)∫

Ik
dG(x)

∣∣∣∣∣ ,

where |β1|, |β2| ≤ wε
16+2ε , |αi| ≤ |βi|, and the

signs of αi and βi are the same for i ∈ {1, 2}. A
routine calculation show that this must be bounded
by

max
α1,β1

2α1∫
Ik
dG(x) − 2β1

≤
wε
8+ε

w − wε
8+ε

=
ε

8
. (4)

For the sampling error, by applying a Chernoff
bound, we find that as long as t ≥ 32

ε2 ln 2
wδ , then

Pr[|ck−
∫

Ĩk
dF (x)∫

Ĩk
dG(x)

| ≥ ε
8 ] ≤ wδ

2 . By a union bound,

the probability that there is even one interval where
this happens is at most δ2 .

Combining this with (4), we find that∣∣∣∣
∫

Ik
dF (x)

w − ck
∣∣∣∣ ≤ ε

4 with probability at least

1− δ, as needed.

With the claim in hand, we can finish the proof
that d(F, F ′) ≤ ε. In the context of the above
proof, for all k ≥ 1, let vk =

∑k
i=1

∫
Ik
dF (x)

and ṽk =
∑k

i=1 ckw. Then the claim implies that
for all k,

|vk − ṽk| ≤ ε

4
. (5)

Further, from inequality (3), we have that tk−1 ≤
kw ≤ tk+1 for all k. Now consider any x ∈ R; it
suffices to show that |F (x)−F ′(x)| ≤ ε. Let j be

that signifies its rank among all samples with the same value.
Thus (s1, r1) < (s2, r2) if s1 < s2 or if s1 = s2 and
r1 < r2. Algorithm 1 is then modified to take this ordering
into account. Thus, when looking for the median of the distri-
bution 1

4
∆−1 + 3

4
∆1, Algorithm 1 will with high probability

return something of the form (1, r) for some r close to 1
3

.
Further, the expression

∫
Ik

dF (x) (for example) should also
be interpreted to take this into account. An interval Ik will
then be of the form ((s1, r1), (s2, r2)], and the Monte Carlo
sampling in EstimateS will use the modified comparison as
well. Rather than introduce more notation and complexity to
the exposition, however, we will retain the more familiar in-
tegral form above, with the implicit understanding that these
changes may be necessary when F is not continuous.

the largest value for which b̃j ≤ x; thus F ′(x) =
ṽj . If x ≤ bj , then (5) immediately gives us what
we need. Otherwise, since x < b̃j+1, thenG(x) ≤
tj+1 ≤ 1

2 +(j+1)w+ wε
16 . On the other hand, since

bj < x, 1
2 + jw ≤ G(x), and so G(x) −G(bj) ≤

w+ wε
16 and thus F (x)−F (bj) ≤ 2(w+ wε

16 ) by (3).
Expression (5) yields that |F (bj) − F ′(x)| ≤ ε

4 ,
and so |F (x)− F ′(x)| ≤ ε for w ≤ ε

4 .
This finishes the proof of Lemma 5.3

Since the main R-estimator algorithm stops
when it finds a small estimated value of S(u), we
need to show that when S(u) is small, then u must
be close to θ. This is shown by the following
lemma.

Lemma 5.5. Suppose |S(u)| ≤ |a| ετ . Then |u −
θ| < ε.

Proof. For ease of exposition, we will assume that
0 < S(u) ≤ |a| ετ , with the case of S(u) < 0
handled analogously. Thus T (F ) > u, or more
precisely, there exists a value θ > u for which
S(θ) = 0.

For any x, let x̄ = 2u−x be its reflection across
u, and for a subset I ⊆ R, let Ī = {x̄ : x ∈ I}.
Then note thatG(x) = 1−G(x̄), and in particular
G(u) = 1

2 . Along with the skew-symmetry of a,
this further implies that over any subset I ⊆ R, we
have ∫

I

aG(x)dF (x) = −
∫
Ī

aG(x)dF̄ (x). (6)

By definition, we have

S(u) =
∫
x>u

aG(x)dF (x) +
∫
x<u

aG(x)dF (x) .

Also, since u is the median of the dis-
tribution G, we have

∫
x>u aG(x)dF (x) +∫

x>u aG(x)dF̄ (x) = |a|, and from equa-
tion (6) this becomes

∫
x>u aG(x)dF (x) −∫

x<u
aG(x)dF (x) = |a|. Summing this with the

previous equality yields that
∫
x>u

aG(x)dF (x) =
S(u) + |a|

2
. (7)

We now show there exists a distribution F ′ for
which d(F, F ′) < ε

τ and for which SF ′(u) def=∫
aG′(x))dF ′(x) ≤ 0. This would imply that
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there exists a value for T (F ′) ≤ u, and thus
|u − θ| < ε. We can construct F ′ from F in
a natural way, by moving probability mass from
the values x > u in F for which aG(x) is
largest to the corresponding reflected values x̄ =
2u − x. More formally, let H be the subdistri-
bution of F with

∫
dH(x) ≤ ε

τ that maximizes∫
aG(x)dH(x). If

∫
dH(x) < ε

τ , then all density
where aG(x) > 0 has been removed from F and
thus SF ′(u) < 0 immediately. We can therefore
assume

∫
dH(x) = ε

τ , and therefore

∫
aG(x)dH(x) ≥ ε

τ

S(u) + |a|
2

. (8)

We then set F ′ = F −H + H̄ .
It remains to argue that

∫
aG′(x)dF ′(x) ≤ 0.

To see this, we observe that∫
aG′(x)dF ′(x)

=
∫
aG′(x)dF (x)

+
∫
aG′(x)(dH̄(x)− dH(x))

=S(u) +
∫
aG(x)(dH̄(x)− dH(x))

=S(u)− 2
∫
aG(x)dH(x)

≤S(u)− ε

τ
(S(u) + |a|).

The second line follows because G = G′, as
F ′ was created from F by reassigning probabil-
ity mass from F to F̄ and vice versa. The third
line follows from (6), and the last line from (8). To
finish the proof, we need only observe that the last
line is at most zero when S(u) ≤ |a| ετ .

We are now ready to prove the main theorem for
R-estimators.

Proof of Theorem 5.2. We first show the correct-
ness of the algorithm in the absence of failures due
to unlucky sampling from F , and then bound the
probability of these failures happening.

We start with the following important observa-
tion: For any u, let S̃(u) be the value returned
from a successful call to EstimateS(u; ε∗/τ, δ∗).
We know from Lemma 5.3 that S̃(u) = SF ′(u)

for some F ′ with d(F, F ′) ≤ ε∗/τ . Then ei-
ther sign(S(u)) = sign(S̃(u)), or |u − θ| ≤ ε∗.
For if sign(S(u) �= sign(S̃(u)) = sign(SF ′(u)),
then T (F ) and T (F ′) are on opposite sides of
u. From robustness, however, |T (F ) − T (F ′)| ≤
τd(F, F ′) ≤ ε∗. Since u is between T (F ) and
T (F ′), |T (F )− u| is also bounded by ε∗.

In both sections of the algorithm, we claim that
assuming that the EstimateS step succeeds in each
iteration, it must be that θ ∈ (a − ε

2 , b + ε
2 ). The

above observation tells us that we will never guess
sign(S(u)) incorrectly whenever |u− θ| > ε

2 , and
thus either θ ∈ (a, b) or one endpoint of (a, b) is
within distance ε

2 of θ.

Our algorithm terminates only when |S̃(u)| ≤
|a| ε2τ or when b − a ≤ ε

2 , or if b − a is infinite
after the end of the first phase. In the first case,
Lemma 5.5 implies that |T (F ′)−u| ≤ ε

2 for some
F ′ with d(F, F ′) ≤ ε

2τ . Since |T (F )− T (F ′)| ≤
ε
2 , |T (F ) − u| ≤ ε. If b − a ≤ ε

2 , then both end-
points are within ε of θ, and returning either one
will suffice. Finally, if either a or b is infinite, we
can simply return the one that is finite, since with
parameters set as described below, with high prob-
ability only ε/τ total mass remains in the interval
(a, b). By moving this remaining probability out-
side the interval, we achieve a distribution F ′ in
which there is no probability at all in (a, b), and so
T (F ′) �∈ (a, b). But now d(F, F ′) ≤ ε

τ , and so by
the robustness property, T (F ) must be ε-close to
the finite endpoint.

We now bound the probability of failure. There
are three sources of failure probability: sampling
failure despite high remaining probability, estima-
tion failure, and failure to reduce the range (a, b)
sufficiently even after many rounds.

On each round when we perform a range update,
with probability 1/2 we reduce

∫
x∈(a,b)

dF (x) by
at least a factor of 3/4. Thus, by a Chernoff bound,
with probability at least 1 − δ/3, the number of
rounds r of the main loop of the algorithm to get∫
x∈(a,b) dF (x) ≤ α is r > 16 ln 3

δ + 4 log3/4 α.
We will set α = ε

τ .
The algorithm proceeds until either the sample

phase fails or the EstimateS phase returns a suffi-
ciently good value of u. Let �2 > 32

ε2 ln 6(r+r2)
wδ

be the number of samples used in each call to
EstimateS to get failure probability bounded by

δ
3(r+r2)

. If
∫
x∈(a,b) dF (x) > α, then the proba-
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bility that �1 independent samples are all outside
(a, b) on any round is at most r(1 − α)	1 , so �1 >
1
α

(
ln 3r

δ

)
. The low probability phase involves at

most r2 repetitions, for r2 = log2(b− a)/ε.
By a union bound, all r+ r2 estimates of |S(u)|

are correct to within ε
2τ with probability at least

1− δ/3.
The total number of samples needed is at most

r(�1 + �2) + �2r2. The space requirement is log-
arithmic in the counters �1, �2, and t (from Esti-
mateS); plus the space required by Algorithm 1;
plus space for a constant number of samples, each
of unit size.

Remark: It is possible to drop the explicit checks
as to whether |S̃(u)| ≤ |a| ε2τ in the main loop and
low probability phase. Instead, we can simply run
the algorithm until one of the other stopping con-
ditions holds.

6 Property Testing
In this section, rather than estimating statistics

we consider the related problem of property test-
ing, i.e., distinguishing if the distribution satis-
fies a certain property or is “far” from all distri-
butions that satisfy the property. As is standard in
the property testing literature [BDKR05, BFR+00,
BFF+01, BKR04, Val08], we restrict ourselves to
properties defined on discrete distributions over
[n], denoted D[n], and the notion of “far” con-
sidered is the variation distance between the den-
sity functions of the distributions, i.e., L1(p, q) =∑
i∈[n] |p(i) − q(i)| where p(i) and q(i) are the

probability masses at i. We consider properties
defined by a real-valued function π on the den-
sity function and for a given a and b we are inter-
ested in distinguishing the case that π(p) < a from
π(p) > b. We call these two cases the “no” and
“yes” cases respectively. In this setting, a “moral
analogue” of robustness is the continuity of the
property.

Definition 6.1 (Weakly Continuous). A property π
is (ε, δ)-weakly-continuous if for all distributions
p+, p− satisfying |p+−p−| ≤ δ we have |π(p+)−
π(p−)| ≤ ε.

We say π is symmetric if π(p(1), . . . , p(n)) =
π(p(σ(1)), . . . , p(σ(n)) for any permutation σ on
[n]. Recently, Valiant [Val08] generalized much of

the previous work on distribution testing. In par-
ticular, he proved the following theorem:

Theorem 6.2 (Canonical Testing Theorem
[Val08]). Let π be a symmetric (ε, δ)-weakly-
continuous property and two thresholds a < b.
Let θ = 600δ−2 logn and consider the following
“canonical” algorithm:

1. Draw k samples and let s(i) be the count of i
among the samples.

2. Let P ⊂ D[n] be the set of distributions sat-
isfying p(i) = s(i)/k if s(i) ≥ θ and p(i) <
θ/k otherwise.

3. If all p ∈ P satisfy π > b output “yes”, oth-
erwise output “no”

If the canonical algorithm fails to distinguish be-
tween π > b+ ε and π < a− ε in k samples then
no tester can distinguish between π > b − ε and
π < a+ ε in kδ/(1000 · 16

√
logn) samples.

The contrapositive of the above result states that
if f(n, a, b, ε) is the sample complexity to distin-
guish between π > b − ε and π < a + ε, then the
canonical algorithm can distinguish π > b+ ε and
π < a− ε using

k = O(f(n, a, b, ε)16
√

logn/δ)

samples. The form of the canonical algorithm is
well-suited to the data-stream model as the prob-
lem reduces to finding “heavy-hitters”, i.e., ele-
ments in the stream whose frequency exceeds a
certain threshold. This is a well-studied problem
and numerous algorithms exist. We will consider
the Misra-Gries [MG82] algorithm, a determinis-
tic algorithm that takes k elements as input and can
be used to return all elements whose frequency ex-
ceeds a threshold θ/2 while ensuring that no ele-
ments of frequency less than θ/4 are returned. It
does this using O(kθ−1 log k) bits of space. Us-
ing this algorithm we have an easy way to per-
fectly emulate the canonical testing algorithm. We
proceed in two phases each of which use k sam-
ples. The second phase will be the emulation of
the canonical tester. To ensure that the “heavy”
elements, i.e. those whose frequency exceed θ,
can be identified and counted perfectly, in the first
phase we use the Misra-Gries algorithm to iden-
tify all elements that are potentially heavy in the
second phase.
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Phase 1: Take k samples S1 and let q(i) be the
empirical distribution defined by S1. Using
Misra-Gries, find a set I of O(k/θ) elements
i that includes all i with q(i) > θ/(2k).

Phase 2: Take another k samples S2 and let p(i)
be the empirical distribution defined by S2.
For each i ∈ I, compute p(i) exactly.

We note that it should be possible to approxi-
mately emulate the canonical tester with only k
samples by combining the two phases (i.e., us-
ing estimates for p(i) based on a more accurate
heavy-hitters algorithm) but this only saves con-
stant factors. We also clarify that we are not con-
cerned with the time and space complexity of post-
processing (as is common in the data streams liter-
ature). Hence, we do not make a general claim
about the space requirements of performing the
third step of the canonical algorithm. However, in
many cases this is not difficult. For example, for
entropy, it is clear how to find the maximum and
minimum entropy values of distributions from P .

The main point we want to highlight in the em-
ulation of the canonical tester is that it implicitly
gives rise to a trade-off between sample and space
complexity. Note that the sample complexity de-
pends inversely on δ while the space complexity
depends linearly on δ. Furthermore, if π is (ε, δ)-
weakly-continuous then trivially it is also (ε, δ ′)-
weakly-continuous for any δ ′ ≤ δ. Hence, we
may choose δ to be small to ensure small space
complexity while increasing the sample complex-
ity. This gives us the following trade off between
space and sample complexity.

Theorem 6.3 (Trade-off Theorem). Let
f(n, a, b, ε) be the sample complexity of the
distinguishing π > b − ε from π < a + ε where
π is (ε, δ∗) weakly continuous. Then, for any
δ < δ∗ there exists a stream algorithm that
distinguishes π > b + ε from π < a − ε while
using O(f(n, a, b, ε)16

√
logn/δ) samples and

O(f(n, a, b, ε)16
√

lognδ/ logn) space.

Proof. Space use is O(k/θ) since the set I can be
found and stored in this amount of space using,
e.g., the Misra-Gries algorithm [MG82]. The cor-
rectness follows immediately from Theorem 6.2
since, conditioned on the event that

∀i ∈ [n], p(i) > θ/k =⇒ i ∈ I ,

the set P constructed is the same set that would
have been constructed by running the canonical al-
gorithm on the same k samples. This event hap-
pens with probability 1− n−6.

A natural question is whether this trade-off is
optimal. This does not appear to be the case. It
is not hard to show (see e.g., [GM07, Theorem 3])
that withO(δ−2n log(n)) samples from a distribu-
tion on n points, the variation difference between
the empirical distribution and source distribution is
at most δ with probability 9/10. Hence, if we take
this many samples and run existing data-stream al-
gorithms that approximate the empirical value of
the function with additive error δ, then the final re-
sult incurs only additive error 2δ. Many empirical
problems such as estimating entropy [HNO08] and
the distance to uniformity [Ind06] can be solved in
O(ε−2 logmn) space. The following immediate
theorem states the general result.

Theorem 6.4. Let π be (ε/2, δ)-weakly-
continuous and suppose there exists an s(ε)
space algorithm that returns an additive ε/2
approximation to π evaluated on a distribution de-
fined empirically by the stream. Then there exists a
stream algorithm that processes O(δ−2n log(n))
samples in s(ε) space and returns an ε additive
approximation for π.
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