
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 12, DECEMBER 2005 4237

Distance Distribution of Binary Codes and the Error
Probability of Decoding

Alexander Barg, Senior Member, IEEE, and Andrew McGregor

Abstract—We address the problem of bounding below the
probability of error under maximum-likelihood decoding of a
binary code with a known distance distribution used on a binary-
symmetric channel (BSC). An improved upper bound is given
for the maximum attainable exponent of this probability (the
reliability function of the channel). In particular, we prove that
the “random coding exponent” is the true value of the channel
reliability for codes rate in some interval immediately below the
critical rate of the channel. An analogous result is obtained for the
Gaussian channel.

Index Terms—Binary-symmetric channel (BSC), channel relia-
bility, distance distribution, union bound.

I. INTRODUCTION

WE consider transmission with binary codes of length
over a binary-symmetric channel with crossover prob-

ability . Let be the -dimensional Hamming
space. Let be a code of rate and let

be the transmitted vector. Under this condition the prob-
ability that a vector is received equals

where is the Hamming weight. For a given set , let
.

Let be the decision region of maximum-likelihood
decoding for the codevector . Given that is transmitted,
the error probability of maximum-likelihood decoding equals

. The (average) error probability of
decoding for the code equals

Computing this probability directly is prohibitively difficult in
most nontrivial examples, therefore, there has been much in-
terest in bounding it from both sides. In what follows, we focus
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on lower bounds on . Recent papers devoted to this
problem include [2], [7], [9], [17], [20], [21], [25].

The problem that we are considering is given the distance
distribution of the code to derive a lower bound on .
Although there have been other attempts to bound below,
the approach via the distance distribution seems to offer a right
combination of detailed analysis and tractability. Under this ap-
proach, one usually begins with computing the probability that
the received vector is closer to some code vector than to

. We then restrict our attention to when is some specific
value away from . Say there are such code vectors.
One would like then to bound the probability below by
the sum of probabilities of the events for
all the vectors ; the problem is however that these events
are not disjoint. A simple way of dealing with this problem was
suggested in Kounias [18]; papers [2], [21] essentially rely on
a simplified version of the Kounias bound. Another method is
based on de Caen’s inequality [11] and its refinements in [19],
[9]. Lower bounds on the error probability using this method for
codes on the binary-symmetric channel (BSC) and the additive
white Gaussian noise (AWGN) channel are derived in [9], [17],
[20]. A third method was suggested in Burnashev [6] and used
in [7] to refine the result of [2] on the reliability of the AWGN
channel. In this paper, we adapt this method to the BSC case and
derive a new asymptotic lower bound on the error probability of
binary codes. The modification is not entirely straightforward
and is explained in detail below.

A. Error Exponents

Optimizing over all codes of a given rate has re-
ceived much attention in information and coding theory. It is
known that for the best possible codes this probability declines
as an exponential function of the code length. Let us define the
largest attainable exponent of the error probability

also called the error exponent or the reliability of the channel.
The problem of bounding the function for the binary-
symmetric and other communication channels was one of the
central problems of information theory in its first decades. In
particular, the standard textbooks [4], [10], [14], [28] all devote
considerable attention to properties and bounds for channel re-
liability. There are a variety of methods for deriving upper and
lower estimates of . The most successful approaches to
lower bounds are averaging over a suitably chosen ensemble of
codes (for instance, all binary codes or all linear codes) [14]
and relying on the distance distribution of an average code in
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a code ensemble [13], [24]. Recently, the distance distribution
approach was the subject of several papers because of the re-
newed interest in performance estimates of specific code fami-
lies (rather than ensemble average estimates).

The problem of upper bounds on the error exponent
also has a long history. Several important ideas in this problem
were suggested in the paper [27]. The nature of the upper bounds
is different for low values of and for close to capacity. For
low code rates, paper [27] suggested to bound the error proba-
bility below by the probability of making an error to a closest
neighbor of the transmitted codeword.

B. Notation and Previous Results

Since our main result is a new bound on the error exponent
, in this section we overview the known bounds on this

function. It should be noted that the method that follows applies
to the analysis of any code sequence for which the distance dis-
tribution is known or can be estimated.

For notational convenience, we shall write for the Ham-
ming distance between two codewords and . We shall write

for the distance between a codeword and an arbitrary
word . Let and let

be the local and average distance distributions of the
code of size .

Let be the binary entropy and its inverse
function. Denote by the relative
Gilbert–Varshamov distance corresponding to and by

the information divergence between two binomial distributions
(the base of logarithms is throughout). Let

(1)

. Throughout , ,
and . Let .

For a given , define

The function

is called the sphere-packing exponent; it gives an upper bound
on which is valid for all code rates
and tight for code rates , where the value

is called the critical rate of the channel. For low rates, the
best known results for a long time were given by the following
theorem.

Theorem 1:

(2)

Here the lower bound is Gallager’s “expurgation exponent”
[13] obtained for instance for a sequence of linear codes whose
minimum distance meets the Gilbert–Varshamov bound. The
upper bound in (2) is due to [22]. It is obtained by substituting

the result of [23] into the “minimum-distance bound” of [27].
The function is the linear programming bound of
[23] on the relative distance of codes of rate defined as

where

and where satisfies . Note that Theorem 1
implies that .

Let

Let be the inverse function of

Derivation of improved upper bounds on is based on
the following inequality for the error probability condi-
tioned on transmission of the codeword . For every let

be an arbitrary subset. Let be an arbitrary subcode of
such that . Then

(3)
Let us take to be the set of codeword neighbors of at
distance from it. We have, for any

where are any codewords such this
, where is the code’s minimum distance, and

. Summing both sides of the last inequality on from
to , we obtain the estimate of in the form

(4)
Recall from [27] that a straight-line segment that connects a

point on with a point on any other upper bound on
is also a valid upper bound on . This

result is called the straight-line principle. It is usually applied
in situations when there is a -convex upper bound on
and results into the straight-line segment given by the common
tangent to this bound and the curve .

THE RESULTS OF [21]. The upper bound in (2) was improved
in [21] by relying on estimates of the distance distribution of
the code. The proof in [21] is composed of two steps. The first
part is bounding the distance distribution of codes by a new ap-
plication of the linear programming method (similar ideas were
independently developed in [1]). The second step is using (3) to
derive a bound on the error exponent. The estimate of the dis-
tance distribution of codes of [21] has the following form.
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Theorem 2: [21] For any family of codes of sufficiently large
length and rate , any , and any that satisfies

, there exists a value
such that , where

(5)

and where

(6)

where

is the exponent of the Hahn polynomial .

The bound on in [21] has the following form.

Theorem 3:

(7)

where

(8)
; is defined

in (1), and where

(9)

Remark: In [21], optimization in (7) involves taking a max-
imum on and . However, Theorem 2 is valid for any

, and therefore, a better
bound is generally obtained by taking a minimum rather than a
maximum. Throughout the rest of the paper we will assume that

. This assumption simplifies the analysis
somewhat and does not seem to affect the final results.

Analysis of the inequality (4) together with some additional
ideas gives rise to Theorem 3 and its improvements. We begin
with deriving a simplified form of the bound (7) for low rates .

C. A Study of the Bound (7)

By omitting the term in (8), the expression for can
be written as

As will be seen later, for low rates , the first term under the
maximum is the greater one. For this reason, we begin with the
study of the first term for low rates. Since this term does not
depend on , we have

Lemma 4: Let , where
. Then

(10)

Proof: In the expression let us take
equal to the value that furnishes the minimum in the definition

of . Under the assumptions of the lemma, . In this
case, it is known that and the expression
simplifies as follows. The integral in (6) upon a substitution

takes the form

Let

It is known [16] that in the region ,
this function gives the exponent of the Krawtchouk polynomial

, i.e.,

Therefore, we obtain the identity .
Substituting this in we obtain the following:

Let . From the equation we
find that the maximizing argument satisfies

where . This equation has a real zero if

and then the maximizing argument is
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Recall that . We shall
show that

(11)

There are two cases.

i) Let . In this case, the stationary point is
exactly at the right end of the interval, i.e.,

. To show this, compute

and substituting this into we find

ii) Now consider code rates . Observe that
decreases as decreases, and therefore

also decreases with . On the other hand, increases
as falls, so in this case , and has no zeros
for . It is positive throughout because

. This again proves (11).

Hence, increases on for all , at-
taining the maximum at the right end of this segment. Substi-
tuting into this expression, we obtain the claim
of the lemma.

For , the minimum in the definition of is given
by some . Fixing equal to this value we observe that
the function depends only on . Therefore, the behavior of
the function can be studied numerically
(for instance, using Mathematica). We observe that this function
increases on for as long as . For

, the maximum of on is attained
for . Substituting into , we again arrive at
the expression (10).

To summarize, the bound (7) implies the following: let
, then

(12)

Next we argue that for low code rates, the maximum in this
expression is given by the term . This is
difficult to verify analytically because of the complicated form
of the term ; however, this can be verified numerically for any
given value of the probability . More precisely, there exists a
value of the rate , a function of , such that for

, the first term is (12) is greater than the second one.
As a result, we obtain the following proposition.

Proposition 5: Let . Then

(13)

(14)

The example of is shown in Fig. 1.
Some comments are in order. The first term on the right-hand

side of (3) is the “reverse union bound” which suggests to esti-
mate the error rate by a sum of pairwise error probabili-
ties. An interesting fact is that for large and for certain values
of and the union bound argument gives the correct value of
the error exponent. From (13) we can see this and more, namely,
that for large and code rates below , the error exponent is
given by the sum of pairwise probabilities of incorrect decoding
to a codeword at the minimum distance of the code from the
transmitted codeword. (Note that the relative minimum distance
of is bounded above by .) The improvement of (13) over the
upper bound in (2) is in that it takes into account decoding errors
to all neighbors of the transmitted vector
as opposed to just one such neighbor in (2). The main question
addressed below is to determine the range of code rates where
the union bound and (13) is true and to refine the inequality (3)
for those rates where the union bound does not apply.

In general terms, the answer to this question for large is
given by (4). The bound is valid as long
as

(15)

In our analysis, we use the estimation method of [6], [7]
which was originally developed for codes on the sphere in .
In the following, we modify it for use in the Hamming space and
improve the estimate (7). The analysis of the relation between
the distance distribution and for the Hamming space
turns out to be more difficult than for . One of the issues to
be addressed is the choice of decision regions in the estimation
process. We suggest one choice which while still being tractable
leads to improving the estimates.

The results of the present paper are twofold: first, we expand
the applicability limits of the bound (13). Outside these limits,
we will derive a bound on which is better than the result
obtained from Theorem 3.

II. A NEW BOUND

A. Statement of the Result

Let us state a lower bound for the error probability of max-
immum-likelihood decoding of an arbitrary sequence of codes
with a given distance distribution.

Theorem 6: Let be a sequence of codes with rate ,
relative distance , and distance distribution satisfying

, where for all . The error prob-
ability of maximum-likelihood decoding of these codes satisfies

, where

(16)

where and are defined as in (1) and (9), respectively.

Theorem 6 will be proved later in this section. We first dis-
cuss its application to the problem of bounding . Let
us specify this theorem for the distance distribution defined by
Theorem 2. Let have the same meaning as in (7).
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Fig. 1. Bounds on the error exponent for the BSC with p = 0:01. Notation
explained in the text.

Recall that by Theorem 2, for any family of codes of rate and
every there exists an such that
the average number of neighbors at distance can be bounded
as . Let us substitute this distance dis-
tribution in (16) and perform optimization. By Lemma 4 and the
argument after it, for low values of we conclude that the func-
tion is bounded above by (10). Let be the value of
the rate, a function of , for which the maximum shifts from the
first term in (16) to the second one. As in the previous section,
we arrive at the following theorem.

Theorem 7: Let . Then

(17)

(18)

where and are defined as in (1) and (9), respectively.

Example: (Explanation of Fig. 1) To show that (16) improves
over (7), let . Then from (13)–(14) we obtain

. From (16) we find that the bound (13) is valid for
. Note also that , .

See Fig. 1 for a graph of the known error bounds including our
new bounds. In the figure, curve a is a combination of the best
lower bounds on the error exponent. Curve b is the union bound
of (13), (17). Curve c is the upper bound (14) given by Theorem
3, Proposition 5. Curve d is the upper bound (18) given by The-
orem 6. Curve e is the sphere-packing bound .

The improvement of Theorem 6 over Theorem 3 is in the
extended region where the union bound a is applicable and in a
better bound for greater values of the rate .

Note that is better than b from ; the
straight-line bound (not shown) further improves the results.

Another set of examples together with some implications of
Theorems 6 and 7 will be given in Section III.

Remark: Experience leads us to believe that the maximums
in the equation are achieved for which would give
us the bound

.

However, this has proved too difficult to verify analytically due
to the cubic condition for in the maximization term in the
definition of and other computational problems.

B. Preview of the Proof

The basic idea of the estimation method is from [7] although
we make some modifications due to the fact that the observation
space is discrete. To prove this theorem, we start by choosing a
collection of sets , each corresponding to a pair of code-
words , such that is outside the decoding region of

and

for all

Then we can bound the error probability in terms of these sets
using the following inequality:

One of the main questions in applying this inequality and further
ideas of [7] is the choice of the sets . We construct the ’s
via sets , where

See Fig. 2 for an illustration of the bounding process. To
create the ’s from the ’s we randomly “prune” these sets
so that the disjointness condition is satisfied. To accomplish this
pruning we define a set of codewords for
each codeword . Then, as in [7], for each , we randomly
index by all the codewords that are a distance from .
Define sets

We then get our ’s as follows:

These satisfy the disjointness condition: assume there exists
. Then and gives that

. However, we also have and
and this gives that which is a contradiction.

Instead of calculating directly we apply a “reverse
union bound” to get

(19)

where . Note that this inequality
is the bound (3) with our particular choice of . Using the
last inequality, we perform a recursive procedure which shows
the existence of a subcode with large error probability
(among the codewords of ). This gives the claimed lower
bound on .

C. A Proof of Theorem 6

The error probability for two codewords is given by the fol-
lowing well-known lemma.
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Fig. 2. The bounding process. (a) A codeword x , neighboring codewords, and the Voronoi region D(x ). (b) We restrict our attention to only those neighbors
that are a distance w away. By only worrying that the received word y is closer to this subset of the neighbors, we upper-bound (D(x )). (c) For each neighbor
x still under consideration, let X be some set of words that are closer to x than they are to x . (d) We “prune” the X ’s to construct disjoint Y ’s with the
required properties.

Lemma 8: For all codewords and that are a distance
apart

where is defined in (1).

Lemma 9: For all codewords , , and such that
and we have

where is defined in (9).
Proof: First consider

Then since

substituting for from the previous lemma and taking
the appropriate limits gives the required result.

The following properties of can be verified numeri-
cally.

Lemma 10: If , then . If
, then .

Recall that the indexing of pairs to create the sets is
done randomly. By linearity of expectation there exists an in-
dexing such that

(20)

This equation will be the basis for our new bound on the error ex-
ponent but before deriving this bound we have two final prelimi-
naries. First, we will refer to all codewords that are a distance

from as -neighbors of . (Recall that we defined to

be the number of codewords in the -neighborhood of .) Sec-
ondly, we shall say that a subset of codewords is of sub-
stantial size (with respect to ) if its size has the same exponen-
tial order as the size of . Note that for a family of codes
where has length and rate , we can consider , a
family of codes where is a substantially sized subcode of ,
when trying to bound the error exponent since

and

We now proceed with a case analysis dependent on the values
of . Roughly speaking, when is typically less than a
half, a union bound argument will be used to bound the error
probability. When is typically larger than a half, a more
complicated analysis will be required. Before we describe the
two cases in our analysis we need the following two lemmas.

Lemma 11: [8] Suppose that there are balls of different
colors. The number of balls of a color is . We are also given
numbers . Suppose that all balls are enumerated
randomly by different integers from up to . Let be a random
integer between and and let be the number of balls of
color with numbers between and . Then

Recall that, for a given pair, is a random variable.
We then can prove the following lemma.

Lemma 12: Let . With respect to the random in-
dexing of all the pairs (where is any codeword such
that ) we have

where
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and

Proof:

Let there be a ball for each codeword in . Consider a
ball from to have color . Let and

. We have

By the previous lemma we have

if the right-hand side is less than one. The lemma then follows
from the fact that .

In the analysis that leads to Theorem 6, we face a dichotomy
of a relatively sparse -neighborhood of the transmitted vector

when the union bound is asymptotically tight, and a cluttered
neighborhood when is not. These two cases correspond to the
first and the second terms in (16), respectively. When the union
bound analysis is not applicable, we will rely crucially on the
following lemma.

Lemma 13: If for some such that
then there exists a nonempty set such that for all

Proof: Consider a pair of codewords and such that
. We deduce that since the event

occurred. Therefore, by Lemma 12, there exists a
such that

Given a pair of codewords with we put
; otherwise, we assume that contains all the values

of whose existence is established in the previous
lemma. We now define, for all possible values of ,
the sets

such that and

In words, for a given , the set contains all the code-
words that have a -neighbor such that the set con-
tains the value . Let be defined as the set of all

such that a substantial number of the -neighbors of

satisfy and . Note that the “substantial
number” here is in relation to .

We say is a “nuisance level” for if and
are both substantially sized subcodes of . The two cases in the
following analysis correspond to whether or not a nuisance level
exists. The next theorem bounds the error probability in the case
that it does not exist.

Theorem 14: Consider any code of sufficiently large
length and rate . Assume that for some and bounding
function we have for all . If there does
not exist a nuisance level for then

Proof: Let us define the sets

is not a substantially sized subcode

is not a substantially sized subcode

Since does not have a nuisance level, . Without
loss of generality, we may assume that for all
since removing yields a substantially sized subcode.
Hence, also for all . Now consider only trans-
mitting the codewords in and note that
this is a substantially sized number of codewords since neither

nor are substantially sized. For each of
these codewords we know that . Hence,

The second inequality follows from the fact that for each
, a substantial number of -neighbors are such

that , and the third one is implied by (19) since
whenever .

We now bound the error probability (and ensure another prop-
erty of the distance distribution) in the case that there exists a
nuisance level.

Theorem 15: Consider any code of sufficiently large
length and rate and an . Let be a nuisance level
for . The subset of codewords such that

forms a substantially sized subcode. Furthermore

Proof: Since is substantially sized, it follows by
Lemma 13 that a substantial number of codewords have at
least neighbors at a relative distance . Now
consider . By definition, there is a substantially sized
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subset of the -neighbors of such that for all
. Hence, appealing to Lemma 12, for each

Now

and so, by the above discussion and (20), we get

Proof of Theorem 6: Let be the code from the statement
of the theorem. Let

As discussed in [2], [7], for any , the code
contains a subcode of size such that for all

codewords in this subcode

Since the subcode is substantially sized we may now consider
this subcode as our new code.

For a fixed , construct , and for all pairs
with . By Theorems 14 and 15 we get

if no nuisance level exists for
if a nuisance level exists for .

Hence, we get

Now if then and so we get

(21)

If , then we use the fact from Theorem 15 that for a
substantial number of codewords , . We
now construct new and for all pairs with

. Hence, by Theorems 14 and 15 we get

if no nuisance level exists for
if a nuisance level exists for .

Hence, we get

If then then

If , then we use the fact that for a substantial number of
codewords , and continue as before.

We continue in this manner and get a sequence
such that at step we get the bound

This process terminates after at most steps since there are only
possible values for the nuisance level. At the last step, ,

the nuisance level , if it even exists, is not less than itself
and, therefore, we have

Now for our code either this equation or (21) is valid, and so we
have shown that for every there exists such
that

This completes the proof.

III. MORE ON THE BOUND OF THEOREM (7)

In this section, we take a closer look at the bound (17) with
the aim to show that it provides a new segment of code rates
where the BSC channel reliability is known exactly. We rely on
the notation of Section I-B. Let . Recall
that the best known lower bound on below the critical
rate is given by

(22)

(23)

For , the reliability function .
Note that both and can be viewed as instances of
the union bound and that both are tangent on . Let us
make one simple observation showing that the bound (17) has
the same property.

The following lemma is verified by direct calculation.

Lemma 16: Let and let . Then

Proof: Indeed, (23) can be rewritten as

The equality in the statement is equivalent to the relation

which is an easily verifiable identity.

Next we can prove the main result of this section.

Theorem 17: Let be the channel transi-
tion probability. Then the channel reliability equals the
random coding exponent for .

Proof: We check numerically that for .
Thus, by Theorem 7, for these values of we have

. The full claim follows from the straight-line bound
of Shannon, Gallager, and Berlekamp [27].
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Fig. 3. Bounds on the error exponent for the BSC with p = 0:08. In the
interval R � R � R the random coding bound E (R; p) is tight.

Remark: We have seen in Lemma 4 that for , it
suffices to rely on the simple form of the function , namely,

. Thus, the only numerical calculation involved in
the proof of this theorem relates to the function .

The random coding exponent gives the best known
lower bound on for . The fraction of
this segment in which Theorem 17 shows it to be tight is given
by

This fraction equals about for and tends to one as
.

We give an example of the new picture for the func-
tion in Fig. 3. Previously the reliability of the BSC was known
exactly only for [12].

IV. RANDOM LINEAR CODES

The inequality of Theorem 6 can be used for a code with
an arbitrary distance distribution. In this section, we are in-
terested in the estimate of the error exponent for a random
linear code . Here by a random code we mean a binary code
whose weight distribution behaves as the binomial distribution:

. The reason for calling this code
random is that the weight distribution of a randomly chosen
linear code with high probability converges to the binomial
distribution (e.g., [3]).

The error exponent for random linear codes for low
rates is bounded below by the expurgation exponent:

. For , the exponent
. Moreover, it is known that the error probability

averaged over the ensemble of all binary codes meets this bound
with equality [15]. The proof of this result in [15] is accom-
plished by computing the ensemble average probability of error
under list decoding into lists of size , where by error we mean
the event that the transmitted codeword is not in the resulting

list. It turns out that under this definition the error occurs in an
exponentially smaller fraction of cases than the error of max-
imum-likelihood decoding. In other words, in all the cases of
error under maximum-likelihood decoding (i.e., decoding into
a size- list) except for an exponentially small fraction of them,
there is exactly one codeword which is at least as close to the
received word as is the transmitted word. This shows that for ex-
ponential asymptotics of the error probability of random codes
the union bound is tight. An analogous result can also be proved
for the ensemble of binary linear codes.

Here we compute a lower bound on the decoding error proba-
bility of a code with weight distribution . A closed-form ex-
pression again seems beyond reach, however, computational ev-
idence with the bound (16) suggests that in a certain segment of
code rates , the error exponent of maximum-like-
lihood decoding of the code is bounded above as follows:

In other words, the expurgation exponent is tight for a random
linear code in the region of low code rates.

V. THE GAUSSIAN CHANNEL

Given the results for the BSC of Section III, it is natural to
assume that qualitatively similar results hold for the reliability
function of the Gaussian channel. Here, we consider briefly this
problem and show that the random coding exponent is tight for
a certain interval of rates immediately below the critical rate.
As in the binary case, the length of this segment depends on the
level of the channel noise.

Let be the signal-to-noise ratio in the channel. Denote by
the channel reliability function defined analogously to

the BSC case. It is known to be bounded below by the random
coding bound [26] which has the form

and is the best known lower bound for , where

Let be a code on (the unit sphere in ). Let
be the angle between the vectors that correspond

to the codewords . Denote by the distribution of
angular distances in the code . The exponent of the union
bound on the error probability has the form

Used together with an estimate of the distance distribution of a
code of rate obtained in [2] this bound takes the form
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where is the root of the equation and

(which represents the Kabatiansky–Levenshtein bound on
spherical codes). The strongest known condition for the union
bound to be valid asymptotically as a lower bound on
was announced in [5]. According to it,
for all rates , where is the root of

(24)

Other conditions were obtained in [2], [7], [9].
Next we state a result analogous to Lemma 16. Its proof is

immediate by comparing the expressions for and .

Lemma 18: Let , then .
We conclude that is the correct value of

if . The last inequality holds for . Coupled
with the straight-line principle of [27] this gives the following
result.

Theorem 19: Let be the signal-to-noise ratio in
the channel. Then

Example: Let . Then , ,
, .

If instead of (24) we rely on conditions with a published
proof, we would still be able to make a tightness claim of
but for a smaller segment of the signal-to-noise ratio values.

Final Note: Recently, a generalized de Caen inequality
was used to derive lower estimates of error probability of a code
via its distance distribution [9]. In particular, [9] gives a condi-
tion for the union bound to be valid asymptotically as a lower
bound on in the BSC case. Although the condition is stated as
an optimization problem ([9, Proposition 5.3]), computational
evidence suggests that its solution is given by (15). Thus, the
methods of this paper and of [9], although different in nature,
seem to lead to the same general estimates. Note that [9] does
not contain results on the BSC reliability function.
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