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ABSTRACT
There is a growing realization that modern database management
systems (DBMSs) must be able to manage data that contains un-
certainties that are represented in the form of probabilistic rela-
tions. Consequently, the design of each core DBMS component
must be revisited in the presence of uncertain and probabilistic in-
formation. In this paper, we study how to build histogram syn-
opses for probabilistic relations, for the purposes of enabling both
DBMS-internal decisions (such as indexing and query planning),
and (possibly, user-facing) approximate query processing tools. In
contrast to initial work in this area, our probabilistic histograms
retain the key possible-worlds semantics of probabilistic data, al-
lowing for more accurate, yet concise, representation of the un-
certainty characteristics of data and query results. We present a
variety of techniques for building optimal probabilistic histograms,
each one tuned to a different choice of approximation-error metric.
We show that these can be incorporated into a general Dynamic
Programming (DP) framework, which generalizes that used for ex-
isting histogram constructions. The end result is a histogram where
each “bucket” is approximately represented by a compact proba-
bility distribution function (PDF), which can be used as the basis
for query planning and approximate query answering. We present
novel, polynomial-time algorithms to find optimal probabilistic his-
tograms for a variety of PDF-error metrics (including variation dis-
tance, sum squared error, max error and EMD1). Our experimental
study shows that our probabilistic histogram synopses can accu-
rately capture the key statistical properties of uncertain data, while
being much more compact to store and work with than the original
uncertain relations.

1. INTRODUCTION
The need to represent and manipulate data in the presence of

uncertainty has recently led to the development of several new
probabilistic database management system (PDBMS) architec-
tures. Novel PDBMSs, such as MayBMS [3], Trio [5], Mystiq [6],
and MCDB [19] are concerned with giving users the power of a
general-purpose relational DBMS to store and query uncertain data
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(in the form of probabilistic relations). Most of these early sys-
tems rely on tuple- and attribute-level uncertainty models, where
the attribute values for a data tuple are specified using a probabil-
ity distribution over different mutually-exclusive alternatives (that
might also include non-existence, i.e., the tuple is not present in
the data), and assuming independence across tuples. A probabilis-
tic database is a concise representation for a probability distribu-
tion over an exponentially-large collection of possible worlds, each
representing a possible “grounded” (deterministic) instance of the
database (e.g., by flipping appropriately-biased independent coins
to select an instantiation for each uncertain tuple). This “possible-
worlds” semantics also implies clean semantics for queries over a
probabilistic database — essentially, the result of a query defines a
distribution over query results across all possible worlds [9, 10].

In building such a probabilistic DBMS, one must revisit all the
core components of a DBMS, to understand how the presence of
uncertainty affects their design and requirements. In particular, tra-
ditional DBMSs have grown to rely on compact synopses of rela-
tions, typically in the form of histograms and other statistics, in
order to both enable informed internal decisions (e.g., on which at-
tributes to build indices, and how to plan and execute queries), and
allow for fast, approximate query answers for interactive data ex-
ploration and visualization. Such synopses can play similar roles
in probabilistic databases — in fact, given known results on the
#P-hard complexity of simple PDBMS query-processing tasks [9],
one could argue that the need for effective, compact data represen-
tations is even more pronounced in this new setting. Such hardness
arises from performing joins and projections between (statistically)
independent probabilistic relations, and the need to track the his-
tory of generated tuples.

Various pragmatic question immediately arise: What is the cor-
rect generalization of the notion of a histogram to represent uncer-
tain data? And, how can these synopses be used within a proba-
bilistic database system? In this work, we introduce the idea of us-
ing a novel, powerful class of compact probabilistic representations
(termed probabilistic histograms), and design efficient algorithms
that construct the optimal such summaries for a probabilistic data
set. In contrast to earlier approaches, our probabilistic histogram
synopses retain a clean probabilistic semantics (concisely captur-
ing an approximate “possible worlds” distribution); at the same
time, they are also significantly smaller in size than the original
data. This allows them to better approximate a wider range of pos-
sible queries than summaries with only deterministic information.

Related Work. Histograms have proven to be a very effective sum-
marization mechanism for conventional (deterministic) data, and
are currently the key synopses deployed in commercial query en-
gines. Assuming a one-dimensional data distribution (capturing



tuple frequencies over the domain of an attribute), a histogram
synopsis partitions the data domain into a small number of con-
tiguous ranges (the “buckets”), and stores only concise statistics
to summarize the tuple frequencies in a bucket (such as the value
of the average bucket frequency). The goal is to group together
tuple values with similar frequencies: bucket boundaries are cho-
sen to minimize a given error function that measures within-bucket
dissimilarities and aggregates errors across buckets (using summa-
tion or maximum). Much research has produced a variety of tech-
niques to construct (deterministic) histograms which are optimal
or near-optimal relative to particular error metrics, including Sum-
Squared error, sum absolute relative error, and max-absolute error
histograms, to name a few [15, 16, 18]. Other variations arise by
extending the space of possible representations, for example, by al-
lowing some outlier points to be removed [17]. Finally, techniques
for multi-dimensional histograms that approximate multi-attribute
data distributions using hyper-rectangular buckets over the data do-
main have also been developed [22, 23]. Although the problem of
building histograms to summarize probabilistic data can be viewed
as a two-dimensional histogram problem, there are additional chal-
lenges due to the probabilistic semantics. As such, naively trying
to build a two-dimensional histogram over (value, probability) data
does not give meaningful results for the error metrics we consider.

The fundamentals of PDBMSs have grown up over recent
years [1]. The concept of using histograms and other statistics
within an uncertain data-management system is a natural one [25].
Singh et al. [27, 26] experiment with replacing a single PDF with a
more compact histogram, although they do not describe with regard
to what error metric the histogram is chosen. Other efforts have fo-
cused on building compact summaries over streams of probabilis-
tic tuples [20, 7, 21]; however, that work is geared to answering
very specific types of queries (e.g., order statistics and moment es-
timates), rather than providing more general-purpose synopses with
useful error guarantees.

Closest to our work, Cormode and Garofalakis [8] present tech-
niques for building histogram summaries of probabilistic relations.
Their work adopts conventional histogram representations, so the
data domain is split into buckets and a single representative value
is chosen to minimize the expectation of a given error metric (over
the possible-worlds distribution). While useful for computations
based on expected values, such conventional histogram summaries
are more limited when it comes to capturing complex probabilistic
information. Using a single value to approximately capture the dis-
tributions of values inside a bucket loses the probabilistic, possible-
worlds semantics of the original data. This makes the summary less
effective for answering certain probabilistic queries, such as selec-
tions on frequency distributions. A related shortcoming is that,
in contrast to the deterministic case, the histograms of [8] do not
give a complete representation scheme: even with maximum space,
the histogram cannot represent the full details of the input distri-
butions, since it is restricted to representing tuple frequency PDFs
with trivial distributions that take a fixed value with probability one.
Lastly, the methods we develop here are quite different from those
in [8]: although both develop a dynamic programming framework
(in common with most prior work on histogram construction), the
methods needed to find the optimal representation of a given bucket
(the core technical problem) are quite different in this setting.

Our Contributions. In this work, we consider a more powerful
representation of uncertain data. Instead of representing a bucket
of probability distribution functions (PDFs) with a single value, we
choose to use a single PDF. This PDF itself can be thought of as a
histogram: it describes a representative PDF with a small number
of piecewise-constant segments. This representation is now com-

plete for the probabilistic data we consider: with a large enough
space budget, it is possible to represent the original relation ex-
actly. While previous work considered probabilistic extensions of
deterministic similarity metrics to measure the quality of the rep-
resentation, we can now adopt widely used probabilistic error met-
rics, such as variation distance, Kullback-Leibler divergence (rel-
ative entropy) and Earth Mover’s Distance. These measure give a
solid theoretical foundation for the resulting summaries, which can
then be used for query planning, analysis, and so on.

In this paper, we give algorithms to effectively find probabilistic
histogram representations of uncertain data. In particular:

• We introduce the notion of a probabilistic histogram, and
define the probabilistic histogram problem for a variety of
probabilistic error metrics (Section 2).
• We give algorithms based on dynamic programming to find

optimal probabilistic histograms for probabilistic data in time
polynomial in the size of the input, for each of the different
error metrics considered (Section 3).
• We discuss the use of these summaries within probabilistic

data management systems for query planning and manage-
ment (Section 4).
• We perform a set of experiments to demonstrate the power

of out algorithms to summarize probabilistic data, and the
benefits over prior representations (Section 5).

2. PROBLEM DEFINITION
Probabilistic Data Model. We consider summarizing probabilistic
data that is presented in an appropriate model of data uncertainty. In
particular, let U denote an ordered domain indexing the uncertain
relation; for simplicity, we will assume that U is the set of integers
{1 . . .N} = [N], so |U |= N. The probabilistic input defines a dis-
tribution of “possible worlds” over this domain, which we think of
as vectors f . A single (N-dimensional) “grounded” vector f pro-
vides a value for each member of U . Each value is chosen from
some value domain V , so that fi ∈ V (i = 1, . . . ,N). We also let
V denote the number of values in V , i.e., V = |V |. For instance,
U could correspond to a set of mile-markers along a highway, and
fi is the (uncertain) temperature measured at mile i on a particular
day. In another interpretation, each fi represents the frequency of
item i within a given relation.

A probabilistic model defines a probability distribution over such
vectors (the possible worlds). Different types of models are able
to express more or less complex distributions, with the choice of
model trading-off descriptive power for the size of the resulting de-
scription. A fully-general model is able to describe any possible
N-dimensional probability distribution, e.g., by listing each pos-
sible world and its corresponding probability. Unfortunately, in-
stantiating such a model is complex and time consuming, due to
the enormous number of possible worlds (requiring a number of
parameters that is exponential in N). Instead, probabilistic data is
more typically described through a model which makes certain in-
dependence assumptions to reduce the number of parameters of the
model. Moreover, even if such correlations exist within the input
data, their impact can be low, so ignoring them when computing
summaries may have minimal effect on the quality of the summary.
Our results here are presented in one such model:

Definition 1. In the Item-PDF Model (IPM), each item i ∈ U
is assumed to behave independently of all others. A PDF Xi is
provided to describe the distribution of item i. The probability of
any given possible world f under this model can then be calculated
directly as Pr[ f ] = ∏i∈U Pr[Xi = fi].



It is not difficult to show that the above model can naturally cap-
ture most forms of tuple- and attribute-level uncertainty that have
formed the basis of early PDBMS prototypes (it can be viewed as
capturing the “OR-sets” in Trio [5] and Orion [27, 26], and as a
special case of models in other systems such as Maybms [3] and
MCDB [19]). Equivalently, this model can be seen as giving the
distribution of X conditioned on the value of i, which captures the
correlations between the variable and i. By restricting the repre-
sentation of correlations across item values, the item-PDF model
gives a more compact representation of the possible-worlds dis-
tribution (using O(NV ) parameters) than an exponential general
model. Still, for large N and V , even an IPM can be large and
unwieldy to compute with, thus raising the need for effective sum-
marization techniques.

Probabilistic Histograms: Definition and Construction. A basic
observation is that, in practice, the distributions of items adjacent
under the ordering of U often tend to be quite similar — this is
a natural extension of the “smoothness” properties of conventional
data distributions, and so leads to the notion of using contiguous
buckets (i.e., histograms) to obtain effective compact representa-
tions of the data. The histogram partitions the domain U into
buckets, and all items within the same bucket are considered to
behave identically to a chosen bucket representative. This repre-
sentation can then be much more convenient to work with in place
of the original data, especially when the number of buckets is not
too large; moreover, if the “smoothness” assumption does indeed
hold, then the result of using the histogram in place of the original
data will yield query answers which are very close to the result of
those queries on the original data.

Earlier work on histograms for probabilistic data considered only
conventional histogram summaries where each bucket representa-
tive is a single value chosen to minimize an expected error (over
possible worlds) [8]. Unfortunately, such simplistic synopsis struc-
tures lose all the probabilistic semantics of the underlying data and
are only useful for expectation-based estimations—this severely
limits their utility, e.g., as approximate query processing tools. In
particular, simply knowing that the expected frequency of some
item tells us very little about the probability that this item will ap-
pear i times, which is needed to approximate selections and joins
(see Section 4). In general, there are an unbounded number of dis-
tributions with the same expectation, leading to high representation
error. In this work, we consider a much richer histogram repre-
sentation (termed probabilistic histograms), where the bucket rep-
resentative is itself a (compact) distribution over V . By allowing
compact PDFs as bucket representatives, probabilistic histogram
synopses retain a natural (albeit, approximate) possible-worlds se-
mantics for the underlying data. However, this more complex his-
togram structure means that novel synopsis-construction tools are
needed. The goal will be to choose a set of B bucket boundaries,
and a representative PDF for each bucket, so that some overall error
function (with respect to the original IPM) is minimized.

More formally, each probabilistic histogram bucket b = (s,e)
consists of a start point s and end point e, and covers |b|= e− s+1
item PDFs. To summarize the PDFs Xs,Xs+1, . . . ,Xe inside b, we
also choose a representative for b which is itself a compact PDF
X̂(b) over V (using single-value bucket representatives, as in [8], is
equivalent to employing only trivial PDF representatives that place
a mass of 1 at a single value). The accuracy with which a bucket
representative captures the item PDFs that it represents is measured
by a bucket-error metric. Let d() denote a PDF distance function,
i.e., a measure of the overall dissimilarity across two PDFs (we
consider specific examples below). Then, we can define the error

of a bucket b as

Err(b) =
e⊕

i=s
d(X̂(b),Xi).

where
⊕

is an appropriate aggregation (typically, either sum or
maximum). The histogram is defined by a set of B buckets which
span the data domain U , so that the kth bucket spans bk = (sk,ek),
where s1 = 1,eB = N, and sk = ek−1 +1 for 2≤ k≤ B. The overall
error of the histogram representation can be computed as a summa-
tion or a maximum over the individual bucket errors:

S =
B

∑
k=1

ek

∑
i=sk

d(X̂(bk),Xi) Sum-error, or

M =
B

max
k=1

ek

∑
i=sk

d(X̂(bk),Xi) Max-error

We can now formally define the probabilistic-histogram con-
struction problem that is the main focus of this paper.

Probabilistic Histogram Construction. Given a distance func-
tion d(), a space-complexity bound S , and an input set of item
PDFs X1, . . . ,XN over V , construct a probabilistic histogram of
space complexity at most S which minimizes the histogram Sum-
or Max-error under PDF distance d().

We consider two distinct ways to specify a space-complexity bound
on the constructed probabilistic histogram:

• B-bucket Case: The histogram consists of exactly B buckets,
each of which is represented by a detailed, V -term PDF over
values V . Such a representation makes sense when the size
of the frequency-value domain, V , is relatively small, and
so each of these PDFs is quite small. In the B-bucket case,
the overall space requirement of the probabilistic histogram
is S = O(BV ).

• T -term Case: When V is large, it makes more sense to
try to find a T -term summary: if we represent each bucket-
representative PDF by a set of piecewise constant values (i.e.,
a conventional histogram) then the total description length is
the total number T of such constant terms across all bucket
representatives. The overall space requirement of the his-
togram in this case is S = O(T ).

It follows that, assuming the same overall space (i.e., T = BV ),
the T -term problem generalizes the corresponding B-bucket prob-
lem and has to search over a much larger space of space allotments
(potentially giving smaller overall approximation error). As we will
see, this comes at the cost of more complex and more expensive
construction algorithms. Figure 1 shows an example probabilistic
histogram over N = 5 input distributions. The illustrated histogram
has B = 2 buckets (with b1 = (1,3) and b2 = (4,5); the total number
of terms is T = 5, since the two summary PDFs can be described
by 5 piecewise constant values.

PDF Distance Metrics. The choice of the PDF distance metric d()
has significant impact on the resulting histogram. The metric d is
a function which takes two probability distribution functions over
the value domain V and returns a measure of their dissimilarity. In
the literature, several measures of dissimilarity between probability
distributions have been proposed, each of which is appropriate in
certain situations, depending on the application, and the nature of
the errors that should be penalized (proximity in the value domain,
absolute or relative error on the probability values). We describe
some of the most popular possible choices of d:
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Figure 1: Summarizing a set of PDFs with compact PDF repre-
sentatives.

• The Variation Distance (aka L1) between two probability dis-
tributions over the same value domain V is the sum of abso-
lute differences between the probabilities of each value. For-
mally, it is given by

d(X ,Y ) = ‖X−Y‖1 = ∑
v∈V
|Pr[X = v]−Pr[Y = v]|.

• The Sum-squared error (aka L2
2) is similar to the Variation

Distance, but takes the square of the difference of each pair
of probabilities. It is defined by

d(X ,Y ) = ‖X−Y‖2
2 = ∑

v∈V
(Pr[X = v]−Pr[Y = v])2.

• The Kullback-Leibler divergence, also known as the relative
entropy, uses a more information theoretic approach to com-
pare distributions. It is defined by

d(X ,Y ) = KL(X ,Y ) = ∑
v∈V

Pr[X = v] log2
Pr[X = v]
Pr[Y = v]

.

Note that KL is not symmetric. It is natural to consider the
second argument as the representative or approximation for
the first argument.

• The (Squared) Hellinger distance is another commonly used
measure of distribution similarity, given by

d(X ,Y ) = H2(X ,Y ) = ∑
v∈V

(Pr[X = v]
1
2 −Pr[Y = v]

1
2 )2

2
.

• The Max-Error measure (or L∞) tracks the maximum dif-
ference between pairs of corresponding probabilities, and is
given by

d(X ,Y ) = ‖X ,Y‖∞ = max
v∈V
|Pr[X = v]−Pr[Y = v]|

Here, in contrast to other metrics, the error of a histogram
bucket is taken to be the maximum of this value over the
different PDFs, rather than the sum.

• The Earth Mover’s Distance in the Lp metric, EMDp(X ,Y )
incorporates the “distance” between probabilities along the
value domain. Conceptually, this measure represents the
probability distributions as “piles of earth”, and measures
the difference as the total amount of work needed to convert
one to the other, i.e. as the mass multiplied by the distance
moved. This can be complex to compute for arbitrary dis-
tance metrics, but when used with Lp distances, it becomes
simpler to work with. Further properties are described later.

Connection to Deterministic Case. This problem is more gen-
eral than previous histogram problems that have been studied, since

these can be seen as special cases of this one. Traditional his-
tograms on deterministic data (such as V-opt histograms and Sum
Absolute Error histograms) can be viewed as trying to find B-
bucket histograms where all PDFs are restricted to be a fixed value,
i.e. Pr[X̂(b) = v] = 1 for some v ∈ V . Measuring the error under
Earth Mover’s Distance with p = 1 or p = 2 corresponds to Sum
Absolute Error and V-opt histograms respectively; other choices of
the error metric generate other prior formulations of histograms.
Similarly, prior work on summarizing probabilistic data [8] can be
viewed as a restricted version of the above probabilistic histogram
problem for versions of Earth Mover’s Distance, where the B rep-
resentative PDFs are limited to be fixed values. In the current for-
mulation, there are fewer restrictions on the input and output, in-
creasing the search space for possible histograms.

3. RESULTS
As with prior work, our solutions involve dynamic programming

as a key component. Because the overall error objectives satisfy the
principle of optimality, we can focus our attention on the central
problem of finding the optimal representative for a given bucket.
In the B-bucket case, if the final bucket spans [i . . .N], then the
other B−1 buckets must form an optimal histogram for [1 . . . i−1].
Thus, Dynamic Programming (DP) over the choice of buckets will
find the optimal solution: build a dynamic programming table over
choices of parameters k ≤ B and i ≤ N recording the cost of the
optimal k-bucket histogram covering the range [1 . . . i]. Similarly,
for the T -term case, the same principle applies, to build a table giv-
ing the cost of constructing the optimal k-term histogram covering
the range [1 . . . i]. However, this case is potentially more complex,
since for each bucket considered, it is necessary to find the cost of
representing it with 1 up to T terms.

In both cases, the heart of the solution is to determine the op-
timal representative for a particular bucket of PDFs defined by
b = (s,e). For the B-bucket case, the goal is to find the best un-
restricted PDF that minimizes the cost of representing the PDFs in
the bucket. In the T -term case, the goal is to find the best PDF that
can be described with 1 . . .T piecewise constant terms representing
the bucket. The solution to this core problem will depend on the
choice of the error metric, so we will consider each in turn.

3.1 General Dynamic-Programming Scheme
We present the general DP formulation for constructing error-

optimal probabilistic histograms in two parts: First, we give a dy-
namic program for computing the optimal (piece-wise constant)
representative within a fixed bucket of PDFs. Then, we give the DP
scheme that constructs the overall optimal probabilistic histogram
(using the earlier, bucket-specific solution as a subroutine) for the
T -term case. The same approach also holds for the B-bucket case,
except that we use an “unrestricted” PDF (over V = |V | values) to
represent the bucket.

Finding the Optimal Bucket Representative. Consider a particu-
lar bucket of PDFs b = (s,e), where s,e∈U denote the two bucket
boundaries. In the T -term case, we aim to find a T piece-wise con-
stant representative (over V ) of the e− s + 1 PDFs in b that mini-
mizes the overall Sum/Max-error in the bucket for a particular er-
ror metric d(). Let VALERR(b,v,w) denote the minimum possible
value of the error in the approximation of all the probability values
in the frequency range r = (v,w) (where v,w ∈ V ) by the best sin-
gle, constant representative for all the values in that set. (In a sense,
this is the error in representing the set of values in a 2-dimensional
(e− s + 1)× (w− v + 1) array by the best possible constant-value
“centroid”. The exact definition depends on the specifics of the un-



derlying PDF error metric d().) Also, let B-OPTb[v,T ] denote the
optimal PDF approximation error up to point v∈V using at most T
piece-wise constant segments. Based on the principle of optimality
and assuming a Sum-error metric, we can write the following DP
recurrence for computing B-OPT[] (the Max-error case is handled
similarly):

B-OPTb[w,T ] = min
1≤v≤w−1

{B-OPTb[v,T −1]+ VALERR(b,v,w)}.

The time complexity of the above DP clearly depends on the time
required to compute VALERR(b,v,w), i.e., the optimal error for the
constant approximation of a 2-dimensional (e−s+1)×(w−v+1)
array of (frequency) values. Letting t(e− s + 1,w− v + 1) denote
that time, the complexity of our in-bucket DP is O(V 2T t(e− s +
1,w− v+1)).

In the B-bucket case, we allow the representative PDF to fully de-
scribe the data. Here, the computational complexity can be lower,
since the search space is smaller. The cost is O(Vt(e− s+1,1)) to
find the optimal representative for all v ∈ V .

Building the Optimal Probabilistic Histogram. Using
H-OPT[m,T ] to denote the optimal error up to domain value m∈U
and a total space budget of T terms, we can write the following DP
recurrence:

H-OPT[m,T ] =

min
1≤k≤m−1,1≤t≤T−1

{H-OPT[k,T − t]+ B-OPT(k+1,m)[V +1, t]}.

The naive cost of evaluating this recurrence over the N = |U |
items is O(N2T ) evaluations of B-OPT to find the costs of each
bucket and T value. However, since B-OPT itself typically per-
forms dynamic programming, computing B-OPTb[V + 1, t] also
generates the values of B-OPTb[V +1, t ′] for all 1≤ t ′ ≤ t. Further,
since a PDF has only V values, there is no benefit to assigning t >V
terms to a bucket PDF. Hence, we will usually only need to carry
out O(N2) evaluations of B-OPTb[V +1,V ] in the T -term case. The
rest of the dynamic programming takes O(N2T min(T,V )) time, to
compare all the possible choices of bucket boundaries and assign-
ments of terms to a bucket.

Meanwhile, in the (simpler) B-bucket case, we have the same
recurrence but without the ranging over t. This requires O(BN2)
time to range over the bucket choices, and O(N2) evaluations of
B-OPTb[V +1,V ].

3.2 Sum-Squared Error
The sum-squared error metric is one of the most popular for

building histograms on deterministic data — perhaps in part due
to the fact that it can be computed efficiently. There, the optimum
representative for a bucket is the mean of all the values that fall in
the bucket. We show a similar result for probabilistic data.

LEMMA 1. The optimal cost for representing a range of values
in a particular bucket under Sum-Squared Error in the T -term case
can be found in constant time using O(V N) precomputed values.

PROOF. Consider a range r = (v,w) (where v,w ∈ V ) within a
bucket b = (s,e) that we wish to represent with a single value p.
The contribution to the error is ∑

e
i=s ∑

w
j=v(Pr[Xi = j]− p)2. Differ-

entiating with respect to p shows that this is minimized by setting

p = p̄ =
∑

e
i=s ∑

w
j=v Pr[Xi = j]

(e− s+1)(w− v+1)
,

the average of the relevant probabilities. The cost VALERR(b,v,w)

is then
e

∑
i=s

( w

∑
j=v

(Pr[Xi = j])2−2p̄Pr[Xi = j]+ p̄2)
=

e

∑
i=s

( w

∑
j=v

(Pr[Xi = j])2)− p̄2(e− s+1)(w− v+1) .

This cost can be computed quickly based on O(V N) precomputed
values. Define

A[e,w] =
e

∑
i=1

w

∑
j=1

Pr[Xi = j] B[e,w] =
e

∑
i=1

w

∑
j=1

(Pr[Xi = j])2.

Then p̄[(s,e),(v,w)] · (e− s+1)(w− v+1)
= (A[e,w]−A[s−1,w]−A[e,v−1]+A[s−1,v−1])

and
e

∑
i=s

w

∑
j=v

(Pr[Xi = j])2

= B[e,w]−B[s−1,w]−B[e,v−1]+B[s−1,v−1]).

From these, VALERR(b,v,w) can be computed in constant time.
Last, note that this does indeed generate a valid PDF: clearly, each
p̄ is in [0,1], since it is the mean of other probability values; and
for a set of intervals I = {(v,w)} that partition V , we have the
cumulative probability,

∑
(v,w)∈I

w

∑
j=v

p̄[(s,e),(v,w)]

= ∑
(v,w)∈I

(w− v+1)
∑

w
j=v ∑

e
i=s Pr[Xi = j]

(e− s+1)(w− v+1)

=
e

∑
i=s

w

∑
j=v

Pr[Xi = j]
e− s+1

=
e

∑
i=s

1
e− s+1

= 1.

COROLLARY 2. The optimal cost for a bucket in the B-bucket
case under sum squared error can be found in constant time using
O(N) precomputed values.

PROOF. In the B-bucket case, the cost is equivalent to the T-
term case where we potentially choose a distinct probability for
each v ∈ V . This generates a representative PDF X for the bucket
b where Pr[X = v] = ∑

e
i=s Pr[Xi = v]/(e− s+1). Hence the cost is

e

∑
i=s

∑
j∈V

(Pr[Xi = j])2−Pr[X = v]2(e− s+1).

By precomputing O(N) values in time O(NV ) as

A[e] =
e

∑
i=1

V

∑
j=1

Pr[Xi = j] and B[e] =
e

∑
i=1

V

∑
j=1

(Pr[Xi = j])2

the cost for the bucket can be found immediately as

B[e]−B[s−1]− (A[e]−A[s−1])2

e− s+1
.

In both cases the arrays A and B can be computed in O(V N)
time. Putting these results into the dynamic programming solution
outlined in Section 3.1 allows us to conclude:



THEOREM 3. The optimal T-term histogram of a probabilis-
tic relation can be found in time O(N2T (min(T,V )+V 2)) under
sum-squared error. The optimal B-bucket histogram of a proba-
bilistic relation under the sum-squared error can be found in time
O(N(BN +V )).

Kullback-Leibler divergence and Sum-Squared Error. While
L2

2 and KL divergence appear very different measures of diver-
gence, it follows from [11, Lemma 3] that the PDF X that mini-
mizes ∑

ek
i=sk

KL(Xi,X) is the average of {Xi}sk≤i≤ek , i.e., (ek− sk +
1)−1

∑
ek
i=sk

Xi. Consequently the analysis of the B-bucket case for
KL follows along identical lines to those in the SSE case, with the
same costs.

3.3 Variation Distance
Recall that the variation distance between two PDFs is the sum

of the absolute difference in probabilities for each value. In the
T -term case, we are given a bucket b and a range of values r =
(v,w). We can write the contribution to the error when choosing
a representative p as VALERR(b, i, j) = ∑

e
i=s ∑

w
j=v |Pr[Xi = j]− p|.

For minimization problems of this form, it is straightforward to
show that the optimal solution is to choose the representative as

p = pmed = median s≤i≤e
v≤ j≤w

Pr[Xi = j]

(Similar observations arise in other histogram problems [14]).
Assuming for simplicity of notation that the median is unique and
the number of items is even, we can write the error as

VALERR(b,v,w) =
e

∑
i=s

w

∑
j=v

Pr[Xi = j]−2I(i, j)Pr[Xi = j]

where I(i, j) is 1 if Pr[Xi = j]≤ pmed , and 0 otherwise.
Thus, the core problem is to be able to find the sum of a set of

items smaller than the median. When applying the dynamic pro-
gramming approach, we need the value of this quantity for every
contiguous range of values and for every choice of bucket. We for-
malize this problem, and analyze its complexity.

LEMMA 4. The two-dimensional range-sum-median problem
is, given a two-dimensional array A of m×n values, to find

med(a,b,c,d) =median a≤i≤c
b≤ j≤d

A[i, j]

and ms(a,b,c,d) = ∑
a≤i≤c
b≤ j≤d

A[i, j]≤med(a,b,c,d)

A[i, j]

for all 1 ≤ a ≤ c ≤ m and 1 ≤ b ≤ d ≤ n. It can be solved
in time O((mn)2 min(m,n) log(mn)). The one-dimensional range-
sum-median problem is the corresponding problem for a one di-
mensional array A of n values (equivalently, it is an instance of
the two-dimensional problem with m = 1). It can be solved in time
O(n2 logn).

PROOF. We first consider the one-dimensional version of the
problem to find med(a,c) and ms(a,c) for all ranges. Note that
this can be solved efficiently incrementally by fixing the value of a
and stepping through the values of c. We can keep the (multi)set
of values of A[ j] in a dynamic dictionary structure such as an AVL
tree, from which we can find the desired quantities by tracking the
number of items and sum of values within each subtree. Increasing
c by one adds a new item to the tree, and so the total cost is O(logn)
per update. Over the n2 updates, the total cost is O(n2 logn). Note

that, if all values are to be found, then the cost must be Ω(n2), so
this simple solution is near optimal.

The two-dimensional case is quite similar: assuming m ≤ n,
we begin from each of the O(mn) values of [a,b], and fix a
value of d. Then step through each possible value of c in turn.
Each new value of c adds O(m) new items into the tree, with
cost O(logmn) per item. Again, the number of items and sum
of values within each subtree is tracked, allowing the value of
med(a,b,c,d) and ms(a,b,c,d) to be found. The total cost is then
O((mn)2m log(mn)). For m > n, we perform the same operation but
interchange the roles of c and d, giving cost O((mn)2n log(mn)).
The claimed bound follows.

Observe that in the T -term case, the full dynamic program has to
find the cost of each range defined by a sub-bucket and a range
of the value domain. Thus, the dynamic programming requires
all the values generated by an instance of the two-dimensional
range-sum-median problem. Once these have been computed in
time O((V N)2 min(V,N) log(V N)), the process can find the cost of
combination of bucket and value range in constant time. The dy-
namic program builds a table of size O(NT ) in time proportional to
O(N2T min(T,V )).

In the B-bucket case, the process is somewhat simplified. Given a
bucket b, the optimal representation is found by finding the median
of the (e−s+1) probabilities, for each of the V values. This can be
aided by carrying out V parallel instances of the one-dimensional
range-sum-median problem, one for each of the V values, in time
O(V N2 logN). The dynamic programming then builds a table of
size O(N) in time O(BN2). Thus, in summary,

THEOREM 5. The optimal T -term representation of a prob-
abilistic relation under the variation distance can be found in
time O(N2(T min(T,V )+V 2 min(V,N) log(V N))). The optimal B-
bucket representation of a probabilistic relation under the variation
distance can be found in time O(N2(B+ log(V N))).

3.3.1 Normalization for Variation Distance.
While the representation generated minimizes the sum of abso-

lute errors, the resulting representation of a bucket is not necessar-
ily a PDF. That is, the sum of the “probabilities” may not be 1, as
shown in the following example. Consider a bucket containing a
single PDF over V = {1,2,3,4,5} given by

x 1 2 3 4 5
Pr[X = x] 0 0 11/81 50/81 20/81

The optimal summary under variation distance with T = 2 is

x 1 2 3 4 5
Pr[X = x] 0 0 20/81 20/81 20/81

but this does not sum to 1. The optimal “normalized” summary is

x 1 2 3 4 5
Pr[X = x] 0 0 0 1/2 1/2

This has implications for the use of this representation. While
it is a good summary of the data, which minimizes a desired er-
ror metric, it is not normalized. Hence, it could cause unexpected
results if passed on to other computations which expect a PDF as
input.

Rescaling Solution. It is straightforward to rescale a representa-
tion so that it is normalized. But the example above shows that
the optimal normalized summary is not necessarily a scaled ver-
sion of the optimal unnormalized one. Nevertheless, let Y denote
the optimal non-normalized bucket representative (e.g. the solution



found by the above dynamic programming solution), and consider
the rescaled PDF Z = Y/µ . Note that Z has the same space com-
plexity as Y , and ‖Z−Y‖1 = |1− µ|. Furthermore, for each sum-
marized PDF Xi, we have ‖Y −Xi‖1 ≥ |‖Y‖1 −‖Xi‖1| = |1− µ|
since ‖Xi‖1 = 1. Therefore, by the triangle inequality,

e

∑
i=s
‖Z−Xi‖1 ≤

e

∑
i=s
‖Z−Y‖1 +‖Y −Xi‖1 ≤ 2

e

∑
i=s
‖Y −Xi‖1

and so we find a solution whose error is at most a factor of two from
optimal (since Y gives a lower bound on the error of the optimal
normalized solution).

Discretized probability solution. Alternatively, we can try to find
a tighter guarantee by adding a dimension to the DP table: let
B-OPTb[w,T,µ] denote the minimum error up to point v∈ V using
at most T terms such that the a values for points 1, . . . ,v sum up
to µ . Note that B-OPTb[V,T ] = B-OPTb[V,T,1] and can be found
using the following recursion:

B-OPTb[w,T,µ] = min
1≤v≤w−1,0<ν<µ

{B-OPTb[v,T −1,µ−ν ]+

VALERR(b,v,w,ν)}.

where VALERR(b,v,w,ν) is the error incurred by using value
(µ−ν)/(w−v+1) to approximate the values in the 2-dimensional
(e−s+1)×(w−v+1) array. Unfortunately this recursion requires
minimization of the continuous variable ν , which is not computa-
tionally feasible. So instead we work with values rounded to mem-
bers of the following sets

S1 = {0,
ε

T
,

2ε

T
, . . . ,1}, S2 = {0,

ε

T
,
(1+ ε)ε

T
,
(1+ ε)2ε

T
, . . .1}

We compute a table Ψ[v, t,µ] for v ∈ V , t ∈ [T ],µ ∈ S1 so that

|B-OPTb[w, t,µ]−Ψ[w, t,µ]| ≤ 3εt/T + εµ . (1)

Consequently we compute B-OPTb[v, t] while enforcing that the
representative is normalized, and have additive error at most 4ε for
any t ≤ T . Ψ[w, t,µ] is defined by the following recursion:

Ψ[w, t,µ] = min
1≤v≤w−1,ν<µ:ν∈S2

{Ψ[v, t−1, f (µ−ν)]+

VALERR(b,v+1,w,ν)}.

where f (x) = min{x′ ∈ S1 : x ≤ x′}. Let g(x) = min{x′ ∈ S2 : x ≤
x′}. For 0≤ x≤ 1, note that f (x)− x≤ ε/T and g(x)− x≤ ε/T +
εx. We prove Eq. (1) by induction on t. For t = 1, Ψ[v,1,µ] =
B-OPTb[v,1,µ]. For fixed v < w ∈ V , t ∈ [T ],µ ∈ S1, suppose ν =
ν∗ ≤ µ minimizes

B-OPTb[v, t−1,µ−ν ]+ VALERR(b,v+1,w,ν)

Then Ψ[v, t−1, f (µ−ν
∗)]+ VALERR(b,v+1,w,g(ν∗))

≤ B-OPTb[v, t−1, f (µ−ν
∗)]+3ε(t−1)/T + ε f (µ−ν

∗)
+ VALERR(b,v+1,w,ν∗)+ ε(ν∗+1/T )

≤ B-OPTb[v, t−1,µ−ν
∗]+ ε/T

+3ε(t−1)/T + ε(µ−ν
∗+1/T )

+ VALERR(b,v+1,w,ν∗)+ ε(ν∗+1/T )

= B-OPTb[v, t−1,µ−ν
∗]+ VALERR(b,v+1,w,ν∗)

+3εt/T + εµ

where the first inequality follows by the induction hypothesis and
the triangle inequality in conjunction with a property of g. The
second inequality uses the triangle inequality in conjunction with a

property of f . Note that each of the O(V T 2ε−1) values of Ψ[·, ·, ·]
can be computed in O(V log(T ε−1)) time. Putting this into the DP
recurrence gives:

THEOREM 6. An ε-error (normalized) approximation to
the optimal T -term probabilistic histogram of a probabilis-
tic relation under variation distance can be found in time
O(N2T 3V 2ε−1 log(T ε−1)). An ε-error (normalized) approxima-
tion to the optimal B-bucket histogram can be found in time
O(N2BV 4ε−1 log(T ε−1)).

3.4 Squared Hellinger Distance
The squared Hellinger distance is a commonly used metric for

measuring the distance between probability distributions. Given a
range r = (v,w) ⊂ V within a bucket b = (s,e) that we wish to
represent with a single value p, the squared Hellinger distance of
the values within the bucket from p is given by:

e

∑
i=s

w

∑
j=v

(
√

Pr[Xi = j]−√p)2

2
.

Differentiating this expression with respect to p demonstrates that
it can be minimized by setting p to the value:

p = p̄ =

(
∑

e
i=s ∑

w
j=v
√

Pr[Xi = j]

(e− s+1)(w− v+1)

)2

,

LEMMA 7. The optimal cost for representing a range of values
in a particular bucket under the squared Hellinger distance in the
T-term case can be found in constant time using O(V N) precom-
puted values.

PROOF. Consider a range r = (v,w) (where v,w ∈ V ) within a
bucket b = (s,e) that we wish to represent with a single value p.
The cost for the optimum p value is then

e

∑
i=s

w

∑
j=v

(Pr[Xi = j]−2
√

p̄
√

Pr[Xi = j]+ p̄)

=
e

∑
i=s

w

∑
j=v

Pr[Xi = j]− (e− s+1)(w− v+1)p̄ .

This is similar in form to the expression obtained for sum
squared error. Hence, this cost can be computed quickly based on
O(V N) precomputed values in a similar way. Define

A[e,w] =
e

∑
i=1

w

∑
j=1

√
Pr[Xi = j] B[e,w] =

e

∑
i=1

w

∑
j=1

Pr[Xi = j].

Then p̄[(s,e),(v,w)] · (e− s+1)(w− v+1)

=
(A[e,w]−A[s−1,w]−A[e,v−1]+A[s−1,v−1])2

(e− s+1)(w− v+1)

and
e

∑
i=s

w

∑
j=v

Pr[Xi = j]

= B[e,w]−B[s−1,w]−B[e,v−1]+B[s−1,v−1]).

COROLLARY 8. The optimal cost for a bucket in the B-bucket
case under the squared Hellinger distance can be found in constant
time using O(N) precomputed values.

PROOF. This follows immediately, by only computing and stor-
ing the values of A[e,V ] and B[e,V ], and applying the above reduc-
tion.



We note that in both cases the arrays A and B can be computed
in O(V N) time. In the T-term case this is dominated by the cost of
the overall dynamic programming, and so can be ignored.

THEOREM 9. The optimal T-term histogram of a probabilistic
relation under squared Hellinger distance can be found in time
O(N2T (min(T,V )+V 2)). The optimal B-bucket histogram can be
found in time O(N(BN +V )).

As in the variation error case, the resulting representation is not
guaranteed to be a PDF, i.e., the probabilities do not necessarily
sum to 1. Similar approaches can be used to find a solution that is
normalized.

3.5 Max Error
The Max Error is defined as the maximum deviation between two

distributions. Given a range r = (v,w) within a bucket b = (s,e) that
we wish to represent with a single value p, it is

max
s≤i≤e

v≤ j≤w

|Pr[Xi = j]− p|.

The above quantity is minimized by setting p to the value:

p =
1
2
( max

s≤i≤e
v≤ j≤w

Pr[Xi = j]+ min
s≤i≤e

v≤ j≤w

Pr[Xi = j])

The dual problem is, given a deviation δ , to find a representation
X of the PDFs Xs . . .Xe so that maxs≤i≤e ‖X −Xi‖∞ ≤ δ using as
few subbuckets as possible. This can be solved easily with a single
pass over the PDFs in the bucket. First, if there is any j such that
maxs≤i≤e Pr[Xi = j]−mins≤i′≤e Pr[Xi′ = j] ≥ 2δ , then there is no
solution for this choice of δ and bucket b. Otherwise, begin the first
subbucket at value 1, and for each subbucket defined by a range
r = (v,w), track

α = max
s≤i≤e

v≤ j≤w

Pr[Xi = j] and β = min
s≤i≤e

v≤ j≤w

Pr[Xi = j] .

If the current subbucket (v,w) has α−β > 2δ , then we must termi-
nate the current subbucket at [v,w− 1], and open a new subbucket
at [w,w]. At the end of this process, we will have opened the small-
est possible number of subbuckets while guaranteeing that the max
error is at most δ , achieved by setting p = (α +β )/2. The problem
in the T -term case of finding a solution with at most T subbuck-
ets can therefore be solved by (binary) searching over values of δ .
This process can be made efficient by observing that this process
only needs the maximum and minimum value for each v ∈ V . Us-
ing appropriate data structures, these can be found for any bucket
in constant time per query after linear time preprocessing [13].

A more sophisticated argument can be applied to show that it
suffices to search over only O(V 2) different possible values of δ

and moreover that this search can be done efficiently in total time
O(V ), by adapting the search algorithm from [12].

For the B-bucket case, the smallest value of δ for a bucket b is

max
1≤v≤V

( max
s≤i≤e

Pr[Xi = v]− min
s≤i≤e

Pr[Xi = v]),

which gives the cost of picking that bucket. This value is found for
a given bucket by finding for the minimum and maximum values in
the range s . . .e, for each value v ∈ V . Therefore, using appropriate
range search structures [13], the the total query time is O(BV N2).

THEOREM 10. The optimal T-term probabilistic histogram of
a probabilistic relation under max-error can be found in time
O(TV N2). The optimal B-bucket histogram can be found in time
O(BV N2).

We note that the resulting summary is not guaranteed to be nor-
malized, since the total mass may not equal 1.

3.6 Earth Mover’s Distance
The formal definition of the earth mover’s distance between two

distributions is based on a transfer function φ(v,w), which spec-
ifies how much “mass” to move from value v to value w. Then
the cost for a given φ with Lp

p distance on the value domain is
∑v,w∈V φ(v,w)|v−w|p. The EMDp cost between two distributions
X and Y is the minimum over all φ such that applying φ to X gen-
erates Y (i.e., Pr[X = v]+∑w∈V φ(v,w) = Pr[Y = v] for all v). This
may appear complex, owing to the minimization over all possible
transfer functions φ . However, because of the structure of PDF’s
over a value domain V , the metric is considerably simplified.
Given two PDFs over V = [1 . . .V ], X and Y , the Earth Mover’s
Distance EMDp can be computed in a single pass. The procedure
operates by considering each index i in turn: starting from i = 1,
if the difference Pr[X = i]− Pr[Y = i] is positive, it is “moved”
to index i + 1, so that Pr[X = i + 1] ← Pr[X = i + 1] + Pr[X =
i]−Pr[Y = i], else Pr[Y = i+1]← Pr[Y = i+1]+Pr[Y = i]−Pr[X =
i]. EMD1(X ,Y ) is given by the total amount of probability mass
moved (i.e., the sum of the |Pr[X = i]−Pr[y = i]| at each step).

Equivalently, this process can be thought of as operating on
“atoms” of probability (sometimes also referred to as an “unfolded
histogram”). For simplicity, assume that each probability in the
PDF can be written as an integer multiple of some small quantity
∆. Then a PDF X can be written in terms of 1/∆ such atoms: let
LX [ j] denote the position of the jth atom, so that LX [ j]≤ LX [ j +1]
and Pr[X = i] = ∆| j : L[ j] = i|. Then

EMDp(X ,Y ) =
1/∆

∑
j=1

∆|LX [ j]−LY [ j]|p.

The correctness of this claim can be seen by observing that any
transfer function φ defines a bijection between atoms defining X
and Y . If LX [1] is mapped to LY [ j], and LX [ j′] is mapped to LY [1],
then the cost of the transfer is no more than if LX [1] is mapped to
LY [1], and LX [ j′] is mapped to LY [ j]. By repeating this argument
for each index in turn, we observe that the minimum cost mapping
is when LX [ j] is mapped to LY [ j], yielding the above cost formula-
tion.

Given this characterization of the distance, the optimal unre-
stricted PDF to represent a collection of PDFs under EMDp can
be analyzed. If X̂ is the representative PDF, then the cost for the
bucket in the B-bucket case can be written as

e

∑
i=s

EMDp(X̂ ,Xi) = ∆

1/∆

∑
j=1

e

∑
i=s
|LX̂ [ j]−LXi [ j]|p

Thus we can minimize this cost by placing each atom of X̂ in
turn to minimize ∑

e
i=s |LX̂ [ j]−LXi [ j]|p.

We now present results specific to the EMD1 case. By anal-
ogy with 1-median clustering [24], the optimal choice is to set
LX̂ [ j] = mediani∈b LXi [ j]. This clearly gives a valid PDF: the to-
tal probability mass remains 1, since there is a location for each
atom of probability. Further, the atoms are placed in increasing or-
der along the value domain, since LXi [ j]≤ LXi [ j+1] for all i, j, and
so LX̂ [ j]≤ LX̂ [ j+1]. The cost of using this representative X̂ is then

∆

1/∆

∑
j=1

e

∑
i=s
|LX̂ [ j]−LXi [ j]|= ∆

1/∆

∑
j=1

(
e

∑
i=s

LXi [ j]−2I(i, j)LXi [ j])

where I(i, j) is an indicator variable that is 1 if LXi [ j] <
mediani LXi [ j], and 0 otherwise. Observe that this can be solved



with the answers to multiple instances of the one-dimensional
range-sum-median problem (Lemma 4). For each atom, we need
to find the sum of values below the median for the locations of the
atom over the bucket b. In the B-bucket case, the dynamic program-
ming algorithm considers all possible buckets in order to choose B
optimal bucket boundaries. After the O( N2

∆
logN) cost of solving

1/∆ instances of the range-sum-median problem, the cost of any
bucket can be found in O(1/∆) time. Therefore, when all probabil-
ities are multiples of ∆,

THEOREM 11. The optimal B-bucket representative of a prob-
abilistic relation under the EMD1 metric can be found in time
O(N2(B+ log(N)

∆
)).

For the T -term case, the process is more complicated. A natu-
ral approach is to apply the dynamic programming approach within
a bucket, by choosing a single representative value for a range of
atoms [a,b]. However, this results in placing all those atoms at
a single location in the representative PDF: this generates a PDF
which consists of a small number of “impulses” at particular loca-
tions. While the resulting histogram is optimal from the space of all
histograms consisting of PDFs with a total of T impulses, it does
not match our original requirements to find a T -term histogram.

Instead, we can make use of the observation that EMD1(X ,Y ) =
‖F(X)−F(Y )‖1: that is, the distance is equivalent to the L1 dis-
tance between the cumulative probability distributions of X and Y ,
denoted by F(X) and F(Y ) respectively. This follows from the pre-
vious analysis by allowing ∆ to tend to 0. Note that the cumulative
distribution of a PDF represented by a histogram with t terms on V
is a non-decreasing t-piecewise linear function G that is (a) contin-
uous in the sense that each consecutive pair of linear segments meet
at a common point and (b) normalized in the sense that G(0) = 0
and G(V ) = 1. Hence we wish to find such a function G that mini-
mizes ∑i ‖F(Xi)−G‖1. This can be done by simple modifications
of the approximation algorithm of Aronov et al. [4] to ensure that f
is normalized and non-decreasing. However, since the cost is quar-
tic in the number of points (i.e. O(((s− e + 1)V )4), this approach
is unlikely to be practical for large instances.

4. QUERY ANSWERING
WITH HISTOGRAMS

A probabilistic histogram (irrespective of which error metric it is
built for) can be used to approximate a variety of queries. Extract-
ing basic statistics such as expected values from the histogram is
immediate. In this section, we discuss how to apply selections and
joins; more complex queries can be naturally be evaluated in a sim-
ilar manner, but are beyond the scope of this paper. A nice property
is that many of these operations are closed for probabilistic his-
tograms: applying an operation generates a new summary that is
also a probabilistic histogram, with space cost S that is closely
related to the original cost of the input histogram.

4.1 Selection
Any selection query on the item domain identifies a subset of

tuples C ⊆U . The distribution of these tuples is modeled by pro-
jecting the histogram onto this support set C . When this selection
is simple, such as a range selection, the result of the projection is
itself a probabilistic histogram.

The case when the selection is on the value domain V is more in-
teresting. The probabilistic histogram retains enough information
to summarize the full distribution of tuples which pass the selec-
tion: essentially, the result is a histogram where each bucket PDF

is the conditional distribution, conditioned on the predicate P. That
is, the new conditional distribution X̂(b,P) for bucket b has

Pr[X̂(b,P) = v|P(v)] =
Pr[X̂(b) = v]

∑v|P(v) Pr[X̂(b) = v]
,

and zero otherwise (i.e. Pr[X̂(b,P) = v|¬P(v)] = 0). Moreover,
when X̂(b) is given by some small number of terms t and P corre-
sponds to a range predicate, the resulting PDF is also represented
by at most t +2 terms (at most two new terms may be needed at the
extreme ends of the distribution).

When combined with an aggregation, information can be found
quickly. For instance, the expected number of distinct tuples se-
lected is computed easily from the buckets. The expected num-
ber of tuples passing a predicate P is given by ∑

B
k=1(ek − sk +

1)∑v∈V |P(v) Pr[X̂(bk) = v], where X̂(bk) indicates the PDF rep-
resenting the kth bucket, bk. But more than this, the distribu-
tion of the number of tuples selected has a simple form. Let
P(X̂(b)) be shorthand for ∑v∈V |P(v) Pr[X̂(b) = v]. Then, for a
bucket b, the distribution of the number of distinct tuples selected
by P is Bin((e− s + 1),P(X̂(b))), the binomial distribution with
n = (e− s+1) and p = P(X̂(b)) (since we treat each item as inde-
pendent). Consequently, the distribution over the whole histogram
is ∑

B
k=1 Bin((e− s+1),P(X̂(b))).

4.2 Join
We focus on the question of joining two probabilistic relations

where the join is an equijoin on U with an additional join condi-
tion on the common uncertain domain V . In this case, the input is
two probabilistic histograms representing two relations. However,
we do not need to assume that the two histograms share the same
bucket boundaries. We make the observation that, given two his-
tograms with B1 and B2 buckets respectively, together this defines
a partition of U with at most B1 +B2−1 non-overlapping ranges.
There is a unique bucket from each histogram, say b1 and b2 which
covers all items in each of a given range. These two buckets define
a distribution over items in the range which, by assuming indepen-
dence between the two relations is the product distribution, can be
written as Pr[X = (v1,v2)] = Pr[X̂(b1) = v1]Pr[X̂(b2) = v2].

We assume for simplicity that the join is an equijoin on V (other
join types are similar). Then the join tuple(s) within the overlap of
buckets b1 and b2 are distributed as

Pr[X̂(b1,b2) = v] = Pr[X̂(b1) = v]Pr[X̂(b2) = v].

By the same style of argument as above, if buckets b1 and b2 are
represented by t1 and t2 terms respectively, the resulting PDF can
be represented by at most t1 + t2−1 terms. Thus, probabilistic his-
tograms are closed under join operations like these. From the re-
sulting histograms, it is straightforward to extract expected values,
tail bounds on distributions, and so on.

5. EXPERIMENTS
We implemented our algorithms for building probabilistic his-

tograms (denoted PHIST) in C, and carried out a set of experiments
to compare the quality and scalability of our results against tech-
niques that assign a single term to each histogram bucket (described
in more detail below). The experiments were performed on a server
equipped with 4 Intel Xeon CPUs clocked at 1.6GHz, and 8GB of
RAM. Each experiment was run on a single CPU.

Data Sets. We experimented using a mixture of real and synthetic
data sets. The real data set came from the MystiQ project1 which
1http://www.cs.washington.edu/homes/suciu/
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Figure 2: Results on Histogram Computation

includes approximately 127,000 tuples describing 27,700 distinct
items. These correspond to links between a movie database and an
e-commerce inventory, so the tuples for each item define the dis-
tribution of the number of expected matches, formed by combin-
ing individual tuple linkage probabilities into PDFs. In this data
set the maximum frequency of any item was 10, thus requiring
us to estimate V = 11 frequency probabilities for each item (i.e.,
the probability that the frequency of each item is 0, 1,...,10). We
also performed experiments on synthetic data generated using the
MayBMS [3] extension to the TPC-H generator 2. The results on
this data were broadly similar to those on the real data set and so
are omitted for space reasons.

Alternative Techniques Considered. We contrast our methods
with a technique, termed as IDEAL-1TERM, that uses a distinct
bucket to represent each item of the data, but limits the represen-
tation within each bucket to a single term. Essentially, this tech-
nique corresponds to the optimal that one may achieve when re-
stricted to using a single term per bucket, if no additional space
constraints are imposed. This shows a lower bound on the best that
can be obtained by any algorithm which uses a single value to rep-
resent a bucket. In this experimental evaluation we do not explicitly
compare our techniques to any algorithms which do assign a single
value to a bucket, such as algorithms for deterministic data or the
algorithms in [8] which were targeted at different error metrics. As

project-mystiq.html
2www.cs.cornell.edu/database/maybms/

we see empirically, the error for the IDEAL-1TERM algorithm,
which represents a lower bound on what can be achieved by any
such algorithm, is still significantly in excess of that obtained by
our methods. Such representations provide no information on how
the retained frequency can be translated into a PDF of the frequen-
cies of each item. A naive solution is to substitute the expected fre-
quency E[ fi] of each item i with a PDF that contains a probability
of 1 for the frequency value E[ fi] (although in general E[Fi] 6∈ V )
and zero probabilities elsewhere. Any such representation results
in very large errors for the metrics that we seek to minimize.

Result Quality. We use our methods described in Section 3 to build
our PHIST histograms over N items using T terms, and compute
the cost of the histograms under the relevant metric. The quality
of our PHIST histograms is shown in Figure 2. In this figure, our
techniques for minimizing the sum of squared errors, the (squared)
Hellinger distance and the Max-Error metric are applied on the
same N = 104 distinct data items. In the Variation Distance case,
we limit to the first N = 103 distinct data items, as the computa-
tional cost for this algorithm is much higher. The general trend for
all methods is the same: for the error metrics we consider, the prob-
abilistic histogram approach of representing buckets PDFs with a
representative PDF is more accurate than picking a single value,
even if (as in the IDEAL-1TERM case) the algorithm is allowed
to treat each PDF separately. The IDEAL-1TERM algorithm can
never achieve zero error, even though it uses N buckets, since each
bucket is limited to contain a single term. Comparing our PHIST
histograms with the IDEAL-1TERM technique, we notice that the
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Figure 3: Histogram Timing Costs

errors of our techniques are significantly lower (even when using
just a few terms) than those of IDEAL-1TERM, even though the
latter uses much more space (N buckets). This is due to the more
intelligent partitioning of the domain space. The two have very
similar errors when PHIST is restricted to a constant number of
terms. This clearly demonstrates the need for using multiple terms
in order to better approximate this probabilistic data set.

For sum squared error and the similar Hellinger distance (Fig-
ures 2(a) and 2(c) respectively), the cost decreases gradually as
more terms are allowed. This suggests that there is relatively lit-
tle benefit in using a large number of terms for this data set: around
100 terms seems to capture the behavior almost as well as 1000.
(Note that with N = 10000 and V = 11, it would take T = 110000
terms to fully represent the input data with zero error). For the
max-error case and the Variation Distance (Figures 2(b) and 2(d)
respectively), there is a clearer benefit to adding more terms, with
a more pronounced decrease of error.

Scalability. Figure 3 shows the time cost of our methods for the
four metrics depicted in Figure 2. Figure 3(a) shows the time taken
as the number of items (N) increases: it reveals a quadratic rela-
tionship between the running time and N for the sum of squared
errors, the Hellinger Distance and the Max-Error cases. This is
in line with the asymptotic costs for these methods given by our
analysis, in which the leading term is N2. The costs for the Sum
Squared Error and the Hellinger Distance are quite close, mainly
due to the similarity in the form of their solution. For Max-Error,
the cost is slightly higher, and grows slightly faster. This is due in
part to the fact that our implementation used a simpler version of
the algorithm to determine the optimal bucket representative, which
adds a logarithmic factor to the running time complexity of approx-
imating each bucket. Thus, we expect that the running time of the
PHIST algorithm for a more elaborate implementation would more
closely match the running time for the Hellinger Distance and the
sum of squared errors. From Figure 3(a) it is also clear that mini-
mizing the variation distance results in high running times, which
is approximately cubic with N in our implementation.

Figure 3(b) shows a clear linear trend as the number of terms in-
creases, as predicted by the analysis, but there is also a sharp “knee”
in the line for a small number of terms. This knee occurs precisely
where T = V , and is explained by the fact that, up to this point, the
algorithm has to explore increasingly many combinations of ways
to choose T < V terms to represent any bucket. But it makes no
sense to assign more than 1 term for each of the V possible fre-

quency values within a bucket. The error of a bucket using more
than V terms is identical to the corresponding error when using
exactly V terms. As mentioned in the discussion of the dynamic
programming solution (Section 3.1), for values of T > V , and for
any assignment of T terms to each possible bucket, the optimal T -
term representation of the aforementioned bucket is guaranteed to
have been computed in a prior iteration of the algorithm. From
the analysis of the algorithms, for T ≤ V , the cost on all the met-
rics considered grows in proportion to T 2 ; for T > V , all methods
grow proportional to T , resulting in the linear growth pattern ob-
served for larger values of T in Figure 3(b).

6. CONCLUDING REMARKS
Other PDF distance metrics. It is certainly possible to con-
sider other error metrics, by analogy with metrics used for his-
togram construction over deterministic data. For instance, the
sum squared error can be extended to sum squared relative error,
∑v∈V (Pr[X = v]−Pr[Y = v]/max(c,Pr[X = v]))2 for a chosen con-
stant c. It is possible to extend our methods to cover such metrics,
but we do not consider them in detail, since this measure can place
undue emphasis on small probability values. Other variations of
the Earth Movers’ Distance, such as EMD2, will also be important
to address.

Other probabilistic models of uncertain data. We have primarily
considered models of probabilistic data which capture first-order
correlations, but not higher correlations between items, or across
relations. This is in line with the emerging probabilistic systems,
since such higher order effects are relatively small, and are harder
to measure and model. However, it remains of some interest to
extend the models we consider to be able to model and summarize
data with explicit correlations between items or across relations. In
the meantime, ignoring such effects merely weakens the quality of
the approximation in the intended applications; similar issues affect
histograms for deterministic data, which typically do not capture
complex correlations across tuples or relations.

A natural next target would be graphical models, which make ex-
plicit the dependence of some variables on other variables. In par-
ticular, Bayesian networks show how the probability of one event
depends on a particular subset of other events (and is assumed in-
dependent of all others). To some extent, our work can already ad-
dress this setting. As remarked earlier, the item PDF model which
presents distributions Xi can be seen as giving the distribution of X



conditioned on i. More generally, a relation might give information
about the distribution of X conditioned on other variables Y,Z . . ..
The probabilistic histogramming approach can certainly be applied
to this setting after applying a linearization to the other variables
to form a one-dimensional ordering (i.e. treating the linear order-
ing of X given Y = y,Z = z for all values of y and z as a single
relation to build a histogram of). However, a more faithful repre-
sentation may be found by more explicitly taking the semantics of
the distributions into account, for example by histogramming the
two dimensional space given by the cross-product of Y and Z. This
in turn brings new challenges, in particular how to scalable build
probabilistic histograms of multidimensional data.

Faster computation. As observed in the experimental section, the
algorithms proposed have potentially high cost. Although the his-
togram construction may only need to be done occasionally, when
new uncertain relations are inserted into the PDBMS, it is still de-
sirable to improve the speed. We observe that the majority of the
cost is due to the dynamic programming approach, whose cost is
polynomial in the parameters of the input. There are many po-
tential savings: (1) It is not worthwhile to exhaustively consider
every possible bucketing. Large buckets contribute large errors,
and are unlikely to be used in any optimal histogram. Rather than
compute the exact bucket cost, various lower bounds can be used.
For example, when the distance d obeys the triangle inequality, we
have Err(b) = ∑

e
i=s d(X̂ ,Xi)≥ 1

2 ∑
e−1
i=s d(Xi,Xi+1). This bound can

be computed in constant time with some precomputation, allow-
ing large buckets to be ignored. (2) Various techniques are known
for the dynamic programs that arise in histogram construction [14].
These also apply in our case, and so can be used to speed up the
search. The result is an approximation to the optimal histogram;
since the histograms are themselves used to approximate query an-
swering, this approximation is usually acceptable.

7. REFERENCES
[1] C. Aggarwal, editor. Managing and Mining Uncertain Data.

Springer, 2009.
[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity

of approximating the frequency moments. In ACM
Symposium on Theory of Computing, 1996.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and
simple relational processing of uncertain data. In IEEE
International Conference on Data Engineering, 2008.

[4] B. Aronov, T. Asano, N. Katoh, K. Mehlhorn, and
T. Tokuyama. Polyline fitting of planar points under min-sum
criteria. Int. J. Comput. Geometry Appl., 16(2-3):97–116,
2006.

[5] O. Benjelloun, A. D. Sarma, C. Hayworth, and J. Widomn.
An introduction to ULDBs and the Trio system. IEEE Data
Engineering Bulletin, 29(1):5–16, Mar. 2006.

[6] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and
D. Suciu. Mystiq: A system for finding more answers by
using probabilities. In ACM SIGMOD International
Conference on Management of Data, 2005.

[7] G. Cormode and M. Garofalakis. Sketching probabilistic
data streams. In ACM SIGMOD International Conference on
Management of Data, 2007.

[8] G. Cormode and M. Garofalakis. Histograms and wavelets
on probabilistic data. In IEEE International Conference on
Data Engineering, 2009.

[9] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In International Conference on Very
Large Data Bases, 2004.

[10] N. Dalvi and D. Suciu. Management of probabilistic data:
foundations and challenges. In ACM Principles of Database
Systems, 2007.

[11] I. S. Dhillon, S. Mallela, and R. Kumar. A divisive
information-theoretic feature clustering algorithm for text
classification. Journal of Machine Learning Research,
3:1265–1287, 2003.

[12] H. Fournier and A. Vigneron. Fitting a step function to a
point set. In European Symposium on Algorithms (ESA),
2008.

[13] H. Gabow, J. Bentley, and R. Tarjan. Scaling and related
techniques for geometry problems. In ACM Symposium on
Theory of Computing, 1984.

[14] S. Guha, N. Koudas, and K. Shim. Approximation and
streaming algorithms for histogram construction problems.
ACM Transactions on Database Systems, 31(1):396–438,
2006.

[15] S. Guha, K. Shim, and J. Woo. REHIST: Relative error
histogram construction algorithms. In International
Conference on Very Large Data Bases, 2004.

[16] Y. E. Ioannidis. The history of histograms (abridged). In
International Conference on Very Large Data Bases, 2003.

[17] H. V. Jagadish, N. Koudas, and S. Muthukrishnan. Mining
deviants in a time-series database. In International
Conference on Very Large Data Bases, 1999.

[18] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala,
K. Sevcik, and T. Suel. Optimal histograms with quality
guarantees. In Int. Conf. on Very Large Data Bases, 1998.

[19] R. Jampani, L. L. Perez, F. Xu, C. Jermaine, M. Wi, and
P. Haas. MCDB: A monte carlo approach to managing
uncertain data. In ACM SIGMOD International Conference
on Management of Data, 2008.

[20] T. S. Jayram, S. Kale, and E. Vee. Efficient aggregation
algorithms for probabilistic data. In ACM-SIAM Symposium
on Discrete Algorithms, 2007.

[21] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee.
Estimating statistical aggregates on probabilistic data
streams. In ACM Principles of Database Systems, 2007.

[22] S. Muthukrishnan, V. Poosala, and T. Suel. On rectangular
partitionings in two dimensions: Algorithms, complexity,
and applications. In International Conference on Database
Theory, 1999.

[23] V. Poosala and Y. E. Ioannidis. Selectivity estimation without
the attribute value independence assumption. In
International Conference on Very Large Data Bases, 1997.

[24] F. P. Preparata and M. Shamos. Computational Geometry :
An Introduction. Springer-Verlag, 2nd edition, 1985.

[25] A. D. Sarma, P. Agrawal, S. Nabar, and J. Widom. Towards
special-purpose indexes and statistics for uncertain data. In
Proceedings of the Workshop on Management of Uncertain
Data (MUD), 2008.

[26] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, and
S. Hambrusch. Query selectivity estimation for uncertain
data. In Statistical and Scientific Database Management
(SSDBM), 2008.

[27] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, S. Hambrusch,
J. Neville, and R. Cheng. Database support for probabilistic
attributes and tuples. In IEEE International Conference on
Data Engineering, 2008.


