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Abstract. We revisit the problem of memory checking considered by
Blum et al. [3]. In this model, a checker monitors the behavior of a
data structure residing in unreliable memory given an arbitrary sequence
of user defined operations. The checker is permitted a small amount
of separate reliable memory and must fail a data structure if it is not
behaving as specified and pass it otherwise. How much additional reliable
memory is required by the checker? First, we present a checker for an
implementation of a priority queue. The checker uses O(

√
n log n) space

where n is the number of operations performed. We then present a spot-
checker using only O(ε−1 log δ−1 log n) space, that, with probability at
least 1−δ, will fail the priority queue if it is ε-far (defined appropriately)
from operating like a priority queue and pass the priority queue if it
operates correctly. Finally, we then prove a range of lower bounds that
complement our checkers.

1 Introduction

Program checking [4] is a paradigm for gaining confidence at run-time in the out-
put produced by a program by running an auxiliary program called the checker
to verify the correctness of the output on the current input. Checkers are allowed
to be probabilistic and have a specifiably small probability of themselves making
a mistake; however, this probability of error depends only on the checker’s inter-
nal coin tosses and not on the presence or absence of any particular bug in the
program being checked. Checkers may also query the program being checked on
additional inputs and use the self-consistency of the outputs to determine cor-
rectness. Checkers designed for a particular computational problem can check
any program that claims to solve the problem.

Since checkers are run on-line, they should be efficient and should not in-
troduce a significant overhead in the program’s running time and resource use.
Sometimes it is possible and desirable to design highly efficient checkers that
only verify that the program output is close to the true output in a quantifiable
way. Such checkers, known as spot-checkers [6] do not even look at the entire in-
put and output of the program. Spot-checking is related to the idea of property
testing [10] which seeks to examine small portions of the input to determine if it
is close to having a specified property.
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The problem of checking the correctness of the behavior of data structures
residing in cheap but potentially unreliable memory using a small amount of
reliable memory was first considered by Blum et al. [3]. In contrast to program
checking, we emphasize that we are less concerned with ensuring that the data
structure has been correctly coded but rather wish to ensure that the use of
unreliable memory has not caused incorrect behavior. However, in the spirit
of the program checking framework, we will assume a fully general scenario in
which an adversary controls both the sequence of queries and updates to the
data structure and the exact state of the data structure at each point.

A checker equipped with a small amount of reliable (but not necessarily secret)
memory observes the sequence of operations and the results produced by the data
structure and must decide whether it behaved correctly. Two flavors of checkers
are considered in [3] — an off-line checker that makes its determination after an
entire sequence of accesses have been made to the data structure, and an on-line
checker that must immediately report an error when it occurs. These models
were further explored in the context of simple linked data structures such as
linked lists, trees, and graphs in a paper by Amato and Loui [2]. However, to
date, no efficient checkers have been designed for data structures such as priority
queues and search trees that maintain global order properties amongst the keys
they store. We note that there has been some work done on designing new data
structures that are resilient to memory faults, e.g., Finocchi et al. [9], but stress
that this is a different problem than checking correctness.

The memory checkers of Blum et al. [3] and Amato and Loui [2] fit in a model
of computation called the streaming model [11,1,7]. In this model a computer
with a small amount of memory observes an adversarially generated stream
and determines (with high probability) whether the stream satisfies a specified
property. The notion of spot-checking in such a model [8] is a little different from
the standard notion — rather than requiring the spot–checker to sample only
a few places in the input and output, we allow the spot-checker to observe the
entire stream of inputs and outputs, but require that it operate with the space
constraints imposed by the streaming model.

A common implementation of priority queues is as binary heaps. A heap is
a data structure that is used to easily remove the minimum key (min-heaps)
or the maximum (max-heaps). For the purposes of this paper, we will consider
min-heaps, but all conclusions can easily be applied to max-heaps as well. Heaps
are usually implemented as binary trees, explicitly or implicitly as an array. Each
node has a key, a right child, and a left child. There are two main properties of
all heaps. The first is that all descendants of a certain node have a key that is
greater than the node’s key. The second property is that the tree is filled in order
from left to right, level by level. All add and delete operations run in O(log n)
time, where n is the number of nodes in the tree.

1.1 Our Results

In this paper we present results on the checking and spot-checking of priority
queues. We will assume that the priority queue is implemented in unreliable
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memory and that the checker observes the values inserted into the priority queue
and the result of each extract operation. We will present our results by referring
to a binary-heap used to implement the priority queue but our checkers will be
able to check any implementation. Note that our goal is only to verify that the
input/output behavior of the implementation is correct. We do not (and in this
model, cannot) actually verify that the priority queue is implemented as a heap
and that this heap satisfies the structure property.

Our checkers are all off-line and assume that the sequence of operations start
and end with the empty heap. We present a O(

√
n log n)-space checker and an

O(ε−1 log δ−1 log n)-space spot-checker in Section 3 and Section 4 respectively.
In Section 5 we present lower bounds that show that any on-line checker requires
Ω(n/ log n) space, that any deterministic checker requires Ω(n) space, and that
our checker is near-optimal among checkers of a certain type.

2 Preliminaries

We start by adapting the definition of a memory checker from [3] for the checking
of heaps. See Fig. 1 for an accompanying figure.

User Heap

input

output

Checker

Working Memory

. . . , extractmin, insert(5), insert(4)

4, . . .

. . . , (5, 2), (4, 1)

(4, 1), . . .

input

output

Fig. 1. Memory Checker interaction with User and Data Structure

Definition 1 (Heap Checker). A heap checker for heap H is an (probabilistic)
algorithm C with access to the following four tapes:

1. A “user” input tape from which the checker reads user specified operations.
Each operation is either an insert(·) where the argument is a value to be
inserted or an extractmin.

2. A “user” output tape on which the checker writes a value for each extractmin
operation or alternatively writes FAIL and terminates if the checker has de-
termined that the heap checker is not operating correctly. If the checker never
outputs FAIL during the processing of the user specified operations, then the
checker concludes by writing PASS on this tape.

3. A “heap” input tape on which the checker specifies operations to H. On a
user operation insert(u), the checker requests the insertion of the tuple (u, t)
into the heap where t is the index of the user operation1, referred to as the
time-stamp. On a user extractmin operation, the checker requests that the
heap extracts the smallest value presently stored in the heap.

1 In the actual implementation of the heap the t is encoded as lower order bits and u
is encoded as higher order bits. A consequence of this is that if (u, t) and (u, t′) are
concurrently in memory, then (u, t) should be extracted before (u, t′) if t < t′.
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4. A “heap” output tape from which the checker reads the output of each oper-
ation. The user extractmin operation will correspond to a tuple (u, t) being
read from the heap.

In addition, the checker has a limited amount of working memory.

We can abstract the input of the heap checker as a sequence that encodes both
the user specified operations and the output of the heap. We define this sequence
and what it means for the sequence to be “heap-like” as follows.

Definition 2 (Interaction Sequence and Heap-like). An interaction se-
quence is a length 2n sequence of tuples S = c1 . . . c2n where each tuple cj is
either an insert of some value u, denoted 〈insert, u〉, or an extractmin oper-
ation that returns some value v that purports to have inserted at time t, denoted
〈extractmin, (v, t))〉. Furthermore, we require that for any k ∈ [2n], the number
of extractmin operations among c1 . . . ck is at most the number of insert op-
erations. We define an ordering of the tuples in the natural way: (u, t) < (u′, t′)
iff u < u′ or (u = u′ and t < t′). We say an interaction sequence is heap-like if
for all extractmin operations cj

cj = 〈extractmin, (u, t)〉 ⇒ (u, t) = min Mj−1 , (C)

where,

M0 = ∅ and Mj =
{

Mj−1 \ min Mj−1 if cj = 〈extractmin, (·, ·)〉
Mj−1 ∪ {(u, j)} if cj = 〈insert, u〉 .

Conceptually, Mj is the set of (value, time-stamp) tuples still to be extracted
from the heap if the heap were operating correctly.

It will be convenient for us to decompose the heap-like condition into three
separate conditions in the case that we start and end with an empty heap. We
prove these three condition are together equivalent in the following lemma.

Lemma 1 (Equivalent Definition for Heap-like). An interaction sequence
S is heap-like iff S satisfies the following three conditions,

{(u, t) : ct = 〈insert, u〉} = {(u, t) : 〈extractmin, (u, t)〉 ∈ S} , (C1)
∀ctb

= 〈extractmin, (·, ta)〉, ta < tb , and (C2)
∀ctb

= 〈extractmin, (u, ta)〉, ctb′ = 〈extractmin, (u′, ta′)〉,
(u, ta) < (u′, ta′) ⇒ (tb′ < ta or tb < tb′) . (C3)

These conditions correspond to the fact that 1) the set of (value, time-stamp)
pairs inserted should match the (value, time-stamp) pairs extracted, 2) a (value,
time-stamp) should only be extracted after it has been inserted and 3) a pair
(u′, t′) should not be extracted between the insert and extraction of a (u, t) pair
if (u, t) < (u′, t′).
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Proof. If S satisfies (C) then clearly (C3), (C2), and (C1) are satisfied. Con-
versely assume S satisfies (C3), (C2), and (C1). For the sake of contradic-
tion, assume that there exists a tb′ such that, ctb′ = 〈extractmin, (u′, ta′)〉 and
(u′, ta′) 
= min Mj−1. and assume tb′ is the smallest such value. But then there
exists (u, ta) ∈ Mj−1 with (u, ta) < (u′, ta′). By the minimality of tb′ and (C1),
ta < tb′ < tb for some tb such that ctb

= 〈extractmin, (u, ta)〉. Hence S violates
(C3) which is a contradiction. Hence S satisfies (C) after all.

Next we define what it means for a sequence to be far from heap-like. It will
turn out that it is relatively straight-forward to ensure that a sequence satisfies
(C2) and (C1). Hence, we only define distances between sequences that satisfy
these two properties. Intuitively the distance between two interaction sequences
S and S′ will be the least number of moves that are necessary to transform S
into S′. However, the exact definition is a little more awkward because of the
(value, time-stamp) pairs in the extractmin operations.

Definition 3 (ε-far from Heap-like). Consider an interaction sequence S =
c1c2 . . . c2n and let σ be a permutation on [2n]. Let Sσ = c′1c

′
2 . . . c′2n be the

sequence where,

c′i =
{

〈insert, u〉 if cσ−1(i) = 〈insert, u〉
〈extractmin, (u, σ(t))〉 if cσ−1(i) = 〈extractmin, (u, t)〉 .

We define dist(S, Sσ) as the number of edits required to sort (σ(1), . . . , σ(2n))
where an edit is of the form “move the value in position k and insert it at position
j.” In particular we say S is ε-far from being heap-like if for all σ such that Sσ

is heap-like, dist(S, Sσ) ≥ εn.

So, for example, for σ = (1 → 1, 2 → 3, 3 → 4, 4 → 2) and

S = 〈insert, 15〉〈insert, 16〉〈extractmin, (16, 2)〉〈extractmin, (15, 1)〉

then, Sσ = 〈insert, 15〉〈extractmin, (15, 1)〉〈insert, 16〉〈extractmin, (16, 3)〉.
In this case, dist(S, Sσ) = 1 and since Sσ is heap-like, S is at most 1/2-far from
being heap-like.

3 An O(
√

n log n)-Space Checker for Heaps

In this section we present a memory checker that accepts an interaction sequence
that is heap-like and, with probability at least 1 − δ, rejects an interaction se-
quence that is not heap-like. The algorithm uses O(

√
n log n + log(1/δ) log n)

space and processes each term of the interaction sequence in O(log n+ log(1/δ))
time. Hence forth we assume that δ > 1/n and therefore omit the δ dependencies.

To ensure that the interaction sequence satisfies (C1), we use the ε-biased
hash function construction of Naor and Naor [12]. Their relevant properties are
presented in the following theorem.
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Theorem 1 (ε-biased Hash Function [12]). Consider two n-bit binary strings
x and y. There exists a randomized scheme using O(log n + log δ−1) random bits
that constructs a hash function h such that Pr (h(x) = h(y)) ≤ δ if x 
= y. Fur-
thermore h(·) can be computed in O(log n + log δ−1) space even if the string to be
hashed is revealed bit by bit in some arbitrary order.

Using such a function we hash (value, time-stamp) pairs inserted and extracted
to ensure that, with probability at least 1 − δ, condition (C1) is satisfied. It is
easy to check that condition (C2) is also satisfied as for each operation ctb

=
〈extractmin, (·, ta)〉 it is sufficient to check that ta < tb.

To ensure condition (C3), the algorithm maintains two lists

E = {(v1, t1), . . . , (v|E|, t|E|)},

a list of (value, time) pairs, and B, a list of recently inserted values and their
time-stamps. The list E will define a series of epochs and B will be used to
buffer (value, time) between the creation of new epochs. Specifically, the list E
will be sorted such that t1 < t2 < . . . < t|E|. We then refer to the period of time
Ti = {t : ti−1 < t ≤ ti} as the ith epoch (where t0 = 0). We define an epoch to
the period T|E|+1 = {t : t > tE} as the current epoch.

The list B will contain all the values that have been inserted into the heap
since the last pair was added to E not including those that have been returned
by an extractmin operation. Together, the state of B and E at any point in the
algorithm define the function,

f(t) =
{

(vi, ti) if t ∈ Ti for i ≤ |E|
min B if t ∈ T|E|+1

.

The semantics of f is such that at any time, if (u, t) has been inserted but not
extracted, then, f(t) ≤ (u, t) if the heap is performing correctly. f is potentially
updated in every iteration of the algorithm. See Figure 2 for a schematic of the
update and utility of the function f . The algorithm maintains B and E such
that there are at most

√
n tuples in both sets. This is achieved by using the

set B to, in effect, buffer inserted tuples such that at least
√

n tuples must be
inserted for |E| to increase by 1. The algorithm is presented in Figure 3.

Theorem 2. Algorithm Heap-Checker is a checker for the correctness of heaps.
It uses O(

√
n log n) memory and runs in O(log n) time per term of the interac-

tion sequence.

Proof. We first prove the correctness of the Heap-Checker algorithm and then
bound the space and time complexity.

Correctness: If S is heap-like then, the tester will PASS the sequence since prop-
erty (C1) ensures that the algorithm does not fail in Line 1 and properties
(C2) and (C3) ensure that the algorithm does not fail in Line 9. Conversely,
if S does not satisfy property (C1) or (C2), the checker will fail the sequence
at Line 1 or 9. Assuming that S has properties (C1) and (C2), we now show
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t1 t2
t

f(t)

v1

v2
u

t1 t2 t3
t

f(t)

B

t|E|. . . tb − 1

v2

v1

v3

v|E|

tb

〈extractmin, (u, ta)〉

Fig. 2. A schematic depicting the part of the behavior of the algorithm Heap-Checker
when processing item ctb = 〈extractmin, (u, ta)〉 where t2 < ta < t3. First it is checked
that f(ta) ≤ (u, ta) and, if so, {(vi, ti) ∈ E : vi < u} is removed from E and (u, tb) is
added. Furthermore B is emptied.

that the checker will fail at Line 9 at some point during the processing of
the interaction sequence. If property (C3) is not satisfied then consider the
smallest tb such that ctb

= 〈extractmin, (u, ta)〉 and there exists a tb′ with
ctb′ = 〈extractmin, (u′, ta′)〉 with (u, ta) < (u′, ta′) and ta < tb′ < tb. We
consider two cases:
1. At time tb′ assume ta is in the current epoch. Therefore (u, t) ∈ B and

hence (u′, t′) > (u, t) ≥ min B. Therefore the algorithm fails in iteration
tb′ at line 9.

2. Otherwise assume that, at the start of iteration tb′ , ta is not in the current
epoch, i.e. ta < t|E|. Therefore, at the end of the iteration v|E| ≥ u′. But
then at the start of iteration tb, f(ta) is also at least u′. Since at iteration
tb we have f(ta) ≥ u′ > u, the algorithm fails at this iteration during
Line 9.

Space Use: It is clear that there are never more than
√

n values stored in B.
To bound the size of E we consider the following two ways in which a pair
is added to E.
1. Line 7: Note that there can be at most

√
n such addition since in between

each such addition there must be at least
√

n insert operations.
2. Line 15: Note that there is no net increase in the size of E in this step.

Therefore, the maximum number of pairs stored in E is
√

n. Hence the space
use of the algorithm is O(

√
n log n) as claimed.

Running Time: For keeping track of the current epoch, the checker can keep
a heap of the values in B in its own reliable memory. This means that all
insert and delete operations can be done in O(log n) time. When updating
the tuples in E the checker can do a binary search (O(log n) time) through
the values in each tuple since these are in sorted order. Since these are the
only operations the checker must perform, it runs in O(log n) time.

4 Spot-Checker

In this section we present a memory checker that accepts an interaction sequence
that is heap-like and with probability at least 1−δ rejects an interaction sequence
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Algorithm Heap-Checker(S = c1c2 . . . c2n)
1. Use ε-biased hashing to ensure that,

{(u, t) : ct = 〈insert, u〉} = {(u, t) : 〈extractmin, (u, t)〉 ∈ S}

and if not return FAIL
2. Maintain two lists, initially empty,

E = {(v1, t1), . . . , (v|E|, t|E|)} and B = {(u1, t
′
1), . . . , (u|B|, t

′
|B|)}

3. for t ∈ [2n]
4. do if ct = 〈insert, u〉
5. then if |B| <

√
n

6. then B ← B ∪ {(u, t)}
7. else B ← ∅ and E ← E ∪ {(−∞, t)}
8. if ct = 〈extractmin, (u, t′)〉
9. then if t′ ≥ t or (u, t′) < f(t′) then return FAIL
10. if t′ > t|E|
11. then B ← B \ {(u, t′)}
12. E ← (E \ {(vi, ti) ∈ E : vi < u})∪{(min{v|E|, u}, t|E|)}
13. if t′ ≤ t|E|
14. then B ← ∅
15. E ← (E \ {(vi, ti) ∈ E : vi < u}) ∪ {(u, t)}
16. return PASS

Fig. 3. The Heap-Checker Algorithm

that is ε-far from being heap-like. The algorithm uses O(ε−1 log(1/δ) logn) space
and processes each term of the interaction sequence in O(ε−1 log(1/δ)) time.

As before, we use the hashing techniques described in Section 3 to ascertain
(with probability at least 1 − δ/2) whether the sequence has property (C1) and
can simply check for property (C2) by checking that the time-stamp of each
extracted value does not exceed the current time. To check for property (C3),
the algorithm stores a set of p = ln(2/δ)/ε (value, time-stamp) pairs that are
chosen at random from all the n such pairs. The hope is that one of the pairs
stored will reveal that an interaction is un-heaplike if this is indeed the case. We
make the following definition to clarify this notion.

Definition 4 (Revealing Tuples). We call a tuple (u, ta) a revealing tuple if
there exists tb, ta′ , tb′ , u′ such that, cta = 〈insert, u〉, ctb

= 〈extractmin, (u, ta)〉,
cta′ = 〈insert, u′〉, ctb′ = 〈extractmin, (u′, ta′〉, ta < tb′ < tb, and (u, ta) <
(u′, ta′)).

In the time between the insertion and the extraction of a tuple (u, ta), the
algorithm checks that no extraction returns a value u′ > u. If this ever occurs
then the sequence is not heap-like because the sequence violates property (C3).
The crux of the proof of correctness will be that interaction sequence has many
revealing tuples if it is far from being heap-like. The following lemma asserts
that this is indeed the case. The algorithm is presented in Figure 4.
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Algorithm Heap-Spot-Checker(S = c1c2 . . . c2n)
1. Use ε-biased hashing to ensure

{(u, t) : ct = 〈insert, u〉} = {(u, t) : 〈extractmin, (u, t′)〉 ∈ S}

2. Let R be a set of p = ln(2/δ)/ε values chosen randomly from the set [n]
3. Maintain P , a list of at most p (value, insertion time) tuples
4. i ← 1
5. for t ∈ [2n]
6. if ct = 〈insert, u〉 for some u
7. then if i ∈ R then P ← P ∪ {(u, t)}
8. i ← i + 1
9. if ct = 〈extractmin, (u, t′)〉 for some u
10. then if t′ > t then return FAIL
11. if ∃ (v, ta) ∈ P with (v, ta) < (u, t′) then return FAIL
12. if (u, t′) ∈ P then P ← P \ {(u, t′)}
13. return PASS

Fig. 4. The Heap-Spot-Checker Algorithm

Lemma 2. Assume S satisfies, (C1) and (C2). Then, if S is ε-far from being
heap-like, there are at least εn revealing tuples.

Proof. Assume S is ε-far from being heap-like. Let r be the number of reveal-
ing tuples in S. Consider the interaction sequence S and let tb′ be the small-
est value such that ctb′ does not satisfy the heap-condition (C), i.e., ctb′ =
〈extractmin, (u′, ta′)〉 but (u′, ta′) ≥ (u, ta) where (u, ta) = min Mtb′−1. Let tb
be such that ctb

= 〈extractmin, (u, ta)〉. But then (u, ta) is a revealing tuple.
Consider rearranging the terms of S by bringing ctb

up to position tb′ (and ad-
justing the position of the other terms and the time-stamps according. We claim
this reduces the number of revealing tuples by at least one. To see this note that
(u, ta) is no longer a revealing tuple. Furthermore, note that no other tuple has
become revealing.

We repeat this process until there are no operations that do not satisfy the
heap-condition. Note that we can do this at most r times since we decrease the
number of revealing tuples by one each time. Hence S is at most distance r from
being heap-like and therefore r ≥ εn.

Theorem 3. AlgorithmHeap-Spot-Checker PASSes heap-like sequences andFAILs
sequences that are ε−far from being heap-like with probability at least 1 − δ. It uses
O(ε−1 log(δ−1) log n) memory and runs in O(ε−1 log(δ−1)) time.

Proof. If a sequence is heap-like, the tester returns PASS because there will be
no revealing tuples. From Lemma 2, we know that if a heap is ε-far from being
heaplike, there are at least εn revealing tuples. Furthermore, if any revealing in-
sertion is sampled then the spot-checker will FAIL the sequence. The probability
that a revealing insertion is stored by the algorithm is at least,

1 − (1 − ε)ε−1 ln(2/δ) ≥ 1 − δ/2 .
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The space requirement is obvious since the algorithm samples at most
ε−1 ln(2/δ) triples. The running time per-element is also O(ε−1 ln(1/δ)) since
at each extractmin operation, at most ε−1 ln(1/δ) tuples need to be checked for
a potential violation.

5 Lower Bounds

The checker presented in Section 3 was off-line and required randomization. It
would be preferable if the checker could identify any error as soon as the error
occurred and, ideally, the checker would be deterministic. We start this section by
showing that any checker that had either of these properties would need almost
as much reliable working space as the space used to store the data structure.

Theorem 4. Any on-line checker that is correct with probability at least 3/4
requires Ω(n/ log n) working space. Any deterministic off-line checker requires
Ω(n) working space.

Proof. The proofs will be by reductions from the one-round communication com-
plexity of Prefix : {0, 1}n × {0, 1}n × [n] → {0, 1} and Equality : {0, 1}n ×
{0, 1}n → {0, 1} where

Prefix(x, y, j) =
{

1 if ∀i ∈ [j], xi = yi

0 otherwise

and Equality(x, y) = Prefix(x, y, n).
Suppose there exists an on-line checker C that correctly identifies the first error

in the operation of the heap with probability at least 3/4. Consider an instance
of Prefix where Alice has a binary string x ∈ {0, 1}n and Bob has a binary
string y ∈ {0, 1}n and an index j ∈ [n]. Then let Alice run the C on the sequence
〈insert, x1〉〈insert, x2 + 2〉 . . . 〈insert, xn + 2(n − 1)〉 and then communicate
the memory state of C to Bob. Bob instantiates C with this memory state and
continues running C on the sequence

〈extractmin, (y1, 1)〉〈extractmin, (y2, 2)〉 . . . 〈extractmin, (yn + 2(n − 1), n)〉 .

Then Prefix(x, y, j) = 1 iff the C does not fail until after the jth extractmin
operation. But it was shown by Chakribatri et al. [5] that Alice needs to send
Ω(n/ log n) bits if Bob is to determine the value of Prefix(x, y, j) with proba-
bility at least 3/4. Hence, the checker requires Ω(n/ log n) bits.

The proof for the second part of the theorem is similar: Alice has a binary
string x ∈ {0, 1}n and Bob has a binary string y ∈ {0, 1}n and wishes to learn
Equality(x, y). Alice and Bob create sequences and use a deterministic off-line
checker as before. Then Equality(x, y) = 1 iff the checker does not fail. But it
is known (e.g. Kushilevitz and Nisan [13]) that Alice needs to send a message of
length Ω(n) if Bob is to determine the value of Equality(x, y) with zero error.
Hence the memory state of the checker must require Ω(n) bits.
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In the remainder of this section we argue that any checker that operates by
storing (value, time-stamp) pairs and their extraction times must use Ω(

√
n)

space if it is to succeed with at least constant probability. This is even the case
if properties (C1) and (C2) are guaranteed. Let k =

√
n. Consider the following

probabilistic construction of an interaction sequence S.

1. For i ∈ [k], let Ri be the range [100(i− 1)k, 100ik] and let Si = {ui
1, . . . , u

i
k}

be k random elements in range Ri. We order the elements of each Si such
that,

u1
1 ≤ u1

2 ≤ . . . ≤ u1
k < u2

1 ≤ . . . ≤ uk
k .

2. Let j1, . . . , jk be random elements in the range [k].
3. Consider the sequence Sgood described as follows. First we insert Sk in a

random order and then we extract jk values from the heap. We call these
deletions the immediate deletes at stage k. We then insert Sk−1 and extract
jk−1 values. We continue in this way until we insert S1 and then we extract
all the remaining values until the heap is empty. Let Sbad be the sequence
constructed from Sgood by choosing i ∈ [k] at random and swapping the last
value extracted in the immediate deletes at stage i with the extraction of
the (ji + 1)th smallest element of Si. Call these values u and v respectively.
By construction u < v.

4. Let S = Sgood with probability 1/2 and S = Sbad otherwise.

Note that by definition Sgood is heap-like and, while Sbad satisfies (C1) and
(C2), it violates (C3). Hence the only way for an algorithm (that only stores
and compares (value, time-stamp) pairs along with their extraction times) to
recognize if S = Sbad is to either a) have (u, ·) stored in memory when (v, ·) is
extracted or b) have memory of the extraction time of (v, ·) when (u, ·) is ex-
tracted. Unfortunately since i and ji are chosen at random, unless the algorithm
can store O(k) pairs and deletion times then the probability of this is o(1).

6 Conclusions and an Open Question

In this paper we presented a checker and an spot-checker for a priority queue.
Both of are very practical and could be used as a guarantee of correct memory
behavior when attempting to utilize cheap memory that may be unreliable.

We complemented the checkers with space lower bounds that showed that
on-line checking and deterministic checking were infeasible. We also showed that
off-line, randomized checkers of a specific class, that included the checker pre-
sented, required almost as much space as that required by the checker presented.
However, it is conceivable that a better checker may exist that did not belong to
this class. We conjecture that this is not the case. Also, a general proof would
be very interesting because it appears that the such a proof is not possible with
known techniques such as a reducing from communication complexity results.
The reason for this is that consecutive subsequences of the interaction sequence
can not be generated independently if the interaction sequence is to be heap-like.
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