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ABSTRACT
There is an increasing quantity of data with uncertainty arising
from applications such as sensor network measurements, record
linkage, and as output of mining algorithms. This uncertainty is
typically formalized as probability density functions over tuple val-
ues. Beyond storing and processing such data in a DBMS, it is nec-
essary to perform other data analysis tasks such as data mining. We
study the core mining problem of clustering on uncertain data, and
define appropriate natural generalizations of standard clustering op-
timization criteria. Two variations arise, depending on whether a
point is automatically associated with its optimal center, or whether
it must be assigned to a fixed cluster no matter where it is actually
located.

For uncertain versions of k-means and k-median, we show re-
ductions to their corresponding weighted versions on data with no
uncertainties. These are simple in the unassigned case, but require
some care for the assigned version. Our most interesting results
are for uncertain k-center, which generalizes both traditional k-
center and k-median objectives. We show a variety of bicriteria
approximation algorithms. One picks O(kε−1 log2 n) centers and
achieves a (1 + ε) approximation to the best uncertain k-centers.
Another picks 2k centers and achieves a constant factor approxi-
mation. Collectively, these results are the first known guaranteed
approximation algorithms for the problems of clustering uncertain
data.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval—Clustering

General Terms
Algorithms
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1. INTRODUCTION
There is a growing awareness of the need for database systems

to be able to handle and correctly process data with uncertainty.
Conventional systems and query processing tools are built on the
assumption of precise values being known for every attribute of
every tuple. But any real dataset has missing values, data qual-
ity issues, rounded values and items which do not quite fit any of
the intended options. Any real world measurements, such as those
arising from sensor networks, have inherent uncertainty around the
reported value. Other uncertainty can arise from combination of
data values, such as record linkage across multiple data sources
(e.g., how sure is it that these two addresses refer to the same loca-
tion?) and from intermediate analysis of the data (e.g., how much
confidence is there in a particular derived rule?). Given such mo-
tivations, research is ongoing into how to represent, manage, and
process data with uncertainty.

Thus far, most focus from the database community has been on
problems of understanding the impact of uncertain data within the
DBMS, such as how to answer SQL-style queries over uncertain
data. Because of interactions between tuples, evaluating even rel-
atively simple queries is #P -hard, and care is needed to analyze
which queries can be “safely” evaluated, avoiding such complex-
ity [9]. However, the equally relevant question of mining uncertain
data has received less attention. Recent work has studied the cost of
computing simple aggregates over uncertain data with limited (sub-
linear) resources, such as average, count distinct, and median [8,
22]. But beyond this, there has been little principled work on the
challenge of mining uncertain data, despite the fact that most data
to be mined is inherently uncertain.

We focus on the core problem of clustering. Adopting the tuple
level semantics, the input is a set of points, each of which is de-
scribed by a compact probability distribution function (pdf). The
pdf describes the possible locations of the point; thus traditional
clustering can be modeled as an instance of clustering of uncertain
data where each input point is at a fixed location with probabil-
ity 1. The goal of the clustering is to find a set of cluster centers,
which minimize the expected cost of the clustering. The cost will
vary depending on which formulation of the cost function we adopt,
described more formally below. The expectation is taken over all
“possible-worlds”, that is, all possible configurations of the point
locations. The probability of a particular configuration is deter-
mined from the individual pdfs, under the usual assumption of tu-
ple independence. Note that even if each pdf only has a constant
number of discrete possible locations for a point, explicitly evalu-
ating all possible configurations will be exponential in the number
of points, and hence highly impractical.

Given a cost metric, any clustering of uncertain data has a well-
defined (expected) cost. Thus, even in this probabilistic setting,



Objective Metric Assignment α β

k-center (point probability) Any metric Unassigned 1 + ε O(ε−1 log2 n)

Any metric Unassigned 12 + ε 2
k-center (discrete pdf) Any metric Unassigned 1.582 + ε O(ε−1 log2 n)

Any metric Unassigned 18.99 + ε 2
k-means Euclidean Unassigned 1 + ε 1

Euclidean Assigned 1 + ε 1
k-median Any metric Unassigned 3 + ε 1

Euclidean Unassigned 1 + ε 1
Any metric Assigned 7 + ε 1
Euclidean Assigned 3 + ε 1

Table 1: Our Results for (α, β)-bicriteria approximations

there is a clear notion of the optimal cost, i.e., the minimum cost
clustering attainable. Typically, finding such an optimal clustering
is NP-hard, even in the non-probabilistic case. Hence we focus
on finding α-approximation algorithms which promise to find a
clustering of size k whose cost is at most α times the cost of the
optimal clustering of size k. We also consider (α, β)-bicriteria ap-
proximation algorithms, which find a clustering of size βk whose
cost is at most α times the cost of the optimal k-clustering. These
give strong guarantees on the quality of the clustering relative to
the desired cost-objective. It might be hoped that such approx-
imations would follow immediately from simple generalizations
of approximation algorithms for corresponding cost metrics in the
non-probabilistic regime. Unfortunately, naive approaches fail, and
instead more involved solutions are necessary, generating new ap-
proximation schemes for uncertain data.

Clustering Uncertain Data and Soft Clustering. ‘Soft clustering’
(sometimes also known as probabilistic clustering) is a relaxation
of clustering which asks for a set of cluster centers and a fractional
assignment for each point to the set of centers. The fractional as-
signments can be interpreted probabilistically as the probability of a
point belonging to that cluster. This is especially relevant in model-
based clustering, where the output clusters are themselves distribu-
tions (e.g., multivariate Gaussians with particular means and vari-
ances): here, the assignments are implicit from the descriptions of
the clusters as the ratio of the probability density of each cluster at
that point. Although both soft clustering and clustering uncertain
data can be thought of notions of “probabilistic clustering”, they
are quite different: soft clustering takes fixed points as input, and
outputs appropriate distributions; our problem has probability dis-
tributions as inputs but requires fixed points as output. There is no
obvious way to use solutions for one problem to solve the other.

Clearly, one can define an appropriate hybrid generalization, where
both input and output can be probabilistic. In this setting, methods
such as expectation maximization (EM) [10] can naturally be ap-
plied to generate model-based clusterings. However, for clarity, we
focus on the formulation of the problem where a ‘hard’ assignment
of clusters is required, so do not discuss soft clustering further.

1.1 Our results
In traditional clustering, the three most popular clustering objec-

tives are k-center (to find a set of k cluster centers that minimize the
radius of the clusters), k-median (to minimize the sum of distances
between points and their closest center) and k-means (to minimize
the sum of squares of distances). Each has an uncertain counter-
parts, where the aim is to find a set of k cluster centers which min-
imize the expected cost of the clustering for k-means, k-median, or
k-center objectives. In traditional clustering, the closest center for

an input point is well-defined even in the event of ties. But when
a single ‘point’ has multiple possible locations, the meaning is less
clear. We consider two variations. In the assigned case, the output
additionally assigns a cluster center to each discrete input point.
Wherever that point happens to be located, it is always assigned to
that center, and the (expected) cost of the clustering is computed
accordingly. In the unassigned case, the output is solely the set of
cluster centers. Given a particular possible world, each point is as-
signed to whichever cluster minimizes the distance from its realized
location in order to evaluate the cost. Both versions are meaning-
ful: one can imagine clustering data of distributions of consumers’
locations to determine where to place k facilities. If the facilities
are bank branches, then we may want to assign each customer to
a particular branch (so that they can meet personally with their ac-
count manager), meaning an assigned solution is needed for branch
placement. But customers can also use any ATM, so the unassigned
case would apply for ATM placement. We provide results for both
assigned and unassigned versions.

• k-median and k-means. Due to their linear nature, the unas-
signed case for k-median and k-means can be efficiently re-
duced to their non-probabilistic counterparts. But in the as-
signed version, some more work is needed in order to give
required guarantees. In Section 5, we show that uncertain
k-means can be directly reduced to weighted deterministic
k-means, in both the assigned and unassigned case. We go
on to show that uncertain k-median can also be reduced to
its deterministic version, but with a constant increase in the
approximation factor.

• k-center. The uncertain k-center problem is considerably
more challenging. Due to the nature of the optimization
function, several seemingly intuitive approaches turn out not
to be valid. In Section 4, we describe a pair of bicriteria ap-
proximation algorithms, for inputs of a particular form one
of which achieves a 1 + ε approximation with a large blow-
up in the number of centers, and the other which achieves a
constant factor approximation with only 2k centers. These
apply to general inputs in the unassigned case with a further
constant increase in the approximation factor.

• We consider a variety of different models for optimizing the
cluster cost in Section 6. Some of these turn out to be prov-
ably hard even to approximate, while others yield clusterings
which do not seem useful; thus the formulation based on ex-
pectation is the most natural of those considered.

Our (α, β)-approximation bounds are summarized in Table 1.



2. RELATED WORK
Clustering data is the topic of much study, and has generated

many books devoted solely to the subject. Within database re-
search, various methods have proven popular, such as DBSCAN [13],
CURE [16], and BIRCH [28]. Algorithms have been proposed for
a variety of clustering problems, such as the k-means, k-median
and k-center objectives discussed above. The term ‘k-means’ is
often used casually to refer to Lloyd’s algorithm, which provides
a heuristic for the k-means objective [25]. It has been shown re-
cently that careful seeding of this heuristic provides a O(log n) ap-
proximation [2]. Other recent work has resulted in algorithms for
k-means which guarantee a 1 + ε approximation, although these
are exponential in k [24]. Clustering relative to the k-center or k-
median objective is known to be NP-hard [19]. Some of the earliest
approximation algorithms were for the k-center problem, and for
points in a metric space, the achieved ratio of 2 is the best possible
guarantee assuming P 6= NP . For k-median, the best known ap-
proximation algorithm guarantees a 3+ε approximate solution [3],
with time cost exponential in ε. Approximation algorithms for clus-
tering and its variations continues to be an active area of research
in the algorithms community [18, 4, 21]. See the lecture notes by
Har-Peled [17, Chapter 4] for a clear introduction.

Uncertain data has recently attracted much interest in the data
management community due to increasing awareness of the preva-
lence of uncertain data. Typically, uncertainty is formalized by
providing some compact representation of the possible values of
each tuple, in the form of a pdf. Such tuple-level uncertainty mod-
els assume that the pdf of each tuple is independent of the others.
Prior work has studied the complexity of query evaluation on such
data [9], and how to explicitly track the lineage of each tuple over a
query to ensure correct results [5]. Query answering over uncertain
data remains an active area of study, but our focus is on the comple-
mentary area of mining uncertain data, and in particular clustering
uncertain data.

The problem of clustering uncertain data has been previously
proposed, motivated by the uncertainty of moving objects in spatio-
temporal databases [7]. A heuristic provided there was to run Lloyd’s
algorithm for k-means on the data, using tuple-level probabilities
to compute an expected distance from cluster centers (similar to
the “fuzzy c-means” algorithm [11]). Subsequent work has studied
how to more rapidly compute this distance given pdfs represented
by uniform uncertainty within a geometric region (e.g., bounding
rectangle or other polygon) [26]. We formalize this concept, and
show a precise reduction to weighted k-means in Section 5.1.

Most recently, Aggarwal and Yu [1] proposed an extension of
their micro-clustering technique to uncertain data. This tracks the
mean and variance of each dimension within each cluster (and so
assumes geometric points rather than an arbitrary metric), and uses
a heuristic to determine when to create new clusters and remove old
ones. This heuristic method is highly dependent on the input order;
moreover, this approach has no proven guarantee relative to any of
our clustering objectives.

3. PROBLEM DEFINITIONS
In this section, we formalize the definitions of the input and the

cost objectives. The input comes in the form of a set of n prob-
ability distribution functions (pdfs) describing the locations of n
points in a metric space (X , d). Our results address two cases:
when the points are arbitrary locations in d-dimensional Euclidean
space, and when the metric is any arbitrary metric. For the latter
case, we consider only discrete clusterings, i.e., when the cluster
centers are restricted to be among the points identified in the input.

The pdfs specify a set of n random variables X = {X1, . . . , Xn}.
The pdf for an individual point, Xi, describes the probability that
the i-th point is at any given location x ∈ X , i.e., Pr[Xi = x]. We
mostly consider the case of discrete pdfs, that is, Pr[Xi = x] is
non-zero only for a small number of x’s. We assume that

γ = min
i∈[n],x∈X

Pr[Xi = x]|Pr[Xi = x] > 0

is only polynomially small. There can be a probability that a point
does not appear, which is denoted by⊥ 6∈ X , so that 0 ≤ Pr[Xi =
⊥] < 1. For any point xi and its associated pdf Xi, define Pi,
the probability that the point occurs, as 1 − Pr[Xi = ⊥]. All
our methods apply to the cases where Pi = 1, and more generally
to Pi < 1. The aspect ratio, ∆, is defined as the ratio between
the greatest distance and smallest distance between pairs of points
identified in the input, i.e.,

∆ =
maxx,y∈X ,∃i,j∈[n]:Pr[Xi=x] Pr[Xj=y]>0 d(x, y)

minx,y∈X ,∃i,j∈[n]:Pr[Xi=x] Pr[Xj=y]>0 d(x, y)
.

A special case of this model is when Xi is of the form

Pr[Xi = xi] = pi and Pr[Xi = ⊥] = 1− pi

which we refer to as the point probability case.
The goal is to produce a (hard) clustering of the points. We

consider two variants of clustering, assigned clustering and unas-
signed clustering. In both we must specify a set of k points C =
{c1, . . . , ck} and in the case of assigned clustering we also specify
an assignment from each Xi to a point c ∈ C:

Definition 1. Assigned Clustering: Wherever the i-th point falls,
it is always assigned to the same cluster. The output of the cluster-
ing is a set of k points C = {c1, . . . , ck} and a function σ : [n] →
C mapping points to clusters.

Unassigned Clustering: Wherever it happens to fall, the i-th
point is assigned to the closest cluster center. In this case, the
assignment function τ is implicitly defined by the clusters C, as
the function that maps from locations to clusters based on Voronoi
cells: τ : X → C such that τ(x) = arg minc∈C d(x, c).

We consider three standard objective functions generalized ap-
propriately to the uncertain data setting. The cost of a cluster-
ing is formalized as follows. To allow a simple statement of the
costs for both the assigned and unassigned cases, define a function
ρ : [n] × X → C so that ρ(i, x) = σ(i) in the assigned case, and
ρ(i, x) = τ(x) in the unassigned case. These are defined based on
the indicator function, I[A], which is 1 when the event A occurs,
and 0 otherwise.

Definition 2. The k-median cost, costmed, is the sum of the dis-
tances of points to their center:

costmed(X, C, ρ) =
X

i∈[n],x∈X

I[Xi = x]d(x, ρ(i, x))

The k-means cost, costmea, is the sum of the squares of distances:

costmea(X, C, ρ) =
X

i∈[n],x∈X

I[Xi = x]d2(x, ρ(i, x))

The k-center cost, costcen, is the maximum distance from any point
to its associated center:

costcen(X, C, ρ) = max
i∈[n],x∈X

{I[Xi = x]d(x, ρ(i, x))}



These costs are random variables, and so we can consider natural
statistical properties such as the expectation and variance of the
cost, or the probability that the cost exceeds a certain value. Here
we set out to minimize the (expected) cost of the clustering. This
generates corresponding optimization problems.

Definition 3. The uncertain k-median problem is to find a set of
centers C which minimize the expected k-median cost, i.e.,

min
C:|C|=k

E[costmed(X, C, ρ)] .

The uncertain k-means problem is to find k centers C which mini-
mize the expected k-means cost,

min
C:|C|=k

E[costmea(X, C, ρ)] .

The uncertain k-center problem is to find k centers C which mini-
mize:

min
C:|C|=k

E[costcen(X, C, ρ)] .

These costs implicitly range over all possible assignments of
points to locations (possible worlds). Even in the point probabil-
ity case, naively computing the cost of a particular clustering by
enumerating all possible worlds would take time exponential in the
input size. However, each cost can be computed efficiently given C
and ρ. In the point-probability case, ρ is implicit from C, we may
drop it from our notation.

A special case is when all variables X are of the form Pr[Xi =
xi] = 1, i.e., there is no uncertainty, since the i-th point is always
at location xi. Then we have precisely the “traditional” clustering
problem on deterministic data, and the above optimization prob-
lems correspond precisely to the standard definitions of k-center,
k-median and k-means. We refer to these problems as “determin-
istic k-center” etc., in order to clearly distinguish them from their
uncertain counterparts.

In prior work on computing with uncertain data, a general tech-
nique is to sample repeatedly from possible worlds, and compute
the expected value of the desired function [8, 22]. Such approaches
do not work in the case of clustering, however, since the desired
output is a single set of clusters. While it is possible to sample mul-
tiple possible worlds and compute clusterings for each, it is unclear
how to combine these into a single clustering with some provable
guarantees, so more tailored methods are required.

4. UNCERTAIN K-CENTER
In this section, we give results for uncertain k-center clustering.

This optimization problem turns out to be richer than its certain
counterpart, since it encapsulates aspects of both deterministic k-
center and deterministic k-median.

4.1 Characteristics of Uncertain k-center
Clearly, uncertain k-center is NP-hard, since it contains deter-

ministic k-center as a special case when Pr[Xi = xi] = 1 for all
i. Further, this shows that it is hard to approximate uncertain k-
center over arbitrary metrics to better than a factor of 2. There exist
simple greedy approximation algorithms for deterministic k-center
which achieve this factor of 2 in the unweighted case or 3 in the
weighted case [12]. We show that such natural greedy heuristics
from the deterministic case do not carry over to the probabilistic
case for k-center.

Example 1. Consider n points distributed as follows:

Pr[X1 = y] = p Pr[Xi>1 = x] = p/2
Pr[X1 = ⊥] = 1− p Pr[Xi>1 = ⊥] = 1− p/2

where the two locations x and y satisfy d(x, y) = 1. Placing 1
center at x has expected cost p. As n grows larger, placing 1 center
at y has expected cost tending to 1. Greedy algorithms for un-
weighted deterministic k-center pick the first center as an arbitrary
point from the input, and so could pick y [15]. Greedy algorithms
for weighted deterministic k-center consider each point individu-
ally, and pick the point which has the highest weight as the first
center [19]: in this case, y has the highest individual weight (p in-
stead of p/2) and so would be picked as the center. Thus applying
algorithms for the deterministic version of the problems can do ar-
bitrarily badly: they fail to achieve an approximation ratio of 1/p
for any chosen p. The reason is that the metric of expected cost
is quite different from the unweighted and weighted versions of
deterministic k-center, and so approximations for the latter do not
translate into approximations for the former.

Our next example gives some further insight.

Example 2. Consider n points distributed as follows:

Pr[Xi = xi] = pi Pr[Xi = ⊥] = 1− pi

where xi’s are some arbitrary set of locations. We can show that if
all pi’s are close to 1, the cost is dominated by the point with the
greatest distance from its nearest center, i.e., this instance of uncer-
tain k-center is essentially equivalent to deterministic k-center. On
the other hand, if all pi are sufficiently small then the problem is al-
most equivalent to deterministic k-median. Both statements follow
from the next lemma which applies to the point probability case:

LEMMA 1. For a given set of centers C, let di = d(xi, C).
Assume that d1 ≥ d2 ≥ . . . ≥ dn. Then,

E[costcen(X, C, ρ)] =
X

i

pidi

Y
j<i

(1− pj) . (1)

If
P

j pj ≤ ε then for all i, 1 ≥
Q

j<i(1− pj) ≥ 1− ε and hence

1− ε ≤ E[costcen(X, C, ρ)]

E[costmed(X, C, ρ)]
≤ 1 .

Note that from equation (1) it is also clear that if we round all
probabilities up to 1 we alter the value of the optimization criterion
by at most a 1/γ = 1/ mini∈[n] pi factor. But this gives precisely
an instance of the deterministic k-center problem, which can be
approximated up to a factor 2. So we can easily give a 2/γ approx-
imation for probabilistic k-center.

Thus the same probabilistic problem encompasses two quite dis-
tinct deterministic problems, both of which are NP-Hard, even to
approximate to better than constant factors. More strongly, the
same hardness holds even in the case where Pi = 1 (so Pr[Xi =
⊥] = 0): in the above examples, replace ⊥ with some point far
away from all other points, and allocate k + 1 centers instead of
1. Now any near-optimal algorithm in the unassigned case must
allocate a center for this far point. This leaves k centers for the
remaining problem, whose cost is the same as that in the examples
with ⊥.

Lastly, we show that an intuitive divide-and-conquer approach
fails. We might imagine that partitioning the input into ` subsets,
and finding an αj approximation on each subset of points, would
result in `k centers which provide an overall maxj∈[`] αj guaran-
tee. This example shows that this is not the case:

Example 3. Consider the metric space over 4 locations {x1, x2, c, o}
so that:

d(x1, c) = 4 d(x1, o) = 3
d(x2, c) = 8 d(x2, o) = 3



The input consists of

Pr[X1 = x1] = 1 Pr[X2 = x1] = 1
Pr[X3 = x2] = 1

2
Pr[X3 = ⊥] = 1

2

Pr[X4 = x2] = 1
2

Pr[X4 = ⊥] = 1
2

Suppose we partition the input into {X1, X3} and {X2, X4}.
The optimal solution to the induced uncertain 1-center problem is
to place a center at o, with cost 3. Our approximation algorithm
may decide to place a center at c, which relative to {X1, X3} is a
2-approximation (and also for {X2, X4}). But on the whole input,
placing a center (or rather, two centers) at c has cost 7, and so is
no longer a 2-approximation to the optimal cost (placing a center
at o still has cost 3 over the full input). Thus approximations on
subsets of the input do not translate to approximations on the whole
input.

Instead, one can show the following:

LEMMA 2. Let X be partitioned into Y1 . . . Y`. For i ∈ [`], let
Ci be a set of k points that satisfy,

E[costcen(Yi, Ci)] ≤ αi min
C:|C|=k

E[costcen(X, C)] .

Then for α =
P`

i=1 αi,

E
ˆ
costcen(X,∪i∈[`]Ci)

˜
≤ α min

C:|C|=k
E[costcen(X, C)] .

PROOF. Consider splitting X into just two subsets, Y1 and Y2,
and finding α1 approximate centers C1 for Y1, and α2 approximate
centers C2 for Y2. We can write the cost of using C1∪C2 as

E[costcen(X, C1∪C2)] =
X
j∈[t]

Pr[costcen(Y1∪Y2, C1∪C2) = rj ] rj

≤
X
j∈[t]

Pr[costcen(Y1, C1) = rj ] rj

+
X
j∈[t]

Pr[costcen(Y2, C2) = rj ] rj

=E[costcen(Y1, C1)]+E[costcen(Y2, C2)]

≤(α1 + α2) min
C:|C|=k

E[costcen(X, C)]

This implies the full result by induction.

Efficient Computation of costcen. Lemma 1 implies an efficient
way to compute the cost of a given uncertain k-center clustering
C against input X in the point probability model: using the same
indexing of points, define Xi = {X1 . . . Xi}, and so recursively

E
h
costcen(Xi, C, ρ)

i
= pidi + (1− pi)E

h
costcen(Xi−1, C, ρ)

i
and E

ˆ
costcen(X0, C, ρ)

˜
= 0.

In the more general discrete pdf case, for both the assigned and
unassigned cases we can form a similar expression, although a
more complex form is needed to handle the interactions between
points belonging to the same pdf. We omit the straightforward de-
tails for brevity. The consequence is that the cost of any proposed
k-center clustering can be found in time linear in the input size.

4.2 Cost Rewriting
In subsequent sections, we present bicriteria approximation al-

gorithms for uncertain k-center over point probability distributions,
i.e., when all Xi are of the form

Pr[Xi = xi] = pi, Pr[Xi = ⊥] = 1− pi.

We assume that γ = mini min(pi, 1− pi) is only polynomially
small. In Section 4.5, we extend our results from the point proba-
bility case to arbitrary discrete probability density functions.

Our algorithms begin by rewriting the objective function. Given
input X , we consider the set of distances between pairs of points
d(xi, x`). Denote the set of these t = n(n − 1)/2 distances as
{rj}0≤j≤t where 0 = r0 ≤ r1 ≤ . . . ≤ rt. Then the cost of the
clustering with C is

E[costcen(X, C)] =
X
j∈[t]

Pr[costcen(X, C) = rj ] rj

=
X
j∈[t]

Pr[costcen(X, C) ≥ rj ] (rj − rj−1)

Note that Pr[costcen(X, C) ≥ r] is non-increasing as r increases.

4.3 (1 + ε) Factor Approximation Algorithm
The following lemma exploits the natural connection between

k-center and set-cover, a connection exploited in the optimal asym-
metric k-center clustering algorithms [27].

LEMMA 3. In polynomial time, for any r we can find C′ of size
at most ck log(n) (for some constant c) such that

Pr
ˆ
costcen(X, C′) ≥ r

˜
≤ min

C:|C|=k
Pr[costcen(X, C) ≥ r]

PROOF. Let

C = argminC:|C|=k Pr[costcen(X, C) ≥ r]

and A = {xi : d(xi, C) < r}. For each xi we define a positive
weight, wi = − ln(1−pi). It will be convenient to assume the each
pi < 1 so that these weights are not infinite. However, because
following argument applies if pi ≤ 1 − ε for any ε > 0, it can be
shown that the argument holds in the limit when ε = 0. Note that

Pr[costcen(X, C) ≥ r] = 1−
Y

i:xi 6∈A

(1−pi) = 1−exp(−
X
i6∈A

wi) .

We will greedily construct a set C′ of size at most k log(nγ−1)
such that B = {xi : d(xi, C

′) < r} satisfies,X
i6∈A

wi ≥
X
i6∈B

wi

and therefore, as required,

Pr[costcen(X, C) ≥ r] ≥ Pr
ˆ
costcen(X, C′) ≥ r

˜
.

We construct C′ incrementally: at the j-th step let

C′
j = {c1, . . . , cj}, Bj = {xi : d(xi, C

′
j) < r} ,

and define tj =
P

i:xi∈Bj
wi. We choose cj+1 such that tj+1 is

maximized. Let w =
P

i∈A wi and let si = w − ti. At each
step there exists a choice for cj+1 such that tj+1 − tj ≥ si/k.
This follows because

P
i∈A\Bj

wi ≥ si and |C| = k. Hence

si ≤ w(1 − 1/k)i. Therefore, for i = k ln(w/wmin) we have
si < wmin and hence si ≤ 0. Note that ln(w/wmin) ≤ c ln n for
some c because 1/(1− pi) and pi are poly(n).

THEOREM 4. There exists a polynomial time (1+ε, cε−1 log n log ∆)
bi-criteria approximation algorithm for uncertain k-center where
∆ is the aspect ratio.

PROOF. We round up all distances to the nearest power of (1+ε)
so that there are t =

˚
lg1+ε(∆)

ˇ
different distances r1 < r2 <



. . . < rt. This will cost us the (1 + ε) factor in the objective
function. Then, for j ∈ [t], using Lemma 3, we may find a set Cj

of O(k log n) centers such that

Pr[costcen(X, Cj) ≥ rj ] ≤ min
C:|C|=k

Pr[costcen(X, C) ≥ rj ] .

Taking the union C0 ∪ . . . ∪Ct as the centers gives the required
result.

4.4 Constant Factor Approximation
The following lemma is based on a result for k-center clustering

with outliers by Charikar et al. [6]. The outlier problem is defined
as follows: given a set of n points and an integer o, find a set of
centers such that for the smallest possible value of r, all but at most
o points are within distance r of a center. Charikar et al. present a
3-approximation algorithm for this problem. In fact, we use their
approach for a dual problem, where r is fixed and the number of
outliers o is allowed to vary. The proof of the following lemma
follows by considering the weighted case of the outlier problem
where each xi receives weight wi = ln 1

1−pi
.

LEMMA 5. In polynomial time, we can find C′ of size k such
that

Pr
ˆ
costcen(X, C′) ≥ 3r

˜
≤ min

C:|C|=k
Pr[costcen(X, C) ≥ r] .

The above lemma allows us to construct a bi-criteria approxi-
mation for k-center with uncertainty such that α and β are both
constant.

THEOREM 6. There exists a polynomial time (12 + ε, 2) bi-
criteria approximation for uncertain k-center.

PROOF. Denote the set of all t = n(n − 1)/2 distances as
{rj}1≤j≤t where r1 ≤ . . . ≤ rt and let r0 = 0 and rt+1 = ∞.
Let C be the optimum size k set of cluster centers. For j ∈ [t],
using Lemma 5 we find a set Cj of k centers such that

Pr[costcen(X, Cj) ≥ rj ] ≤ Pr[costcen(X, C) ≥ rj/3]

Note that we may assume,

Pr[costcen(X, Cj) ≥ rj ] ≥ Pr[costcen(X, Cj) ≥ rj+1]

≥ Pr[costcen(X, Cj+1) ≥ rj+1] .

Let ` be the smallest j such that

1− κ ≥ Pr[costcen(X, Cj) ≥ rj ]

where κ ∈ (0, 1) to be determined.
Let N = {Xi : d(xi, C`) ≤ r`} be the set of points “near" to

C` and let F = X \ N be the set of points “far" from C`. We
consider clustering the near and far points separately.

We first consider the near points. Note,

E[costcen(X, C)]

≥
X
j∈[t]

Pr

»
1

3
rj+1 > costcen(X, C) ≥ 1

3
rj

–
1

3
rj

=
X
j∈[t]

Pr

»
costcen(X, C) ≥ 1

3
rj

–
(
1

3
rj −

1

3
rj−1)

≥1

3

X
j∈[t]

Pr[costcen(X, Cj) ≥ rj ] (rj − rj−1)

≥1− κ

3

X
j∈[`]

Pr[costcen(X, C`) ≥ rj ] (rj − rj−1)

=
1− κ

3
E[costcen(N, C`)]

where the second inequality follows because

Pr[costcen(N, Cj) ≥ rj ]

Pr[costcen(N, C`) ≥ rj ]
≥ 1− κ

for j ≤ `. The last inequality follows because

Pr[costcen(N, C`) ≥ rj ] = 0

for j ≥ ` + 1.
We now consider the far points. Let C∗ be an (3+ε)-approximation

to the (weighted) k-median problem on F (i.e., each point xi has
weight pi). This can be found in polynomial time using the result of
Arya et al. [3]. Then, by Lemma 1 (note that

Q
xi∈F (1−pi) ≥ κ),

E[costcen(F, C∗)] ≤ (3 + ε)κ−1E[costcen(F, C)]

≤ (3 + ε)κ−1E[costcen(X, C)] .

Appealing to Lemma 2, we deduce that C∗ ∪ C` are 2k centers
that achieve a

3 + ε

κ
+

3

1− κ

approximation to the objective function. Setting κ = 1/2 gives the
stated result (rescaling ε as appropriate.)

4.5 Extension to General Density Functions
So far we have been considering the point probability case for

uncertain k-center, in which there is no difference between the as-
signed and unassigned versions. In this section, we show that we
can use these solutions in the unassigned case for general pdfs, and
only lose a constant factor in the objective function. The following
lemma makes this concrete:

LEMMA 7. Let 0 ≤ pi,j ≤ 1 satisfy Pi =
P

j pi,j ≤ 1. Then

1−
Y
i,j

(1−pi,j) ≤ 1−
Y

i

(1−Pi) ≤ g(P ∗)

 
1−

Y
i,j

(1− pi,j)

!
where P ∗ = maxi Pi and g(x) = x/(1− exp(−x)).

PROOF. The first inequality follows by the union bound. To
prove the next inequality we first note that 1 − pi,j ≤ exp(−pi,j)
and hence

Q
i,j 1− pi,j ≤ exp(−

P
i Pi). We now prove that

g(P ∗)(1− exp(−
X
i∈[n]

Pi)) ≥ (1−
Y

i∈[n]

(1− Pi)) (2)

by induction on n.

1−
Y

i∈[n]

(1− Pi) = (1− Pn)(1−
Y

i∈[n−1]

(1− Pi)) + Pn

≤ g(P ∗)(1− Pn)(1− e−
P

i∈[n−1] Pi) + Pn

≤ g(P ∗)(e−Pn(1− e−
P

i∈[n−1] Pi) + Pn/g(P ∗))

≤ g(P ∗)(e−Pn + Pn/c(P ∗)− e−
P

i∈[n] Pi)

≤ g(P ∗)(1− e−
P

i∈[n] Pi) .

This requires exp(−Pn) + Pn/g(P ∗) ≤ 1 which is satisfied
by the definition of g(P ∗). For the base case, we derive the same
requirement on g(P ∗).

Hence, in the unassigned clustering case with a discrete pdf, we
can treat each possible point as a separate independent point pdf,
and be accurate upto a g(1) = e/(e − 1) factor in the worst case.
We then appeal to the results in the previous sections, where now n
denotes the total size of the input (i.e. the sum of description sizes
of all pdfs).



5. UNCERTAIN K-MEANS AND K-MEDIAN
The definitions of k-means and k-median are based on the sum

of costs over all points. This linearity allows the use of linearity of
expectation to efficiently compute and optimize the cost of cluster-
ing. We outline how to use reductions to appropriately formulated
weighted instances of deterministic clustering. In some cases, so-
lutions to the weighted versions are well-known, but we note that
weighted clustering can be easily reduced to unweighted cluster-
ing with only a polynomial blow-up in the problem size (on the
assumption that the ratio between the largest and smallest non-zero
weights is polynomial) by replacing each weighted point with an
appropriate number of points of unit weight.

5.1 Uncertain k-means
The k-means objective function is defined as the expectation of

a linear combination of terms. Consequently,

E[costmea(X, C, ρ)] =
X

i∈[n],x∈X

Pr[Xi = x]d2(x, ρ(i, x)). (3)

So given a clustering C and ρ, the cost of that clustering can be
computed quickly, by computing the contribution of each point in-
dependently, and summing.

THEOREM 8. For X = (Rd, `2), there exists a randomized,
polynomial time (1 + ε)-approximation for uncertain k-means.

PROOF. First observe that the result for the unassigned version
of uncertain k-means can be immediately reduced to a weighted
version of the non-probabilistic problem: by linearity of expec-
tation the cost to be minimized is exactly the same as that of a
weighted instance of k-means, where the weight on each point Xi

is Pr[Xi = x]. Applying known results for k-means gives the
desired accuracy and time bounds [20, 24, 14].

The assigned clustering version of the problem can be reduced
to the point probability case where the assigned and unassigned
versions are identical. To show this we first define

µi =
1

Pi

X
x∈X

x Pr[Xi = x] and σ2
i =

X
x∈X

d(x, µi)
2 Pr[Xi = x] ,

i.e., µi and σ2
i are the weighted (vector) mean and the (scalar) vari-

ance of Xi, respectively. Then we can rewrite E[costmea(X, C, ρ)]
using properties of Euclidean distances as:

E[costmea(X, C, ρ)] =
X

i∈[n],x∈X

Pr[Xi = x]d(x, ρ(i))2

=
X

i∈[n],x∈X

Pr[Xi = x]
“
d(x, µi)

2

+ d(µi, ρ(i))2 + 2d(x, µi)d(µi, ρ(i))
”

=
X
i∈[n]

σ2
i +

X
i∈[n],x∈X

Pid
2(µi, ρ(i))

=
X
i∈[n]

σ2
i + E

ˆ
costmea(X

′, C, ρ)
˜
,

where X ′ is the input in the point probability case defined by Pr[X ′
i =

µi] = Pi. Note that
P

i∈[n] σ
2
i is a non-negative scalar that does

not depend on C and ρ. Hence any α-approximation algorithm for
the minimization of E[costmea(X

′, C, ρ)] gives an α-approximation
for the minimization of E[costmea(X, C, ρ)]. But now, as in the
non-assigned case, known results for k-means can be used to find
an (1 + ε) approximation for the minimization of the instance of
weighted deterministic k-means given by X ′.

5.2 Uncertain k-median
Similarly to k-means, linearity of expectation means that the un-

certain k-median cost of any proposed clustering can be quickly
computed since

E[costmed(X, C, ρ)] =
X

i∈[n],x∈X

Pr[Xi = x]d(x, ρ(i, x))].

Uncertain k-median (Unassigned Clustering). Again due to the
linearity of the cost metric, solutions to the weighted instance of
the k-median problem can be applied to solve the uncertain version
for the unassigned case.

THEOREM 9. For X = (Rd, `2), there exists a randomized,
polynomial time (1 + ε)-approximation for uncertain k-median
(unassigned). For arbitrary metrics, the approximation factor is
(3 + ε)-approximation.

The result follows by the reduction to weighted k-median and ap-
pealing to bounds for k-median for arbitrary metrics [3] or in the
Euclidean case [23].

Uncertain k-median (Assigned Clustering). For k-means assigned
case, it was possible to find the mean of each point distribution, and
then cluster these means. This succeeds due to the properties of
the k-means objective function in Euclidean space. For k-median
assigned case, we adopt an approach that is similar in spirit, but
whose analysis is more involved. The approach has two stages:
first, it finds a near-optimal 1-clustering of each point distribution,
and then it clusters the resulting points.

THEOREM 10. Given an algorithm for weighted k-median clus-
tering with approximation factor α, we can find a (2α+1) approx-
imation for the uncertain k-median problem.

PROOF. For each Xi, find the discrete 1-median yi by simply
finding the point from the (discrete) distribution Xi which mini-
mizes the cost.

Let Pi = 1− Pr[Xi = ⊥], as before, and let

T =
X

i∈[n],x∈X

Pr[Xi = x]d(x, yi),

be the expected cost of assigning each point to its discrete 1-median.
Define OPT , the optimal cost of an assigned k-median clustering,
as

OPT = min
C,σ:|C|=k

E[costmed(X, C, σ))] .

Finally, set OPTY = minC:|C|=k E
ˆP

i Pid(ρ(i, x), yi)
˜
, the op-

timal cost of weighted k-median clustering of the chosen 1-medians
Y = ∪i∈[n]{yi}.

Now T ≤ OPT because it is an optimal assigned n-median
clustering, whose optimal cost can be no worse than an optimal
assigned k-median clustering, i.e.,

min
C,σ:|C|=n

E[costmed(X, C, σ)] ≤ min
C,σ:|C|=k

E[costmed(X, C, σ)] .

Let C = argminC:|C|=k E[costmed(X, C, ρ)] be a set of k medi-
ans which achieves the optimal cost and let σ : [n] → C be the
allocation of uncertain points to these centers. Then

T + OPT =
X

i∈[n],x∈X

Pr[Xi = x](d(x, σ(i)) + d(x, yi))

≥
X
i∈[n]

d(yi, σ(i))Pi ≥ OPTY .



The α-approximation algorithm is used to find a set of k-medians
C′ for Y . Define σ′(i) by σ′(i) = arg minc∈C d(c, yi). This
bounds the cost of the clustering with centers C as

E[ costmed(X, C′, σ′)]

=
X

i∈[n],x∈X

Pr[Xi = x]d(x, σ′(i))

≤
X

i∈[n],x∈X

Pr[Xi = x](d(x, yi) + d(yi, σ
′(i)))

≤ T + αOPTY ≤ α(T + OPT ) + T ≤ (2α + 1)OPT .

6. EXTENSIONS
We consider a variety of related formulations, and show that of

these, optimizing to minize the expected cost is the most natural
and feasible.

Bounded probability clustering. One possible alternate formula-
tion of uncertain clustering is to require only that the probability of
the cost of the clustering exceeding a certain amount is bounded.
However, one can easily show that such a formulation does not ad-
mit any approximation.

THEOREM 11. Given a desired cost τ , it NP-hard to approxi-
mate to any constant factor

min
C:|C|=k

Pr[costmed(X, C, ρ) > τ ] ,

min
C:|C|=k

Pr[costmea(X, C, ρ) > τ ] ,

or min
C:|C|=k

Pr[costcen(X, C, ρ) > τ ] .

PROOF. The hardness follows from considering deterministic
arrangements of points, i.e., each point occurs in exactly one lo-
cation with certainty. If there is an optimal clustering with cost
τ or less, then the probability of exceeding this is 0; otherwise,
the probability that the optimal cost exceeds τ is 1. Hence, any
algorithm which approximates this probability correctly decides
whether there is a k clustering with cost τ . But this is known to be
NP-hard for the three deterministic clustering cost functions.

Consequently, similar optimization goals such as “minimize the
expectation subject to Pr[costmea(X, C, ρ) > τ ] < δ” are also
NP-hard.

Minimizing Variance. Rather than minimizing the expectation, it
may be desirable to choose a clustering which has minimal vari-
ance, i.e., is more reliable. However, we can reduce this to the
original problem of minimizing expectation. For example, in the
point probability case when each Xi = xi with probability pi and
is absent otherwise

Var(costmed(X, C, ρ)) =
X

i

(pi − p2
i )d

2(xi, ρ(i, xi))

i.e., E[costmea(X, C, ρ)] where pi is replaced by pi − p2
i . The

same idea extends to minimizing the sum of p-th powers of the
distances, since these too can be rewritten using cumulant relations.
Note that if for all pi ≤ ε then pi(1 − ε) ≤ pi − p2

i ≤ pi, and
so there is little difference between E[costmea] and Var (costmed)
when the probabilities are small. But a clustering that minimizes
Var(costcen(X, C, ρ)) can be a “very bad” clustering in terms of
its expected cost when the probabilities are higher, as shown by this
example:

Example 4. Consider picking 1-center on two points such that
Pr[X1 = x1] = 1 and Pr[X2 = x2] = 0.5. Then

Var(costcen(X, {x2})) = 0,

while

Var(costcen(X, {x1})) = d2(x1, x2)/4.

But

costcen(X, {x2}) = d(x1, x2)

while costcen(X, {x1}) = 1
2
d(x1, x2): the zero-variance solution

costs twice as much (in expectation) as the higher-variance solu-
tion.

Expected Clustering Cost. Our problem was to produce a cluster-
ing that is good over all possible worlds. An alternative is to instead
ask, given uncertain data, what is the expected cost of the optimal
clustering in each possible world? That is,

• k-median: E
ˆ
minC:|C|=k costmed(X, C, ρ)

˜
• k-means: E

ˆ
minC:|C|=k costmea(X, C, ρ)

˜
• k-center: E

ˆ
minC:|C|=k costcen(X, C, ρ)

˜
This gives a (rather conservative) lower bound on the cost of pro-

ducing a single clustering. The form of this optimization problem is
closer to that of previously studied problems [8, 22], and so may be
more amenable to similar approaches, such as sampling a number
of possible worlds and estimating the cost in each.

Continuous Distributions. We have, thus far, considered discrete
input distributions. In some cases, it is also useful to study con-
tinuous distributions, such as a multi-variate Gaussian, or an area
within which the point is uniformly likely to appear. Some of
our techniques naturally and immediately handle certain contin-
uous distributions: following the analysis of uncertain k-means
(Section 5.1), we only have to know the location of the mean in
the assigned case, which can typically be easily calculated or is a
given parameter of the distribution. It remains open to fully extend
these results to continuous distributions. In particular, it sometimes
requires a complicated integral just to compute the cost of a pro-
posed clustering C under a metric such as k-center, where we need
to evaluate Z ∞

0

Pr[costcen(C, X, ρ) ≥ r]rdr

over a potentially arbitrary collection of continuous pdfs. Correctly
evaluating such integrals can require careful arguments based on
numerical precision and appropriate rounding.

Facility Location. We have focused on the clustering version of
problems. However, it is equally feasible to study related prob-
lems, in particular formulations such as Facility Location, where
instead of a fixed number of clusters, there is a facility cost associ-
ated with opening a new center, and a service cost for assigning a
point to a center, and the goal is to minimize the overall cost. For-
malizing this as a deterministic facility cost and expected service
cost is straightforward, and means that this and other variations are
open for further study.
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