
Space-Efficient Sampling

Sudipto Guha
Dept. of Computer and Information Sciences

University of Pennsylvania
Philadelphia, PA 19104

Andrew McGregor
Information Theory and Applications Center

University of California
San Diego, CA 92093

Abstract

We consider the problem of estimating non-
parametric probability density functions from a
sequence of independent samples. The central
issue that we address is to what extent this can be
achieved with only limited memory. Our main
result is a space-efficient learning algorithm for
determining the probability density function of a
piecewise-linear distribution. However, the pri-
mary goal of this paper is to demonstrate the
utility of various techniques from the burgeon-
ing field of data stream processing in the context
of learning algorithms.

1 Introduction

Sample complexity is a fundamental measure of complex-
ity in many learning problems. A very general scenario is
that a learning algorithm may request a sequence of sam-
ples from some (unknown) distribution and wishes to make
some inference about the distribution from these samples.
However, as the systems we are trying to reason about are
becoming more complex, the number of samples required
is increasing significantly. Typical VC arguments yields
sampling complexities which are often quadratic in the er-
ror tolerance. Further, more often than not, we need to mul-
tiply this by sufficiently non-trivial factors which depend
on the parameters of interest, probability bounds, etc. The
storage requirement of processing a large number of sam-
ples can become expensive. However, we cannot avoid the
fact that a minimum number of samples are required from
the standpoint of information theory.

In this paper we begin a study to ameliorate the situation.
The basic underpinning of information theoretic bounds
is that a distribution is generating information at a cer-
tain “rate” and we have to collect a minimum amount of
information. The question we are interested in posing is
whether we need to retain all the samples that are gener-
ated, or can we maintain small summaries and still make

the desired inferences? In other words, can we separate the
space and sample complexities of a learning problem. This
is particularly important when we have fast data source.
For example, suppose we are sampling traffic at a router
in an attempt to monitor network traffic patterns. We can
very quickly gather a large sample; but to store the large
sample creates a significant problem as the typical moni-
toring system is only permitted a small memory footprint
and writing to disk slows the system down considerably.
Even if we were permitted a reasonably sized footprint, we
may be able to make more accurate inferences and predic-
tions if we use the space more efficiently than just storing
samples. We seek to design algorithms that are restricted
to same rate of information as is generated by the source
and sees as many (or slightly more) samples as before, but
only retains a limited memory of the samples that have been
seen. Unfortunately this is not always feasible and Kearns
et al. [27] present an example in which a function can only
be learned if the samples from which the function is de-
duced are explicitly stored. However, the example is, in
the words of the authors, a rather “artificial” function and
the goal is to be able to simulate the distribution in a spe-
cific computational model. The simulation can proceed if
we store enough samples, even though we have not under-
stood the the central process, which in their example was
computing quadratic residues. We think it is worthwhile
to investigate further, and possibly characterize, the space
of problems for which we would not have to store all the
samples.

Data Stream Model: At a high level, being able to pro-
cess data and make inferences from a sequence of sam-
ples without storing all the samples fits into the frame-
work of the data stream model [1, 24, 16]. In this model
there is a stream of m data items, in this case samples,
and we have memory that is sub-linear, typically poly-
logarithmic, in the number of data items. The algorithm
accesses these data items in a sequential order and any data
item not explicitly stored is rendered inaccessible. The data
stream model has gained significant currency in monitoring
and query processing systems in recent years, for exam-

ple, Stanford’s STREAM system [2], Berkeley’s Telegraph
system [10] and AT&T’s Gigascope system [12]. Algo-
rithms, both heuristic and those with provable guarantees,
have been developed for a range of problems including es-
timating frequency moments such as the number of distinct
values [17, 1, 5], quantile estimation [20], computing his-
tograms [22, 18], wavelet decompositions [19, 21] estimat-
ing entropy [8] and the various notions of “difference” be-
tween to streams [16, 25]. There is a rich emerging litera-
ture on the various models of data streams and their appli-
cations to large data, we direct the reader to a survey article
by Muthukrishnan [28] and Babcock et al. [4] for further
details. However, almost all the algorithms developed to
date are designed to estimate some empirical property of
the data in the stream. In contrast, our goal is to make some
inference about the source distribution of the data items on
the assumption that these data items are independent sam-
ples from some distributions. This is a significant departure
from the majority of streaming literature to date.

An important issue that arises is the potential trade-off be-
tween sample complexity and space complexity. Because
we are not able to store all the samples in the alloted space,
our algorithms potentially incur a loss of accuracy. Conse-
quently we may need to investigate a slightly larger set of
samples and thereby offset the loss of accuracy. The fol-
lowing example illustrates some of these ideas.
Example 1 (Estimating Medians). We say y is an ε-
approximate median of a one dimensional distribution with
probability density function µ if,∫ y

−∞
µ(x)dx = 1/2± ε .

It can be easily shown that the sample complexity of find-
ing an ε-approximate median is Θ(ε−2). However, it can
also be shown that there exists a constant c(δ) such that,
with probability at least 1 − δ, any element whose rank
is m/2 ± εm/2 in a set of m = c/ε2 samples is an ε-
approximate median. But there exist O(ε−1 log m)-space
algorithms [20] that, when presented with a stream of m
values will return an element whose rank is m/2 ± εm/2.
Hence the space complexity of learning an ε-approximate
median is only O(ε−1 log ε−1). However, the space com-
plexity is even lower. By capitalizing on the fact that the
samples will be in a random order, there exists an algo-
rithm [23] using O(1) space that returns a element whose
rank is m/2 ± 10

√
m ln2 m ln δ−1. Hence by increasing

the number of samples to O(ε−2 ln4 ε−1) we may decrease
the space complexity to O(1).

Related Areas: The data streams model has similarities
to the online model and competitive analysis. However, in
the online setting, space issues are not usually paramount
even if when they are part of the motivation for considering
a problem in the online setting. (Some recent work con-
siders the issue more closer however [14, 15].) In the data

stream model the main computational restriction is limited
memory. Furthermore, at every step in the online model,
some decision or prediction is being made (see [?]). This
does not have a direct analogue in the data stream model,
where there is only one decision to be made after seeing
all the data. Hence a learning algorithm in the data stream
model is essentially doing batch learning subject to certain
computational constraints. However, there is an indirect
analogue: as each data item is presented to an algorithm
in the data stream model, the algorithm is forced to make
some irrevocable decision about what information to “re-
member” (explicitly or implicitly) about the new item and
what information currently encoded in the current mem-
ory state can be “forgotten.” This raises the prospect of
rich connections existing between the areas. For example,
maybe the decision and consequent cost of deciding to re-
member a data item in the limited space available to a data
stream algorithm can be related to the request of a label in
the active learning framework.

The relationship between compressibility and learnability
is obviously of relevance to the problem of designing small-
space learning algorithms. Also, the question considered
in this paper is closely connected to the theory of sufficient
statistics for parametric problems.

Lastly, in the analysis of online algorithms and data stream
algorithms, the trend has been to analyze the “worst case
ordering.” Although such analyses are important, it is im-
mediate in a learning scenario that we are frequently deal-
ing with a “typical ordering” which can be abstracted as a
random permutation of the data items. In a sense, this is an
average case analysis where the average is not taken over
specific families of distributions but over the order in which
the data arrives. The reader may notice a connection to the
exchangeability axioms of deFinetti [13].

Our Results: Our main goal is to show how algorith-
mic techniques for processing data streams can be used to
achieve space-efficient learning. In this paper focus on es-
timating probability density functions.

For discrete distributions, over a domain [n] = {1, . . . , n},
Batu et al. [7] provide algorithms with sublinear (in n) sam-
ple complexity. These algorithms test whether two distribu-
tions are almost identical in variational distance or at least
ε-far apart. We show that the space complexity of their al-
gorithm can be improved with a small blowup in sample
complexity. Furthermore we consider approximating the
distance between two distributions

For continuous distributions, Chang and Kannan [11] con-
sidered learning continuous distributions which can be ex-
pressed succinctly, when the samples are stored and possi-
bly rearranged by an adversary. Our algorithms are closely
related to those of Chang and Kannan but we primarily con-
sider a model in which the samples are not stored and ar-

rive as a sequence of independent draws from the underly-
ing distribution. We will show that the space requirement
of learning algorithms for succinct representations can be
reduced significantly with a very small increase in the num-
ber of samples. In the process, we improve the results
proved in [11] for worst case orderings. We show that it
is possible to learn a distribution whose density function is
specified by k piecewise linear segments up to precision ε
using only Õ(k2/ε4) samples and space Õ(k). We will fo-
cus on the one dimensional case (Section 3) but comment
on the case of higher dimensional data (Section 3.3).

We conclude with a section about the importance of the
assumption that the samples in the stream are ordered ran-
domly rather than adversarially. We discuss our ideas in the
context of estimating frequency moments.

2 Notation and Preliminaries

We use the notation x = a± b to denote x ∈ [a− b, a + b].
For a density function D on the real line and a set J =
[a, b), let D(J) =

∫ b

a
D(y)dy. The notation Õ denotes the

usual order notation with poly-logarithmic factors omitted.

We quote two results which will be used in this paper. The
first result estimates the L1 difference between two fre-
quency vectors that are defined by the stream. The second
result is on finding approximate quantiles of a data stream.
Theorem 1 (Indyk [25]). Consider a stream of 2m ele-
ments X = 〈x1, . . . , x2m〉 where m elements equal (p, i)
for some i ∈ [n] and m elements equal (q, i) for some
i ∈ [n]. Assume that m = poly(n). For i ∈ [n], let

pi = |{(p, i) ∈ X}|/m and qi = |{(q, i) ∈ X}|/m .

There exists an O(ε−2 log(n) log(δ−1))-space algorithm
L1-Sketch returning T such that, with probability at least
1− δ,

(1 + ε)−1|p− q| ≤ T ≤ (1 + ε)|p− q| .

Theorem 2 (Greenwald and Khanna [20]). Consider a
stream X of m real numbers. There exists a O(ε−1 log m)-
space 1 algorithm Quantiles that constructs a data struc-
ture that encodes the relative rank of any x in X ,

rankX(x) := m−1|{y ∈ X, y ≤ x}| ,

up to additive error ε.

3 Learning Probability Density Functions

3.1 Discrete Distributions

There exists an algorithm that tests whether the L1 distance
between two discrete distributions on n points, is greater

1Throughout the paper we assume that each data item can be
stored in one unit of space.

than ε or less than ε/(4
√

n) using O(ε−4n2/3) samples [7].
Here we describe a method that takes more samples but
only uses O(ε−2 log n) space. Furthermore, our algorithm
will actually ε-additively approximate the distance. It will
be an integral part of an algorithm in the next section.

Theorem 3. Consider n-point distributions p and q. Given
a stream containing at least m∗ = 12ε−2n log(4n/δ) sam-
ples from each distribution it is possible to find an estimate
T such that, with probability at least 1− δ,

(1 + γ)−1(|p− q| − ε) ≤ T ≤ (1 + γ)(|p− q|+ ε) ,

using O(γ−2 log(n) log(δ−1)) space.

Proof. After taking m∗ samples from p define fi to be the
number of samples equal to i. This defines the empirical
distribution p̂i = fi/m∗. First we show that |p̂ − p| is
small. Note that E [fi] = m∗pi and by an application of
Chernoff bounds,

Pr [|p̂i − pi| ≤ max{εpi/2, ε/(2n)}] ≤ 2e−ε2m∗/(12n)

≤ δ/(2n) .

Hence with probability at least 1− δ/2, for all i ∈ [n],

|p̂i − pi| ≤ max{ε/(2n), εpi/2}

and so |p̂− p| ≤ ε/2.

We can prove |q̂ − q| is small in an identical way. Hence∣∣|p̂ − q̂| − |p − q|
∣∣ ≤ ε. We can approximate |p̂ − q̂| upto

a multiplicative factor of 1 + γ in O(γ−2 log(n) log(δ−1))
space using the result in Theorem 1.

One interesting corollary of this result is as follows.

Corollary 1. Let D be a member of a finite family F of
hypothesis distributions (each one over n points). Finding
an F ∈ F such that the L1 difference between D and F is
less than ε with probability at least 1−δ can be achieved in
O(log(n) log(|F|δ−1)) space and O(ε−2n log(n|F|δ−1))
samples.

This follows by setting γ = 1 and making the error proba-
bility sufficiently small such that the L1 difference between
the stream and each hypothesis distribution is accurately
estimated.

3.2 Continuous Distributions

Consider a distribution on the real line with a probability
generating function D that is k-linear, i.e. the support of D
can be partitioned into k intervals such that D is linear on
each interval. D can be viewed as a mixture of O(k) linear
distributions. We wish to find a k-linear probability density
function D̂ such that∫ ∞

−∞
|D(x)− D̂(x)|dx ≤ ε .

Algorithm Linear(J,X, β, δ)
Input: interval J = [l, u), stream of samples X from J , a approx-parameter β, confidence-parameter δ
1. η ← β/8k
2. Partition range [l, u) into [l + (i− 1)(u− l)η, l + i(u− l)η), i ∈ [1/η]
3. Using the algorithm L1-Sketch, let T be a 2-approximation to

∑
i∈[1/η] |d̃i − li| where

d̃i =
|X ∩ [l + (i− 1)(u− l)η, l + i(u− l)η)|

|X|

and li = (a(2i− 1)/2 + b)η for a and b satisfying l1 = min{2η, d̃1} and a/2 + b = 1
4. If T ≤ β/4 then accept otherwise reject

Figure 1: An Algorithm for testing if a distribution is linear or β-far from linear.

Algorithm Learning-Piecewise-Linear-Distributions(X, ε, δ)
Input: stream of samples X in range [0, 1), approx-parameter ε, confidence-parameter δ
1. Define the following set of values,

t1 ← k, t2 ← 2 and α← 1/42
dl

p ← (1− 2α)−pt1t
p−1
2 and du

p ← (1 + 2α)−pt1t
p−1
2 for p ∈ [`]

`←
⌈

log(2kt2ε
−1/t1)

log(t2/(1 + 2α))

⌉
and δ1 ← δ/(6`k)

2. Partition the stream into 2` contiguous sub-streams; X = X1,1, X1,2, X2,1, X2,2, . . . , X`,1, X`,2 where

|X1,1| = mqua(t1, α, δ1), |Xp,1| = 3mqua(t2, α, δ1)dl
p log(δ−1

1) and |Xp,2| = 3mlin(k, εdu
p/(`k), δ1)dl

p log(δ−1
1)

(recall equations Eq. 1 and 3 for the definition of mqua(·, ·, ·) and mlin(·, ·, ·).)
3. J0 ← {[0, 1)}
4. for p ∈ [`]:
5. do for J = [a0, at) ∈ Jp−1:
6. do if p = 1 then t = t1 else t = t2
7. Using Quantiles, find (ai)i∈[t−1] with rankXp,1(ai) = it−1 ± αt−1/2.
8. Let partit(J) = {[a0, a1), . . . , [at−1, at)}.
9. for J ′ ∈ partit(J) do if Linear(J ′, J ′ ∩Xp,2, εd

u
p/(2`k), δ1) rejects then Jp ← {J ′} ∪ Jp

Figure 2: An Algorithm for Learning D upto ε variational error.

Let us assume we know the range of the distribution.
Note that this can be learned with error at most ε by
taking the maximum and minimum values of the first
O(ε−1 log(1/δ)) samples. By scaling we will assume that
the range of the distribution is [0, 1).

The Linear Algorithm: An important sub-routine in the
algorithm will be a test of whether a stream of samples
from a k-linear distribution on the range J = [l, u) is lin-
ear. The algorithm is presented in Fig. 1. The algorithm
is very similar to an algorithm in [11] but our analysis will
yield improved results over the analysis in [11]. The intu-
ition behind the algorithm is to quantize the samples to 1/η
equally spaced values between l and u. Let DJ be the dis-
tribution formed by conditioning D on the interval J . The
sub-routine computes a linear distribution L that is close

to DJ if DJ is linear. If DJ is far from all linear distri-
butions then DJ will be far from L in particular. Either
way, approximating the distance between L and DJ using
L1-Sketch will allow us to test if DJ is linear.

Theorem 4 (The Linear Algorithm). Let X be a stream
consisting of

mlin(k, β, δ) := ckβ−3 log(ckβ−1δ−1) (1)

(for some sufficiently large constant c) samples drawn in-
dependently from DJ . Then, with probability 1 − δ, the
Linear algorithm will accept if DJ is linear and will reject
if DJ is not within L1 distance β of a linear distribution.
Furthermore, if DJ is linear then the algorithm determines
a linear distribution at most β from DJ . The algorithm
uses O((log(1/β) + log k) log(1/δ)) space.

Proof. Without loss of generality we may assume that the
range of J is [l, u) = [0, 1). Let L be a linear probability
density function on the range [0, 1) of the form ay+b where
a and b will be determined shortly.

Let η = β/(8k). Let di =
∫ iη

(i−1)η
DJ(y)dy and

li =
∫ iη

(i−1)η

L(y)dy = (a(2i− 1)/2 + b)η

where a and b are determined by l1 = min{2η, d̃1} and
a/2 + b = 1 (recall from Fig. 1 that d̃i is the probability
mass observed in the interval [(i− 1)η, iη)). First note that
li ≤ 2η for i ∈ [1/η]. Then,∫ iη

(i−1)η

|DJ(y)− L(y)|dy ≤ li + di

≤ 4η + |di − li|

and
∫ iη

(i−1)η
|DJ(y)−L(y)|dy ≥ |di− li|. Because DJ has

at most k linear segments there are at most k values of i

such that
∫ iη

(i−1)η
|DJ(y)−L(y)|dy 6= |li− di|. Therefore,∫ 1

0

|DJ(y)− L(y)|dy ≤ β/2 +
∑

i∈[1/η]

|di − li| . (2)

At this point we consider the discrete distributions
(d1, . . . , d1/η) and (l1, . . . , l1/η). Appealing to Theorem
3, it is possible to approximate

∑
i∈[1/η] |di − li| up to

an additive term of ε = β/10 and multiplicative term
of γ = 1/10 with probability at least 1 − δ/10 using
O(log(1/δ) log(β−2η−1)) space. Therefore, the estimate
T satisfies,

10
11

∑
|di − li| −

β

11
≤ T ≤ 11

10

∑
|di − li|+

11β

100
.

Combining this with Eq. 2 we get that,

10
11

∫ 1

0

|DJ(y)− L(y)|dy − 6β

11
≤ T

≤ 11
10

∫ 1

0

|DJ(y)− L(y)|dy +
11β

100
.

If DJ is β-far from all linear density functions then, DJ

is β-far from L. Hence T ≥ 4β/11. Now suppose DJ is
linear. By an application of the Chernoff-Hoeffding bounds
we know that with probability at least 1−δ/10, |d̃1−d1| <
βη/10 and therefore

∫ 1

0
|DJ(y) − L(y)|dy ≤ β/10. In

this case T ≤ 22β/100. Hence Linear accepts DJ if it is
linear.

The Learning Algorithm: Our algorithm uses the same
template as an algorithm of Chang and Kannan [11]. The
algorithm operates in ` phases. Each phase p generates a
set of intervals Jp. Intuitively these intervals are those on

which D does not appear to be close to linear. The union
of these intervals is a subset of the union of intervals in
Jp−1 where J0 contains only one interval, the range of the
distribution [0, 1). In the first phase of the algorithm par-
titions [0, 1) into t1 intervals of roughly equal probability
mass using the algorithm Quantiles. Each of these inter-
vals are tested in parallel to see if the distribution is linear
when restricted to that interval. This step uses the algo-
rithm Linear, given earlier. In subsequent phases, intervals
that do not appear to be linear are further subdivided into
t2 intervals of roughly equal probability mass. Each of the
sub-intervals are tested and, if they are not linear, are fur-
ther sub-divided. This process continues for ` phases where
` will be a function of t1 and t2. At the end of the `-th phase
there will be at most k sub-intervals that remain and appear
not to be linear. However these sub-intervals will contain
so little mass that approximating then by the uniform dis-
tribution will not contribute significantly to the error.

The algorithm is given in Fig. 2. In the streaming model
each iteration of Lines 5 and 9 are performed in paral-
lel. Note that the algorithm potentially finds 2`k intervals
upon which the distribution is linear. Given these, a good
k-linear representation D̂, can be found by dynamic pro-
gramming.

Lemma 2. Let X be set of

mqua(1/γ, α, δ) := cγ−2α−2 log(cδ−1γ−1) (3)

(for some sufficiently large constant c) samples from a dis-
tribution D and, for i ∈ [1/γ], let xi ∈ X be an element
whose relative rank (with respect to X) is iγ±γα/2. Then,
with probability at least 1− δ, for all i ∈ [1/γ], xi has rel-
ative rank (with respect to D) iγ ± γα.

Proof. Let a and b be such that
∫ a

−∞ D(x)dx = γ − γα

and
∫ b

−∞ D(x)dx = γ + γα. Consider the set X of n
samples. Let Ya (Yb) be the number of elements in X that
are less (greater) than a (b). Then the probability that an
element whose relative rank (with respect to X) is in the
range [γ − αγ/2, γ + αγ/2] does not have relative rank
(with respect to D) in the range [γ−γα, γ+γα] is bounded
above by,

Pr
[
Ya > (γ − αγ

2
)m
]

+ Pr
[
Yb > (1− γ − αγ

2
)m
]

≤ exp
(
−α2γ2m

12(γ − αγ)

)
+ exp

(
−α2γ2m

12(1− γ − αγ)

)
≤ 2 exp(−mα2γ2/12) .

Setting m = 12γ−2α−2 log(δ/(2γ)) ensures that this
probability is less than δγ. The lemma follows by the union
bound.

We now prove the main properties of the algorithm.

Lemma 3. With probability ≥ 1− δ, for all p ∈ [`],

1. |{Jp}| ≤ k and for each J ∈ Jp, 1
dl

p
≤ D(J) ≤ 1

du
p

.

2. For each J ∈ Jp, J
′ ∈ partit(J), in Line 9 the call to

Linear “succeeds”, i.e., accepts if DJ′ is linear and
rejects if D′

J is εdu
p/(2`k)-far from linear.

Proof. The proof is by induction on p. Clearly |{J1}| ≤ k.
Since |X1,1 ∩ J | = mqua(t1, α, δ1) for all J ∈ {J0}, by
Lemma 2,

∀J ∈ J1,
1− 2α

t1
≤ D(J) ≤ 1 + 2α

t1

with probability at least 1− δ1. Appealing to the Chernoff
bound and union bound, with probability at least 1− δ1k,

∀J ∈ J0, J
′ ∈ partit(J), |X1,2∩J ′| ≥ mlin

(
k,

εdu
1

2`k
, δ1

)
.

Hence, by Theorem 4, with probability 1 − δ1k, each call
to Linear in the first phase succeeds.

Assume the conditions hold for phase p − 1. Appealing
to the Chernoff bound and union bound, with probability at
least 1−δ1k, |Xp,1∩J | ≥ mqua(t2, α, δ1) for all J ∈ Jp−1.
Hence by Lemma 2, ∀J ∈ Jp−1, J

′ ∈ partit(J),

1− 2α

t2
D(J) ≤ D(J ′) ≤ 1 + 2α

t2
D(J)

with probability at least 1−kδ1. Similarly, with probability
at least 1− 2δ1k,

∀J ∈ Jp−1, J
′ ∈ partit(J), |X1,2∩J ′| ≥ mlin

(
k,

εdu
p

2`k
, δ1

)
.

Hence, by Theorem 4, with probability 1− 2δ1k, each call
to Linear in the p-th phase succeeds.

Hence, with probability at least 1 − 6k`δ1 = 1 − δ the
conditions hold for all p ∈ [`].

Theorem 5 (The Learning-Piecewise-Linear-Distributions
Algorithm). With probability at least 1−δ, on the assump-
tion that m = Ω(k2ε−4) it is possible to compute an ap-
proximation to D within L1 distances ε using a single pass
and Õ(k) space.

Proof. Assume that the conditions in Lemma 3 hold.
When Linear determines that an interval is close enough
to linear in level p there is the potential of incurring
(εdu

p/(2`k))/du
p = ε/(2`k) error. This can happen to at

most k` intervals and hence contributes at most ε/2 error.

The only other source of errors is the fact that there might
be some intervals remaining at the last phase when p = `.
However the probability mass in each interval is at most
ε/(2k). There will be at most k of these intervals and hence
the error incurred in this way is at most ε/2.

The space complexity of the algorithm is Õ(k) because at
most max{t1|{J1}|, t2|{Jp}|} ≤ 2k instances of Linear
are run in parallel. The sample complexity is (see Eq. 1,
Eq. 3, and Fig. 2 for the definitions),∑

p∈[`]

(|Xp,1|+ |Xp,2|)

≤ Õ

(
dl

` + max
p∈[`]

dl
pk

(εdu
p/k)3

)

≤ Õ

(
kε−1

(
1 + 2α

1− 2α

)`

+ k2ε−3

(
1 + 2α

1− 2α

)`
)

≤ Õ(k2ε−4) .

Remark: The above algorithm can be adapted for the
case where the stream of samples is stored and is ordered
adversarially with the proviso that the algorithm may make
P = 2` passes over the samples and use Õ(kε−1/`) space
(` can be chosen depending on the relative cost of space
and passes.) This is easy to observe; reconsider the algo-
rithm in Figure 2. Assume P = 2` and set t1 = 10kε−1/`

and t2 = 10ε−1/`. Each phase can be simulated in two
passes. Thus P = 2` passes are sufficient. This yields the
following theorem.
Theorem 6. With probability at least 1 − δ, if m =
Ω̃((1.25)``k2ε−4), then it is possible to compute an ap-
proximation to D within L1 distances ε using 2` passes
and Õ(kε−1/`) space.

As such it is a strict improvement over the result in [11].
The basis for this improvement is primarily a tighter anal-
ysis (particularly in Theorem 4) and the use of the quantile
estimation algorithm of [20]. Note that the authors of [11]
show that O(k2/ε2) samples (and space) is sufficient for
one pass, but there is a significant blowup in the sample
complexity in extending the algorithm to multiple passes.
In our analysis this increase is much smaller, as well as the
space complexity is better, which is the central point of the
paper. A comparison is shown in Table 1.

Prior Work [11] This Work

Length Õ(1.25``k6ε−6) Õ(1.25``k2ε−4) Õ(k2ε−4)

Space Õ(k3ε−2/`) Õ(kε−1/`) Õ(k)

Passes 2` 2` 1

Order Adversarial Adversarial Random

Table 1: Comparison of Results.

3.3 High-Dimensional Generalizations

Chang and Kannan [11] show how the one dimensional
result generalizes to two dimensions; and our algorithms

will give similar (improved) results. However the more
interesting case is high-dimensional data. In this section
we outline a streaming algorithm for learning a mixture of
spherically-symmetric Gaussians in Rd. Arora and Kannan
[3, Section 3.4] prove that there exists a constant c such
that if t = c log |S|/δ and the Gaussians are t-separated
([3, Defn. 3]) then for a sample S, all the points belonging
to the same Gaussian cluster Ci are within

√
2(1+3t/

√
d)

times the radius with probability at least 1− δ. In contrast,
they show that the points belonging to separate clusters
are separated by at least

√
2(1 + 6t/

√
d) times the radius.

This immediately gives a streaming algorithm, namely take
the first point, say x, and compute the smallest distance
from this point. If we choose the minimum over the next
c1kε−1 log δ−1 points then we are guaranteed that the clos-
est point belongs to the same cluster as the chosen point
(because we may assume that the weight of the smallest
cluster is at least ε/k). We now consider shells of radius
increasing by a factor of (1+ t/

√
d) starting from this min-

imum distance centered around x. The number of shells
we would have to consider is constant because the min-
imum pairwise distance cannot be smaller by more than
a factor (1 + 3t/

√
d) [3]. Now if we consider the next

c2kε−1 log δ−1 points we would have determined the shell
that separates the cluster containing x and the rest of the
points. At this point we need to (1) validate that if we
choose all the points within the shell we get a Gaussian and
(2) estimate the means of the Gaussian. If we had O(ε−2)
points from the cluster this is straightforward. But then
reading the next c3kε−3 log δ−1 points achieves this. Note
that we do not have to store these points, but only compute
the mean and the variance. At this point we have identified
one cluster, we repeat this process and rely on the fact that
the points in the other cluster are closer to points in that
cluster than this current cluster found. This sets up a sim-
ple pruning condition. Thus over the k clusters we require
O(k2ε−3 log δ−1) samples. The space complexity is Õ(k).
Note that by the union bound, if we set δ = Θ(δ′ε/k) the
procedure succeeds with probability at least 1− δ′.

4 Importance of Random Order

One of the most important aspects of processing a stream
of samples is that, as opposed to the usual assumption in
the data stream model, the data elements arrive in a ran-
dom order. Many properties of a stream are provably hard
to estimate in small space when the order of the stream is
chosen adversarially. This begs the question whether such
properties are hard to estimate because a small space algo-
rithm is necessarily forgetful or because an adversary or-
ders the data to create confusion. While we have no defini-
tive answer to this question, it does seem that relaxing the
assumption that there exists an adversary ordering the data
does significantly increase the range of problems that can
be tackled in small space. Estimating Frequency Moments

[1, 26], a classic problem from the literature in the stream-
ing model, illustrates this point. The k-th frequency mo-
ment of a discrete distribution p on n points is defined as
Fk =

∑
i∈[n] p

k
i . The following theorem demonstrates the

enormous power achieved by streaming points in a random
order rather than an adversarial order.

Theorem 7. It is possible to (1 + ε)-approximate Fk in a
randomly ordered stream with Õ((n/t)1−2/k) space when
the stream length is m = Ω(ntk2ε−2−1/k log(ntδ−1)). In
particular, if m = Ω(n2k2ε−2−1/k log(ntδ−1)) then the
space only depends on n polylogarithmically. If the stream
was ordered adversarially, the same estimation requires
Ω(n1−2/k) space.

Proof. The lower bound is a generalization of the results
in [9]. The algorithm is a simple “serialization” of [26] as
follows. For i ∈ [t], let p̂j be the fraction of occurrences of
j among the items occurring between position 1+(i−1)m′

and im′ where

m′ = Θ(nk2(ln(1 + ε/10))−2ε−1/k log(2nδ−1)) .

Use [26] to compute Bi, a (1+ε/3) multiplicative estimate
to Ai =

∑in/t
j=1+(i−1)n/t p̂k

j with probability at least 1 −
δ/2. Return

∑
i∈[t] Bi. Note that this sum can be computed

incrementally rather than by storing each Bi for i ∈ [t].

We will show that
∑

i∈[t] Ai is a (1+ε/3) approximation to
Fk with probability at least 1−δ/2. Subsequently it will be
clear that

∑
i∈[t] Bi is a (1+ε/3)2 ≤ (1+ε) approximation

(assuming ε < 1/4) with probability at least 1− δ. By the
Chernoff bound and the union bound, with probability at
least 1− δ/2,

∀j ∈ [n], |pj−p̂j | ≤ ln
(
1 +

ε

10

)
k−1 max

(
pj ,

(ε/10)1/k

n

)
.

Therefore, with probability at least 1− δ/2,

Fk − n1−kε/10
(1 + ε/10)

≤
∑
i∈[t]

Ai ≤ (1 + ε/10) (Fk+n1−kε/10) .

By convexity, Fk ≥
∑

i∈[n](1/n)k = n1−k and therefore,

Fk(1 + ε/10)−2 ≤
∑
i∈[t]

Ai ≤ Fk(1 + ε/10)2 .

Hence
∑

i∈[t] Ai is a (1 + ε/3) approximation.

It is worth remarking that [6] showed that any streaming al-
gorithm that merely samples (possibly adaptively) from the
stream and results an (1 + ε)-multiplicative-approximation
of Fk from this sample with probability at least 1− δ, must
take at least O(n1−1/kε−1/k log(δ−1)) samples.

5 Conclusions

We presented an algorithm for estimating probability den-
sity functions given a sequence of independent samples
from an unknown distribution. The novelty of our algo-
rithm was that the samples did not need to be stored and
that the algorithm had very small space-complexity. This
was achieved using algorithmic techniques developed for
processing data streams. Unfortunately, in order to re-
duce the space-complexity, the algorithm needed to process
more samples than that required had there been no compu-
tational restriction. A natural open question is to what ex-
tent it is possible to reduce the space-complexity without
increasing the number of samples. More generally, what
other types of learning algorithms can be implemented un-
der the constraints of the data stream model?

References
[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity

of approximating the frequency moments. Journal of Com-
puter and System Sciences, 58(1):137–147, 1999.

[2] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Mot-
wani, I. Nishizawa, U. Srivastava, D. Thomas, R. Varma,
and J. Widom. STREAM: The Stanford stream data man-
ager. IEEE Data Eng. Bull., 26(1):19–26, 2003.

[3] S. Arora and R. Kannan. Learning mixtures of arbitrary
gaussians. In ACM Symposium on Theory of Computing,
pages 247–257, 2001.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database
Systems, pages 1–16, 2002.

[5] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and
L. Trevisan. Counting distinct elements in a data stream.
In Proc. 6th International Workshop on Randomization and
Approximation Techniques in Computer Science, pages 1–
10, 2002.

[6] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Sampling al-
gorithms: lower bounds and applications. ACM Symposium
on Theory of Computing, pages 266–275, 2001.

[7] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and
P. White. Testing that distributions are close. In IEEE Sym-
posium on Foundations of Computer Science, pages 259–
269, 2000.

[8] A. Chakrabarti, G. Cormode, and A. McGregor. A near-
optimal algorithm for computing the entropy of a stream. In
ACM-SIAM Symposium on Discrete Algorithms, 2007.

[9] A. Chakrabarti, S. Khot, and X. Sun. Near-optimal lower
bounds on the multi-party communication complexity of set
disjointness. In IEEE Conference on Computational Com-
plexity, pages 107–117, 2003.

[10] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. A. Shah. Tele-
graphCQ: Continuous dataflow processing for an uncertain
world. In CIDR, 2003.

[11] K. L. Chang and R. Kannan. The space complexity of pass-
efficient algorithms for clustering. In ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 1157–1166, 2006.

[12] C. D. Cranor, T. Johnson, O. Spatscheck, and
V. Shkapenyuk. Gigascope: A stream database for
network applications. In ACM SIGMOD International
Conference on Management of Data, pages 647–651, 2003.

[13] B. de Finetti. La prévision: ses lois logiques, ses sources
subjectives. Annales de l’Institut Henri Poincaré, 1937.

[14] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The forgetron:
A kernel-based perceptron on a fixed budget. In NIPS, 2005.

[15] O. Dekel and Y. Singer. Support vector machines on a bud-
get. In NIPS, 2006.

[16] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan.
An approximate L1 difference algorithm for massive data
streams. SIAM Journal on Computing, 32(1):131–151,
2002.

[17] P. Flajolet and G. N. Martin. Probabilistic counting algo-
rithms for data base applications. J. Comput. Syst. Sci.,
31(2):182–209, 1985.

[18] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukr-
ishnan, and M. Strauss. Fast, small-space algorithms for
approximate histogram maintenance. In ACM Symposium
on Theory of Computing, pages 389–398, 2002.

[19] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
Surfing wavelets on streams: One-pass summaries for ap-
proximate aggregate queries. In VLDB, pages 79–88, 2001.

[20] M. Greenwald and S. Khanna. Space-efficient online com-
putation of quantile summaries. In ACM SIGMOD Inter-
national Conference on Management of Data, pages 58–66,
2001.

[21] S. Guha and B. Harb. Approximation algorithms for wavelet
transform coding of data streams. In ACM-SIAM Symposium
on Discrete Algorithms, pages 698–707, 2006.

[22] S. Guha, N. Koudas, and K. Shim. Approximation and
streaming algorithms for histogram construction problems.
ACM Trans. Database Syst., 31(1):396–438, 2006.

[23] S. Guha and A. McGregor. Approximate quantiles and the
order of the stream. In ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 273–
279, 2006.

[24] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Com-
puting on data streams. External memory algorithms, pages
107–118, 1999.

[25] P. Indyk. Stable distributions, pseudorandom generators,
embeddings and data stream computation. IEEE Symposium
on Foundations of Computer Science, pages 189–197, 2000.

[26] P. Indyk and D. P. Woodruff. Optimal approximations of the
frequency moments of data streams. In ACM Symposium on
Theory of Computing, pages 202–208, 2005.

[27] M. J. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E.
Schapire, and L. Sellie. On the learnability of discrete dis-
tributions. In ACM Symposium on Theory of Computing,
pages 273–282, 1994.

[28] S. Muthukrishnan. Data streams: Algorithms and applica-
tions. Now Publishers, 2006.

