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DEFINITION
Consider a data stream A = 〈a1, a2, . . . , am〉 where each data item ak ∈ [n] × [n]. Such a stream
naturally defines an undirected, unweighted graph G = (V,E) where

V = {v1, . . . , vn} and E = {(vi, vj) : ak = (i, j) for some k ∈ [m]} .

Graph mining on streams is concerned with estimating properties of G, or finding patterns within G,
given the usual constraints of the data-stream model, i.e., sequential access to A and limited memory.
However, there are the following common variants.

Multi-Pass Models: It is common in graph mining to consider algorithms that may take more than
one pass over the stream. There has also been work in the W-Stream model in which the algorithm
is allowed to write to the stream during each pass [9]. These annotations can then be utilized by the
algorithm during successive passes and it can be shown that this gives sufficient power to the model for
PRAM algorithms to be simulated [8]. The Stream-Sort model goes one step further and allows sorting
passes in which the data stream is sorted according to a key encoded by the annotations [1].

Weighted, Dynamic, or Directed Graphs: For many problems it is implicitly assumed that the
elements ak are distinct. When the data items are not distinct, the stream naturally defines a multi-
graph, i.e., an edge (vi, vj) has multiplicity equal to |{k : ak = (i, j)}|. In such a model it would
be natural to consider the deletion of edges but this has not been explored thoroughly. Finally, the
definition can be generalized to define weighted graphs where a third component of the data item,
ak ∈ [n]× [n]× R+, would indicate a weight w(u,v) associated with the edge (u, v), or directed graphs.

Adjacency and Incidence Orderings: In some applications it is reasonable to assume that all edges
incident on the same node arrive consecutively. This assumption defines the incidence model. In the
adjacency model no such assumption is made.

HISTORICAL BACKGROUND
Graph problems were considered by Henzinger et al. [15] in one of the earliest papers on the data-stream model.
Their work considered a variety of problems including pointer jumping problems based on the degrees of various
nodes in a directed layered graph. Unfortunately, many of the results showed that a large amount of space is
required for these types of problems. Subsequent early work considered counting the number of triangles in a
graph [2] and estimating common neighborhoods [3]. Again, a large component of these results were negative. It
seemed that more “complicated” computation was not possible in this model using only a small amount of space.

It seems that most graph algorithms need to access the data in a very adaptive fashion. Since the entire
graph can not be stored, emulating a traditional algorithm may necessitate an excessive number of passes over
the data. This has motivated various specific stream models tailored to processing graphs, including the Semi-



Streaming, W-Stream, and Sort-Stream models. The semi-streaming model is characterized by an O(n polylog n)
space restriction, i.e., space proportional to the number of nodes rather than the number of edges. For dense
graphs this represents considerably less space than that required to store the entire graph. This restriction was
identified as an apparent “sweet-spot” for graph streaming in a survey article by Muthukrishnan [17] and was first
explored by Feigenbaum et al. [13]. The W-Stream and Stream-Sort models, described earlier, were introduced
by Demetrescu et al. [9] and Aggarwal et al. [1] respectively.

SCIENTIFIC FUNDAMENTALS
This section discusses the main upper and lower bounds known for solving graph problems in the data-stream
model. The focus is on results for the standard data-stream model (including the Semi-Streaming space
restriction) but note that some of the below problems, including testing connectivity, computing shortest paths,
and constructing minimum spanning trees, have been considered in the W-Stream and Stream-Sort models [9, 1].

Connectivity and Minimum Spanning Trees: Determining whether a graph is connected is a fundamental
problem. It can be solved in the semi-streaming model and it can be shown that any one-pass algorithm requires
Ω(n) space [15]. More generally, connectivity is a balanced property where a graph property P is balanced if there
exists a constant c > 0 such that for all sufficiently large n, there exists a graph G = (V,E) with |V | = n and
u ∈ V such that:

min{|{v : (V,E ∪ {(u, v)}) has P}|, |{v : (V,E ∪ {(u, v)}) has ¬P}| } ≥ cn .

It was shown that all balanced properties require Ω(n) space [12]. This was part of the justification for the
semi-streaming space restriction. However, many problems become feasible with O(npolylog n) space such as
testing planarity and determining whether a graph is bipartite. Testing higher degrees of vertex-connectivity has
also been considered in the semi-streaming model. The below table summarizes the start of the art results for
determining if a graph is k-connected, i.e., whether k vertices need to be removed in order to disconnect the graph:

k Passes Time (per-edge) Ref.
1,2,3 1 O(α(n)) [12]

4 1 O(log n) [12]
k 1 O(k2n) [18]
k k + 1 O(k + α(n)) [18]

where α(n) is the inverse Ackerman function. Lower bounds have also been investigated for k-edge and k-vertex
connectivity [15]. Finally, a related result include a semi-streaming, one-pass algorithm for constructing the
minimum spanning tree with O(log n) processing-time per edge.

Distances and Spanners: An undirected graph G = (V,E) naturally defines a distance function dG : V ×V → R
where dG(u, v) is the length of the shortest path in G between u and v. The diameter of G is the length of the
longest shortest path, i.e.,

Diam(G) = max
u,v∈V

dG(u, v) ,

and the girth of G is the length of the shortest cycle in G, i.e.,

Girth(G) = min
(u,v)∈E

[w(u,v) + dG\(u,v)(u, v)] .

To date most of the algorithms for approximating quantities related to distance are based on constructing sparse
spanners, where a subgraph H = (V,E′) is an (α, β)-spanner of G = (V,E) if, for any vertices x, y ∈ V ,

dG(x, y) ≤ dH(x, y) ≤ α · dG(x, y) + β .

Note that constructing an (α, 0)-spanner H for an unweighted graph also gives an indication of the girth of the
original graph. In particular, if H 6= G then Girth(G) ≤ α+ 1 because there exists (u, v) ∈ E(G) \E(H) and this
must satisfy dG\(u,v)(u, v) ≤ α if H is an (α, 0)-spanner.
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The first spanner constructions in the data-stream model were presented in [13, 12]. The state of the art
construction is due to Elkin [10] who presented a randomized, single-pass algorithm that constructs a (2t− 1, 0)-
spanner for an unweighted graph in O((t log n)1−1/tn1+1/t) space (with probability 1 − 1/nΩ(1)). The algorithm
processes each edge (u, v) in O(1) expected time and O(log du,v/ log log du,v) worst-case time where du,v is the
sum of the degrees of u and v. The algorithm can be generalized to weighted graphs by rounding edge weights
to powers of (1 + ε), constructing spanners for each edge set with the same weight, and taking the union of these
spanners. This adds a factor of O(ε−1 logω) (where ω is the ratio between the biggest and smallest weights) in
the space and time complexity and adds a factor of (1 + ε) in the approximation factor of a distance. Elkin and
Zhang [11] present various algorithms for constructing (α, β)-spanners.

If only a specific distance, dG(u, v), needs to be approximated then it may appear that constructing a spanner
to the entire graph is excessive. However, this is not the case. In particular, it can be shown that any single-
pass algorithm that approximates the (weighted) graph distance between two given nodes up to a factor t with
probability at least 3/4 requires Ω(n1+1/t) space [13]. Furthermore, this bound also applies even with the promise
dG(u, v) = Diam(G). Consequently approximation via spanners is at most a factor 2 from optimal.

Counting Triangles: As was noted earlier, approximating the number of triangles in an undirected graph was one
of the earliest problems considered in the data-stream model [2]. The number of triangles is related to the clus-
tering and transitivity coefficients of the graph. The state of the art [4] are one-pass, randomized algorithms that
estimate the number of triangles up to a multiplicative factor or (1+ε) with probability at least 1−δ using space:

Model Space
Adjacency O(ε−2(1 + T1/T3 + T2/T3) log δ−1)
Incidence O(ε−2(1 + T2/T3) log δ−1 log n)

where Ti is the number of node triples upon which the induced sub-graph has exactly i edges. While
both of these space bounds can be large (e.g., for dense graphs with few triangles) this compares favorably to the

O(ε−2(1 + T0/T3 + T1/T3 + T2/T3) log δ−1)

space required by the naive algorithm that randomly samples node-triples and computes the fraction that are
triangles. It can also be shown that any p-pass algorithm determining if the number of triangles is non-zero requires
Ω(p−1n2) space [2]. There has also been work on estimating the count of larger cycles or cliques. However, it
can be shown using results in extremal graph theory and a reduction from the set-disjointness communication
problem that any p-pass algorithm that determines if Girth(G) ≥ g requires Ω

(
p−1(n/g)1+4/(3g−4)

)
space [13].

A related problem is that of estimating path aggregates. Define Pk to be the number of pairs of vertices that
are joined by a simple path of length k. For a graph with r connected components, it is possible to approximate
P2 in one pass and O(ε−2m(m− r)−1/4 log δ−1) space even if edges may be deleted [14]. A space lower bound of
Ω(
√
m) is also known.

BFS trees: A common subroutine in many traditional graph algorithms is that of constructing a breadth-first-
search (BFS) tree. Unfortunately it can be shown that computing the first l layers of a breadth-first-tree from a
prescribed node requires either d(l − 1)/2e passes or Ω(n1+1/l) of space [13].

Matchings: Given a graph G = (V,E), the Maximum Cardinality Matching (MCM) problem is to find the
largest set of edges such that no two adjacent edges are selected. More generally, for an edge-weighted graph,
the Maximum Weighted Matching (MWM) problem is to find the set of edges whose total weight is maximized
subject to the condition that no two adjacent edges are selected. The following semi-streaming algorithms are
known for these problems:

Weighted Passes Approximation Ratio Ref.
No 1 0.5 [13]
No Oε(1) 1− ε [16]
Yes 1 0.179 [19]
Yes Oε(1) 0.5− ε [16]
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The first of the above algorithms is based on a simple greedy approach, i.e., the algorithm always maintains a
matching and adds the latest edge if it is not adjacent to a currently stored edge. The third and fourth algorithms
are variants on this basic idea. The second algorithm is based on finding augmenting paths for a currently stored
matching, i.e., odd length paths such every second edge is in the currently stored matching. For each augmenting
path found it is possible to increase the size of the currently stored matching by one. It can be shown that if there
are only a relatively small number of O(ε−1)-length augmenting paths then the current matching is already a
good approximation. Alternatively, if there are many short augmenting paths then it is possible to find a constant
fraction using a randomized approach.

Degree Distributions and Random Walks: Given a stream of edges with possible duplicates, a natural question
that arises is to estimate properties of the underlying graph. Work has been done on estimating the frequency
moments, heavy hitter, and range sums of the degrees of this underlying graph [6]. For example, if dv is the degree
of v in the underlying graph then it is possible to approximate M2 :=

∑
v d

2
v in one pass and O(ε−4

√
n log n) space.

Note that many of these problem are solvable using standard techniques if there are no duplicates in the stream
of edges. A related problem is to estimate the entropy of a random walk on an undirected, unweighted graph.
Here the graph stream is an observation of a random walk whose states are nodes of the graph. There exists a
single-pass O(ε−4 log2 n log2 δ−1) space algorithm that estimates the entropy of the walk [5]. These algorithms use
a combination of algorithms for counting distinct items and the AMS sampling technique. The problem of actually
constructing random walks has also been considered [7]. This has applications to estimating the page-rank vector,
mixing time and conductance of graphs.

KEY APPLICATIONS*
Massive graphs arise naturally in many real world scenarios. Two examples are the call-graph and the web-graph.
In the call-graph, nodes represent telephone numbers and edges correspond to calls placed during some time
interval. In the web-graph, nodes represent web pages, and the edges correspond to hyper-links between pages.
When processing these graphs it is often appropriate to use the data-stream model. For example, the graph
may be revealed by a web-crawler or the graph may be stored on external memory devices and being able to
process the edges in an arbitrary order improves I/O efficiency. One of the major drawbacks of traditional graph
algorithms, when applied to massive graphs such as the web, is their need to have random access to the edge set.
Massive graphs also arise in structured data mining, where the relationships among the data items in the data
set are represented as graphs, and social networks.

FUTURE DIRECTIONS
There are numerous specific open problems that arise from the existing work on graph streams. For example,
one could attempt to improve the approximation factors of the known approximate matching algorithms or the
space required to approximate M2. Another idea is to explore distance approximation in multiple passes. While
computing exact distance may require many passes this does not preclude the possibility of better approximation
with a few additional passes.

Other more general ideas include investigating graph problems in the probabilistic data-stream model or the
random-order data-stream model . In the probabilistic data-stream model, a probability pe would be assigned to
each edge e. The goal of an algorithm would be to estimate the probability that the random graph generated
has a certain property given that each edge is present independently with probability pe. In the random-order
data-stream model the assumption, as the name suggests, is that the edges arrive in random order. The goal is to
design algorithms that estimate some property with high probability where the probability is defined over both
the coin flips of the algorithm and the ordering of the stream.

CROSS REFERENCE*
stream models, synopsis structure, one-pass algorithm
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