
Finding Graph Matchings in Data Streams

Andrew McGregor⋆

Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA 19104, USA

andrewm@cis.upenn.edu

Abstract. We present algorithms for finding large graph matchings in
the streaming model. In this model, applicable when dealing with mas-
sive graphs, edges are streamed-in in some arbitrary order rather than
residing in randomly accessible memory. For ǫ > 0, we achieve a 1

1+ǫ

approximation for maximum cardinality matching and a 1
2+ǫ

approxi-
mation to maximum weighted matching. Both algorithms use a constant
number of passes and Õ(|V |) space.

1 Introduction

Given a graph G = (V,E), the Maximum Cardinality Matching (MCM) problem
is to find the largest set of edges such that no two adjacent edges are selected.
More generally, for an edge-weighted graph, the Maximum Weighted Matching

(MWM) problem is to find the set of edges whose total weight is maximized
subject to the condition that no two adjacent edges are selected. Both problems
are well studied and exact polynomial solutions are known [1–4]. The fastest
of these algorithms solves MWM with running time O(nm + n2 logn) where
n = |V | and m = |E|.

However, for massive graphs in real world applications, the above algorithms
can still be prohibitively computationally expensive. Examples include the vir-
tual screening of protein databases. (See [5] for other examples.) Consequently
there has been much interest in faster algorithms, typically of O(m) complexity,
that find good approximate solutions to the above problems. For MCM, a linear
time approximation scheme was given by Kalantari and Shokoufandeh [6]. The
first linear time approximation algorithm for MWM was introduced by Preis [7].
This algorithms achieved a 1/2 approximation ratio. This was later improved
upon by the (2/3− ǫ) linear time1 approximation algorithm given by Drake and
Hougardy [5].

In addition to concerns about time complexity, when computing with mas-
sive graphs it is no longer reasonable to assume that we can store the entire
input graph in random access memory. In this case the above algorithms are not
applicable as they require random access to the input. With this in mind, we

⋆ This work was supported by NSF ITR 0205456.
1 Note that here, and throughout this paper, we assume that ǫ is an arbitrarily small
constant.

consider the graph stream model discussed in [8–10]. This is a particular formu-
lation of the data stream model introduced in [11–14]. In this model the edges
of the graph stream-in in some arbitrary order. That is, for a graph G = (V,E)
with vertex set V = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em}, a graph

stream is the sequence ei1 , ei2 , . . . , eim , where eij ∈ E and i1, i2, . . . , im is an
arbitrary permutation of {1, 2, . . . ,m}.

The main computational restriction of the model is that we have limited
space and therefore we can not store the entire graph (this would require Õ(m)
space.) In this paper we restrict our attention to algorithms that use Õ(n)2

space. This restriction was identified as a “sweet-spot” for graph streaming in
a summary article by Muthukrishnan [8] and subsequently shown to be neces-
sary for the verification of even the most primitive of graph properties such as
connectivity [10]. We may however have multiple passes of the graph stream
(as was assumed in [10, 11]). To motivate this assumption one can consider ex-
ternal memory systems in which seek times are typically the bottleneck when
accessing data. In this paper, we will assume that we can only have constant
passes. Lastly it is important to note that while most streaming algorithms use
polylog(m) space on a stream of length m, this is not always the case. Examples
include the streaming-clustering algorithm of Guha et al. [15] that uses mǫ space
and the “streaming”3 algorithm of Drineas and Kannan [16] that uses space

√
m.

Our Results: In this paper we present algorithms that achieve the following
approximation ratios:

1. For ǫ > 0, a 1
1+ǫ

approximation to maximum cardinality matching.

2. For ǫ > 0, a 1
2+ǫ

approximation to maximum weighted matching.

MCM and MWM have previously been studied under similar assumptions by
Feigenbaum et al. [9]. The best previously attained results were a 1

6 approxima-
tion to MWM and for ǫ > 0 and a 2

3+ǫ
approximation to MCM on the assumption

that the graph is a bipartite graph. Also in the course of this paper we tweak
the 1

6 approximation to MWM to give a 1
3+2

√
2
approximation to MWM that

uses only one pass of the graph stream.

2 Unweighted Matchings

2.1 Preliminaries

In this section we describe a streaming algorithm that, for ǫ > 0, computes a
1/(1 + ǫ) approximation to the MCM of the streamed graph. The algorithm
will use a constant number of passes. We start by giving some basic definitions
common to many matching algorithms.

2 Sometimes known as the semi-streaming space restriction.
3 Instead of “streaming,” the authors of [16] use the term “pass-efficient” algorithms.

Definition 1 (Basic Matching Theory Definitions). Given a matching M
in a graph G = (V,E), we call a vertex free if it does not appear as the end point

of any edge in M . A length 2i+1 augmenting path is a path u1u2 . . . u2i+2 where

u1 and u2i+2 are free vertices and (uj , uj+1) ∈ M for even j and (uj , uj+1) ∈
E \M for odd j.

Note that if M is a matching and P is an augmenting path then M△P
(the symmetric difference of M and P) is a matching of size strictly greater
than M . Our algorithm will start by finding a maximal matching and then, by
finding short augmenting paths, increase the size of the matching by making local
changes. Note that finding a maximal matching is easily achieved in one pass
– we select an edge iff we have not already selected an adjacent edge. Finding
maximal matchings in this way will be at the core of our algorithm and we will
make repeated use of the fact that the maximum matching has cardinality at
most twice that of any maximal matching.

The following lemma establishes that, when there are few short augmenting
paths, the size of the matching found can be lower-bound in terms of the size of
the maximum cardinality matching Opt.

Lemma 1. Let M be a maximal matching and Opt be a matching of maximum

cardinality. Consider the connected components in Opt△M . Ignoring connected

components with the same number of edges from M as from Opt, let αiM be

the number of connected components with i edges from M . Then

max
1≤i≤k

αi ≤
1

2k2(k + 1)
⇒ M ≥ Opt

1 + 1/k

Proof. In each connected component with i edges from M there is either i or i+1
edges from Opt. Therefore, Opt ≤ ∑

1≤i≤k αi
i+1
i
|M |+ k+2

k+1 (1−
∑

1≤i≤k αi)|M |.
By assumption

∑

1≤i≤k

αi

i+ 1

i
+

k + 2

k + 1
(1 −

∑

1≤i≤k

αi) ≤
1

k(k + 1)
+

k + 2

k + 1
= (1 + 1/k)

The result follows.

So, if there are αiM components in Opt△M with i+1 edges from Opt and
i edges from M , then there are at least αiM length 2i+1 augmenting paths for
M . Finding an augmenting path allows us to increase the size of M . Hence, if
max1≤i≤k αi is small we already have a good approximation to Opt whereas, if
max1≤i≤k αi is large then there exists 1 ≤ i ≤ k such that there are many length
2i+ 1 augmenting paths.

2.2 Description of the Algorithm

Now we have defined the basic notion of augmenting paths, we are in a position
to give an overview of our algorithm. We have just reasoned that, if our matching

Fig. 1. A schematic of the procedure for finding length 9 augmenting paths. Explained
in the text.

is not already large, then there exists augmenting paths of some length no greater
than 2k+1. Our algorithm looks for augmenting paths of each of the k different
lengths separately. Consider searching for augmenting paths of length 2i+1. See
Fig. 1 for a schematic of this process when i = 4. In this figure, (a) depicts the
graph G with heavy solid lines denoting edges in the current matching. To find
length 2i + 1 we randomly “project” the graph (and current matching) into a
set of graphs, Li, which we now define.

Definition 2. Consider a graph whose n nodes are partitioned into i+2 layers

Li+1, . . . L0 and whose edgeset is a subset of ∪1≤j≤i+1{(u, v) : u ∈ Lj , v ∈ Lj−1}.
We call the family of such graphs Li. We call a path ul, ul−1, . . . u0 such that

uj ∈ Lj an l-path.

The random projection is performed as follows. The image of a free node in
G = (V,E) is a node in either Li+1 or L0. The image of a matched edge e = (v, v′)
is a node, either u(v,v′) or u(v′,v), in one of Li, . . . L1 chosen at random. The edges
in the projected graph G′ are those in G that are “consistent” with the mapping
of the free nodes and the matched edges, ie. there is an edge between a node
u(v1,v2) ∈ Lj and u(v3,v4) ∈ Lj−1 if there is an edge (v2, v3) ∈ E. Now note that
an i+1-path in G′ corresponds to a 2i+1 augmenting path in G. Unfortunately
the converse is not true, there may be 2i + 1 augmenting paths in G that do
not correspond to i + 1-paths in G′ because we only consider consistent edges.
However, we will show later that a constant fraction of augmenting paths exist
(with high probability) as i + 1-paths in G′. In Figure 1, (b) depicts G′, the
layered graph formed by randomly projecting G into Li.

We now concern ourselves with finding a nearly maximal set of node disjoint
i + 1-paths in a graph G′. See algorithm Find-Layer-Paths in Figure 2. The
algorithm finds node disjoint i+1-paths by doing something akin to a depth first
search. Finding a maximal set of node disjoint i+1-paths can easily be achieved
in the RAM model by actually doing a DFS, deleting nodes of found i+1-paths
and deleting edges when backtracking. Unfortunately this would necessitative
too many passes in the streaming model as each backtrack potentially requires
another pass of the data. Our algorithm in essence blends a DFS and BFS in

such a way that we can substantially reduce the number of backtracks required.
This will come at the price of possibly stopping prematurely, ie. when there may
still exist some i+ 1-paths that we have not located.

The algorithm first finds a maximal matching between Li+1 and Li. Let S
′

be the subset of nodes Li involved in this first matching. It then finds a maximal
matching between S′ and Li−1. We continue in this fashion, finding a matching
between S′′ = {u ∈ Li−1 : u matched to some u′ ∈ Li} and Li−2. One can think
of the algorithm as growing node disjoint paths from left to right. (Fig. 1 (c)
tries to capture this idea. Here, the solid lines represent matchings between the
layers.) If the size of the maximal matching between some subset S of a level
Lj and Lj−1 falls below a threshold we declare all vertices in S to be dead-
ends and conceptually remove them from the graph (in the sense that we never
again use these nodes while try to find i+1-paths.) At this point we start back-
tracking. It is the use of this threshold that ensures a limit on the amount of
back-tracking performed by the algorithm. However, because of the threshold,
it is possible that a vertex may be falsely declared to be a dead-end, ie. there
may still be a node disjoint path that uses this vertex. With this in mind we
want the threshold to be low such that this does not happen often and we can
hope to find all but a few of a maximal set of node disjoint i + 1-paths. When
we grow some node disjoint paths all the way to L0, we remove these paths and
recurse on the remaining graph. For each node v, the algorithm maintains a tag
indicating if it is a “Dead End” or, if we have found a i + 1 path involving v,
the next node in the path.

It is worth reiterating that in each pass of the stream we simply find a maxi-
mal matching between some set of nodes. The above algorithm simply determines
within which set of nodes we find a maximal matching.

Our algorithm is presented in detail in Fig. 2. Here we use the notation
s ∈R S to denote choosing an element s uniformly at random from a set S. Also,
for a matching M , ΓM (u) = v if (u, v) ∈ M and ∅ otherwise.

2.3 Correctness and Running Time Analysis

We first argue that the use of thresholds in Find-Layer-Paths ensures that we
find all but a small number of a maximal set of i+ 1-paths.

Lemma 2 (Running Time and Correctness of Find-Layer-Paths). Given

G′ ∈ Li, Find-Layer-Paths algorithm finds at least (γ − δ)|M | of the i+1-paths
where γ|M | is the size of some maximal set of i + 1-paths. Furthermore the

algorithm takes a constant number of passes.

Proof. First note that Find-Layer-Paths(·, ·, ·, l) is called with argument δ2
i+1−l

.
During the running of Find-Layer-Paths(·, ·, ·, l) when we run line 15, the number

of i+1-paths we rule out is at most 2δ2
i+1−l |Ll−1| (the factor 2 comes from the

fact that a maximal matching is at least half the size of a maximum matching.)
Let El be the number of times Find-Layer-Paths(·, ·, ·, l) is called: Ei+1 = 1,

El ≤ El+1/δ
2i+1−l

and therefore El ≤ δ−
∑

0≤j≤i−l 2
j

= δ−2i−l+1+1. Hence, we

Algorithm Find-Matching(G, ǫ)
(∗ Finds a matching ∗)
Output: A matching
1. Find a maximal matching M

2. k ← ⌈ 1
ǫ
+ 1⌉

3. r ← 4k2(8k + 10)(k − 1)(2k)k

4. for j = 1 to r:
5. for i = 1 to k:
6. do Mi ← Find-Aug-Paths(G,M, i)
7. M ← argmaxMi

|Mi|
8. return M

Algorithm Find-Aug-Paths(G,M, i)
(∗ Finds length 2i+ 1 augmenting paths for a matching M in G ∗)
1. G′ ←Create-Layer-Graph(G, M, i)
2. P =Find-Layer-Paths(G′ , Li+1,

1
r(2k+2)

, i+ 1)
3. return M△P

Algorithm Create-Layer-Graph(G, M, i)
(∗ Randomly constructs G′ ∈ Li from a graph G and matching M ∗)
1. if v is a free vertex then l(v) ∈R {0, i+ 1}
2. if e = (u, v) ∈M then j ∈R [i] and l(e)← j, l(u)← ja and l(v)← jb or vice versa.
3. Ei ← {(u, v) ∈ E : l(u) = i+ 1, l(v) = ia}, E0 ← {(u, v) ∈ E : l(u) = 1b, l(v) = 0}
4. for j = 0 to i+ 1
5. do Lj ← l−1(j)
6. for j = 1 to i− 1
7. do Ej ← {(u, v) ∈ E : l(u) = (j + 1)b, l(v) = ja}
8. return G′ = (Li+1 ∪ Li ∪ . . . ∪ L0, Ei ∪Ei−1 ∪ . . . ∪ E0)

Algorithm Find-Layer-Paths(G′ , S, δ, j)
(∗ Finds many j-paths from S ⊂ Lj ∗)
1. Find maximal matching M ′ between S and untagged vertices in Lj−1

2. S′ ← {v ∈ Lj−1 : ∃u, (u, v) ∈M ′}
3. if j = 1
4. then if u ∈ ΓM′(Lj−1) then t(u)← ΓM′(u), t(ΓM′(u))← ΓM′(u)
5. if u ∈ S \ ΓM′(Lj−1) then t(u)← “Dead End ”
6. return

7. repeat

8. Find-Layer-Paths(G′ , S′, δ2, j − 1)
9. for v ∈ S′ such that t(v) 6=“Dead End”
10. do t(ΓM′(v))← v

11. Find maximal matching M ′ between untagged vertices in S and Lj−1.
12. S′ ← {v ∈ Lj−1 : ∃u, (u, v) ∈M ′}
13. until |S′| ≤ δ|Lj−1|
14. for v ∈ S untagged
15. do t(b)← “Dead End”.
16. return

Fig. 2. An Algorithm for Finding Large Cardinality Matchings. (See text for an infor-
mal description.)

remove at most 2Elδ
2i+1−l |Ll| ≤ 2δ|Ll|. Note that when nodes are labeled as

dead-ends in a call to Find-Layer-Paths(·, ·, ·, 1), they really are dead-ends and
declaring them such rules out no remaining i+1-paths. Hence the total number of
paths not found is at most 2δ

∑

1≤j≤i |Lj | ≤ 2δ|M |. The number of invocations
of the recursive algorithm is

∑

1≤l≤i+1

El ≤
∑

1≤l≤i+1

δ−2i+1−l+1 ≤ δ−2i+1

i.e. O(1) and each invocation requires one pass of the data stream to find a
maximal matching.

When looking for length 2i+1 augmenting paths for a matching M in graph
G, we randomly create a layered graph G′ ∈ Li+1 using Create-Layer-Graph

such that i + 1-paths in G′ correspond to length 2i + 1 augmenting paths. We
now need to argue that a) many of the 2i + 1 augmenting paths in G exist in
G′ as i+ 1-paths and b) that finding a maximal, rather that a maximum, set of
i+ 1-paths in G′ is sufficient for our purposes.

Theorem 1. If G has αiM length 2i+1 augmenting paths, then the number of

length i+ 1-paths found in G′ is at least

(biβi − δ)|M | ,

where bi =
1

2i+2 and βi is a random variables distributed as Bin(αi|M |, 1
2(2i)i).

Proof. Consider a length 2i+ 1 augmenting path P = u0u1 . . . u2i+1 in G. The
probability that P appears as an i+ 1-path in G′ is at least,

2P (l(u0) = 0)P (l(u2i+1) = i+ 1)
∏

j∈[i]

P (l(u2j) = ja and l(u2j−1) = jb) =
1

2(2i)i
.

Given that the probability of each augmenting path existing as a i + 1-path
in G′ is independent, the number of length i + 1-paths in G′ is distributed as
Bin(αi|M |, 1

2(2i)i). The size of a maximal set of node disjoint i + 1-paths is at

least a 1
2i+2 fraction of the maximum size node-disjoint set i+1-paths. Combining

this with Lemma 2 gives the result.

Finally, we argue that we only need to try to augment our initial matching
a constant number of times.

Theorem 2 (Correctness). With probability 1−f by running O(log 1
f
) copies

of the algorithm Find-Matching in parallel we find a 1− ǫ approximation to the

matching of maximum cardinality.

Proof. We show that the probability that a given run of Find-Matching does
not find a (1 + ǫ) approximation is bounded above by e−1.

Define a phase of the algorithm to be one iteration of the loop started at
line 4 of Find-Matching. At the start of phase p of the algorithm, let Mp be the

current matching. In the course of phase p of the algorithm we augment Mp by
at least |Mp|(max1≤i≤k(biβi,p)−δ) edges where βi,p|Mp| ∼ Bin(αi,p|Mp|, 1

2(2i)i).

Let Ap be the value of |Mp|maxi(biβi,p) in the pth phase of the algorithm. As-
sume that for each of the r phases of the algorithm maxαi,p ≥ α∗ := 1

2k2(k−1) .

(By Lemma 1, if this is ever not the case, we already have a sufficiently sized
matching.) Therefore, Ap dominates bkBin(α∗|M1|, 1

2(2k)k). Let (Xp)1≤p≤r be

independent random variables, each distributed as bkBin(α∗|M1|, 1
2(2k)k

). There-

fore,

P

|M1|
∏

1≤p≤r

(1 + max{0, max
1≤i≤k

(biβi,p)− δ}) ≥ 2|M1|

≥ P

∑

1≤p≤r

max
1≤i≤k

biβi,p ≥ 2 + rδ

≥ P

∑

1≤p≤r

Xp ≥ |M1|
2 + rδ

bk

= P (Z ≥ |M1|(4k + 5)) ,

for δ = bk/r where Z = Bin(α∗|M1|r, 1
2(2k)k

). Finally, by an application of the

Chernoff bound,

P (Z ≥ |M1|(4k + 5)) = 1− P (Z < E (Z) /2) > 1− e−2(8k+10)|M1| ≥ 1− e−1 ,

for r = 2(2k)k(8k + 10)/α∗. Of course, since M1 is already at least half the size
of the maximal matching. This implies that with high probability, at some point
during the r phases our assumption that maxαi,p ≥ α∗, became invalid and at
this point we had a sufficiently large matching.

3 Weighted Matching

We now turn our attention to finding maximum weighted matchings. Here each
edge e ∈ E of our graph G has a weight w(e) (wlog. w(e) > 0). For a set of edges
S let w(S) =

∑

e∈S w(e). We seek to maximize w(S) subject to the constraint
that S contains no two adjacent edges.

Consider the algorithms given in Fig. 3. The algorithm Find-Weighted-Matching

can be viewed as a parameterization of the one pass algorithm given in [9] in
which γ was implicitly equal to 1. The algorithm greedily collects edges as they
stream past. The algorithm maintains a matching M at all points. On seeing
an edge e, if w(e) > (1 + γ)w({e′|e′ ∈ M , e′ and e share an end point}) then
the algorithm removes any edges in M sharing an end point with e and adds

e to M . The algorithm Find-Weighted-Matching-Multipass generalizes this to
a multi-pass algorithm that in effect, repeats the one pass algorithm until the
improvement yielded falls below some threshold. We start by recapping some
notation introduced in [9]. While unfortunately macabre, this notation is never-
theless helpful for developing intuition.

Definition 3. In a given pass of the graph stream, we say that an edge e is born
if e ∈ M at some point during the execution of the algorithm. We say that an

edge is killed if it was born but subsequently removed from M by a newer heavier

edge. This new edge murdered the killed edge. We say an edge is a survivor if it
is born and never killed. For each survivor e, let the Trail of the Dead be the set

of edges T (e) = C1 ∪C2 ∪ . . ., where C0 = {e}, C1 = {the edges murdered by e},
and Ci = ∪e′∈Ci−1

{the edges murdered by e′}.

Lemma 3. For a given pass let the set of survivors be S. The weight of the

matching found at the end of that pass is therefore w(S).

1. w(T (S)) ≤ w(S)/γ
2. Opt ≤ (1 + γ) (w(T (S)) + 2w(S))

Proof. 1. For each murdering edge e, w(e) is at least (1 + γ) the cost of
murdered edges, and an edge has at most one murderer. Hence, for all i,
w(Ci) ≥ (1+γ)w(Ci+1) and therefore (1+γ)w(T (e)) =

∑

i≥1(1+γ)w(Ci) ≤
∑

i≥0 w(Ci) = w(T (e)) + w(e). The first point follows.
2. We can charge the costs of edges in Opt to the S∪T (S) such that each edge

e ∈ T (S) is charged at most (1 + γ)w(e) and each edge e ∈ S is charged at
most 2(1 + γ)w(e). See [9] for details.

Hence in the one pass algorithm we get an 1
1
γ
+3+2γ

approximation ratio since

Opt ≤ (1 + γ)(w(T (S)) + 2w(S)) ≤ (3 +
1

γ
+ 2γ)w(S)

The maximum of this function is achieved for γ = 1√
2
giving approximation ratio

1
3+2

√
2
. This represents only a slight improvement over the 1/6 ratio attained

previously. However, a much more significant improvement is realized in the
multi-pass algorithm Find-Weighted-Matching-Multipass .

Theorem 3. The algorithm Find-Weighted-Matching-Multipass finds a 1
2(1+ǫ)

approximation to the maximum weighted matching. Furthermore, the number of

passes required is O(ǫ−3).

Proof. First we prove that the number of passes is as claimed. We increase the
weight of our solution by a factor 1+κ each time we do a pass and we start with a
1/(3+ 2

√
2) approximation. Hence, if we take, log1+κ(3/2+

√
2) passes we have

already found a maximum weighted matching. Substituting in κ = γ3

(1+γ)2−γ3

establishes the bound on the number of passes.

Algorithm Find-Weighted-Matching(G, γ)
(∗ Finds Large Weighted Matchings in One Pass ∗)
1. M ← ∅
2. for each edge e ∈ G

3. do if w(e) > (1 + γ)w({e′|e′ ∈M , e′ and e share an end point})
4. then M ←M ∪ {e} \ {e′|e′ ∈M , e′ and e share an end point}
5. return M

Algorithm Find-Weighted-Matching-Multipass(G, ǫ)
(∗ Finds Large Weighted Matchings ∗)
1. γ ← 2ǫ

3

2. κ← γ3

(1+γ)2−γ3

3. Find a 1

3+2
√

2
weighted matching, M

4. repeat

5. S ← w(M)
6. for each edge e ∈ G

7. do if w(e) > (1 + γ)w({e′|e′ ∈M , e′ and e share an end point})
8. then M ← M∪{e}\{e′ |e′ ∈M , e′ and e share an end point}
9. until

w(M)
S
≤ 1 + κ

10. return M

Fig. 3. Algorithms for Finding Large Weighted Matchings

Let Mi be the matching constructed after the i-th pass. Let Bi = Mi∩Mi−1.
Now, (1 + γ)(w(Mi−1)− w(Bi)) ≤ w(Mi)− w(Bi) and so,

w(Mi)

w(Mi−1)
=

w(Mi)

w(Mi−1)− w(Bi) + w(Bi)
≥ (1 + γ)w(Mi)

w(Mi) + γw(Bi)
.

If w(Mi)
w(Mi−1)

< (1 + κ), then we deduce that w(Bi) ≥ γ−κ
γ+γκ

w(Mi). Appealing

to Lemma 3, this means that, for all i,

OPT ≤ (1/γ + 3 + 2γ)(w(Mi)− w(Bi)) + 2(1 + γ)w(Bi) ,

since edges in Bi have empty trails of the dead. So if w(Bi) ≥ γ−κ
γ+γκ

w(Mi) we
get that,

OPT ≤ (1/γ + 3 + 2γ)(w(Mi)− w(Bi)) + 2(1 + γ)w(Bi)

≤ (1/γ + 3 + 2γ − (1/γ + 1)
γ − κ

γ + γκ
)w(Mi)

≤ (2 + 3γ)w(Mi) .

Since γ = 2ǫ
3 the claimed approximation ratio follows.

4 Conclusions and Open Questions

New constant pass streaming algorithms, using Õ(n) space, have been presented
for the MCM and MWM problems. The MCM algorithms uses a novel ran-
domized technique that allows us to find augmenting paths and thereby find a
matching of size Opt/(1 + ǫ). The MWM algorithm builds upon previous work
to find a matching whose weight is at least Opt/(2 + ǫ).

It is worth asking if there exists a streaming algorithm that achieves a 1/(1+ǫ)
approximation for the MWM problem. It is possible, although non-trivial, to ex-
tend some of the ideas for the MCM problem to deal with the case when edges
are weighted. The main problem lies in the fact that, in the weighted case, there
are “augmenting cycles” in addition to (weight-)augmenting paths (naturally
defined). Unfortunately, finding cycles in the streaming model seems to be in-
herently difficult. In particular, this author fears that lower bounds concerning
finding the girth of a graph [10] and finding common neighborhoods [17] may
suggest a negative result.

Finally, the careful reader may have noticed that the number of passes re-
quired by the MCM algorithm has a rather strong dependence on ǫ in the sense
that, as ǫ becomes small, the number of passes necessary, grows very quickly.
This paper was rather cavalier with the dependence on ǫ as we were primar-
ily concerned with ensuring that the number of passes was independent of n.
However, for the sake of practical applications, a weaker dependence would be
desirable.

References

1. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat.
Bur. Standards 69 (1965) 125–130

2. Gabow, H.N.: Data structures for weighted matching and nearest common an-
cestors with linking. In: Proc. ACM-SIAM Symposium on Discrete Algorithms.
(1990) 434–443

3. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximummatchings in bipartite
graphs. SIAM J. Comput. 2 (1973) 225–231

4. Micali, S., Vazirani, V.: An O(
√
V E) algorithm for finding maximum matching

in general graphs. In: Proc. 21st Annual IEEE Symposium on Foundations of
Computer Science. (1980)

5. Drake, D.E., Hougardy, S.: Improved linear time approximation algorithms
for weighted matchings. In Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A.,
eds.: RANDOM-APPROX. Volume 2764 of Lecture Notes in Computer Science.,
Springer (2003) 14–23

6. Kalantari, B., Shokoufandeh, A.: Approximation schemes for maximum cardinality
matching. Technical Report LCSR–TR–248, Laboratory for Computer Science
Research, Department of Computer Science. Rutgers University (1995)

7. Preis, R.: Linear time 1/2-approximation algorithm for maximum weighted match-
ing in general graphs. In Meinel, C., Tison, S., eds.: STACS. Volume 1563 of Lecture
Notes in Computer Science., Springer (1999) 259–269

8. Muthukrishnan, S.: Data streams: Algorithms and applications. (2003) Available
at http://athos.rutgers.edu/∼muthu/stream-1-1.ps.

9. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. In: Proc. 31st International Colloquium on Automata,
Languages and Programming. (2004) 531–543

10. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances
in the streaming model: The value of space. Proc. 16th ACM-SIAM Symposium
on Discrete Algorithms (2005)

11. Munro, J., Paterson, M.: Selection and sorting with limited storage. Theoretical
Computer Science 12 (1980) 315–323

12. Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams.
Technical Report 1998-001, DEC Systems Research Center (1998)

13. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences 58 (1999) 137–147

14. Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: An approximate L1

difference algorithm for massive data streams. SIAM Journal on Computing 32

(2002) 131–151
15. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In:

Proc. 41th IEEE Symposium on Foundations of Computer Science. (2000) 359–366
16. Drineas, P., Kannan, R.: Pass efficient algorithms for approximating large matrices.

In: Proc. 14th ACM-SIAM Symposium on Discrete Algorithms. (2003) 223–232
17. Buchsbaum, A.L., Giancarlo, R., Westbrook, J.: On finding common neighbor-

hoods in massive graphs. Theor. Comput. Sci. 1-3 (2003) 707–718

